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ON DIMENSIONS OF THE REAL NERVE OF THE MODULI SPACE

OF RIEMANN SURFACES OF ODD GENUS

G. GROMADZKI, E. KOZ LOWSKA-WALANIA

Abstract. In the moduli space Mg of Riemann surfaces of genus g ≥ 2 there is

important, so-called, real locus Rg, consisting of points representing Riemann surfaces

having symmetries, by which we understand antiholomorphic involutions. Rg itself is

covered by the strata Rk
g , each being formed by the points corresponding to surfaces

having a symmetry of given topological type k. These strata are known to be real

analytic varieties of dimension 3(g − 1). Also, their topological structure is pretty well

known; Goulden-Jackson-Harer and Harer-Zagier have found their Euler characteristic,

expressing them through the Riemann zeta function. However, topological properties of

the whole real locus Rg were less studied. The most known fact is its connectivity, proved

independently by Buser-Seppälä-Silhol, Catanese-Frediani and Costa-Izquierdo. This

paper can be seen as a further contribution to the study of topology of Rg, which was

possible through the notion of the nerve Ng, associated to Rg and called the real nerve.

We find upper bounds for its geometrical and homological dimensions and we show their

sharpness for infinitely many values of odd g. Precise values of these dimensions for even

g have been found by the authors in an earlier paper.

1. Introduction

By a symmetry of a Riemann surface of genus g we understand its antiholomorphic

involution σ. The topological type of the symmetry σ is described by an integer k, whose

absolute value is the number of connected components of the set F = Fix(σ) of points

fixed by σ, and which is positive if σ is separating, i.e. X − F is disconnected, and

negative or 0 otherwise. Each of the components of F is homeomorphic to a circle and

called an oval of σ in the Hilbert’s nineteenth century terminology. The possible types

of individual symmetries are known from the classification of Harnack [14] and Weichold

[19]. In such a way, the real locus Rg of the moduli space Mg of compact Riemann

surfaces of given genus g can be covered by [(3g + 4)/2] real analytic varieties Rk
g of

dimension 3(g − 1), consisting of the points represented by surfaces having a symmetry

of the type k [7, 17, 18]. Also a topological structure of these varieties is well known. In

[13, 8] the authors found their Euler characteristic expressing them through the Riemann

zeta function.

Both authors supported by NCN 2012/05/B/ST1/02171 and G. Gromadzki supported also by Max-

Planck Mathematical Institute in Bonn .
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However, topological properties of the whole real locus Rg were less studied. The most

known fact is its connectivity, proved independently by Buser-Seppälä-Silhol, Catanese-

Frediani and Costa-Izquierdo. This paper can be seen as a further contribution to the

study of topology of Rg, which was possible through the using of the notion of a nerve

Ng, associated to the covering of Rg, by the loci Rk
g , and called the real nerve.

By the definition, (k0, k1, . . . , kn) constitutes an n-simplex of our nerve Ng if and only

if

Rk0
g ∩Rk1

g ∩ . . . ∩Rkn
g ̸= ∅,

which in turn means that there exists a Riemann surface having simultaneously symme-

tries of distinct types k0, k1, . . . , kn. The most challenging task here would be to compute

the Euler characteristic of Ng. This seems, however, to be rather difficult, though cal-

culation of higher-dimensional Betti numbers seems to be more tractable. Here we shall

deal with geometrical and homological dimensions of Ng. We find upper bounds for them

and we show their sharpness for infinitely many values of odd g. Precise values of these

dimensions for even g have been found by the authors in an earlier paper [12].

By the mentioned results of of Harnack and Weichold (c.f. [5]), Ng has [(3g + 4)/2]

points. Moreover, Ng is connected by the results of Buser-Seppälä-Silhol [4], Catanese-

Frediani and it was also shown by Costa and Izquierdo in [6], that given arbitrary type

k of a symmetry of a Riemann surface of genus g, a surface can be chosen in such a way,

to also have a symmetry of the type −1. This in fact means that −1 is a spine of Ng for

any g.

Due to functorial equivalence between compact, connected Riemann surfaces and pro-

jective, irreducible, smooth, complex algebraic curves, we can also translate our results to

the language of complex curves and their real forms. Under this equivalence, a Riemann

surface X admits a symmetry σ if and only if the corresponding curve CX has a real form

CX(σ). Moreover, two symmetries σ and τ define real forms CX(σ) and CX(τ) isomorphic

over the reals R if and only if they are conjugate in Aut±(X). Finally, the set Fix(σ) is

homeomorphic to a smooth projective model of the corresponding real form CX(σ). The

image MR
g , resulting from mapping the moduli space of real algebraic curves into the

moduli space Mg of complex algebraic curves of genus g, is called the real locus and it is

covered by the strata MR
g,k, consisting of the points of Mg representing complex algebraic

curves having a real form, whose smooth projective model has |k| connected components

and the set of its R-rational points leaves, when removed, its complexification connected

or not according to k being negative (or 0) or positive respectively.

2. Preliminaries

We obtain our results by using the combinatorial group theory, i.e. theory of non-

euclidean crystallographic groups (NEC groups in short), which are the discrete and
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cocompact subgroups of the group G of all isometries of the hyperbolic plane H. The

algebraic structure of such a group Λ is determined by the signature:

(1) s(Λ) = (h;±; [m1, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk)}),

where the brackets (ni1, . . . , nisi) are called the period cycles, the integers nij are the link

periods, mi proper periods and h is the orbit genus of Λ.

A group Λ with signature (1) has the presentation with the following generators, called

canonical generators :

x1, . . . , xr, ei, cij , 1 ≤ i ≤ k, 0 ≤ j ≤ si and a1, b1, . . . , ah, bh if the sign is + or d1, . . . , dh

otherwise,

and relators:

xmi
i , i = 1, . . . , r, c2

ij−1, c
2
ij , (cij−1cij)

nij , ci0e
−1
i cisiei, i = 1, . . . , k, j = 1, . . . , si and

x1 . . . xre1 . . . eka1b1a
−1
1 b−1

1 . . . ahbha
−1
h b−1

h or x1 . . . xre1 . . . ekd
2
1 . . . d

2
h,

according to whether the sign is + or −. The elements xi are elliptic transformations,

ai, bi hyperbolic translations, di glide reflections and cij hyperbolic reflections. We shall

call the reflections cij−1, cij consecutive.

Now an abstract group with such a presentation can be realized as an NEC group Λ if

and only if the value

ηh+ k − 2 +

r∑
i=1

(
1− 1

mi

)
+

1

2

k∑
i=1

si∑
j=1

(
1− 1

nij

)
,

is positive, where η = 2 or 1 according to the sign being + or −. This value corresponds

to the hyperbolic area µ(Λ) of any fundamental region for Λ and we have the Hurwitz-

Riemann formula

[Λ : Λ′] =
µ(Λ′)

µ(Λ)
,

where Λ′ is a subgroup of finite index in an NEC group Λ.

NEC groups having no orientation reversing elements are just the classical Fuchsian

groups and among them particularly important are the Fuchsian surface groups, which

are just torsion free Fuchsian groups. A Fuchsian surface group Γ has signature of the

type (g;−) and in such a case H/Γ is a compact Riemann surface of genus g. Conversely,

every compact Riemann surface X can be represented as such an orbit space for some

Fuchsian surface group Γ and a finite group G is a group of automorphisms of X if and

only if G = Λ/Γ for some NEC group Λ. The following result from [9, 10] is a main tool

that we use in this paper.
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Theorem 2.1. Let X = H/Γ be a Riemann surface with the group G of all automorphisms

of X, let G = Λ/Γ for some NEC group Λ and let θ : Λ → G be the canonical projection.

Then the number of ovals of a symmetry σ of X equals∑
[C(G, θ(ci)) : θ(C(Λ, ci))],

where C denotes the centralizer and the sum is taken over a set of representatives of all

the conjugacy classes of canonical reflections, whose images under θ are conjugate to σ.�

The index wi = [C(G, θ(ci)) : θ(C(Λ, ci))] will be called a contribution of ci to ∥σ∥.
The next result of Singerman allows us to compute the centralizer of a canonical reflection

in an NEC group

Proposition 2.2 ([15, 16]). Let c0, c1, . . . , cs, e be the canonical generators corresponding

to a period cycle (n1, . . . , ns) of an NEC group Λ with signature (1). If all ni are even,

then the centralizer C(Λ, ci) of ci in Λ is

⟨ci⟩ ⊕
(
⟨(ci−1ci)

ni/2⟩ ∗ ⟨(cici+1)
ni+1/2⟩

)
= Z2 ⊕ (Z2 ∗ Z2) for i ̸= 0,

⟨c0⟩ ⊕
(
⟨(c0c1)

n1/2⟩ ∗ ⟨e−1(cs−1cs)
ns/2e⟩

)
= Z2 ⊕ (Z2 ∗ Z2) for i = 0,

⟨c0⟩ ⊕ ⟨e⟩ = Z2 ⊕ Z for s = 0.

A group G is said to be abstractly oriented if there is an epimorphism α : G → Z2 =

{±1}, called an abstract orientation. An element g of abstractly oriented group G with

an abstract orientation ε is said to be orientation preserving (respectively orientation

reversing) if α(g) = +1 (respectively α(g) = −1). Observe that the abstract orientations

of G correspond to the subgroups of index 2 in G. Moreover, by the Sylow theorem, in our

studies of symmetries we may assume that G is a 2-group. Indeed, for σ1, σ2, . . . , σk being

the representatives of conjugacy classes of symmetries we know that all Sylow 2-groups

are conjugate and so we can assume that these symmetries generate a 2-group G. In [2]

the authors proved the following two theorems:

Theorem 2.3. A 2-group G containing a dihedral group Dn as a subgroup of index 2r has

at most 2r+2 − 1 conjugacy classes of elements of order 2. Furthermore, if G is abstractly

oriented and the generators x0, y0 of Dn reverse the orientation, then G has at most 2r+1

conjugacy classes of orientation reversing elements of order 2.

Theorem 2.4. Let X be a Riemann surface of genus g = 2r−1u+1 with u odd. Let G be

a 2-group of automorphisms of X of order 2t and assume that t ≥ r+1. Then G contains

a cyclic or a dihedral subgroup of index 2r.

obtaining as a corollary, the sharp upper bound on a number of nonconjugate symmetries

with fixed points is given in [2]:

Corollary 2.5. Let X be a Riemann surface of genus g = 2r−1u + 1 with u odd. Then

the maximal number of nonconjugate symmetries with fixed points that X may admit is

2r+1. Furthermore, this bound is attained if and only if u ≥ 2r+1 − 3.
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Remark 2.6. Here we shall mention, that one of the possible types of symmetries is 0,

which corresponds to a fixed point free (and hence nonseparating) symmetry. As in our

studies of the geometrical and homological dimension of the nerve Ng we will look for

symmetries with distinct types, we have to take a fixed point free symmetry into account

as one (and only one!) of the possibilities. It was shown in [3] that the bound from

corollary 2.5 is also true, if we allow fixed point free symmetries.

For the sake of completeness, before we move to the main sections of the paper, let us

cite results concerning even values of g, which were obtained in [12].

Theorem 2.7. The following conditions hold:

(1) for any even g ≥ 2, dimG(Ng) = 3;

(2) for any even g ≥ 6, dimH(Ng) = 3, while dimH(N2) = 0 and dimH(N4) = 1. �

3. Geometrical dimension of Ng

Since symmetries of a Riemann surface X having distinct topological types are non-

conjugate in Aut±(X), the quantitative results concerning symmetries from the corollary

2.5 give us upper bounds for dimG(Ng) and dimH(Ng). Observe, however, that to study

the attainment, one needs qualitative results allowing topological type of single symmetry

σ of X to be found in terms of Aut±(X) and topological type of the action. This role in

our paper will be played by theorem 2.1. Here we shall prove the following

Theorem 3.1. Let g = 2r−1u+ 1 where r ≥ 2 and u is odd. The geometrical dimension

of Ng does not exceed 2r+1 − 1 and this bound is attained if u ≥ 2r(2r + 1)− 5.

Example 3.2. Before we present the proof of the above theorem, let us consider an

example, which shall give us an idea and intuition for the upcoming proof. The example

can be viewed as the proof for the specific case r = 2 in the theorem above.

Let g = 2u + 1 for some odd integer u ≥ 15. It is obvious, by corollary 2.5, that

the geometrical dimension of Ng cannot be greater than 7. Indeed, there are at most 8

nonconjugate symmetries, hence at most 8 symmetries of distinct types and hence the

dimension of a simplex in Ng cannot be greater than 7. We shall show that in fact it is

maximal and equals 7 in such a case. Take G = Z4
2 to be an abstractly oriented group

having 8 orientation reversing involutions σ0, σ1, . . . , σ7. Consider an NEC group with

signature

(0;+; [2, (u−15)/2. . . , 2]; {(2, 19. . ., 2)}),

and define and epimorphism θ : Λ → Z4
2 on a sequence of consecutive canonical reflections

in the following way:

σ7, σ6, σ7, . . . , σ7︸ ︷︷ ︸
7

σ5, σ4, σ5, σ4, σ5︸ ︷︷ ︸
5

σ3, σ2, σ3︸ ︷︷ ︸
3

σ1, σ7, σ5, σ3.
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Moreover, we define θ(xl) = σ0σ1 for all values of l and θ(e1) = 1 if (u − 15)/2 is

even and θ(e1) = σ0σ1 otherwise. Here we consider our reflections as situated on a

circle, so we unify the first and the last reflection. It is easy to see that symmetry

σi has 2i ovals. Indeed, whenever a symmetry appears with the same neighbors, the

corresponding reflection contributes to it with 4 ovals, by theorem 2.1 and proposition

2.2. Now if it appears with distinct neighbors we have a contribution of 2 ovals to the

respective symmetry. It follows easily, that we constructed a Riemann surface H/ ker θ,

having 8 nonconjugate symmetries, each with different number of ovals, hence of distinct

topological types. Therefore we constructed a 7-dimensional simplex and the geometrical

dimension here is maximal and equals 7.

Proof. The upper bound on dimGNg is obvious by corollary 2.5. Again, as there are

at most 2r+1 nonconjugate symmetries, then there are at most 2r+1 distinct types. It

follows immediately that the dimension of a simplex in Ng is bounded by 2r+1 − 1 and so

dimG(Ng) ≤ 2r+1−1. Therefore for the proof it is enough to construct, for any g as in the

theorem, a Riemann surface of genus g, having 2r+1 symmetries of distinct topological

types. Let u ≥ 2r(2r + 1)− 5 and consider an NEC group Λ with signature

(2) (0;+; [2, m. . ., 2]; {(2, s. . ., 2)}),

where s = 2r(2r +1)− 1, m = (u− 2r(2r +1)+5)/2. We shall construct an epimorphism

θ : Λ → G = Zr+2
2 , whereG is an abstractly oriented group. Denote by σi, 0 ≤ i ≤ 2r+1−1,

all the orientation reversing involutions inG. Let θ(xl) = σ0σ1 for 1 ≤ l ≤ m and θ(e1) = 1

or σ0σ1 depending on the parity of m, that is θ(e1) = 1 for m being even and θ(e1) = σ0σ1

otherwise. Let us divide the sequence of canonical reflections c0, . . . , cs−1 in the following

way: first we have 2r segments, where the n-th segment has length 2r+1− (2n−1), and at

the end we have the remaining 2r−1 reflections; we shall call these a tail of the sequence.

Now we define θ to map the reflections of n-th segment alternatively to σ2r+1−(2n−1) and

σ2r+1−2n, starting and finishing with σ2r+1−(2n−1). The last 2r-th segment has length 1

and its reflection is mapped to σ1. Next, we map the remaining consecutive reflections

respectively to

σ2r+1−1, σ2r+1−3, . . . , σ3.

As before, we unify the first and the last reflection, hence we can view the canonical

reflections as situated on a circle and treat the first one and the last one as the same.

Clearly θ is an epimorphism and it is also easy to determine the number of ovals of all

the symmetries. Obviously σ0 is a fixed point free symmetry. The centralizer of any

symmetry σi in G has order 2r+2. By proposition 2.2, an image of the centralizer of a

reflection c in Λ is generated by θ(c) = σi and the images of its neighboring reflections

on a circle mentioned above. Therefore, if these images are distinct, then the reflection c

contributes, by theorem 2.1, with 2r+2/8 = 2r−1 ovals to symmetry σi. If these images

are the same, then we have 2r+2/4 = 2r ovals.
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Let us now consider symmetries of the n-th segment, σ2r+1−(2n−1) and σ2r+1−2n for some

1 ≤ n ≤ 2r. The segment has odd length and its first and last reflections contribute with

2r−1 ovals to symmetry σ2r+1−(2n−1). Indeed, recall that for the first and last reflection

in the segment, the images of neighboring reflections are distinct, so the image of this

centralizer has order 8. Now by the theorem 2.1, the last and the first reflection in

the segment contribute |G|/8 = 2r−1 ovals each. Observe also, that all the remaining

reflections of this segment contribute with |G|/4 = 2r ovals to respective symmetries. This

is so, because now the image of the centralizer of a reflection has order 4, as the neighboring

reflections have the same image. Summing up, the n-th segment gives (2r−n) ·2r ovals to
symmetries σ2r+1−(2n−1) and σ2r+1−2n each. Furthermore, symmetry σ2r+1−(2n−1) appears

once more, as it is the image of one of the reflections at the tail of the cycle (not connected

to any segment). This reflection again contributes with 2r−1 ovals. Therefore, symmetry

σ2r+1−(2n−1) has (2r+1 − 2n + 1) · 2r−1 ovals and σ2r+1−2n has (2r+1 − 2n) · 2r−1 ovals.

Observe also that symmetries connected with distinct segments have distinct numbers of

ovals, as the lengths of the segments differ. Hence we arrived to the configuration of 2r+1

symmetries σi, where the symmetry σi has i · 2r−1 ovals, for some 0 ≤ i ≤ 2r+1 − 1. This

shows that we have a (2r+1 − 1)-simplex in Ng and so dimGNg = 2r+1 − 1, the proof is

finished �

4. Homological dimension of Ng

Now we shall deal with the problem of the homological dimension dimH Ng. Obviously

the homological dimension of the nerve cannot be greater than the geometrical dimension

of Ng. The next result shows, that in fact the bound again is attained for infinitely many

values of g.

Theorem 4.1. Let g = 2r−1u + 1 for some r ≥ 2 and u odd. Then the homological

dimension of Ng does not exceed 2r+1 − 1 and equals 2r+1 − 1 if u ≥ 2r+1(2r−1 + 1)− 5.

Example 4.2. The first part of the statement is clearly true, as dimH Ng ≤ dimGNg ≤
2r+1 − 1. As before, we shall start with a specific case of r = 2, which shall help us to

go through the general proof. Let us assume that g = 2u + 1 for some odd u ≥ 19. We

shall construct 9 Riemann surfaces X0, . . . , X8 in such a way, that a surface Xj has 8

commuting symmetries σi with 2i ovals each, where 0 ≤ i ≤ 8 and i ̸= j. Let us take

an NEC group Λ with signature (2). Now we shall consider 9 cases defining m, s and

respective epimorphisms θj onto Z4
2 such that Xj = H/ ker θj is the surface we looked for.

Throughout the proof we assume σi to be all the orientation reversing involutions in Z4
2.

We also assume that the canonical reflections in an NEC group Λ are situated on a circle

so that the last and first one are unified and treated as one.
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Case 0: Take m = u−19
2 , s = 23 and define θ0 by mapping the consecutive canonical

reflections respectively to

σ8, σ7, σ8, . . . , σ7︸ ︷︷ ︸
8

σ6, σ5, . . . , σ5︸ ︷︷ ︸
6

σ4, σ3, σ4, σ3︸ ︷︷ ︸
4

σ1, σ4, σ6, σ8, σ2

and all the elliptic generators to σ1σ2. The connecting generator e1 is mapped to σ1σ2 or

1 for m odd or even respectively. By theorem 2.1 and proposition 2.2, in the same way as

we did in the proof of theorem 3.1, it is easy to see that σi has 2i ovals for i = 1, . . . , 8.

Case 1: Take m = u−19
2 , s = 23 and define θ1 by mapping the connecting and elliptic

generators similarly as above, with the image being σ0σ2 or 1, and consecutive canonical

reflections respectively to

σ8, σ7, σ8, . . . , σ7︸ ︷︷ ︸
8

σ6, σ5, . . . , σ5︸ ︷︷ ︸
6

σ4, σ3, σ4, σ3︸ ︷︷ ︸
4

σ2, σ8, σ6, σ4, σ2.

Here again σi has 2i ovals for i = 2, . . . , 7 and i = 0. Observe also that in this case we

have in addition a fixed point free symmetry σ0. This also holds true for all the remaining

cases.

Case 2: Take m = u−19
2 , s = 23 and define θ2 by mapping the consecutive canonical

reflections respectively to

σ8, σ7, σ8, . . . , σ7︸ ︷︷ ︸
8

σ6, σ5, . . . , σ5︸ ︷︷ ︸
6

σ4, σ3, σ4, σ1, σ3, σ4, σ8, σ6, σ4

and connecting and elliptic generators similarly as above, with the nontrivial image being

σ0σ1. Here again σi has 2i ovals for 0 ≤ i ≤ 8 and i ̸= 2.

Case 3: Take m = u−17
2 , s = 21 and define θ3 by mapping the consecutive canonical

reflections respectively to

σ8, σ7, σ8, . . . , σ7︸ ︷︷ ︸
8

σ6, σ5, . . . , σ5︸ ︷︷ ︸
6

σ4, σ2, σ4, σ1, σ6, σ8, σ4.

The elliptic and connecting generators are mapped as in the previous case.

Case 4: Take m = u−17
2 , s = 21 and define θ4 by mapping the consecutive canonical

reflections respectively to

σ8, σ7, σ8, . . . , σ7︸ ︷︷ ︸
8

σ6, σ5, . . . , σ5︸ ︷︷ ︸
6

σ3, σ2, σ3, σ8, σ6, σ3, σ1.

The elliptic and connecting generators are mapped as in the previous case.

Case 5: Take m = u−15
2 , s = 19 and define θ5 by mapping the consecutive canonical

reflections respectively to

σ8, σ7, σ8, . . . , σ7︸ ︷︷ ︸
8

σ6, σ4, σ6, σ4, σ6, σ3, σ6, σ3, σ1, σ8, σ2.
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The elliptic and connecting generators are mapped as in the previous case.

Case 6: Take m = u−17
2 , s = 21 and define θ6 by mapping the consecutive canonical

reflections respectively to

σ8, σ7, σ8, . . . , σ7︸ ︷︷ ︸
8

σ5, σ4, σ5, σ4, σ5, σ3, σ1, σ2, σ3, σ8, σ5, σ3, σ2.

The elliptic and connecting generators are mapped as in the previous case.

Case 7: Take m = u−15
2 , s = 19 and define θ7 by mapping the consecutive canonical

reflections respectively to

σ8, σ4, σ8, σ4, σ8, σ3, σ8, σ3, σ6, σ5, σ6, σ5, σ6, σ5, σ1, σ2, σ8, σ2, σ6.

The elliptic and connecting generators are mapped as in the previous case.

Case 8: Take m = u−15
2 , s = 19 and define θ8 by mapping the consecutive canonical

reflections as in the first Example concerning theorem 3.1. It is not hard to see, that in

the j-th Case we obtained a surface Xj with the configuration of symmetries announced

before.

Proof. Let g be as in the theorem with u ≥ 2r+1(2r−1 + 1) − 5. Our aim will be to

construct 2r+1 + 1 Riemann surfaces Xj , j = 0, 1, . . . , 2r+1 of genus g, each having 2r+1

symmetries with 0 · 2r−1, 1 · 2r−1, . . . , ̂j · 2r−1, . . . , 2r+1 · 2r−1 ovals, where the symbol ·̂
means that the corresponding value is removed. We shall divide our considerations into

a few cases, depending on the 4-adic structure of j − 1. Throughout this part of the

proof we shall again denote G = Zr+2
2 . We also employ the following convention: during

the construction of Xj assume that all the orientation reversing involutions in G are σi

for i ̸= j and 0 ≤ i ≤ 2r+1. These will also become symmetries in question and the

convention will allow us to link the number of the symmetry with its number of ovals,

which for symmetry σi will be equal to i · 2r−1. In addition, during constructions of the

epimorphisms θj , j ̸= 0, j ̸= 1 for which Xj = H/ ker θj , we assume that all the m elliptic

generators are mapped to σ0σ1 and θj(e1) = σ0σ1 for m odd and θj(e1) = 1 otherwise.

For j = 0 we replace σ0σ1 in the above definition with σ1σ2, and for j = 1 we take it to

be σ0σ2.

First of all we shall construct X0, which will be a Riemann surface having 2r+1 sym-

metries respectively with i · 2r−1 ovals, where 1 ≤ i ≤ 2r+1. Consider an NEC group Λ

with signature (2), where m = (u− 2r+1(2r−1 +1)+5)/2 and s = 2r+1(2r−1 +1)− 1. Let

σ1, . . . , σ2r+1 denote all the symmetries in G. We define θ0 : Λ → G in the following way:

we divide our cycle into pieces such that first we have 2r − 1 segments, where the n-th

segment has length 2r+1 − 2(n− 1). The consecutive canonical reflections corresponding

to the n-th segment are sent alternatively to σ2r+1−2(n−1) and σ2r+1−2n+1, starting with

the former and finishing with the latter. The last of these segments has length 4 and
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its reflections are sent to σ4, σ3, σ4, σ3. Now the next reflection is mapped to σ1 and the

remaining reflections respectively to σ4, σ6, . . . , σ2r+1 , σ2, as shown below:

σ2r+1 , σ2r+1−1, σ2r+1 , . . . σ2r+1−1︸ ︷︷ ︸
2r+1

σ2r+1−2, σ2r+1−3, . . . σ2r+1−3︸ ︷︷ ︸
2r+1−2

. . .

. . . σ2r+1−2(n−1), σ2r+1−2n+1, . . . σ2r+1−2n+1︸ ︷︷ ︸
2r+1−2(n−1)

. . . σ4, σ3, σ4, σ3︸ ︷︷ ︸
4

σ1, σ4, σ6, . . . , σ2r+1 , σ2.

In the same way as in the proof of theorem 3.1, we see that the reflections of the n-th

segment are contributed with (2r+1 − 2n + 1) · 2r−1 ovals each. Furthermore, symmetry

σ2r+1−2(n−1) appears once again as the image of one of the reflections at the end of the

cycle. Therefore it has (2r+1 − 2n + 2) · 2r−1 ovals. In addition, symmetry σ1 has 2r−1

ovals and symmetry σ2 has 2r ovals. Hence the epimorphism θ0 leads to the configuration

of 2r+1 symmetries σi with i · 2r−1 ovals each, where 1 ≤ i ≤ 2r+1.

We construct the surface X2 in the similar way. Consider an epimorphism θ2 : Λ → G,

which is defined in the same way as θ0 on all the canonical reflections except the last

segment and the tail of the cycle. On these canonical reflections we define θ2 as

σ4, σ3, σ4, σ1︸ ︷︷ ︸
4

σ3, σ4, σ2r+1 , σ2r+1−2, . . . , σ8, σ6, σ4.

Compared to θ0, we do not have the symmetry with 2 · 2r−1 ovals, which was our aim.

This one is replaced by fixed point free symmetry σ0. The numbers of ovals of all the

other symmetries did not change. Note, that we replaced the symmetry σ2 at the end of

the cycle with symmetry σ4 but we also changed the sequence of the symmetries at the

end of the cycle and switched σ3 with σ1 in the last segment. Therefore also now σ4 has

4 · 2r−1 ovals, although it appears once more in the cycle.

Now we shall construct surfaces X2n for 1 < n ≤ 2r. Consider an NEC group Λ with

signature (2) where m = (u− 2r+1(2r−1 +1)+ 5)/2+ ⌊n/2⌋ and s = 2r+1(2r−1 +1)− 1−
2⌊n/2⌋. We define θ2n : Λ → G by dividing our cycle into pieces, as before, such that first

we have 2r − 1 segments and after these segments we have the tail of the cycle. Now the

segments with numbers from 1 to 2r − n are the same as in the case of X0 and we define

θ2n in the same way as θ0 on the canonical reflections corresponding to these segments.

Now we shall modify the latter part, depending on the parity of n.

Let first n be even. The next segments (with numbers from 2r − n + 1 up to 2r − 1)

are shortened and their lengths are diminished by 1, which means they have lengths

2n− 1, 2n− 3, . . . , 3 respectively. The consecutive canonical reflections corresponding to

these shortened segments are mapped as follows:

σ2n−1, σ2n−2, . . . σ2n−1︸ ︷︷ ︸
2n−1

σ2n−3, σ2n−2 . . . σ2n−3︸ ︷︷ ︸
2n−3

. . . σ3, σ2, σ3︸ ︷︷ ︸
3

.

Hence for the a-th segment (with a ≥ 2r − n + 1) the reflections are sent alternatively

to σ2r+1−2a+1 and σ2r+1−2a, starting and finishing with the former. These segments
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are exactly the same as in the proof of theorem 3.1. Now the consecutive reflections

from the tail of the cycle, not belonging to the segments, are mapped respectively to

σ2r+1 , σ2r+1−2, . . . , σ2n+2, σ2n−1, σ2n−3, . . . , σ1. Obviously the numbers of ovals of symme-

tries with numbers distinct from 2n have not changed compared to θ0. But here we do

not have symmetry with 2n · 2r−1 ovals and in fact this one has been replaced by fixed

point free symmetry σ0, which is the configuration we looked for.

Let now n be odd. The only difference we make, compared to the case of n being

even, is on the last segment and the latter part of the cycle. Recall that the last seg-

ment had length 3 and its reflections were mapped to σ3, σ2, σ3. We take this segment

to have length 4 and map the corresponding reflections to σ3, σ1, σ2, σ3. Observe that

this operation causes the symmetry σ2 to loose 2r−1 ovals. But we also modify the

epimorphism on the last part of the cycle, by taking the reflections to be mapped to

σ2r+1 , σ2r+1−2, . . . , σ2n+2, σ2n−1, σ2n−3, . . . , σ3, σ2. Here the total length of the cycle re-

mains correct and again there is no symmetry σ2n with 2n ·2r−1 ovals, this symmetry was

replaced by σ0. As for the other symmetries, the only difference is that the symmetry σ2

appeared once more at the end of the cycle, which gave her the lacking 2r−1 ovals - the

ones that were taken during the modification of the last segment.

Now we shall construct surfaces X4n+3 for 0 ≤ n < 2r−1 − 1. Consider an NEC

group Λ with signature (2) where m = (u − 2r+1(2r−1 + 1) + 5)/2 + (n + 1) and s =

2r+1(2r−1 + 1) − 1 − 2(n + 1). We define θ4n+3 : Λ → G in the similar way as in the

previous case. Like before, we divide our cycle into pieces such that first we have 2r − 1

segments and after these segments we have the tail of the cycle. On the first segments, up

to the number 2r − 2n− 2, we define the epimorphism as in the case of θ0, which means

that a-th segment has length 2r+1 − 2(a− 1) and its reflections are sent alternatively to

σ2r+1−2(a−1) and σ2r+1−2a+1, starting with the former and finishing with the latter. We

change the epimorphism on the next segment, with number 2r−2n−1, by replacing all the

entries of symmetry σ4n+3 by symmetries σ2n+2 and σ2n+1. As a result, the epimorphism

θ4n+3 sends the reflections of this segment respectively to:

σ4n+4, σ2n+2, . . . σ4n+4, σ2n+2︸ ︷︷ ︸
2n+2

σ4n+4, σ2n+1, . . . σ2n+1, σ4n+4, σ2n+1︸ ︷︷ ︸
2n+2

.

Observe that in fact the symmetries σ2n+2, σ2n+1 cannot appear again in the sequence

of images of the canonical reflections. Moreover, the symmetry σ4n+4 lost 2r−1 ovals.

Observe also that for n = 0 this modified segment is the last one and it consists of

σ4, σ2, σ4, σ1, while in the other cases the last segment consists of two reflections which

are mapped to σ2, σ1. On the segments with numbers from 2r − 2n up to 2r − n − 1, if

there are any, again we define the epimorphism as in the case of θ0: the a-th segment

has length 2r+1 − 2(a − 1) and its reflections are sent alternatively to σ2r+1−2(a−1) and

σ2r+1−2a+1, starting with the former and finishing with the latter. Now for the segment

with number 2r−n we should have symmetries σ2n+2, σ2n+1, but these were already used

before. Therefore we skip these symmetries and take the next pair, if there is any. As
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a result, all the segments with numbers from 2r − n up to 2r − 1 are, roughly speaking,

’shifted’ compared to what we had with θ0 and a-th segment has length 2r+1 − 2a, its

reflections being sent alternatively to σ2r+1−2a and σ2r+1−2a−1, starting with the former

and finishing with the latter. The last thing here is to define the epimorphism on the tail

of the cycle and we do this by mapping the consecutive reflections respectively to

σ2r+1−2, σ2r+1−4, . . . , σ4n+6, σ̂4n+4, . . . , σ2n+4, σ̂2n+2, σ2n, . . . , σ2, σ2r+1 , σ4(n+1)

for 0 ≤ n ≤ 2r−1 − 2 (note that for n = 0 we have σ4n+4 = σ2n+4 and the last appears

only at the end of the cycle and σ2 does not appear at all). Here it is easy to see that

we obtained a configuration we were looking for, that is a set of 2r+1 symmetries, on a

Riemann surface of genus g, where the symmetries have i · 2r−1 ovals for 0 ≤ i ≤ 2r+1

and i ̸= 4n+ 3 for some 0 ≤ n < 2r−1 − 1.

Now if n = 2r−1 −1, we use the same definitions for Λ and in the epimorphism we only

change the last segment and the tail of the sequence. That is, we take the last segment,

with number 2r − 1, to be σ1, σ2 and the tail of the sequence to be:

σ2r+1 , σ2, σ4, . . . , σ̂2r , . . . , σ2r+1−4, σ2r+1−2.

With these definitions we obtain a desired configuration of symmetries.

Now we shall construct X4n+1 for 1 ≤ n ≤ 2r−1 − 1. Consider an NEC group Λ with

signature (2), wherem = (u−2r+1(2r−1+1)+5)/2+(n+1), s = 2r+1(2r−1+1)−1−2(n+1)

We define θ4n+1 : Λ → G in the following way: we divide our cycle into pieces such that

first we have 2r − 2 segments and after these segments we have the tail of the cycle. On

the first segments, up to the number 2r−2n−1, we define the epimorphism as in the case

of θ0. We change the next segment, with number 2r − 2n and length 4n+2, by changing

its length to 4n + 4 and the epimorphism on this segment by replacing symmetry σ4n+1

by symmetries σ2n+2 and σ2n+1. As a result, the epimorphism θ4n+1 sends the reflections

of this segment respectively to:

σ4n+2, σ2n+2, . . . σ4n+2, σ2n+2︸ ︷︷ ︸
2n+2

σ4n+2, σ2n+1, . . . σ2n+1 σ4n+2, σ2n+1︸ ︷︷ ︸
2n+2

.

Again symmetries σ2n+2, σ2n+1 already have (2n+ 2) · 2r−1 and (2n+ 1) · 2r−1 ovals and

will not appear again in the sequence of images of the canonical reflections. Moreover, the

symmetry σ4n+2 gained 2r−1 ovals and also will not appear again. Now for the segments

with numbers from 2r−2n+1 up to 2r−n−1, if any exist, again we define the epimorphism

as in the case of θ0. Similarly, for the segment with number 2r − n, if it exists, we should

have symmetries σ2n+2, σ2n+1, but as these were already used before, we take the next

pair. As a result, all the segments (if there are any) with numbers from 2r−n up to 2r−2

are ’shifted’ compared to what we had with θ0 and a-th segment has length 2r+1 − 2a, its

reflections being sent alternatively to σ2r+1−2a and σ2r+1−2a−1, starting with the former

and finishing with the latter. The last thing here is to define the epimorphism on the last
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part of the cycle and we do this by mapping the consecutive reflections respectively to

σ1, σ4, σ6, . . . , σ̂2n+2, σ2n+4, . . . , σ̂4n+2, σ4n+4, . . . , σ2r+1 , σ2

for 1 ≤ n ≤ 2r−1 − 1. In this sequence any symmetry appears only once and we remove

σ2n+2 and σ4n+2. Note that for n = 1 we have 2n + 2 = 4, 4n + 2 = 6 and so σ4 and σ6

do not appear at all in the sequence above. This again leads to the configuration we were

looking for.

The last thing is to construct X1. Here again we take an NEC group with signature

(2), where m = (u− 2r+1(2r−1 +1)+ 5)/2 and s = 2r+1(2r−1 +1)− 1. The epimorphism

θ1 : Λ → G is defined in the same way as above but we need to change the tail of

the sequence slightly, as the symmetry removed is σ1. We start with 2r − 1 segments,

where the a-th segment has length 2r+1 − 2(a − 1) and maps the consecutive reflections

alternatively to σ2r+1−2(a−1) and σ2r+1−2(a−1)−1, starting with the former and finishing

with the latter. The last segment has length 4 and its symmetries are σ4, σ3, σ4, σ3. Now

for the tail of the sequence we take:

σ2, σ2r+1 , σ2r+1−2, . . . , σ4, σ2.

This construction gives a Riemann surface X1, having 2r+1 nonconjugate symmetries of

distinct topological types, as the symmetries have i · 2r−1 ovals for i ̸= 1 and 0 ≤ i ≤
2r+1. �

Remark 4.3. In the two main theorems of this paper we constructed surfaces having

the desired configuration of symmetries with distinct numbers of ovals and hence with

distinct types. However, as in our constructions we used the abelian group G as the

automorphism group of the surface, by the results of [1] it is not hard to determine that

all the symmetries constructed are nonseparating.

5. Concluding remarks, open problems and conjectures

We would like to finish this paper with some conjectures, which are being investigated

right now and as far as we are concerned at the moment, they are most probably true.

The first conjecture concerns the structure of the group generated by the so-called

extremal configuration of symmetries.

Conjecture 5.1. Let G be an abstractly oriented 2-group generated by orientation re-

versing involutions. If G contains a dihedral group Dn as a subgroup of index 2r, an

element of order n in Dn preserves the orientation and G has 2r+1 conjugacy classes of

orientation reversing involutions, then it is a direct product Dn ⊕ Z2⊕ r. . . ⊕Z2.

This basically means, by theorem 2.4, that given a Riemann surface of genus g =

2r−1u+1, for some odd integer u and such that it has 2r+1 nonconjugate symmetries, the

structure of the group generated by the symmetries is just a direct product of a dihedral
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group and respective amount of cyclic groups of order 2. This result can be seen as the

generalization of one of the theorems of Gromadzki and Izquierdo from [11]. Being given

the structure of the group generated by symmetries in question, we should have enough

data to prove the next conjecture to be true.

Conjecture 5.2. The sufficient conditions for the maximal geometrical and homological

dimensions of Ng, given in theorems 3.1 and 4.1, are also necessary.

We claim that actually the lower bounds on integer u, and hence the lower bounds on g

cannot be improved. As for the geometrical dimension, it seems that actually it is enough

to consider an abelian group G, being a direct product Zr+2
2 and an NEC group signature

(2). The important thing here is that when we get rid of the non-zero genus and multiple

period cycles in the signature of Λ, we are left with consecutive reflections situated on

a circle. This basically means, that we only have to solve the following combinatorial

problem for k = 2r+1 − 1.

Problem 5.3. Let us consider a number of points situated on a circle, coloured by k ≥ 3

colours in such a way that no two consecutive points have the same colour. Moreover, we

put weights on our points in such a way that the weight is 2 if a point has neighbours with

the same colour and the weight is 1 otherwise. Next, for every colour we define its weight

as the sum of all the weights of points coloured with it. What is the smallest possible

number of points φ(k), for which there exists such a colouring and all the colours have

distinct weights? For our principal goals, the most important is the case k = 2r+1 − 1 for

which we have some evidence for the following conjecture to be true.

Conjecture 5.4. φ(k) = 2r(2r + 1)− 1.

The point is that this problem, k = 2r+1 − 1, describes exactly the situation, when

we need to have k = 2r+1 − 1 symmetries with fixed points (colours), in addition one

fixed point free symmetry, and the group epimorphism can be seen as the colouring of

the points (consecutive canonical reflections). Looking for the smallest possible number

of points is just looking for the shortest possible period cycle, hence the group Λ with

smallest area and hence, by the Hurwitz-Riemann formula, the smallest possible g for

which there exists a Riemann surface X of genus g, realizing the maximal geometrical

dimension of the nerve Ng. We also believe that it will be possible to employ this method

to solve similar, but more difficult, problem for the homological dimension of Ng. Finally,

given k and s ≥ φ(k), a systematic procedure of producing all colourings, described in

Problem 5.3, is also crucial to find higher Betti numbers of Ng.
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[5] P. Buser, M. Seppälä, Real structures of Teichmüller spaces, Dehn twists, and moduli spaces of real

curves, Math. Z. 232 (1999), 547-558.

[6] A. Costa, M. Izquierdo, On the connectedness of the locus of real Riemann surfaces, Ann. Acad.

Sci. Fenn. 27 (2002), 341-356.

[7] C. Earle, On the moduli of closed Riemann surfaces with symmetries, Advances in the theory of

Riemann surfaces, Annals of Mathematics Studies 66 (1971), 119-130.

[8] I.P. Goulden, J.L. Harer D.M. Jackson A geometric parametrization for the virtual Euler charac-

teristics of the moduli spaces of real and complex algebraic curves. Trans. Amer. Math. Soc. 353

(2001), 4405-4427.

[9] G. Gromadzki, On a Harnack-Natanzon theorem for the family of real forms of Riemann surfaces,

Journal Pure Appl. Algebra 121 (1997), 253-269.

[10] G. Gromadzki, On ovals on Riemann surfaces, Revista Matematica Iberoamericana 16 (3) (2000),

515-527.

[11] G. Gromadzki, M. Izquierdo, Real forms of a Riemann surface of even genus, Proc. Amer. Math.

Soc. 126 (12) (1998), 3475-3479.

[12] G. Gromadzki, E. Koz lowska-Walania, On the real nerve of the moduli space of complex algebraic

curves of even genus, Illinois Journal of Mathematics 55 (2) (2011), 479-494 (2012).

[13] J. Harer, D. Zagier, The Euler characteristic of the moduli space of curves. Invent. Math. 85 (3)

(1986), 457485.
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