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EQUIVALENCE OF SOBOLEV NORMS

INVOLVING GENERALIZED HARDY OPERATORS

RUPERT L. FRANK, KONSTANTIN MERZ, AND HEINZ SIEDENTOP

Abstract. We consider the fractional Schrödinger operator with Hardy potential

and critical or subcritical coupling constant. This operator generates a natural scale

of homogeneous Sobolev spaces which we compare with the ordinary homogeneous

Sobolev spaces. As a byproduct, we obtain generalized and reversed Hardy in-

equalities for this operator. Our results extend those obtained recently for ordinary

(non-fractional) Schrödinger operators and have an important application in the

treatment of large relativistic atoms.

1. Introduction and main result

Introduction. The Hardy inequality is of fundamental importance in many questions

in harmonic analysis, partial differential equations, spectral theory and mathematical

physics. This inequality comes in various forms and the form that we will be concerned

with here is that if 0 < α < d, then
∥

∥|p|α/2f
∥

∥

2

L2(Rd)
≥ Hd,α

∥

∥|x|−α/2f
∥

∥

2

L2(Rd)
for all f ∈ C∞

c (Rd) (1.1)

with a positive constant Hd,α. Here and in the following we use the notation

|p| =
√
−∆ .

The optimal, that is, largest possible, value of the constant on the right side was found

in [Her77, Theorem 2.5] and is given by

Hd,α =
2αΓ((d+ α)/4)2

Γ((d− α)/4)2
.

Of course, the special case α = 2, where the left side is ‖∇f‖2L2(Rd), had been known

much longer and also the physically important special case d = 3 and α = 1 appeared

before [Kat66, Chapter 5, Equation (5.33)]. For alternative proofs of the inequality

with the sharp constant we refer to [KPS81, Yaf99, FLS08, FS08].

Setting

a∗ := −Hd,α = −2αΓ((d+ α)/4)2

Γ((d− α)/4)2
,
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we infer from Hardy’s inequality with optimal constant that the operator

La,α := |p|α + a|x|−α in L2(Rd)

is non-negative for a ≥ a∗. More precisely, the operator La,α is defined as the Friedrichs

extension of the corresponding expression on C∞
c (Rd). In some applications and, in

particular, in our paper [FMSS], the norms
∥

∥Ls/2
a,αf

∥

∥

L2(Rd)

for a ≥ a∗ and s > 0 appear naturally and one needs to understand the relation

between these norm and those in the special case a = 0, i.e.,
∥

∥|p|αs/2f
∥

∥

L2(Rd)
.

While it is relatively straightforward to see that the norms are equivalent for s ∈ (0, 1]

if a > a∗ (see Remark 1.2), the question becomes non-trivial for s > 1 and was

only recently solved in the remarkable paper [KMV+18] in the local case α = 2. An

important consequence of their result is that for any a > a∗ there is an sa,d,α > 1

such that the norms are equivalent for all 0 < s < sa,d,α. In fact, [KMV+18] also

treat a more general problem with the L2(Rd) norms replaced by those in Lp(Rd) for

1 < p <∞ and discuss the dependence on p.

Main result. The main result of our paper will be the generalization of the results

from [KMV+18] to the case 0 < α < 2. We restrict ourselves to the case of L2(Rd)

norms which is the one relevant for the application we have in mind.

In order to state our main result precisely, for 0 < α < 2 ∧ d we define

Ψα,d(σ) := −2α
Γ(σ+α

2
) Γ(d−σ

2
)

Γ(d−σ−α
2

) Γ(σ
2
)

if σ ∈ (−α, (d− α)/2] \ {0}

and Ψα,d(0) = 0. The function σ 7→ Ψα,d(σ) is continuous and strictly decreasing with

lim
σ→−α

Ψα,d(σ) = ∞ and Ψα,d(
d− α

2
) = a∗ .

(This can be shown as in [FLS08, Lemma 3.2], which treats the interval [0, (d−α)/2];

see also the remark before [JW18, Lemma 2.3].) As a consequence, for any a ∈ [a∗,∞)

we can define

δ := Ψ−1
α,d(a) . (1.2)

The following is our main result.

Theorem 1.1 (Equivalence of Sobolev norms). Let α ∈ (0, 2∧ d), a ∈ [a∗,∞) and let

δ be defined by (1.2). Let s ∈ (0, 2].

(1) If s < d−2δ
α

, then
∥

∥

∥
|p|α

s
2 f
∥

∥

∥

L2(Rd)
.d,α,a,s

∥

∥

∥
L

s
2
a,αf

∥

∥

∥

L2(Rd)
for all f ∈ C∞

c (Rd) . (1.3)
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(2) If s < d
α
, then

∥

∥

∥
L

s
2
a,αf

∥

∥

∥

L2(Rd)
.d,α,a,s

∥

∥

∥
|p|α

s
2 f
∥

∥

∥

L2(Rd)
for all f ∈ C∞

c (Rd) . (1.4)

Here and in what follows, we write X . Y for non-negative quantities X and Y ,

whenever there is a constant A such that X ≤ A · Y . In order to emphasize that A

depends on some parameter r, we will sometimes write X .r Y . Moreover, X ∼ Y

means Y . X . Y . In this case, we say X is equivalent to Y . Moreover, in the paper

we use the notation

X ∧ Y := min{X, Y } and X ∨ Y := max{X, Y } .

Remark 1.2. The crucial point of this theorem is that it allows for some s > 1 (unless

a = a∗ in case of (1.3)). The inequalities for s ≤ 1 can be easily seen as follows. By

Hardy’s inequality (1.1) we have the operator inequalities
(

1− a

a∗

)

|p|α ≤ La,α ≤ |p|α if a∗ ≤ a < 0 , |p|α ≤ La,α ≤
(

1 +
a

a∗

)

|p|α if a > 0 ,

and therefore, by operator monotonicity of roots (see, for instance, [Car10, Theo-

rem 2.6]), for 0 < s < 1,
(

1− a

a∗

)s

|p|αs≤ Ls
a,α ≤ |p|αs if a∗ ≤ a < 0 , |p|αs≤ Ls

a,α ≤
(

1 +
a

a∗

)s

|p|αs if a > 0 .

This proves (1.3) and (1.4) for 0 < s ≤ 1.

Remark 1.3. Another crucial point of this theorem is that it covers the full range

a ≥ a∗ and α ≤ 2 ∧ d. In fact, as we explain now, if α < d/2, then there is a simple

proof of a stronger bound than (1.4) and if, in addition, a belongs to a restricted

range, then there is also a simple proof of a stronger bound than (1.3).

Our first claim is that if α < d/2, then (1.4) holds for all s ≤ 2. By the same

argument as in the previous remark it suffices to prove this for s = 2. In that case,

we have, by (1.1),

‖La,αf‖L2(Rd) ≤ ‖|p|αf‖L2(Rd) + |a| ‖|x|αf‖L2(Rd) ≤
(

1 + |a|H−1/2
d,2α

)

‖|p|αf‖L2(Rd) ,

as claimed.

To state our second claim precisely, let a∗∗ := −H1/2
d,2α (which is well-defined for

α < d/2 and is negative). We will show below that a∗∗ > a∗. We claim that for

|a| < |a∗∗| inequality (1.4) holds for all s ≤ 2. Again it suffices to prove this for s = 2

and then we have, similarly as before,

‖La,αf‖L2(Rd) ≥ ‖|p|αf‖L2(Rd) − |a| ‖|x|αf‖L2(Rd) ≥
(

1− |a|H−1/2
d,2α

)

‖|p|αf‖L2(Rd) ,

as claimed.
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Let us finally show that a∗∗ > a∗. We have, in terms of ψ = Γ′/Γ,

ln |a∗| − ln |a∗∗| = 2 lnΓ(d+α
4
)− 2 lnΓ(d−α

4
)− ln Γ(d+2α

4
) + ln Γ(d−2α

4
)

= 2

∫

d+α
4

d−α
4

ψ(t) dt−
∫

d+2α
4

d−2α
4

ψ(t) dt

=

∫

d+α
4

d
4

(ψ(t)− ψ(t+ α
4
)) dt−

∫

d−α
4

d−2α
4

(ψ(t)− ψ(t+ α
4
)) dt

> 0 .

The last inequality comes from the fact that both integration intervals are of length

α/4 and that the integrand is an increasing function, which in turn follows from the

fact that ψ′ is decreasing [Dav65, (6.4.1)].

Ingredients in the proof. As a consequence of (1.3) and Hardy’s inequality (1.1)

we obtain immediately a Hardy inequality for fractional powers of La,α.

Proposition 1.4 (Generalized Hardy inequality). Let α ∈ (0, 2 ∧ d), a ∈ [a∗,+∞)

and let δ be defined by (1.2). Then, for any s ∈ (0, d−2δ
α

∧ 2d
α
),

∥

∥

∥
|x|−αs/2 f

∥

∥

∥

2
.d,α,a,s

∥

∥Ls/2
a,αf

∥

∥

2
for all f ∈ C∞

c (Rd) . (1.5)

Conversely, if s ∈ (0, 2d
α
∧ 2(d−2δ)

α
) and if (1.5) holds, then s < d−2δ

α
.

In fact, our method of proof will be different. We will not deduce (1.5) from The-

orem 1.1, but rather (1.5) will be proved first and will be an important ingredient in

the proof of Theorem 1.1. Another ingredient in the proof of Theorem 1.1 will be

the following inequality which gives a lower bound on the norm of |x|−αs/2f in terms

of the difference
(

Ls/2
a,α − |p|αs/2

)

f . We have not seen similar inequalities before, not

even in the case α = 2 (although they can probably be extracted from the bounds on

the difference of square functions in [KMV+18]).

Proposition 1.5 (Reverse Hardy inequality for differences). Let α ∈ (0, 2 ∧ d), a ∈
[a∗,+∞). Then, for any s ∈ (0, 2],

∥

∥

(

Ls/2
a,α − |p|αs/2

)

f
∥

∥

2
.d,α,a,s

∥

∥

∥
|x|−αs/2 f

∥

∥

∥

2
for all f ∈ C∞

c (Rd) .

Before proceeding, let us show that Theorem 1.1 is an immediate consequence of

Propositions 1.4 and 1.5.

Proof of Theorem 1.1. If s < d−2δ
α

, we obtain by Propositions 1.5 and 1.4
∥

∥

∥
|p|α

s
2 f
∥

∥

∥

L2(Rd)
≤
∥

∥Ls/2
a,αf

∥

∥

L2(Rd)
+
∥

∥

(

Ls/2
a,α − |p|αs/2

)

f
∥

∥

2

.
∥

∥Ls/2
a,αf

∥

∥

L2(Rd)
+
∥

∥

∥
|x|−αs/2 f

∥

∥

∥

2

.
∥

∥Ls/2
a,αf

∥

∥

L2(Rd)
.
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This proves (1). (Note that the assumption s < 2d
α

in Proposition 1.4 follows from

s ≤ 2 and α < d.) If s < d
α
, we argue similarly, but with the Hardy inequality (1.1)

(with αs instead of α) instead of Proposition 1.4. This proves (2). �

Thus, we have reduced the proof of Theorem 1.1 to that of Propositions 1.4 and 1.5.

Let us explain some ideas involved in those proofs. The starting point of the analysis

in [KMV+18] for the case α = 2 (and that in [KVZ16]) are two-sided bounds on the

heat kernel of La,2. Correspondingly, we rely here on very recent two-sided bounds

on the heat kernel of La,α for 0 < α < 2 from [BGJP19, CKSV18, JW18]. Given

these bounds on the heat kernel of La,α it is a simple matter to obtain bounds on the

corresponding Riesz kernels, i.e., the integral kernels of the operators L−s/2
a,α . We state

them explicitly as follows.

Theorem 1.6 (Riesz kernels of generalized Hardy operators). Let α ∈ (0, 2 ∧ d),

a ∈ [a∗,∞) and let δ be defined by (1.2). If s ∈ (0, 2d
α
∧ 2(d−2δ)

α
), then

L−s/2
a,α (x, y) ∼d,α,a,s |x− y|α

s
2
−d

(

1 ∧ |x|
|x− y| ∧

|y|
|x− y|

)−δ

. (1.6)

One of the applications of this theorem is, for instance, a proof of Proposition 1.4.

Proof of Proposition 1.4. Clearly, (1.5) is equivalent to the L2-boundedness of the op-

erator |x|−αs/2L−s/2
a,α . Using the upper bounds in Theorem 1.6 this follows from the

L2-boundedness of the operator with integral kernel

|x|−α s
2 |x− y|α

s
2
−d

(

1 ∧ |x|
|x− y| ∧

|y|
|x− y|

)−δ

.

This follows in a straightforward way by a Schur test. Since the same argument

appears already in [KMV+18, Proposition 3.2] (with s in place of αs/2 and σ in place

of δ) and since we will perform similar Schur tests also later on in this paper, we omit

the details here.

The fact that (1.5) fails for s ∈ [d−2δ
α
, 2d

α
∧ 2(d−2δ)

α
) follows from the lower bound in

Theorem 1.6 by the same argument as in [KMV+18, Proposition 3.2]. �

This reduces the proof of Proposition 1.4 to that of Theorem 1.6, which will be

given in Section 2.

While the proof of Proposition 1.4 and that of Theorem 1.6 rely on bounds on the

individual heat kernel of La,α, the proof of Proposition 1.5 relies on bounds on the

difference between the heat kernels of La,α and |p|α and, in particular, on cancellations

between both. We do not discuss these bounds in this introduction, but refer to Section

3 and, in particular, to Lemma 3.1. We would like to stress here, however, that the

Gaussian off-diagonal decay of the heat kernel for α = 2 is replaced by some algebraic

decay for 0 < α < 2. Therefore the corresponding bounds are more involved than

those in [KMV+18].
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Applications. We would like to end this introduction with several applications of

our main result, Theorem 1.1. The most straightforward one is the following Sobolev

inequality for the operator La,α. It is an immediate consequence of Theorem 1.1 and

the usual Sobolev inequality.

Corollary 1.7. Let α ∈ (0, 2 ∧ d), a ∈ [a∗,∞) and let δ be defined by (1.2). Then,

for any s ∈ (0, 2] with s < d
α
if a ≥ 0 and with s < d−2δ

α
if a < 0,

‖f‖
L

2d
d−αs (Rd)

.d,α,a,s

∥

∥

∥
L

s
2
a,αf

∥

∥

∥

L2(Rd)
for all f ∈ C∞

c (Rd) . (1.7)

Our main motivation for Theorem 1.1 comes from our forthcoming paper [FMSS]

where we describe the ground state density of a large atom with relativistic effects

taken into account near the nucleus. This problem was solved before in the non-

relativistic case in [ILS96]. The relativistic case is substantially more difficult since

the kinetic energy
√

|p|2 +m2 − m and the potential energy |x|−1 show for large |p|
the same scaling behavior. Therefore the latter one cannot be treated as a pertur-

bation and the Sobolev spaces associated to La,1 appear naturally. While we will

eventually show that the problem under consideration is dominated by the small |p|
behavior, Theorem 1.1 yields the crucial a-priori bound which controls the worst case

behavior coming from large |p|. On a more technical level, since we are dealing with

a many-body problem, we need a certain trace ideal inequality for the operator La,1.

Theorem 1.1 allows us to deduce such an inequality from the corresponding inequality

for |p|. For further details, we refer to [FMSS].

Our third application comes from an alternative description of an atom in the pres-

ence of relativistic effects, namely by the Coulomb–Dirac operator

Dν := −iα · ∇ − ν

|x| (1.8)

in L2(R3 : C4) with α = (α1, α2, α3) being the triplet of Dirac matrices. This operator

is essentially self-adjoint on C∞
c (R3 \ {0} : C4) for |ν| ≤

√
3
2
, while for ν ∈ (

√
3
2
, 1] there

is a distinguished choice of a self-adjoint extension. We refer to [EL07] for more on

this and for references. In the following we always mean this operator when we write

Dν. A fundamental difference between Dν and La,1 is that the former is not bounded

from below. Nevertheless, based on results of [MM17], we will be able to prove bounds

analogous to those in Theorem 1.1.

Corollary 1.8. Let ν ∈ (0, 1].

(1) If s < 1 + 2
√
1− ν2 and s ≤ 2, then

∥

∥

∥
|p|

s
2 f
∥

∥

∥

L2
.ν,s

∥

∥

∥
|Dν |

s
2 f
∥

∥

∥

L2
for all f ∈ C∞

c (R3 : C4) . (1.9)

(2) If s ≤ 2, then
∥

∥

∥
|Dν |

s
2 f
∥

∥

∥

L2
.ν,s

∥

∥

∥
|p|

s
2 f
∥

∥

∥

L2
for all f ∈ C∞

c (R3 : C4). (1.10)
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Proof. We begin with the proof of the simpler second part, which does not rely on our

main theorem and uses the same idea as in Remark 1.3. We recall that (−iα · ∇)2 =

−∆⊗ 1C4. Hence by the Cauchy–Schwarz inequality and by Hardy’s inequality (1.1)

with d = 3 and α = 2, we find

(Dν)2 ≤ Aν (−∆)⊗ 1C4 .

By operator monotonicity as in Remark 1.2 we conclude that for any 0 < t ≤ 1

|Dν |2t ≤ At
ν |p|2t ⊗ 1C4 .

This is (1.10) with s = 2t.

We now turn to the significantly more difficult part of proving (1.9). It is shown in

[MM17] that

(Dν)2 ≥ Aν L2
a,1 ⊗ 1C4 .

with

a = −
√
1− ν2 cot

(π

2

√
1− ν2

)

if ν < 1 , a = −2

π
if ν = 1 .

This bound is not stated explicitly in [MM17], but can be easily obtained from their

results. Namely, this bound restricted to the zeroth angular momentum channel is

equivalent to their Lemma IV.4, whereas their Lemma IV.5 says that on the orthogonal

complement of this channel, (Dν)2 can, in fact, be bounded from below by a constant

times −∆ ⊗ 1C4 , which in turn (by Cauchy–Schwarz and Hardy, as before) can be

bounded from below by L2
a,1⊗1C4 . Again by operator monotonicity we conclude that

for any 0 < t < 1

|Dν |2t ≥ At
ν L2t

a,1 ⊗ 1C4 .

Noting that a = Ψ1,3(1 −
√
1− ν2) we see that Theorem 1.1 with s = 2t implies the

assertion. �

2. Heat and Riesz kernels

Our goal in this section is to prove Theorem 1.6. We begin by recalling the recent

two-sided bounds on the heat kernel of La,α from [BGJP19, CKSV18, JW18]. The

results in the (much simpler) case a = 0 are classical [BG60]. We also note that in

the special case a = 0 and α = 1 an explicit formula for e−t|p|α is available, see, for

instance, [SW71, Theorem 1.14].

Theorem 2.1 (Heat kernels of generalized Hardy operators). Let α ∈ (0, 2 ∧ d),

a ∈ [a∗,∞) and let δ be defined by (1.2). Then the heat kernel of La,α satisfies for all

x, y ∈ R
d and t > 0,

e−tLa,α(x, y) ∼
(

1 ∨ t1/α

|x|

)δ (

1 ∨ t1/α

|y|

)δ

t−d/α

(

1 ∧ t1+d/α

|x− y|d+α

)

. (2.1)
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Wemention a technical point related to the deduction of these results from [BGJP19].

There the heat kernel, for which the bounds are shown, is defined via a perturbation se-

ries. In [BGJP19, Theorem 5.4] the authors show that the quadratic form associated to

the generator of the corresponding semi-group coincides with a certain quadratic form

which in [FLS08, Proposition 4.1] is identified as the quadratic form of the Friedrichs

extension of the operator La,α on C∞
c (Rd). Therefore the bounds are indeed valid for

the heat kernel of La,α.

From Theorem 2.1 we can now derive the claimed Riesz kernel bounds.

Proof of Theorem 1.6. By the spectral theorem the Riesz kernel can be represented as

L−s/2
a,α (x, y) =

1

Γ(s/2)

∫ ∞

0

e−tLa,α(x, y) ts/2
dt

t
. (2.2)

Inserting the two-sided bound on e−tLa,α(x, y) in Theorem 2.1 and changing variables

we see that the right side of (2.2) is equivalent to
∫ ∞

0

t−
d
α
+ s

2

(

1 ∨ t1/α

|x|

)δ (

1 ∨ t1/α

|y|

)δ
(

1 ∧ t1+d/α

|x− y|d+α

)

dt

t

= |x− y|α
s
2
−d

∫ ∞

0

dt t
s
2

(

1 ∧ t− d
α
−1
)

(

1 ∨ |x− y|
|x| t

1

α

)δ (

1 ∨ |x− y|
|y| t

1

α

)δ

.

(2.3)

Since L−s/2
a,α (x, y) is symmetric in x and y, we may and will assume that |x| ≤ |y|.

Therefore, we need to show that the integral on the right side of (2.3) is equivalent to
(

1 ∧ |x|
|x− y|

)−δ

for |x| ≤ |y|. To do this, we distinguish whether |x− y| ≤ 4|x| or not.
Case |x− y| ≤ 4|x|. In this case we have |y| ≤ |x|+ |x− y| ≤ 5|x| and therefore

|x− y| . |x| ∼ |y| .
Thus, the integral on the right side of (2.3) is equivalent to

∫ ∞

0

dt t
s
2

(

1 ∧ t− d
α
−1
)(

1 ∨ λ−1t
1

α

)2δ

with λ = |x|/|x− y| ≥ 1/4, and we need to show that this is equivalent to 1. We have
∫ λα

0

dt t
s
2

(

1 ∧ t− d
α
−1
)(

1 ∨ λ−1t
1

α

)2δ

=

∫ λα

0

dt t
s
2

(

1 ∧ t− d
α
−1
)

∼ 1 ,

since λ ≥ 1/4 and since the integral converges according to the assumption s
2
< d

α
.

On the other hand, using again λ ≥ 1/4,
∫ ∞

λα

dt t
s
2

(

1 ∧ t− d
α
−1
)(

1 ∨ λ−1t
1

α

)2δ

=

∫ ∞

λα

dt t
s
2

(

1 ∧ t− d
α
−1
)

λ−2δt
2δ
α

.

∫ ∞

λα

dt t
s
2
− d

α
−1λ−2δt

2δ
α ∼ λ

sα
2
−d . 1 ,
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where we used s
2
+ 2δ

α
< d

α
for the convergence of the integral, as well as sα

2
< d. This

proves the claimed upper bound. Since the integral from zero to λα is bounded away

from zero and that from λα to infinity is non-negative, we also obtain the claimed

lower bound.

Case |x − y| ≥ 4|x|. In this case we have both |x − y| ≤ |x| + |y| ≤ 2|y| and
|y| ≤ |x|+ |x− y| ≤ 5

4
|x− y| and therefore

|x| ≤ |y| ∼ |x− y| .
Thus, the integral on the right side of (2.3) is equivalent to

∫ ∞

0

dt t
s
2

(

1 ∧ t− d
α
−1
)(

1 ∨ λ−1t
1

α

)δ (

1 ∨ t 1

α

)δ

with λ = |x|/|x − y| ≤ 1/4, and we need to show that this is equivalent to λ−δ. We

have, using λ ≤ 1/4 and s
2
+ δ

α
> −1,

∫ 1

λα

dt t
s
2

(

1 ∧ t− d
α
−1
)(

1 ∨ λ−1t
1

α

)δ (

1 ∨ t 1

α

)δ

=

∫ 1

λα

dt t
s
2λ−δt

δ
α ∼ λ−δ

and, using s
2
+ 2δ

α
< d

α
,

∫ ∞

1

dt t
s
2

(

1 ∧ t− d
α
−1
)(

1 ∨ λ−1t
1

α

)δ (

1 ∨ t 1

α

)δ

=

∫ ∞

1

dt t
s
2
− d

α
−1λ−δt

δ
α t

δ
α ∼ λ−δ .

On the other hand,
∫ λα

0

dt t
s
2

(

1 ∧ t− d
α
−1
)(

1 ∨ λ−1t
1

α

)δ (

1 ∨ t 1

α

)δ

=

∫ λα

0

dt t
s
2 ∼ λ

sα
2
+α . λ−δ .

These estimates yield the claimed upper and lower bounds. This completes the proof

of the theorem. �

3. Difference of heat kernels

Our goal in this section is to prove Proposition 1.5. A key tool for this will be a

bound on the difference of the heat kernels of La,α and |p|α, namely,

Kα
t (x, y) := e−t|p|α(x, y)− e−tLa,α(x, y) .

We recall from the previous section that we have bounds on the individual kernels

e−t|p|α(x, y) and e−tLa,α(x, y). The following lemma shows that there is a cancellation,

coming from taking the difference, in the region (|x| ∨ |y|)α ≥ t and |x| ∼ |y|.
We will formulate the bound in terms of the functions

Lα
t (x, y) := 1{(|x|∨|y|)α≤t}t

− d
α

(

t2/α

|x||y|

)δ+

+ 1{(|x|∨|y|)α≥t}
t

(|x| ∨ |y|)d+α

(

1 ∨ t1/α

|x| ∧ |y|

)δ+

and

Mα
t (x, y) := 1{(|x|∨|y|)α≥t}1{ 1

2
|x|≤|y|≤2|x|}

t1−
d
α

(|x| ∧ |y|)α

(

1 ∧ t1+
d
α

|x− y|d+α

)

.

Here δ+ = max{δ, 0}, that is, δ+ = 0 if a ≥ 0 and δ+ = δ if a < 0.
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Lemma 3.1 (Difference of kernels). Let α ∈ (0, 2∧d), a ∈ [a∗,∞) and let δ be defined

by (1.2). Then for all x, y ∈ Rd and t > 0

|Kα
t (x, y)| . Lα

t (x, y) +Mα
t (x, y) . (3.1)

Proof. By scaling it suffices to consider t = 1 and by symmetry it suffices to consider

|x| ≤ |y|. We will drop the subscript t in Kα
t , L

α
t and Mα

t .

If a ≥ 0 we combine the maximum principle for the heat equation and the bound

from Theorem 2.1 for a = 0 and obtain

0 ≤ Kα(x, y) ≤ e−|p|α(x, y) ∼ 1 ∧ |x− y|−d−α .

This proves the bound Kα(x, y) . Lα(x, y) if |y| ≤ 1 (by bounding the minimum by 1)

or if |y| ≥ 1 and |x| ≤ (1/2)|y| (by bounding the minimum by |x− y|−d−α . |y|−d−α).

If a < 0, then again by combining the maximum principle and Theorem 2.1 we find

0 ≤ −Kα(x, y) ≤ e−La,α(x, y) .
(

1 ∨ |x|−δ
)(

1 ∨ |y|−δ
)(

1 ∧ |x− y|−d−α
)

.

Again this gives the bound −Kα(x, y) . Lα(x, y) if |y| ≤ 1 (because then the product

of the first two factors on the right side is ≤ (|x||y|)−δ) or if |y| ≥ 1 and |x| ≤ (1/2)|y|
(because then the smaller one of the first two factors equals 1).

Thus, from now on we assume that |y| ≥ 1 and (1/2)|y| ≤ |x| ≤ |y|. By Duhamel’s

formula we have

e−|p|α − e−La,α = a

∫ 1

0

ds e−(1−s)|p|α |x|−α e−sLa,α . (3.2)

If a ≥ 0 we use again the maximum principle and Theorem 2.1 (with a = 0) to

conclude that

0 ≤ Kα(x, y) .

∫ 1

0

ds

∫

Rd

dz |z|−α s−
d
α (1−s)− d

α

(

1 ∧ (1− s)1+
d
α

|x− z|d+α

)(

1 ∧ s1+
d
α

|y − z|d+α

)

,

and if a < 0 we use Theorem 2.1 to conclude that

0 ≤ −Kα(x, y) .

∫ 1

0

ds

∫

Rd

dz s−
d
α (1− s)−

d
α |z|−α

(

1 ∧ (1− s)1+
d
α

|x− z|d+α

)

×
(

1 +
s

δ
α

|y|δ

)(

1 +
s

δ
α

|z|δ

)(

1 ∧ s1+
d
α

|y − z|d+α

)

.

∫ 1

0

ds

∫

Rd

dz s−
d
α (1− s)−

d
α |z|−α

(

1 ∧ (1− s)1+
d
α

|x− z|d+α

)

×
(

1 +
s

δ
α

|z|δ

)(

1 ∧ s1+
d
α

|y − z|d+α

)

.

The second inequality here comes from the fact that s1/α ≤ 1 ≤ |y|.
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Thus, it remains to bound

∫ 1

0

ds

∫

Rd

dz s−
d
α (1− s)−

d
α |z|−α

(

1 ∧ (1− s)1+
d
α

|x− z|d+α

)(

1 +
s

δ+
α

|z|δ+

)(

1 ∧ s1+
d
α

|y − z|d+α

)

.

(3.3)

We do this by dividing the z integration into two parts and we begin with the part

where |z| ≥ 1
2
|x|. In this case, we can bound

|z|−α . |x|−α and s
1

α ≤ 1 ≤ |y| . |x| . |z| .

Applying these bounds and then enlarging the z integration to all of Rd we find that

the integral in question is bounded by a constant times

1

|x|α
∫ 1

0

ds

∫

Rd

dz s−
d
α (1− s)−

d
α

(

1 ∧ (1− s)1+
d
α

|x− z|d+α

)(

1 ∧ s1+
d
α

|y − z|d+α

)

.
1

|x|α
∫ 1

0

ds

∫

Rd

dz e−(1−s)|p|α(x, z)e−s|p|α(z, y)

=
1

|x|α
∫ 1

0

ds e−|p|α(x, y)

.
1

|x|α
(

1 ∧ |x− y|−d−α
)

=Mα(x, y) ,

Here we used Theorem 2.1 twice (with a = 0) together with the semi-group property.

It remains to bound the part of the integral in (3.3) corresponding to |z| ≤ 1
2
|x|.

We bound

∫

|z|≤ 1

2
|x|

dz |z|−α 1

|x− z|d+α

(

1 +
s

δ+
α

|z|δ+

)

1

|y − z|d+α

.
1

|x|d+α|y|d+α

∫

|z|≤ 1

2
|x|

dz |z|−α

(

1 +
s

δ+
α

|z|δ+

)

∼ 1

|x|d+α|y|d+α

(

|x|d−α + s
δ+
α |x|d−α−δ+

)

∼ 1

|x|d+α|y|d+α
|x|d−α .

In the next to last step we used α + δ+ < d (which follows from δ ≤ (d − α)/2 and

α < d) and in the last step we used again s1/α ≤ 1 ≤ |y| . |x|. Inserting this into the
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above bound we obtain

∫ 1

0

ds s−
d
α (1− s)−

d
α

∫

|z|≤ 1

2
|x|

dz |z|−α

(

1 ∧ (1− s)1+
d
α

|x− z|d+α

)

×
(

1 +
s

δ+
α

|z|δ+

)(

1 ∧ s1+
d
α

|y − z|d+α

)

.
|x|d−α

|x|d+α|y|d+α

∫ 1

0

ds s(1− s)

∼ |x|d−α

|x|d+α|y|d+α
.

1

|y|d+α
≤ Lα(x, y) .

In the next to last step we used again 1 ≤ |y| . |x|. This proves the claimed bound. �

Finally, we can complete the proof of our main result by giving the

Proof of Proposition 1.5. Since for s = 2 the inequality is trivial, we may assume that

0 < s < 2. In that case

∫ ∞

0

dt

t
t−s/2(e−t − 1) = Γ(−s/2) ,

and therefore, by the spectral theorem and by scaling,

(

Ls/2
a,α − |p|αs/2

)

f = − 1

Γ(−s/2)

∫ ∞

0

dt

t
t−s/2

((

e−t|p|α − 1
)

f −
(

e−tLa,α − 1
)

f
)

= − 1

Γ(−s/2)

∫ ∞

0

dt

t
t−s/2

(

e−t|p|α − e−tLa,α
)

f

= − 1

Γ(−s/2)

∫ ∞

0

dt

t
t−s/2

∫

Rd

dy Kα
t (·, y)f(y) .

Therefore, by Lemma 3.1 we can bound

∥

∥

(

Ls/2
a,α − |p|αs/2

)

f
∥

∥

2
.

∥

∥

∥

∥

∫

Rd

dy

∫ ∞

0

dt

t
t−

s
2Lα

t (x, y) |y|α
s
2 g(y)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∫

Rd

dy

∫ ∞

0

dt

t
t−

s
2Mα

t (x, y) |y|α
s
2 g(y)

∥

∥

∥

∥

2

, (3.4)

where we abbreviate g(y) := |y|−αs/2|f(y)|. Our goal is to bound both terms on the

right side of (3.4) by a constant times ‖g‖2.



HARDY OPERATORS AND SOBOLEV NORMS — July 2, 2019 13

We begin with the first term and compute
∫ ∞

0

dt

t
t−

s
2Lα

t (x, y) = (|x||y|)−δ+

∫

t≥(|x|∨|y|)α

dt

t
t−

s
2
− d−2δ+

α

+

∫

t≤(|x|∨|y|)α

dt

t
t−

s
2

t

(|x| ∨ |y|)d+α

(

1 ∨ t1/α

|x| ∧ |y|

)δ+

∼ 1

(|x| ∨ |y|) sα
2
+d

( |x| ∨ |y|
|x| ∧ |y|

)δ+

.

Here we used the fact that s
2
+ d−2δ+

α
> 0 (which follows from δ ≤ (d− α)/2.) Thus,

∥

∥

∥

∥

∫

Rd

dy

∫ ∞

0

dt

t
t−

s
2Lα

t (x, y) |y|α
s
2 g(y)

∥

∥

∥

∥

2

.

∥

∥

∥

∥

∥

∫

Rd

dy
1

(|x| ∨ |y|)d
( |x| ∨ |y|
|x| ∧ |y|

)δ+

g(y)

∥

∥

∥

∥

∥

2

.

For any δ+ < β < d− δ+ (such β exist since δ ≤ (d− α)/2 < d/2) we have

sup
y∈Rd

∫

Rd

dx

( |y|
|x|

)β
1

(|x| ∨ |y|)d
( |x| ∨ |y|
|x| ∧ |y|

)δ+

=

∫

Rd

dz

|z|β(|z| ∨ 1)d

( |z| ∨ 1

|z| ∧ 1

)δ+

<∞ ,

and therefore by a Schur test with weights we conclude that
∥

∥

∥

∥

∥

∫

Rd

dy
1

(|x| ∨ |y|)d
( |x| ∨ |y|
|x| ∧ |y|

)δ+

g(y)

∥

∥

∥

∥

∥

2

. ‖g‖2 .

This shows that the first term in (3.4) satisfies the claimed bound.

We now turn to the second term in (3.4). Since |x| ∼ |y| on the support of this

kernel, we have
∥

∥

∥

∥

∫

Rd

dy

∫ ∞

0

dt

t
t−

s
2 Mα

t (x, y)|y|
αs
2 g(y)

∥

∥

∥

∥

.

∥

∥

∥

∥

∫

Rd

dy

∫ ∞

0

dt

t
t−

s
2 Mα

t (x, y)(|x||y|)
αs
4 g(y)

∥

∥

∥

∥

.

This replaces the kernel by a symmetric one and we only have to perform a single

Schur test (instead of two). We have

sup
y∈Rd

∫

Rd

dx

∫ ∞

0

dt

t
t−

s
2 Mα

t (x, y)(|x||y|)
αs
4

= sup
y∈Rd

∫

1

2
|y|≤|x|≤2|y|

dx

∫

t≤(|x|∨|y|)α

dt

t
t−

s
2

t1−
d
α

(|x| ∧ |y|)α

(

1 ∧ t1+
d
α

|x− y|d+α

)

(|x||y|)αs
4

. sup
y∈Rd

|y|αs
2
−α

∫

1

2
|y|≤|x|≤2|y|

dx

∫

t≤(2|y|)α

dt

t
t−

s
2
+1− d

α

(

1 ∧ t1+
d
α

|x− y|d+α

)

.
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We now interchange the order of integration and do the x integral first. We bound
∫

1

2
|y|≤|x|≤2|y|

dx

(

1 ∧ t1+
d
α

|x− y|d+α

)

≤
∫

Rd

dx

(

1 ∧ t1+
d
α

|x− y|d+α

)

∼ t
d
α .

Therefore, the supremum above is bounded by a constant times

sup
y∈Rd

|y|αs
2
−α

∫

t≤(2|y|)α

dt

t
t−

s
2
+1 ∼ 1 .

Thus, the Schur test yields
∥

∥

∥

∥

∫

Rd

dy

∫ ∞

0

dt

t
t−

s
2 Mα

t (x, y)(|x||y|)
αs
4 g(y)

∥

∥

∥

∥

. ‖g‖2 .

This concludes the proof of the proposition. �

4. A generalization

In our application in [FMSS] we will need a slight generalization of the bounds

that we have derived so far to the case of not necessarily power-like potentials. More

precisly, we consider functions V on Rd satisfying

a

|x|α ≤ V (x) ≤ ã

|x|α (4.1)

with parameters a∗ ≤ a ≤ ã <∞ and we prove the following result.

Theorem 4.1. Let α ∈ (0, 2 ∧ d), a∗ ≤ a ≤ ã <∞ and let δ be defined by (1.2). Let

s ∈ (0, 2].

(1) If s < d−2δ
α

, then for any V satisfying (4.1),
∥

∥

∥
|p|αs/2 f

∥

∥

∥

L2(Rd)
.d,α,a,s

∥

∥(|p|α + V )s/2f
∥

∥

L2(Rd)
for all f ∈ C∞

c (Rd) . (4.2)

(2) If s < d
α
, then for any V satisfying (4.1),

∥

∥(|p|α + V )s/2f
∥

∥

L2(Rd)
.d,α,a,s

∥

∥

∥
|p|αs/2 f

∥

∥

∥

L2(Rd)
for all f ∈ C∞

c (Rd) . (4.3)

We emphasize that δ is defined with respect to a (and not with respect to ã). It

is interesting to note that the constants in Theorem 4.1 are independent of ã. By an

approximation argument this would allow us to extend the theorem to a larger class

of potentials, but we will not need this.

The proof of Theorem 4.1 follows immediately from the following two propositions

in the same way as Theorem 1.1 followed from Propositions 1.4 and 1.5.

Proposition 4.2. Let α ∈ (0, 2 ∧ d), a∗ ≤ a ≤ ã < ∞ and let δ be defined by (1.2).

Then, for any s ∈ (0, d−2δ
α

∧ 2d
α
) and for any V satisfying (4.1),

∥

∥

∥
|x|−αs/2 f

∥

∥

∥

2
.d,α,a,s

∥

∥(|p|α + V )s/2f
∥

∥

2
for all f ∈ C∞

c (Rd) .
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Proof. According to the maximum principle, we have for all x, y ∈ Rd and t > 0,

0 ≤ e−t(|p|α+V )(x, y) ≤ e−tLa,α(x, y) , (4.4)

and therefore, by the analogue of (2.2), also

(|p|α + V )−s/2(x, y) ≤ L−s/2
a,α (x, y) .

This implies that the upper bounds in Theorem 1.6 remain valid for (|p|α + V )−s/2.

The proposition now follows in the same way as Proposition 1.4. �

Proposition 4.3. Let α ∈ (0, 2 ∧ d), a∗ ≤ a ≤ ã < ∞ and s ∈ (0, 2]. For any V

satisfying (4.1),
∥

∥

∥

(

(|p|α + V )s/2 − |p|αs/2
)

f
∥

∥

∥

2
.d,α,a,s

∥

∥

∥
|x|−αs/2 f

∥

∥

∥

2
for all f ∈ C∞

c (Rd) .

Proof. Let

K̃α
t (x, y) := e−t|p|α(x, y)− e−t(|p|α+V )(x, y) .

According to the maximum principle, we have for any x, y ∈ Rd and t > 0,

e−t|p|α(x, y)− e−tLa,α(x, y) ≤ K̃α
t (x, y) ≤ e−t|p|α(x, y)− e−tLã,α(x, y) .

Therefore Lemma 3.1 with a and ã implies that the corresponding statement also

holds for K̃α
t in place of Kα

t . (Here we use the fact that δ̃, defined by (1.2) with ã in

place of a, satisfies δ̃ ≤ δ.) With the analogue of Lemma 3.1 at hand, the proof of the

proposition follows in the same way as Proposition 1.5. �
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