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HOMOGENEOUS PROJECTIVE VARIETIES

WITH SEMI-CONTINUOUS RANK FUNCTION

A. V. Petukhov 1 and V. V. Tsanov 2

Abstract

Let X ⊂ P(V ) be a projective variety, which is not contained in a hyperplane. Then
every vector v in V may be written as a sum of vectors from the affine cone over X.
The minimal number of summands in such a sum is called the rank of v. In this paper,
we classify all equivariantly embedded homogeneous projective varieties X ⊂ P(V ) whose
rank function is lower semi-continuous. Classical examples are: the variety of rank one
matrices (Segre variety with two factors) and the variety of rank one quadratic forms
(quadratic Veronese variety). In the general setting, X is the orbit in P(V ) of a highest
weight line in an irreducible representation V of a reductive algebraic group G. Thus,
our result is a list of all irreducible representations of reductive groups, for which the
corresponding rank function is lower semi-continuous.
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1 Introduction

Let V be a finite dimensional vector space over an algebraically closed field F of characteristic 0.
Let X ⊂ P(V ) be a projective variety and X ⊂ V be the affine cone over X. Suppose that X is
nondegenerate, i.e. it is not contained in a hyperplane. Then every vector v ∈ V can be written as a
linear combination of points of X and we have a well-defined function rk : P(V ) → N, called rank (or
X-rank), given by

rk[v] = rkX[v] = min{r ∈ N : v = x1 + ...+ xr, with xj ∈ X} ,

where [v] ∈ P(V ) denotes the projective point corresponding to a non-zero vector v. The rank sets in
P(V ) with respect to X are defined as

Xr = {[v] ∈ P(V ) : rk[v] = r} .

The secant varieties of X are defined as the Zariski closure

σr(X) =
⋃

s≤r

Xs .

The border rank of [v] ∈ P(V ) is defined as

rk[v] = rkX[v] = min{r ∈ N : [v] ∈ σr(X)} .

Let Aut(X) ⊂ SL(V ) denote the group of linear automorphisms of X. Then rank and border rank are
Aut(X)-invariant, and hence Aut(X) acts on Xr and σr(X).

Definition 1.1. We call X rs-continuous if rkX is a lower semi-continuous function on P(V ), i.e. if
rank and border rank defined by X coincide. Otherwise, we say that X is r-discontinuous. We call
[v] ∈ P(V ) exceptional if rkX[v] 6= rkX[v].

Our goal is to classify all rs-continuous varieties belonging to a certain class, namely, the ho-
mogeneous rs-continuous varieties. By a homogeneous projective variety we mean an equivariantly
embedded variety X ⊂ P(V ) whose automorphism group is transitive. In such a case the (linear)
automorphism group G is always semisimple and X ∼= G/P , where P is a parabolic subgroup of G.
In other words, X is a flag variety of G. Furthermore, when the embedding is nondegenerate, V is an
irreducible G-module, and so it is determined up to isomorphism by its highest weight, say λ, so that
V ∼= V (λ). Then X can be viewed as the orbit of a highest weight line X = G[vλ] ⊂ P(V ). Conversely,
if G is a semisimple algebraic group and V = V (λ) is an irreducible G-module, then P(V ) contains
a unique closed G-orbit — the orbit of a highest weight line; we denote this orbit by X(G,V ). It
is not always true that G is the full automorphism group of X(G,V ). For instance, the symplectic
group Sp2n acts transitively on the projective space P(F2n), but the full linear automorphism group
is SL2n. Our approach is to classify all irreducible representations (G,V ) such that X(G,V ) is rs-
continuous. Then the list of rs-continuous homogeneous projective varieties is obtained by dropping
the redundancies. For brevity of expression, we shall call a representation (G,V ) rs-continuous, if the
corresponding variety X(G,V ) is rs-continuous.

Before stating our classification theorem, let us mention some classical examples, where the ter-
minology stems from.

Let V = Fm ⊗ Fn be the space of m× n-matrices. On V we have the classical notion of rank of a
matrix. Let X ⊂ P(V ) denote the variety of matrices of rank 1; X can be defined by the vanishing of
all 2× 2-minors and is also known as the Segre variety of simple tensors X = Segre(Pm−1 × Pn−1). It
is well-known that every matrix of rank r can be written as a sum of r matrices of rank 1. The set of
matrices of rank r or less is the common zero-locus of all (r+1)× (r+1)-minors and hence is a closed
set, which equals the secant variety σr(X). Hence X is rs-continuous. The automorphism group of X
equals PSLm × PSLn in this case.
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A similar situation occurs for symmetric and for skew symmetric matrices. The corresponding
varieties are the quadratic Veronese embedding Ver2(Pn−1) ⊂ P(S2Fn) and the Grassmannian of
planes Gr2(Fn) ⊂ P(Λ2Fn). In both cases we have a linear action of SLn preserving X and yielding
the full automorphism group of X. Both varieties are rs-continuous.

Perhaps the simplest r-discontinuous homogeneous variety is the twisted cubic curve: X = Ver3(P1) ⊂
P(S3F2). The respective automorphism group G = PSL2 has three orbits in P(S3F2), which can be
written as G[x3], G[x2y] and G[x3 + y3], where x, y is an arbitrary basis of F2. Indeed, an element of
P(S3F2) can be written as a product [l1l2l3], with [lj] ∈ P1, and there are three possibilities: either
[l1] = [l2] = [l3], or [l1] = [l2] 6= [l3], or all three are distinct. Since PSL2 acts transitively on triples of
distinct points on P1, we have three orbits in P(S3F2). It is easy to see that the ranks are 1, 3 and 2,
respectively. However, we have σ2(X) = G[x3 + y3] = P(S3F3) and hence [x2y] is exceptional and X
is r-discontinuous.

Let us notice that, in the above example, G[x2y] is the tangential variety of X, which is clearly
contained in the secant variety σ2(X). In fact it is a general phenomenon, that exceptional points do
appear in the tangential variety, whenever they exist. This fact is in the basis of our methods.

Now, we formulate our main result.

Theorem 1.1. Let G be a semisimple algebraic group and V be a finite dimensional irreducible G-
module, with dimV ≥ 2. Then the closed G-orbit X(G,V ) ⊂ P(V ) is rs-continuous if and only if the
pair (G,V ) appears in the following table.

Group G Representation V Highest weight of V

Simple classical groups

SLn
Fn, (Fn)∗, (Λ2Fn), (Λ2Fn)∗,

S2Fn, (S2Fn)∗, sln

π1, πn−1, π2, πn−2,
2π1, 2πn−1, π1 + πn−1

SOn Fn, RSpinn(n ≤ 10)
π1, πn

2
(2 | n), πn

2
−1(2 | n),

πn−1

2

(2 ∤ n)

Sp2n F2n,Λ2
0F

2n, S2F2n ∼= sp2n π1, π2, 2π1
Simple exceptional groups

E6 F27, (F27)∗ π1, π5
F4 F26 π1
G2 F7 π1

Non-simple groups

SLm × SLn Fm ⊗ Fn π1 ⊕ π1
SLm × Sp2n Fm ⊗ F2n π1 ⊕ π1
Sp2m × Sp2n F2m ⊗ F2n π1 ⊕ π1

, (1)

where by RSpinn we denote (any) spinor representation of the simply connected cover of SOn, by
Λ2
0F

2n we denote the second fundamental representation of Sp2n (which is identified with a hyperplane
in Λ2F2n), by F27 we denote any one of the two smallest fundamental representations of E6, by F26

we denote the smallest fundamental representation of F4, by F7 we denote the smallest fundamental
representation of G2. In the third column we list the highest weight of V with respect to G′ (we use
here and throughout the paper the numbering convention of [VO90, p. 294]).

Moreover, if (G,V ) is r-discontinuous, then it contains an exceptional vector of border rank 2.

We give a proof of Theorem 1.1 in Section 3. As a corollary, we obtain the list of homogeneous
projective varieties given below. The list of varieties is shorter, because, as mentioned above, in certain
cases there are subgroups of the automorphism group of the variety acting transitively.

Corollary 1.2. The rs-continuous projective varieties X ⊂ P(V ) with transitive linear automorphism
group are the following:
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Notation for X Ambient P(V ) Group G Max rkX
P(Fn) P(Fn) SLn 1

Ver2(P(Fn)) P(S2Fn) SLn n

Gr2(Fn) P(Λ2Fn) SLn ⌊n2 ⌋
Fl(1, n − 1;Fn) P(sln) SLn n

Qn−2 P(Fn) SOn 2

S10 P(F16) Spin10 2

Grω(2,F2n) P(Λ2
0F

2n) Sp2n n

E16 P(F27) E6 3

F15 P(F26) F4 3

Segre(P(Fm)× P(Fn)) P(Fm ⊗ Fn) SLm × SLn min{m,n}

It is natural to ask whether rs-continuous varieties admit another general characterization. In fact,
the starting point of our study was a result by Buczyński and Landsberg, [BL13], based on previous
work by Landsberg and Manivel, [LM03]. This result exhibits a remarkable class of rs-continuous
homogeneous varieties — the subcominuscule varieties. Recall that a variety X ⊂ P(V ) is called sub-
cominuscule if it is the variety associated to the isotropy representation of an irreducible Hermitian
symmetric space S, i.e. X = X(G,V ), with G being the complexification of the semisimple part of
isotropy subgroup the isometry group of S, and V being the tangent space. Then [BL13, Prop. 4.1]
states that rkX = rkX and, furthermore, the G-orbits in P(V ) are exactly the rank sets Xr. It is
then natural to ask: are there other rs-continuous homogeneous varieties besides the subcominuscule
ones? There are. It was shown by Kaji and Yasukura, [KY00], that the adjoint variety X(G, g) of a
simple Lie algebra g is rs-continuous if and only if g is of type An or Cn; see also [Kaji98], [BD04].
The adjoint variety of type Cn is just the quadratic Veronese variety, which is subcominuscule with
respect to its automorphism group. However, the adjoint variety of type An is not subcominuscule.
The non-subcominuscule varieties in our list are Fl(1, n − 1;Fn), Grω(2,F2n) and F15. All these ex-
ceptions are, however, hyperplane sections in subcominuscule varieties. Conversely, the homogeneous
hyperplane section of subminuscule varieties are the above three and the quadric Qn−1 viewed as a
hyperplane section in Ver2(Pn). This follows from a classification of homogeneous hyperplane sections
in homogeneous projective varieties given by Watanabe [W11]. Thus our theorem implies that, if X is
a homogeneous hyperplane section in a subcominuscule variety X̃ in its minimal projective embedding,
then X is rs-continuous. So we can formulate the following:

Corollary 1.3. A homogeneous projective variety X ⊂ P(V ) is rs-continuous if and only if it is either
a subcominuscule variety, or a hyperplane section in a subcominuscule variety X̃ ⊂ P(Ṽ ) in its minimal
projective embedding. In the latter case, the rank function of X is equal to the restriction of the rank
function of X̃ and the secant varieties of X are equal to the intersections of the secant varieties of X̃
with P(V ).

Since our approach is to start with a representation (G,V ) rather than with a homogeneous
variety X, we have found the following observations useful. If (G,V ) is a representation such that
G acts spherically on the projective space P(V ), then the variety X(G,V ) is subcominuscule, i.e.
(Aut(X), V ) is a subminuscule representation. This follows directly from the classification of spherical
representations given by Kac, [Kac80], see also [Knop98].

Remark 1.1. Since spherical representations have finitely many orbits and, by the above corollary,
rs-continuous representations are not far away from spherical, it makes sense to ask whether this class
of representations is related to the well-known class of projective representations with finitely many
orbits. The fact that twisted cubic is not rs-continuous together with the fact that PSLn(n ≥ 3) has
infinitely many orbits on P(sln) show that the class of rs-continuous representations neither contains,
nor is contained in, the class of projective representations with finitely many orbits. Let us notice,
however, that the automorphism group of an rs-continuous homogeneous projective variety has finitely
many orbits in the projective space if and only if the variety is subcominuscule.
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One of the most important questions, which is asked in the studies of secant varieties and rank
is: what are the ideals of secant varieties? It is known, by a result of Kostant, that the ideal of X
is generated in degree 2, by the appropriate generalization of the Plücker equations; cf. [L12, Th.
16.2.2.6]. It was shown by Landsberg and Manivel, [LM03], that, for a subcominuscule variety X ⊂
P(V ), the ideal of the r-th secant variety σr(X) is generated in degree r+1 by the (r−1)-th prolongation
of the generating set of the ideal of X, which is defined as I2(X)(r−1) = (I2(X) ⊗ Sr−1V ∗) ∩ Sr+1V ∗.
Our theorem has the following

Corollary 1.4. If X ⊂ P(V ) is an rs-continuous homogeneous variety, then the ideal of σr(X) is
generated in degree r + 1 by the prolongation I2(X)(r−1).

Let us emphasize, that the second secant variety σ2(X) plays a prominent role both in this paper
and in the literature. Sometimes the second secant variety is called just “the secant variety”. This
variety is much more accessible than the higher secant varieties: for example for a simple G-module
the second secant variety has an open G-orbit [Zak93, Ch. III, Thm 1.4]. Furthermore, we have
σ2(X) = X2 ∪ TX, where TX is the tangential variety of X, cf. [L12, §8.1]. It turns out that, if
exceptional points exist, they are always present in TX.

For a systematic treatment, as well as an extensive bibliography, on secant varieties and rank we
refer the reader to the recent book of Landsberg, [L12]. The general theory of secant varieties allows
one to deduce rs-continuity for varieties of small codimension, see Corollary 2.3 here. However, this
criterion is applicable to relatively few homogeneous varieties, and to none of the more difficult cases.

The paper is organized as follows. In Subsection 2.1, we recall the notions of secant varieties, rank
and border rank, with their basic properties. In Subsection 2.2, we recall some basic notions about
algebraic groups: Borel subgroup, Cartan subgroup, weight lattice, root system, Weyl chamber. We
also introduce the notion of chopping (this is a simple combinatorial procedure) and provide some
facts on X2(G,V ) and σ2(X(G,V )) playing a crucial role in this paper.

In Section 3, we present a plan of our proof of Theorem 1.1, the main theorem of our article.
Essentially, this proof is a compilation of Propositions 4.6, 4.8 and Theorems 6.1 and 7.1. We prove
Propositions 4.6, 4.8 in Section 4. We prove Theorems 6.1, 7.1 in Section 6 and 7 respectively.

In Section 5, we prove a strong necessary condition for rs-continuity of a representation in terms
of its choppings. This is formulated in Proposition 5.1.

The main statement of Section 6 is Theorem 6.1. In this theorem we find out which fundamental
representations of classical groups are rs-continuous and which are r-discontinuous. This is done in
the following way: for the fundamental modules

Fn,Λ2Fn for SLn, Λ
3F6 for SL6, Λ

2
0F

2n and Λ3
0F

2n for Sp2n,
Λ2Fn for SOn, RSpinn for Spinn(n ≤ 12)

we check rs-continuity/r-discontinuity in a straightforward way. From these data we deduce r-discontinuity
of all other modules using the notion of chopping.

The main statement of Section 7 is Theorem 7.1. In this theorem we find out which fundamental
representations of exceptional groups are rs-continuous and which are r-discontinuous. This is done
via case by case checking of the 27 fundamental representations of the 5 exceptional Lie algebras. For
any such representation we find some arguments by which it is r-discontinuous/rs-continuous. For
most of the representations the arguments are quite short, using chopping or a reference, but for three
representations:

V (π1), V (π2) for F4 and V (π1) for E7

we are able to find only relatively long arguments presented in the corresponding subsections.
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2 Preliminaries

In this section, we recall some definitions and elementary facts about secant varieties and rank. The
goal is to introduce notation and perhaps help the unexperienced reader to become more familiar with
these notions. We also fix some standard notation for reductive algebraic groups, their Lie algebras
and their representations.

Throughout the paper we use the following notation. The letter X is always used for a projective
variety and X denotes the affine cone over it. For any subset S ⊂ V we denote by 〈S〉 ⊂ V the span
of S. For any subset S ∈ P(V ) we denote by 〈S〉 ⊂ V the span of the cone S of S in V . For any
non-zero vector v ∈ V we denote by [v] the class of it in P(V ). If v = 0, we set [v] := 0.

2.1 Secant varieties and rank: general definitions

Let X ⊂ P be an algebraic variety and X ⊂ V denote the affine cone over X. We denote by P〈X〉 =
P(〈X〉) the corresponding projective subspace of P. We say that X spans P if P〈X〉 = P; this is
equivalent to the requirement that X contains a basis of V . Assume that this is the case. Then every
point in V can be written as a linear combination of points in X. This allows us to define the notion
of rank already given in the introduction: the rank of [ψ] ∈ P with respect to X is the minimal number
of elements of X necessary to express ψ as a linear combination. Thus, the space P is partitioned into
the rank subsets,

P = X1 ⊔ X2 ⊔ ....

Since X spans P, we have Xr = ∅ for r > dimP.
The following properties of varieties Xr hold:
(i) X1 = X.
(ii) There exists a maximal rm ∈ {1, ...,dim V }, such that Xrm 6= ∅ and Xr = ∅ for r > rm.
(iii) If r ∈ {1, ..., rm}, then Xr 6= ∅.
(iv) The projective space P can be written as a disjoint union P = X1 ⊔ · · · ⊔ Xrm.
Let r ∈ {2, ..., rm}. The subset Xr ⊂ P is not closed, because we have X ⊂ Xr and X * Xr. (Here

and in what follows we use S to denote the Zariski closure of a subset S of some algebraic variety.)
The r-th secant variety of X is defined as

σr(X) =
⊔

s≤r

Xs ⊂ P .

It can also be written as

σr(X) =
⋃

x1,...,xr∈X

Px1...xr ,

where Px1...xr stands for the projective subspace of P spanned by the points x1, ..., xr.
The following properties of secant varieties σr(X) hold:
(i) σ1(X) = X1 = X.
(ii) σr(X) ⊂ σr+1(X).
(iii) If X is irreducible, then σr(X) is also irreducible.
(iv) There exists a minimal number rg ∈ {1, ..., rm} such that σrg(X) = P and σrg−1(X) 6= P.
(v) For r ∈ {1, ..., rg} the rank subset Xr is dense in σr(X), i.e. we have σr(X) = Xr.

Definition 2.1. The number rg from part (iv) of the above proposition is called the typical rank of
P with respect to X.

Let [ψ] ∈ P. The border rank of [ψ] with respect to X is defined as

rk[ψ] := rkX[ψ] := min{r ∈ N : [ψ] ∈ Xr} .

6



Definition 2.2. Points [ψ] ∈ P, for which rk[ψ] 6= rk[ψ], are called exceptional.

Clearly, rk[ψ] ≥ rk[ψ] and [ψ] is exceptional exactly when rk[ψ] < rk[ψ]. So, exceptional points
are points which can be approximated by points of lower rank. Also, we have

rk[ψ] = min{r ∈ N : [ψ] ∈ σr(X)}.

This leads us to the next definition.

Definition 2.3. (i) The secant variety σr(X) is called r-discontinuous if it contains an exceptional
vector and rs-continuous if it does not.

(ii) The embedding X ⊂ P is called rs-continuous, if all secant varieties σr(X) are rs-continuous.
Equivalently, X ⊂ P is rs-continuous if rk is a lower semi-continuous function on P. We say that X ⊂ P
is r-discontinuous if X ⊂ P is not rs-continuous.

(iii) The embedding X ⊂ P is called i-continuous, if σi(X) is rs-continuous. The embedding X ⊂ P
is called i-discontinuous, if σi(X) is r-discontinuous and σs(X) is rs-continuous for s < i.

We record another list of simple statements, which are derived immediately from the above defi-
nitions.

1) The secant variety σr(X) is r-discontinuous if and only if σr(X) 6= X1 ⊔ X2 ⊔ ... ⊔ Xr.
2) The embedding X ⊂ P is r-discontinuous if and only if rkX 6= rkX.
We denote by Xr ⊂ V the cone over Xr without 0 and by σr(X) ⊂ V the cone over σr(X) with 0.

We denote by TX the union of over all points of X of tangent spaces to X in P. We say that σ2(X) is
nondegenerate if dimσ2(X) = 2dimX+1. We say that TX is nondegenerate if dimTX = 2dimX. The
following propositions provide to us abstract tools which we use to study rs-continuity/r-discontinuity
of varieties X ⊂ P.

Proposition 2.1 ( [FH79, Corollary 4]). If X is a smooth projective variety, then precisely one of the
following must hold:

(i) dimTX = 2dimX and dimσ2(X) = 2dimX+ 1, or
(ii) TX = σ2(X).

Proposition 2.2 (Zak’s theorem on linear normality [FL81], [Zak93], see also [L96, Theorem 1.1]).
Assume that X is smooth, nondegenerate and P 6= σ2(X). Then codimPX ≥ dimX

2 + 2.

Corollary 2.3. Assume that X is smooth, nondegenerate and codimPX < dimX
2 + 2. Then X is

rs-continuous.

Proposition 2.4 (Landsberg-Roberts [L96, Theorem 10.3], [R71, Introduction]). Assume that X is
smooth and codimPX >

(dimX+1
2

)

. Then σ2(X) is nondegenerate.

Some representations satisfy the conditions of Corollary 2.3 and thus their rs-continuity is checked
by the general machinery. Nevertheless, to study all possible representations we need more meth-
ods. The general methods we employ to decide rs-continuity for nonfundamental representations are
independent of codimension of the variety or degeneracy of its secant variety.

2.2 Irreducible representations of reductive groups

Here we fix some notation concerning semisimple or reductive algebraic groups and their representa-
tions. All notions from this theory used by us can be found in [GW09] (the notation, however, may
differ).

Let G be a connected reductive algebraic group over F and g be its Lie algebra. We assume that
the semisimple part G′ of G is simply connected. Let B ⊂ G be a Borel subgroup and T ⊂ B be a
maximal torus. Let h ⊂ b ⊂ g denote the respective subalgebras of g. Let Λ ⊂ h∗ be the integral
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weight lattice and ∆ ⊂ Λ the root system. Let ∆ = ∆+ ⊔∆− be the partition of the root system into
positive and negative roots corresponding to the Borel subgroup B. Let Π = {α1, ..., αℓ} be the basis
of simple roots in ∆+.

The Cartan-Killing form of g determines a scalar product (·, ·) on h∗. This scalar product (·, ·)
defines a Dynkin diagram (graph) Dyn, whose vertices are labeled by the simple roots α1, ..., αℓ ∈ Π.
Also Π and the scalar product define the dominant Weyl chamber Λ and the monoid of dominant
weights Λ+ ⊂ Λ, generated by the fundamental weights π1, ..., πℓ. Hence λ ∈ Λ+ defines a function
fλ : Π → Z≥0 such that λ = fλ(α1)π1 + ... + fλ(αℓ)πℓ. This defines a one-to-one correspondence
between the set Λ+ of dominant weights and functions from the set of vertices of Dyn to the non-
negative integers. We put

h(λ) := fλ(α1) + ...+ fλ(αℓ).

The set Λ+ is also in a one-to-one correspondence with the set of isomorphism classes of simple
finite-dimensional G-modules. We denote by V (λ) the irreducible representation of G corresponding
to λ ∈ Λ+ (λ is a highest weight of V (λ) and V (λ) contains a unique up to scaling vector vλ of weight
λ). Set P(λ) := P(V (λ)). We denote by X(λ) and X(λ) the orbits of vλ and [vλ] in V (λ) and P(λ)
respectively. Note that X(λ) is a unique closed G-orbit on P(λ).

Any subdiagram of a Dynkin diagram is again a Dynkin diagram. Thus, by chopping down
some vertices (along with the adjacent edges) we obtain a new diagram Dyn, which corresponds to a
semisimple Levi subgroup G ⊂ G. The restriction of fλ to Dyn defines a simple representation V of
the group G.

Definition 2.4. We say that a G-representation V is a chopping of a G-representation V , if V is
obtained from V via the above construction.

Remark 2.1. Note that a chopping of a fundamental representation is either fundamental, or trivial
one-dimensional.

The Dynkin diagram determines the Weyl group W. We denote by w0 the longest element of W
with respect to the Bruhat order. The weights of the form wλ, with w ∈ W, are called extreme weights

of the module V (λ) and the corresponding weight vectors are called extreme weight vectors. For any
w ∈ W we denote by vwλ the unique up to scaling vector of weight wλ. The weight w0λ is called the

lowest weight of V (λ).
For λ1, λ2 ∈ Λ+, G-module V (λ1)⊗V (λ2) contains a unique up to scaling vector of weight λ1+λ2.

This vector is contained in a simple G-submodule, which is isomorphic to V (λ1 + λ2). We call this
submodule the Cartan component of V (λ1)⊗V (λ2). It is well known that the Cartan component does
not depend on a choice of Borel subgroup B ⊂ G.

Let us fix λ ∈ Λ+ and put V = V (λ) and P = P(λ) := P(V (λ)). The group G acts on the projective
space P and has a unique closed orbit therein, namely, the orbit through the highest weight line, to
be denoted by X = X(λ) := G[vλ]. We have X = G/P , where P denotes the stabilizer of [vλ] ∈ P
in G. This P is a standard parabolic subgroup, i.e. a closed subgroup of G containing the fixed
Borel subgroup B. The cosets of G by parabolic subgroups are called the flag varieties of G. Thus
we have an equivariantly embedded flag variety X = G/P ⊂ P. In fact, all equivariantly embedded
homogeneous projective varieties are obtained in this fashion. Note, that the variety X is the set of
highest weight vectors with respect to all possible choices of Borel subgroups B ⊂ G.

The irreducibility of V implies that X spans P. Hence, we have well defined rank and border rank
functions on P with respect to X, as well as secant varieties σr(X) ⊂ P. Since the group G acts on V
by invertible linear transformations, it follows immediately that rank and border rank are G-invariant
functions. Hence, the rank sets Xr and the secant varieties σr(X) are preserved by G.

Definition 2.5. Let V = V (λ), with λ ∈ Λ+, be an irreducible representation of a reductive linear
algebraic group G. Let X = X(λ) be the unique closed G-orbit in P = P(λ). The G-module V is
called rs-continuous (resp. r-discontinuous, i-continuous, i-discontinuous), if the variety X ⊂ P is
rs-continuous (resp. r-discontinuous, i-continuous, i-discontinuous).
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Our goal is to classify all rs-continuous irreducible representations of semisimple algebraic groups.

Remark 2.2. In some of our constructions we consider reductive groups, rather than semisimple
groups, just because this simplifies some steps. The actions of G and G′ (the commutant of G) on
P coincide and we are concerned with properties of the embedding X ⊂ P. Thus the classification of
rs-continuous representations of reductive groups can be easily obtained from the one for semisimple
groups.

Below we assume that λ 6= 0 (this corresponds to the inequality dimV ≥ 2, V = V (λ), assumed
in Theorem 1.1).

We denote by An, Bn, Cn,Dn, E6, E7, E8, F4, G2 the simple simply connected algebraic groups with
the corresponding Dynkin diagrams. We denote by an, bn, cn, dn, e6, e7, e8, f4, g2 the corresponding Lie
algebras.

3 Plan of proof of Theorem 1.1

Theorem 1.1 follows from a number of propositions and theorems proved throughout the article. Thus
the plan explains the role of different parts of this text.

In Proposition 4.6, we prove that, if an irreducible representation V (λ) with highest weight λ is
rs-continuous, then h(λ) < 3. In Proposition 4.8, we classify all irreducible rs-continuous modules
V (λ) with h(λ) = 2.

The rs-continuous fundamental representations (i.e. irreducible G-modules V (λ) with h(λ) = 1)
are classified in Theorems 6.1 and 7.1. This is done in a case by case study. We consider sepa-
rately representations of classical groups (Theorem 6.1), and representations of exceptional groups
(Theorem 7.1). This completes the proof of Theorem 1.1.

Let us say a few words about the proofs of Theorems 6.1 and 7.1. The rs-continuous representations
are considered individually and for each case we provide specific arguments. Most representations are
r-discontinuous and thus we have to check r-discontinuity of a huge amount of cases. The number of
cases to be considered is greatly reduced by Proposition 5.1, where we show that, if a G-representation
V is a chopping of a G-representation V and V is r-discontinuous, then V is also r-discontinuous.
Thus, it suffices to check r-discontinuity directly for only few basic cases, then we are able to deduce
r-discontinuity for most of the fundamental representations.

4 Non-fundamental rs-continuous modules

The goal of this section is to classify all non-fundamental rs-continuous modules. First of all we
provide in Lemma 4.3 of Subsection 4.1 a way to construct exceptional vectors in V (λ). Using this
construction we show in Proposition 4.6 of Subsection 4.2 that, if a G-module V (λ) is 2-continuous,
then it is either a fundamental G-module (i.e. h(λ) = 1) or is a Cartan component in a tensor product
of two fundamental G-modules (i.e. h(λ) = 2). Further on, in Proposition 4.7, we shall show that,
in the latter situation, each of the fundamental modules satisfies a very strict condition, related to
the notion of HW-density introduced in Definition 4.2. Using the explicit description of all HW-dense
modules which we present in Corollary 4.5, we are able to complete in Proposition 4.8 a classification
of non-fundamental rs-continuous G-modules V (λ) (i.e. modules V (λ) such that h(λ) = 2).

4.1 The varieties σ2(X(λ)) and X2(λ)

In some sense, in this article we study the difference between the variety σ2(X(λ)) and its open subset
X2(λ). Here we collect some of their basic features. First we recall that, if the generic rank of V (λ)
is greater than 1 (i.e. if P(λ) 6= X(λ)), then

σ2(X(λ)) = X2(λ).
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We provide some kind of explicit description of the elements of X2(λ) (Lemma 4.1) and exhibit some
set of elements of σ2(X(λ)), which tend to be exceptional (Lemma 4.3).

Lemma 4.1. Let V (λ) be an irreducible representation of a reductive group G. Then
a) any pair ([v1], [v2]) ∈ X(λ)× X(λ) is G-conjugate to a pair ([vλ], [vwλ]) for some w ∈ W,
b) any element of X2(λ) is conjugate to [vλ + vwλ] for some w ∈ W.

Proof. Fix v1, v2 ∈ X(λ) such that [v1] 6= [v2]. Let B1, B2 be Borel subgroups of G such that v1, v2
are the corresponding to B1, B2 highest weight vectors. It is known that B1 ∩B2 contains a maximal
torus T12 of G and there exists w ∈ W12 := NG(T12)/T12 such that B1 = wB2. Thus ([v1], [v2]) is
conjugate to ([vλ], [vwλ]) for some w ∈ W. This completes the proof of part a).

To prove part b) we observe that any element of X2(λ) is a sum v1+v2 for some v1, v2 ∈ X(λ) such
that v1 6= v2. According to part a) the pair ([v1], [v2]) is conjugate to ([vλ], [vwλ]) for some w ∈ W.
Thus [v1 + v2] is conjugate to [avλ + bvwλ] for some non-zero a, b ∈ F. As [v1] 6= [v2], λ 6= wλ. Hence
[vλ + vwλ] is conjugate to [avλ + bvwλ] for any non-zero a, b ∈ F. This completes the proof of b).

Corollary 4.2. Let w0 be the longest Weyl group element. The orbit G[vλ + vw0λ] is open in both
varieties σ2(X(λ)) and X2(λ). (see also [Zak93, Ch. III, Thm 1.4])

Lemma 4.3. Fix x ∈ X(λ) and t ∈ g. Then [x+ tx] ∈ σ2(X(λ)).

Proof. By definition X2(λ)∪X(λ) is the union of lines going through pairs of points of X(λ). Thus the
tangent space T xX(λ) ⊂ V to X(λ) in x belongs to X2(λ) = σ2(X(λ)). On the other hand, x + tx
belongs to T xX(λ) as tx is tangent to X(λ). This completes the proof.

4.2 HW-density and 2-continuity

In this subsection, we analyze the notion of 2-continuity via the notion of HW-density given in Defini-
tion 4.2. This analysis allows to find out all rs-continuous modules which are not fundamental. Notice
that 2-continuity is, a priori, weaker than rs-continuity, but is much simpler to check. A posteriori,
it turns out that rs-continuity and 2-continuity are equivalent for the class of homogeneous projective
varieties considered in this paper.

We proceed in the following way. We prove that, if an irreducible G-module V is 2-continuous,
then it is either a fundamental module of G (i.e. only one mark of the highest weight of V is distinct
from zero and this mark equals 1) or is a Cartan component of the tensor product of two fundamental
modules of G, see Proposition 4.6. In the latter case we prove that both fundamental modules in
the product have to be HW-dense, see Proposition 4.7. It turns out that HW-density is a very strict
condition as we show in Corollary 4.5. This result leads to Proposition 4.8, which lists all 2-continuous
G-modules, which are not fundamental.

We start with the definition of HW-density followed by the statements of the results. The proofs
of these results are given below until the end of the section.

Definition 4.1. Let X be a smooth subvariety of a projective space P. We say that X is HW-dense,
if for any point x1 ∈ X there exists an open subset U of the tangent space to X at x1 such that for all
v ∈ U there exists x2 ∈ X such that v ∈ 〈x1, x2〉.

Definition 4.2. We say that a simple G-module V (λ) is HW-dense, if X(λ) is HW-dense in P(λ).

We shall prove below in this subsection the following criterion of HW-density.

Lemma 4.4. The G-module V (λ) is HW-dense if and only if one of the following equivalent conditions
holds:

(a) The set X(λ) of highest weight vectors is dense in V (λ).
(b) All non-zero vectors of V are highest weight vectors with respect to some choice of a Borel

subgroup of G.
(c) G acts transitively on P(V ).
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Corollary 4.5. Let V be an effective fundamental HW-dense G-module. Then (G,V ) is isomorphic
to (Sp(V ), V ), (SL(V ), V ) or (SL(V ), V ∗).

Now, we formulate Propositions 4.6, 4.7 announced at the beginning of Section 4.

Proposition 4.6. Assume that V (λ) is rs-continuous. Then h(λ) < 3.

Proposition 4.7. Let λ1, λ2 ∈ Λ be non-zero weights. Assume that V (λ1+λ2) is 2-continuous. Then
both V (λ1), V (λ2) are HW-dense.

Proofs of Propositions 4.6, 4.7 are presented below in this subsection. Corollary 4.5 and Proposi-
tion 4.7 immediately imply the following proposition.

Proposition 4.8. Assume that V (λ) is an effective 2-continuous module and h(λ) = 2. Then
(G,V (λ)) appears in the following list:

1) (SL(V1)× SL(V2), V1 ⊗ V2); 2) (SL(V1)× Sp(V2), V1 ⊗ V2); 3) (Sp(V1)× Sp(V2), V1 ⊗ V2);
4) (SL(V ), S2V ); 5) (SL(V ), sl(V )); 6) (Sp(V ), sp(V )) ∼= (Sp(V ), S2V )

(here sl(V ), sp(V ) denote the adjoint modules of the corresponding groups).

All modules listed in Proposition 4.8 are rs-continuous. Cases 1) and 4) of Lemma 4.8 are known
to be rs-continuous. Cases 2), 3) have the same secant varieties as case 1), and hence are also rs-
continuous. Cases 5) and 6) are rs-continuous due to [Kaji98]. Therefore Proposition 4.8 explicitly
lists all non-fundamental rs-continuous modules.

The rest of the current subsection is dedicated to the proofs of Propositions 4.6, 4.7 and Lemma 4.4.
We need the following lemma for the GL(V1)×GL(V2)×GL(V3)-module V1⊗V2⊗V3, where V1, V2, V3
are finite-dimensional vector spaces.

Lemma 4.9. Let xi, yi be linearly independent vectors in Vi for i = 1, 2, 3. Then

T := x1 ⊗ x2 ⊗ x3 + y1 ⊗ x2 ⊗ x3 + x1 ⊗ y2 ⊗ x3 + x1 ⊗ x2 ⊗ y3 6= v1 ⊗ v2 ⊗ v3 + w1 ⊗ w2 ⊗ w3

for all vi, wi ∈ Vi (i = 1, 2, 3). In other words, rkT > 2.

Proof. Assume on the contrary that

T = v1 ⊗ v2 ⊗ v3 + w1 ⊗ w2 ⊗ w3

for some vi, wi ∈ Vi, i = 1, 2, 3. We have V1 ⊗ V2 ⊗ V3 ∼= Hom(V ∗
2 ⊗ V ∗

3 , V1). Therefore for any
x ∈ V1 ⊗ V2 ⊗ V3 we can define Im1(x) ⊂ V1 as the image of the corresponding homomorphism from
Hom(V ∗

2 ⊗ V ∗
3 , V1). Similarly we define Im2(x) and Im3(x). We have

Imi(T ) = 〈xi, yi〉, i = 1, 2, 3.

On the other hand, if v1 ⊗ v2 ⊗ v3 + w1 ⊗w2 ⊗ w3 6= 0,

Imi(v1 ⊗ v2 ⊗ v3 + w1 ⊗ w2 ⊗ w3) ⊂ 〈vi, wi〉(i = 1, 2, 3).

Therefore, 〈xi, yi〉 = 〈vi, wi〉, i = 1, 2, 3. Hence, without loss of generality, we may assume that

Vi = 〈xi, yi〉 = 〈vi, wi〉(i = 1, 2, 3),

i.e. that dimVi = 2 (i = 1, 2, 3). For two-dimensional spaces V1, V2, V3 this lemma is well known; see
e.g. [L12].

Note that for (G,V (λ)) = (SL(V1)×SL(V2)×SL(V3), V1 ⊗V2 ⊗V3) we have h(λ) = 3. Moreover,
Lemma 4.9 is essentially a particular case of Proposition 4.6.
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Proof of Proposition 4.6. Assume on the contrary that h(λ) ≥ 3. Then there exist non-zero weights
λ1, λ2, λ3 ∈ Λ+ such that λ = λ1 + λ2 + λ3. Then

vλ1 ⊗ vλ2 ⊗ vλ3 ∈ V (λ1)⊗ V (λ2)⊗ V (λ3)

is a highest weight vector of weight λ = λ1 + λ2 + λ3. Therefore the smallest G-submodule of
V (λ1)⊗ V (λ2)⊗ V (λ3) containing v

λ1 ⊗ vλ2 ⊗ vλ3 is isomorphic to V (λ). We identify V (λ) with this
submodule of V (λ1)⊗ V (λ2)⊗ V (λ3) and set

vλ := vλ1 ⊗ vλ2 ⊗ vλ3 .

By Lemma 4.3 we have
vλ + tvλ ∈ X2(λ)(= σ2(X(λ)))

for any t ∈ g. Therefore
rkX(λ)(v

λ + tvλ) ≤ 2 (2)

for any t ∈ g. By the Leibnitz rule we have

Tλ := vλ + tvλ = vλ1 ⊗ vλ2 ⊗ vλ3 + tvλ1 ⊗ vλ2 ⊗ vλ3 + vλ1 ⊗ tvλ2 ⊗ vλ3 + vλ1 ⊗ vλ2 ⊗ tvλ3

(note that Tλ is of the form T of Lemma 4.9). We claim that

vλ + tvλ 6∈ X2(λ) ∪X(λ) ∪ {0}

for all t ∈ U from some open subset U of g. As λi 6= 0, there exists some open subset U ⊂ g such that
[tvλi ] 6= [vλi ] (i = 1, 2, 3) for all t ∈ U . We fix t ∈ U . We claim that

rk(vλ + tvλ) ≥ 3. (3)

Assume on the contrary that vλ + tvλ ∈ X2(λ) ∪X(λ) ∪ 0, then

vλ + tvλ = g1(v
λ1)⊗ g1(v

λ2)⊗ g1(v
λ3) + g2(v

λ1)⊗ g2(v
λ2)⊗ g2(v

λ3)

for some g1, g2 ∈ G and thus

Tλ = vλ + tvλ = v1 ⊗ v2 ⊗ v3 + w1 ⊗ w2 ⊗ w3

for some v1, v2, v3, w1, w2, w3 ∈ V (λ). This contradicts the statement of Lemma 4.9. Comparing (2)
and (3) we see that vλ + tvλ is an exceptional vector of V (λ) and thus V (λ) is 2-discontinuous.

Proof of Proposition 4.7. We use notation analogous to the one in Proposition 4.6. Fix λ := λ1 + λ2.
Set

vλ := vλ1 ⊗ vλ2 ∈ V (λ1)⊗ V (λ2).

This defines a canonical embedding V (λ) → V (λ1)⊗ V (λ2). As λi 6= 0, there exists some open subset
U ⊂ g such that [tvλi ] 6= [vλi ] (i = 1, 2) for all t ∈ U . We fix t ∈ U . Repeating the argument
preceding (2) we deduce that (2) holds in the present notation. Hence, since V (λ) is 2-continuous we
have

vλ + tvλ = g1v
λ + g2v

λ or vλ + tvλ = g1v
λ

for some g1, g2 ∈ G. Then

Imi(v
λ + tvλ) = 〈vλi , tvλi〉 (i = 1, 2),

(for the definition of Imi see proof of Lemma 4.9) and, if g1v
λ + g2v

λ 6= 0,

Imi(g1v
λ + g2v

λ) = 〈g1v
λi , g2v

λi〉 (i = 1, 2) or Imi(g1v
λ + g2v

λ) = 〈g1v
λi〉.

Hence g1v
λi , g2v

λi ∈ 〈vλi , tvλi〉 and either

[g1v
λi ] 6= [vλi ] or [g2v

λi ] 6= [vλi ] (i = 1, 2).

12



Therefore both V (λ1) and V (λ2) are HW-dense. This completes the proof.

To prove Lemma 4.4 we need two technical lemmas. The first gives a reformulation of Definition 4.2.

Lemma 4.10. A simple G-module V (λ) is HW-dense if and only if there exists an open subset U ⊂ g

such that, for all t ∈ U , there exists an element

v ∈ X(λ) ∩ 〈vλ, tvλ〉

such that [v] 6= [vλ] (note that if such an element v exists, then [tvλ] 6= [vλ]).

Proof. This is a fairy easy exercise for Lie algebras-Lie groups formalism. We omit it.

Lemma 4.11. Fix v1 ∈ X(λ). Assume that there exists v2 ∈ X(λ) such that v2 ∈ 〈v1, gv1〉. Then all
non-zero vectors of 〈v1, v2〉 belong to X(λ).

Proof. Without loss of generality we assume that [v1] 6= [v2]. Then, by Lemma 4.1a), the pair (v1, v2)
is conjugate to the pair (vλ, vwλ) for some w ∈ W and thus we can assume that

v1 = vλ and v2 = vwλ

for the fixed maximal torus T ∈ G. The space gv1 is clearly T -invariant and the weights of this space
form a subset of the set λ+∆ (this is a point-wise sum). As vwλ ∈ gvλ, we have

wλ = λ+ β for some β ∈ ∆

(note that wλ 6= λ as [v1] 6= [v2]). Let SL2(β) be the T -stable SL2-subalgebra corresponding to the
root β ∈ ∆. Then the space 〈vλ, vwλ〉 is a two-dimensional simple SL2(β)-module and thus any two
non-zero elements of 〈v1, v2〉 are SL2(β)-conjugate, and hence G-conjugate. Therefore all non-zero
elements of 〈v1, v2〉 belong to X(λ).

Proof of Lemma 4.4. The equivalence of conditions (a), (b), (c) is clear. It is also immediate to verify
that each of these conditions implies HW-density. It remains to show that, if the module V (λ) is
HW-dense, then it satisfies condition (a).

Assume that V (λ) is HW-dense. Then according to Lemma 4.10 and Lemma 4.11 there exists an
open subset U ⊂ g such that for any non-zero a ∈ F and any t ∈ U we have

vλ + atvλ ∈ X(λ),

i.e. we have that X(λ) ∩ 〈vλ, gvλ〉 is a dense subset of 〈vλ, gvλ〉. Note that vλ ∈ gvλ, as λ 6= 0, and
hence

〈vλ, gvλ〉 = 〈gvλ〉.

We have

dimX(λ) = dimGvλ = dim gvλ

and therefore
X(λ) = gvλ.

On the other hand
V (λ) = 〈X(λ)〉

and hence
V (λ) = X(λ) = gvλ.
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5 Restriction to a Levi subgroup

The main result of this section is Proposition 5.1. This proposition provides a strong sufficient con-
dition for r-discontinuity of a representation. We will apply this proposition to study rs-continuity/r-
discontinuity of fundamental representations in the subsequent sections of this article.

Proposition 5.1. Let V be an irreducible G-module and V be a G-module, which is a chopping of
V . If V is r-discontinuous, then V is r-discontinuous.

This proposition is an immediate corollary of Proposition 5.2. To state Proposition 5.2 we need
more notation.

Recall that we have fixed Cartan and Borel subgroups H ⊂ B ⊂ G and that Π denotes the
corresponding set of simple roots. Let Π ⊂ Π be a subset. Then ∆ = ∆∩ 〈Π〉 is a root system having
Π as a set of simple roots and ∆± = ∆ ∩ ∆± as sets of positive and negative roots. Further, let
g = h⊕ (⊕α∈∆)g

α. Then g is a reductive subalgebra of g; we call subalgebras of this form (reductive)
Levi subalgebras. Let G ⊂ G be the corresponding Levi subgroup. We shall add underline to denote
the attributes of G with the notational conventions already introduced for G.

Note that G and G have a common Cartan subgroup H and hence have the same weight lattice
Λ. However, the dominant Weil chambers do not coincide, unless Π = Π, a case which is of no use
for us. We have an inclusion Λ+ ⊂ Λ+, so a weight λ ∈ Λ+ can be regarded as a dominant weight
for both G and G. Furthermore, since B = B ∩ G, the B-highest weight vectors are also B-highest
weight vectors.

Fix λ ∈ Λ+. There is a G-equivariant inclusion of the corresponding representations

V = V (λ) = U(g)vλ ⊂ V (λ) = V ,

where vλ denotes the B-highest weight vector in V (λ). Let X denote the unique closed G-orbit in
P(V ) and, as before, let X denote the unique closed G-orbit in P(V ). We have

X = G[vλ] ⊂ G[vλ] = X.

For points in P(V ), we have two well defined rank functions rkX and rkX (notice that V is a chopping
of V according to Definition 2.4). We would like to compare these functions and prove the following.

Proposition 5.2. Let G ⊂ G and V ⊂ V be as above. If [ψ] ∈ P(V ), then rkX[ψ] = rkX[ψ].

Proof. First, observe that the multiplicity of the G-module V (λ) in V (λ) is 1. This holds because
V (λ) has a weight vector with weight λ and this weight has multiplicity 1 in V (λ). Consequently,
there is a well-defined G-equivariant projection

π : V ։ V .

Let P ⊂ G be the parabolic subgroup containing B and having G as a Levi component; the roots
of P are ∆+ ⊔∆−. Let NP be the unipotent radical of P ; the roots of NP are ∆+ \∆+. Then NP

acts trivially on V .

Lemma 5.3. We have π(X ∪ 0) = X ∪ 0.

Proof. Let N−
P be the nilradical of the parabolic P− opposite to P , with respect to the given Cartan

subgroup H. In other words, N−
P is the regular unipotent subgroup of N− with roots ∆(N−

P ) =
−∆(NP ). We have

X = Gvλ = P−vλ = N−
P (Gvλ) = N−

P X .
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Thus, to prove the lemma it is sufficient to show that for all g ∈ N−
P and all v ∈ X we have π(gv) ∈ X .

Let g ∈ N−
P and v ∈ X. Since the exponential map exp : n−p → N−

P is surjective, we can write
g = exp(ξ) with ξ ∈ n−p . Viewing ξ as an element of gl(V ) we can write

gv = (1 + ξ +
1

2
ξ2 + ...)v = v + ξv +

1

2
ξ2v + · · · .

Let V ′ = ker(π), so that V = V ⊕ V ′ as G-modules. Then, for ξ ∈ n−p , we have ξ(V ) ⊂ V ′. Hence
π(gv) = v.

Now, let [ψ] ∈ P(V ). The inequality rkX[ψ] ≥ rkX[ψ] is immediate. Let r = rk[ψ] and

ψ = v1 + ...+ vr

be a minimal expression, with [vj ] ∈ X. Then we have

ψ = π(ψ) = π(v1) + ...+ π(vr)

and, according to the above lemma, [π(vj)] ∈ X ∪ 0 (this is a set). Hence rkX[ψ] ≤ rkX[ψ] and so

rkX[ψ] = rkX[ψ].

6 Fundamental representations (classical groups)

In this subsection we prove Theorem 1.1 for fundamental modules of classical groups, i.e. we prove
Theorem 6.1. The result follows directly from Propositions 6.2, 6.4, 6.5 of Subsections 6.1, 6.2, 6.3,
where we consider the cases of SLn, SOn, Sp2n, respectively.

Theorem 6.1. Let V (λ) be a fundamental module of a simple classical group G. Then V (λ) is
rs-continuous if and only if the pair (G,V (λ)) appears in the following table.

Group G Representation V Highest weight of V

Classical groups

SLn Fn, (Fn)∗, (Λ2Fn), (Λ2Fn)∗ π1, πn−1, π2, πn−2

SOn Fn, RSpinn(n ≤ 10)
π1, πn

2
(2 | n),

πn
2
−1(2 | n), πn−1

2

(2 ∤ n)

SP2n F2n,Λ2
0F

2n π1, π2

, (4)

where the notation is the same as in Theorem 1.1.
Moreover, all r-discontinuous fundamental representations of classical groups are 2-discontinuous.

Our approach for classical groups is tensor-based and we often use symmetric/antisymmetric bi-
linear forms. To prove Theorem 6.1 we also need some sufficient condition of r-discontinuity for
representations. Such a condition is provided in Proposition 5.1 of Section 5. In a similar way Propo-
sition 5.1 will be very useful in Section 7, where we consider the fundamental representations of the
exceptional groups.
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6.1 G = SLn

Recall that the fundamental representations of G = SLn are obtained as exterior tensor powers of the
natural representation, i.e. V (πk) = ΛkFn, k = 1, ..., n − 1. Furthermore, we have

(ΛkFn)∗ = Λn−kFn

as SLn-modules.

Proposition 6.2. The fundamental representations of SLn which are rs-continuous are exactly

Fn, (Fn)∗,Λ2Fn, (Λ2Fn)∗.

Moreover, all r-discontinuous fundamental representations of SLn are 2-discontinuous.

Proof. The closed G-orbit X ⊂ P(ΛkFn) is the Grassmann variety Grk(Fn) under its Plücker embed-
ding. It is well known that a suitable isomorphism between ΛkFn and Λn−kFn induces an isomorphism
between the respective projective spaces, which carries Grk(Fn) to Grn−k(Fn). Hence, for our purposes,
it is sufficient to consider k ≤ n/2.

The fact that V (π1) = Fn and V (π2) = Λ2Fn are rs-continuous is well known. In fact, in the
first case we have X = P(Fn), so all vectors have rank 1. In the second case, Λ2Fn can be identified
with the space of skew-symmetric n × n matrices. Such a matrix has even rank (in the usual sense)
and the SLn-orbit X through a highest weight vector in Λ2Fn consists of all matrices of rank 2. A
skew-symmetric matrix ψ of rank 2r can be written as a sum of r skew-symmetric matrices of rank 2,
and so rkX[ψ] = r. We can now see that the set

{[ψ] ∈ P(Λ2Fn) : rkXψ ≤ r}

is closed for every r. This completes the argument in this case.
We now turn to the remaining cases. Due to the duality ΛkFn ↔ (Λn−kFn)∗, it suffices to consider

n ≥ 6. Proposition 5.2 implies that, to show that ΛkFn (3 ≤ k ≤ n/2) is 2-discontinuous, it is sufficient
to show that Λ3F6 is 2-discontinuous.

Lemma 6.3. The representation of SL6 on Λ3F6 is 2-discontinuous.

Proof. It is shown in [Zak93, Ch. III, Thm 1.4], that σ2(X(Λ3F6)) = Λ3F6 and therefore it is enough
to show that Λ3F6 contains a vector of rank 3 or more. To do this we count the number of orbits of
vectors of rank 0, 1, 2 and compare this number with the known number of orbits for the action of
SL6 on Λ3F6, see [Gu48] or [R07].

By definition there is one orbit of vectors of rank 0 and one orbit of vectors of rank 1. Let us
consider the vectors of rank 2 in V . We shall show that there are two orbits of such vectors. Any
vector of rank 2 can be written as

ψ = v1 ∧ v2 ∧ v3 + v4 ∧ v5 ∧ v6 ,

with some vj ∈ V . The first possibility is that v1, ..., v6 form a basis of F6. This is indeed the generic
situation. If suitable Borel and Cartan subgroups of SL6 are chosen, the two summands of ψ are,
respectively, the highest and lowest weight vectors in V . The group GL6 acts transitively on the set of
all bases of F6; the group SL6 acts transitively on the set of their projective images. Thus the points
of the first type form a single G-orbit X′

2 which is open in P(Λ3F6). We denote by Z the complement
to this orbit in P(Λ3F6). The second possibility is to have

dim(〈v1, v2, v3〉 ∩ 〈v4, v5, v6〉) = 1 .

If this is the case, by changing the vectors if necessary, we may reduce to the situation where v1 = v4
and

ψ = v1 ∧ (v2 ∧ v3 + v5 ∧ v6) , with 〈v2, v3〉 ∩ 〈v5, v6〉 = 0 .
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Since v2∧ v3+ v5∧ v6 has rank 2 in Λ2F6 (with respect to Gr2(F6)), we deduce that ψ has indeed rank
2 in V . The point φ does not belong to X′

2, because the action of GL6 respects linear dependencies.
On the other hand, it is also clear that GL6 acts transitively on the set X′′

2 of points of this second
type, and hence SL6 acts transitively on the set of their images in P. Note that

if dim(〈v1, v2, v3〉 ∩ 〈v4, v5, v6〉) > 1, then rk[ψ] = 1.

We can conclude that there are exactly two G-orbits consisting of points of rank 2, namely

X′
2 = P \ Z, X′′

2 = Z ∩ X2 .

Thus there are four SL6-orbits of vectors of rank 0, 1, 2. It is known that SL6 has five orbits in Λ3F6.
Therefore Λ3F6 has a unique SL6-orbit of vectors of rank 3 or more and Λ3F6 is 2-discontinuous. An
example of a vector of rank 3 is (see [Gu48])

Λ3 = v1 ∧ v2 ∧ v4 + v1 ∧ v5 ∧ v3 + v6 ∧ v2 ∧ v3 .

6.2 G = SOn

Let ℓ = rank(G) = ⌊n2 ⌋. In this section we prove the following proposition.

Proposition 6.4. The natural representation V (π1) is rs-continuous.
1) If n is even, then, for j = 2, ..., ℓ − 2, the representation V (πj) is r-discontinuous.
2) If n is odd, then, for j = 2, ..., ℓ − 1, the representation V (πj) is r-discontinuous.
3) The spin representations (V (πℓ−1) and V (πℓ) for even n and V (πℓ) for odd n) are rs-continuous

if and only if n ≤ 10.
Moreover, all fundamental representations of SOn which are r-discontinuous are 2-discontinuous.

Proof. The first statement is well known. Indeed, the group SOn has exactly two orbits in P(π1),
namely, the quadric and its complement. The first one consists, by definition, of points of rank 1. The
second one consists necessarily of points of rank 2.

The second and third statement in the proposition are concerned with fundamental representations
of SOn, which are not the natural nor the spin representation. We handle the two statements at once.
In the case j = 2, the representation is actually the adjoint representation, i.e. V (π2) = son. Here
results of [KY00] show that σ2(X) 6= X⊔X2. Thus the representation is 2-discontinuous. The remaining
cases, j ≥ 3, are reduced to the case j = 2 via Proposition 5.2.

Now, we turn to the last statement of the proposition, concerning the spin representations. First,
recall that, for even n, the geometric properties we are concerned with are the same for the two spin
representations V (πℓ−1) and V (πℓ). Also, either one of these representations remains irreducible when
restricted to Spinn−1 and, furthermore, Spinn−1 acts transitively on the closed orbit of Spinn in P(πℓ).
Thus, it is enough to check statement 3) for the representations V (πℓ) of Spin2ℓ. Let X denote the
closed orbit of Spin2ℓ in P(πℓ).

It is shown, in [Car97, Section 3.5], that for 2ℓ = 12 the secant variety σ2(X) contains elements of
rank 3. Thus the representation V (π6) of Spin12 is 2-discontinuous. Using Proposition 5.1, we deduce
that the representation V (πℓ) of Spin2ℓ is r-discontinuous for all ℓ ≥ 6. So, according to the remarks
made earlier in this proof, the spin representations of Spinn are 2-discontinuous for n ≥ 11.

It remains to verify that the spin representations are rs-continuous for even n ≤ 10. This statement
easily follows from Corollary 2.3. This completes the proof of the proposition.
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6.3 G = Sp2n

Proposition 6.5. The fundamental representations of Sp2n which are rs-continuous are exactly V (π1)
and V (π2). All other fundamental representations of Sp2n are 2-discontinuous.

Proof. The representation V (π1) is simply the natural representation of Sp2n on F2n. The action
of Sp2n on P(F2n) is transitive, i.e. X = P(F2n) and there is nothing more to prove here. The
representations V (π2) and V (πk), k ≥ 3 are considered in Lemmas 6.8 and 6.7, respectively.

Lemma 6.6. The representation V (π3) of Sp2n is 2-discontinuous for n ≥ 3.

Proof. Let n ≥ 3 and consider Sp2n to be defined with respect to the skew-symmetric form

(z1 ∧ z6 + z2 ∧ z5 + z3 ∧ z4) + (z7 ∧ z8 + ...+ z2n−1 ∧ z2n)

on F2n, where z1, ..., z2n is the dual basis corresponding to the basis v1, ..., v2n of F2n.
Let X be the set of points [w1 ∧w2 ∧w3] such that w1, w2, w3 ∈ F2n span a 3-dimensional isotropic

subspace F2n. Let X be the affine cone over X. We set

Λ3
0F

2n := 〈X〉.

The set X is a single Sp2n-orbit and thus Λ3
0F

2n is an irreducible Sp2n-module. There is a unique up
to scaling Sp2n-isomorphism between V (π3) of Sp2n and Λ3

0F
2n. We identify V (π3) with Λ3

0F
2n. The

varieties X and X(π3) coincide under this identification.
Note that if ψ ∈ V (π3) has rank 3 as a vector of the SL2n-module Λ3F2n, then ψ has rank 3 or

more as a vector of the Sp2n-module V (π3).
Consider the tensor Λ3 ∈ Λ3F6 given at the end of the proof of Lemma 6.3. One has

[v1 ∧ v2 ∧ v4], [v1 ∧ v5 ∧ v3], [v6 ∧ v2 ∧ v3] ∈ X(π3)

and thus Λ3 ∈ Λ3
0F

6 ⊂ Λ3
0F

2n. Moreover the rank of Λ3 is 3 or less. As Λ3 has rank 3 as an element
of SL6-module Λ3F6, Λ3 has rank 3 as an element of Λ3F2n (see Proposition 5.2). Hence

rkX Λ3 = 3, (5)

where Λ3 is considered as an element of Λ3
0F

2n.
It is shown in [Zak93, Ch. III, Thm 1.4], that σ2(X) = P(Λ3

0F
6). Thus Λ3 has border rank 2 or

less as an element of Λ3
0F

6 and hence

rkXΛ3 ≤ 2,

here Λ3 is considered as an element of Λ3
0F

2n. Therefore the Sp2n-module V (π3) = Λ3
0F

2n is 2-
discontinuous.

Lemma 6.7. Fix n ≥ k ≥ 3. The representation V (πk) of Sp2n is 2-discontinuous.

Proof. If n ≥ k ≥ 3, the Dynkin diagram Cn of Sp2n has a unique subdiagram Cn,k of type Cn−k+3.
The chopping of πk to this diagram equals π3. By Lemma 6.6, V (π3) is not rs-continuous for G =
Sp2(n−k+3) (this group corresponds to the Dynkin diagram Cn,k) and thus V (πk) is not an rs-continuous
Sp2n-module by Proposition 5.1.

We are now going to prove that V (π2) is rs-continuous for Sp2n(n ≥ 2). To do this we set V := F2n

and fix a nondegenerate antisymmetric bilinear form ω on V . Note that the second fundamental module
of sp(V ) is isomorphic to the set of vectors in Λ2V , which are annihilated by ω (here we consider ω
as an element of (Λ2V )∗). We denote this space by Λ2

0V . To complete the proof of Proposition 6.5 we
prove the following lemma.
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Lemma 6.8. a) For any ω ∈ Λ2
0V the rank of ω as a bilinear coform is twice the rank of ω as a vector

in an Sp(V )-module.
b) The Sp(V )-module Λ2

0V is rs-continuous.

To prove Lemma 6.8 we introduce a notion related to bilinear coforms ω ∈ Λ2V . A bilinear coform
ω defines a map V ∗ → V by v → ω(v, ·). We denote the image of this map by Suppω. We have
natural inclusions

Λ2 Suppω → Λ2V , Λ2
0 Suppω → Λ2

0V ,

and if ω ∈ Λ2
0V , then ω ∈ Λ2

0 Suppω. Note that ω is nondegenerate as an element of Λ2 Suppω and, in
particular, defines a bilinear form ω∗ on Suppω (there is no canonical way to extend ω∗ to the whole
V ).

Lemma 6.8 follows from Lemma 6.9 below; a proof of Lemma 6.8 is presented after the proof of
Lemma 6.9.

Lemma 6.9. Let ω ∈ Λ2
0V be a bilinear coform of rank 2r. Then there exist a set of elements

x1, ..., xr, y1, ..., yr ∈ Suppω such that

ω = x1 ∧ y1 + ...+ xr ∧ yr, and ω(xi, yi) = 0 for all i.

In turn, Lemma 6.9 follows from Lemma 6.10 below; a proof of Lemma 6.9 is presented after the
proof of Lemma 6.10.

Lemma 6.10. Let ω ∈ Λ2
0V be a bilinear coform of rank 2r. If r > 0, then there exist elements

x1, y1 ∈ Suppω such that

rank(ω − x1 ∧ y1) = 2r − 2, and ω(x1, y1) = 0,

where rank(η) denotes the usual rank of a bilinear coform η.

In turn, Lemma 6.10 follows from Lemma 6.11 below; a proof of Lemma 6.10 is presented after
the proof of Lemma 6.11.

Lemma 6.11. Let ω ∈ Λ2
0V be a bilinear coform of rank 2r. If r > 0, then there exists an open

subset U ⊂ Suppω such that for any x1 ∈ U there exists y1 ∈ Suppω such that ω∗(x1, y1) 6= 0 and
ω(x1, y1) = 0.

Proof. If a form ω is zero on Suppω, then for any non-zero x1 ∈ Suppω there exists y1 ∈ Suppω
such that ω∗(x1, y1) 6= 0, because the form ω∗ is nondegenerate on Suppω. In this case ω(x1, y1) = 0,
because ω = 0.

We assume that ω is non-zero on Suppω. Since ω ∈ Λ2
0V , the pairing of ω with ω equals 0. Thus

[ω∗] 6= [ω|Λ2 Suppω]. Hence, for some open subset U ⊂ Suppω and any x1 ∈ U , both ω(x1, ·), ω
∗(x1, ·)

are non-zero and
[ω(x1, ·)] 6= [ω∗(x1, ·)].

Therefore for any x1 ∈ U there exists y1 ∈ Suppω such that ω∗(x1, y1) 6= 0 and ω(x1, y1) = 0.

Proof of Lemma 6.10. Let (x1, y1) be a pair as in Lemma 6.11. We denote by W2 the space spanned
by x1, y1 and by W2r−2 the orthogonal complement to W2 in Suppω with respect to ω. Thanks
to the choice of x1, y1, the form ω∗ is nondegenerate on W2 and therefore Suppω = W2 ⊕ W2r−2.
Then ω = ω2 + ω2r−2 for uniquely determined coforms ω2 ∈ Λ2W2 and ω2r−2 ∈ Λ2W2r−2. We have
ω2 = λ(x1 ∧ y1) = x1 ∧ (λy1) for some λ ∈ F×. Therefore

rk(ω − x1 ∧ (λy1)) = 2r − 2,

and ω(x1, (λy1)) = 0.
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Proof of Lemma 6.9. To prove Lemma 6.9 we use induction.
The r-th statement of the induction is: Let ω ∈ Λ2

0V be a bilinear coform of rank 2r. Then there
exist a set of elements x1, ..., xr, y1, ..., yr ∈ Suppω such that

ω = x1 ∧ y1 + ...+ xr ∧ yr, and ω(xi, yi) = 0 for all i.

Basis of the induction, for r = 1: Let ω ∈ Λ2
0V be a bilinear coform of rank 2. Then there exist

elements x1, y1 ∈ Suppω such that ω = x1 ∧ y1, and ω(x1, y1) = 0.
First, we check the basis of the induction. Let x1, y1 be basis of Suppω. Then ω = λx1 ∧ y1 for

some λ ∈ F×. As ω ∈ Λ2
0V , we have ω(ω) = ω(λx1 ∧ y1) = ω(x1, λy1) = 0. Then ω = x1 ∧ (λy1) and

ω(x1, λy1)=0. Therefore we finish with the basis of induction.
Now we prove that the r-th statement of the induction follows from the (r− 1)-th statement. We

assume that the (r − 1)-th statement holds. According to Lemma 6.10 there exists xr, yr ∈ Suppω
such that

rk(ω − xr ∧ yr) = 2r − 2, and ω(xr, yr) = 0.

Note that ω(xr ∧ yr) = ω(xr, yr) = 0 and therefore ω − xr ∧ yr ∈ Λ2
0V . By hypothesis, there exist

x1, ..., xr−1, y1, ..., yr−1 ∈ Supp(ω − xr ∧ yr) ⊂ Suppω such that

ω − xr ∧ yr = x1 ∧ y1 + ...+ xr−1 ∧ yr−1, and ω(xi, yi) = 0 for all i.

This completes the proof of Lemma 6.9.

Proof of Lemma 6.8. First note that a highest weight vector of the Sp(V )-module Λ2
0V is a wedge

product of two ω-orthogonal vectors of V . Fix a coform ω ∈ Λ2
0V . A sum of r vectors from the

Sp(V )-orbit of a highest weight vector has rank at most 2r as a bilinear coform. Hence the rank of ω
as a vector of an Sp(V )-module is not less than half the rank of ω as a bilinear coform. On the other
hand, Lemma 6.9 implies that the rank of ω as a vector of an Sp(V )-module is not larger than half
the rank of ω as a bilinear coform. Therefore the rank of ω as a vector of an Sp(V )-module is equal
to half the rank of ω as a bilinear coform. This proves part a) of Proposition 6.8.

The set of coforms of rank r or less is closed for all r and this finishes part b).

7 Fundamental representations (exceptional groups)

In this section we prove Theorem 1.1 for fundamental modules of exceptional groups, i.e. we prove
Theorem 7.1. Essentially, we consider case-by-case all 27 fundamental representations of the 5 ex-
ceptional groups and provide some arguments for each case, by which the corresponding fundamental
module is r-discontinuous or rs-continuous. The result is presented below.

Theorem 7.1. Assume that V (λ) is a fundamental effective G-module. Then V (λ) is rs-continuous
if and only if the pair (G,V (λ)) appears in the following table.

G Representation V Highest weight of V

E6 F27, (F27)∗ π1, π5
F4 F26 π1
G2 F7 π1

, (6)

where the notation is the same as in Theorem 1.1.
Moreover, all r-discontinuous fundamental representations of exceptional groups are 2-discontinuous.

The types of arguments are presented in the following tables.
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Symbol Argument for being rs-continuous References

SM
the representation is reduced to
a subminuscule representation

Section 1, [BL13]

F4C the representation is equivalent to V (π1) of F4 Prop. 7.2, Subsect. 7.1

Symbol Argument for being r-discontinuous References

CC
the representation is chopable to an r-discontinuous

representation of some classical group
—

Ad the representation is adjoint Section 1, [Kaji98]

AdC
the representation is chopable to the adjoint
representation of some exceptional group

—

F4D the representation is equivalent to V (π2) of F4 Prop. 7.9, Subsect. 7.2

E7D
the representation is equivalent to

the E7-representation V(π1)
Prop. 7.13, Subsect. 7.3

.

In the following tables, we provide, for each fundamental representation of each exceptional group,
an argument by which it is rs-continuous or r-discontinuous.

F. weights of E6 π1 π2 π3 π4 π5 π6
Arguments SM CC CC CC SM CC or Ad

F. weights of E7 π1 π2 π3 π4 π5 π6 π7
Arguments E7D CC CC CC CC Ad CC

F. weights of E8 π1 π2 π3 π4 π5 π6 π7 π8
Arguments Ad CC CC CC CC CC AdC CC

F. weights of F4 π1 π2 π3 π4
Arguments F4C F4D CC Ad

F. weights of G2 π1 π2
Arguments SM Ad

For the representations V (πk) of exceptional groups En(n = 6, 7, 8), for which argument CC is appli-
cable, chopping of V in the vertex with number n− 1 is a 2-discontinuous representation of a classical
group of type Dn−1. To apply argument AdC one should chop vertex with number 1. For all repre-
sentations of the exceptional group F4, to apply argument CC one can always chop the vertex with
number 1.

Let us first justify arguments SM, CC, Ad, AdC.
SM) It was shown [BL13] that any subminuscule representation is rs-continuous, i.e. that rank

and border rank coincide for such representations.
CC) According to Proposition 5.1, if some chopping V of a representation V is 2-discontinuous,

then V is 2-discontinuous.
Ad) According to [Kaji98], all adjoint representations of exceptional groups are 2-discontinuous.
AdC) According to Proposition 5.1 and Ad), if some chopping V of a representation V is an adjoint

representation of an exceptional group, then V is 2-discontinuous.
The rest of this section is devoted to the justification of arguments F4C, F4D and E7W.
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7.1 Rs-continuity of V (π1) for F4

In this subsection we prove the following.

Proposition 7.2. The fundamental representation V (π1) of F4 is rs-continuous.

Proof. It is known, [Zak93, p. 59], that the generic rank of V (π1) is three, so that

σ3(X(π1)) = P(V (π1)).

In Lemmas 7.3 and 7.4 below, we show that V (π1) is 2- and 3-continuous, respectively, which implies
that this module is rs-continuous.

Lemma 7.3. The F4-module V (π1) is 2-continuous.

Lemma 7.4. The F4-module V (π1) is 3-continuous.

The first fundamental representation V (π1) of F4 is 26-dimensional and is the (nontrivial) rep-
resentation of the smallest possible dimension for this group. The discussion which follows involves
several representations of various groups. This would make the notation V (λ) ambiguous. We have
chosen to denote the representations spaces by indices corresponding to their dimension. The set of
highest weight vectors, previously denoted by X(λ), will be denoted by X(V ). We let V26 denote
the representation space of (F4, V (π1)) and X(V26) be the set of highest weight vectors. To study
V26 we use the fact that it can be obtained as a generic hyperplane in the smallest, 27-dimensional
representation of E6, which we denote by V27 = (E6, V (π1)). We summarize some known results in
the following lemma.

Lemma 7.5. (i) The algebra of E6-invariant polynomials on V27 is polynomial in one generator of
degree 3, i.e. F[V27]E6 = F[DET ], where DET ∈S3(V ∗

27).
(ii) The orbits of E6 in V27 are the following:

0, X(V27), {DET = 0} \X(V27), {DET = a}, a ∈ F×;

their dimensions are, respectively, 0, 17, 26, 26. The orbits of E6 × F× in V27 are the following (lower
indices indicate dimension):

O0 = {0} , O17 = X(V27) , O26 = {DET = 0} \X(V27) , O27 = {DET 6= 0} .

(iii) There are exactly three E6 orbits in the projective space P(V27) and they are exactly the rank
subsets with respect to X(V27), namely,

X(V27) , X2(V27) = {DET = 0} \ X(V27) , X3(V27) = {DET 6= 0} ;

their dimensions are, respectively, 16, 25, 26. The secant varieties of X(V27) are exactly the closures of
the E6-orbits in P(V27).

(iv) The stabilizer of any vector v ∈ {DET 6= 0} is isomorphic to F4. The orth-complement
v⊥ ⊂ V27 is an irreducible F4-module isomorphic to V26, i.e. V27 ∼= 〈v〉 ⊕ V26 as F4-modules.

(v) The secant varieties of X(V26) are obtained as intersections of the secant varieties of X(V27)
with the hyperplane P(V26), i.e.

X(V26) = P(V26) ∩ X(V27) , σ2(X(V26)) = P(V26) ∩ σ2(X(V27)) , σ3(X(V26)) = P(V26) .

Proof. Since the results are known, but are a compilation of the work of many authors, we confine
ourselves to giving references (not necessarily the original ones) for the various parts of the lemma.
Part (i) can be found in Table II in [Kac80]. As for part (ii), the fact that

{DET = a}, a 6= 0
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is a single E6-orbit, is proven in [Kac80, Proposition 1.1], while the enumeration of the orbits in the
nullcone {DET = 0} is given in [Zak93, p. 59]. Part (iii) can also be deduced from the discussion
on p. 59 of [Zak93] or can be seen to follow directly from the fact that V27 is a subcominuscule
representation and for such representations the rank sets are exactly the group orbits in the projective
space, cf. [BL13, §4]. Parts (iv) and (v) are also quoted from [Zak93, p. 59-60].

The above proposition and, specifically, parts (iv) and (v) allow us to practically forget about
the group F4 and use only properties of V27 and a generic hyperplane inside it. We shall need to
understand the structure of V27 with respect to a subgroup of E6 of type D5. Let H ⊂ E6 be the
regular subgroup whose root system is generated by the set of simple roots S := {α2, α3, α4, α5, α6}
(we use the numbering of simple roots as in [VO90, p. 292]). It turns our that H ∼= Spin10.

Lemma 7.6. The decomposition, as an H-module, of the simple E6-module V27 is

V27 ∼= V1 ⊕RSpin10 ⊕ V10 ,

where V1 is a one-dimensional trivial H-module, RSpin10 is the spinor H-module, and V10 is the
natural representation of SO10 (recall that Spin10 is a cover of SO10).

Proof. The result is obtained by a straightforward consideration of the weights of the modules involved,
using the fact that H is a regular subgroup of E6.

Lemma 7.7. The nonzero isotropic vectors in V10 belong to X(V27) and have rank 1 as elements of
the E6-module V27. The non-isotropic vectors in V10 belong to O26 and have rank 2 as elements of
the E6-module V27.

Proof. Since H is a regular subgroup of E6, the weight spaces for E6 in V27 are also weight spaces for
H. Thus V10 is a span of some of these weight spaces. The E6-weights of V27 are

εi ± ε,−εi − εj (i 6= j).

The weights appearing in V10 are
εi − ε,−ε1 − εi (i 6= 1).

The weight −ε6−ε is the lowest weight of V27 and thus any element of the corresponding weight space
belongs to O17. On the other hand, any element of the weight space of weight −ε6 − ε is isotropic.
Since all isotropic vectors of V10 are conjugate by SO10, all isotropic vectors of V10 belong to O17.

It remains to show that all non-isotropic vectors of V10 (they are all SO10 × F×-conjugate) belong
to O26. To this end, we note that the weights of V10

ε2 − ε,−ε1 − ε2

are, respectively, the highest and the lowest weight of V27 with respect to the set of simple roots of E6

Π′ = {ε2 − ε1, ε1 + ε4 + ε5 − ε, ε6 − ε4, ε4 − ε5,−ε4 − ε3 − ε6 + ε, ε3 − ε6}.

Thus vε2−ε + v−ε1−ε2 ∈ O26 [Zak93, Ch. III, Thm 1.4]. Since all non-isotropic vectors of V10 are
SO10 × F×-conjugate, all non-isotropic vectors of V10 belong to O26.

Proof of Lemma 7.3. According to Lemma 7.5, to prove that V26 is 2-continuous it suffices to show
that for any x ∈ V26∩O26 there exist x+, x− ∈ V26∩O17 such that x = x++x−. We fix x ∈ V26∩O26.
First, we note that there exists a Borel subalgebra b ⊂ E6 with a Cartan subalgebra h ⊂ b such that
x ∈ V10 (we use the notation of Lemma 7.7). Then x ∈ V10 ∩O26 and thus x is a non-isotropic vector
of V10 by Lemma 7.7. Let x⊥ be the orthogonal complement to x in V10. Note that a nondegenerate
symmetric bilinear form (·, ·) of V10 is still nondegenerate after restriction to x⊥.

23



Since V26 is a 26 dimensional subspace of the 27 dimensional space V27, we have

dim(V26 ∩ x
⊥) ≥ dim(x⊥)− 1 = 9.

As 9 > 1
2 dimV10, the restriction of (·, ·) to x⊥ ∩ V26 is non-zero. Hence there exists y ∈ x⊥ ∩ V26 such

that (y, y) = −(x,x)
4 . Set

x+ = x
2 + y, x− = x

2 − y.

We have

(x+, x+) =
1
4(x, x) + (y, y) = 0 = (x−, x−) and x+ + x− = x,

i.e. the vectors x± are isotropic and their sum is equal to x. Thus x± ∈ O17. Since y ∈ V26, we have
x± ∈ V26. Hence x± ∈ X(V26). Therefore V26 is 2-continuous.

Before proceeding with the proof of Lemma 7.4, we need the following auxiliary result.

Lemma 7.8. Let V be a finite-dimensional vector space. Let Zf be a hypersurface determined as
the zero-locus of a non-zero homogeneous polynomial f ∈ F[V ] and let X ∈ V be a conical subset
spanning V . Then, V = Zf + X, i.e. for every v ∈ V there exist v2 ∈ Zf and x ∈ X such that
v = v2 + x.

Proof. Assume on the contrary, that there exists v ∈ V such that v 6= v2 + x for any v2 ∈ Zf and
x ∈ X. Then f(v + tx) 6= 0 for any x ∈ X and any t ∈ F. The function f(v + tx) is polynomial and
thus f(v + tx) 6= 0 for any t ∈ F if and only if f(v + tx) is a non-zero constant as a polynomial of t.
Hence the first derivative of f(v + tx) with respect to t is zero for t = 0, i.e. the value of df in the
direction x at the point v is zero. As X spans V , df = 0 at v.

We claim that f(w) = 0 for all points w ∈ V such that df = 0 at w (equivalent to: all partial
derivatives of f vanish at w). Indeed, the set of equations df = 0 determines some subvariety Zdf

of V and it suffices to show that f = 0 at any smooth point of any irreducible component of Zdf .
Obviously df = 0 on the smooth locus of any irreducible component of Zdf . Thus f is constant on
any irreducible component of Zdf . Since f is homogeneous, f(0) = 0, and any irreducible component
of Zdf contains 0. Thus f |Vdf

= 0.
Compiling the previous two paragraphs, we obtain f(v) = 0. Thus v = v + 0, where v ∈ Zf and

0 ∈ X. This completes the proof.

Proof of Lemma 7.4. The secant variety σ2(X(V26)) is the zero-locus of some homogeneous function
DET of degree 3 and X(π1) spans V26. Thus, according to Lemma 7.8, any vector

x ∈ V26\σ2(X(V26))

may be represented as x = x1 + x2, for some x1 ∈ X(π1) and x2 ∈ σ2(X(V26)). Therefore, by
Lemma 7.3, any vector in V26\σ2(X(V26)) has rank 3.

7.2 R-discontinuity of V (π2) for F4

The goal of this section is to prove the following.

Proposition 7.9. The fundamental representation V (π2) of F4 is 2-discontinuous.

We deduce this proposition from the following three lemmas (we use the description of the corre-
sponding roots and weights given in [VO90, p. 294–295]). In particular, the highest root of f4 coincides
with the fundamental weight π4. In the rest of this section we use our standard notation applied to
the representation (F4, V (π2)).
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Lemma 7.10. The F4-orbit of [g−π4vπ2 ] is open in TX, where by g−π4 we denote a nonzero root
vector of f4 with root −π4.

Lemma 7.11. If all elements of TX have rank two or less, then the F4-orbit of [v
π2 +v−π2+α2 ] is open

in TX.

Lemma 7.12. The vectors g−π4vπ2 and vπ2 + v−π2+α2 belong to different F4-orbits.

We present the proofs of Lemmas 7.10 and 7.11 consecutively.

Proof of Lemma 7.10. It suffices to show that the orbit Pπ2
g−ε1−ε2 is open in the quotient f4/pπ2

,
where Pπ2

denotes the stabilizer in F4 of vπ2 and pπ2
is the Lie algebra of Pπ2

. This statement follows
from the fact that

[pπ2
, g−ε1−ε2 ] + pπ2

= f4.

Proof of Lemma 7.11. First note that, by Proposition 2.4, we have dimσ2(X) = 2dimX + 1 and
dimTX = 2dimX. Assume that all points in TX have rank two or less. This means that TX is
contained in X2 ⊔ X, which, by definition, is the image of (X × X)0 × P1, where (X × X)0 is the
complement of the diagonal in X ×X. Then the preimage of TX has to be an F4-stable divisor D′ of
(X ×X)0 × P1. It follows from Lemma 4.1 that D′ has to be a product of a divisor D ⊂ (X ×X)0
and P1. Using the fact that π2 = −w0π2 we see that there is only one F4-stable divisor on X × X =
F4/Pπ2

× F4/Pπ2
. This divisor has an open F4-orbit and the image of this F4-orbit in P(π2) equals

F4[v
π2 + vw0sα2

(π2)], where sα2
denotes the reflection with respect to the root α2. It remains notice

that sα2
π2 = π2 − α2 and that w0 = −1 for F4.

Proof of Lemma 7.12. The proof is based on the following two facts. First, the F4-module V (π1) has
an invariant non-degenerate symmetric bilinear form (·, ·) and thus F4 ⊂ SO(V (π1)). Second, the
decomposition of Λ2V (π1) as an F4-module is

Λ2V (π1) ∼= V (π2)⊕ V (π4),

see [VO90, Table 5 on p. 305]. This allows us to represent the elements of V (π2) as anti-symmetric
tensors and perform calculations. Essentially, we will show that

vπ2 + v−π2+α2 /∈ SO(V (π1))(g
−π4vπ2).

From now on, we consider V (π2) as a subspace of Λ2V (π1). To any v ∈ Λ2V (π1) we assign Supp v
as in Subsection 6.3. It is clear that, if v1, v2 ∈ V (π2) are SO(V (π1))-conjugate, then the spaces
Supp v1 and Supp v2 must be SO(V (π1))-conjugate and in particular (·, ·) restricted to Supp v1 and
Supp v2 must have the same rank.

We have the following ∧-decompositions for the vectors of V (π2) ⊂ Λ2V (π1)

vπ2 = vε1 ∧ v
ε1+ε2+ε3+ε4

2 , v−π2+ε2 = v−ε1 ∧ v
−ε1−ε2−ε3+ε4

2 .

We calculate
vπ2 + v−π2+ε2 = vε1 ∧ v

ε1+ε2+ε3+ε4
2 + v−ε1 ∧ v

−ε1−ε2−ε3+ε4
2 ,

Supp(vε1 ∧ v
ε1+ε2+ε3+ε4

2 + v−ε1 ∧ v
−ε1−ε2−ε3+ε4

2 ) = 〈vε1 , v
ε1+ε2+ε3+ε4

2 , v−ε1 , v
−ε1−ε2−ε3+ε4

2 〉

and
g−π4vπ2 = g−ε1−ε2(vε1 ∧ v

ε1+ε2+ε3+ε4
2 ) = v−ε2 ∧ v

ε1+ε2+ε3+ε4
2 + vε1 ∧ v

−ε1−ε2+ε3+ε4
2 ,

Supp(v−ε2 ∧ v
ε1+ε2+ε3+ε4

2 + vε1 ∧ v
−ε1−ε2+ε3+ε4

2 ) = 〈v−ε2 , v
ε1+ε2+ε3+ε4

2 , vε1 , v
−ε1−ε2+ε3+ε4

2 〉

This implies that the space Supp(g−π4vπ2) is (·, ·)-isotropic, while Supp(vπ2 + v−π2+ε2) is not. From
this we conclude that g−π4vπ2 and vπ2 + v−π2+α2 belong to different SO(V (π1))-orbits and thus to
different F4-orbits.
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7.3 R-discontinuity of V (π1) for E7

This subsection is devoted to the proof of the following proposition.

Proposition 7.13. The representation V (π1) of E7 is 2-discontinuous.

The specific notation used in this section is motivated by the guest appearance of the adjoint
module of E8 in the proof. We set G = E8 and G = E7. By g, h, π1, ... and so on we denote attributes
of E8 and by g, h, π1, ... we denote the corresponding attributes of G = E7. We refer to [VO90,
Table 1 on p. 293–295] for the roots and fundamental weights of E8. Note that the fundamental
weight π1 of E8 coincides with the highest root, i.e. V (π1) ∼= e8 is the adjoint representation of E8.
The idea of the proof of Proposition 7.13 is to identify V (π1) of E7 with some subspace of e8 and then
prove the following two lemmas.

Lemma 7.14. a) For any x ∈ X(π1) we have dimE8x = 58.
b) For any x ∈ X2(π1) we have dimE8x ∈ {58, 92, 114}.

Lemma 7.15. There exists x ∈ V (π1) such that dimE8x = 112.

It is known that σ2(X(π1)) = V (π1) [Zak93, Ch. III, Thm. 1.4]. Therefore V (π1) is r-discontinuous
if and only if there exists x ∈ V (π1) such that

x 6∈ X2(π1) ∪X(π1) ∪ 0.

According to Lemma 7.14 and Lemma 7.15 such elements x ∈ V (π1) exist and hence Lemmas 7.14
and 7.15 imply Proposition 7.13. We now present some explanation of Lemma 7.14 and Lemma 7.15
and then proceed with their proofs.

We note the amazing fact that the V (π1) has only finitely many G-orbits and we wish to say
some words about it (see e.g. [V76]). A description of the E7-orbits on F56(dimV (π1) = 56) appears
in [H71]. The idea of the description used here comes from [BC76] and is related to the description of
sl2-triples in exceptional groups due to [D52]. There is a recently developed software, which allows,
in principle, to solve such problems [GVY12].

In our proof of 2-discontinuity of V (π1) we use the fact that V (π1) is the 1-grading compo-
nent of some grading of e8 (representations which arise in such a way are called θ-representations,
see [V76], [Kac80]). We need more notation related to θ-representations.

For any t ∈ h∗ we denote by gt ⊂ g the corresponding weight space (we note that gt 6= 0 if and
only if t ∈ ∆ ∪ 0). We identify h and h∗ via the Cartan-Killing form and thus consider fundamental
weights πi as elements of h∗. We set

∆i := {α ∈ ∆ ∪ 0 | (α, π1) = i} , gi :=
⊕

t∈∆i

gt (i ∈ F).

The spaces {gi}i∈F form a grading of g. The space g0 is a Lie algebra and it acts in a natural way on
gi for any i ∈ F. By definition, a θ-representation is the representation of g0 on g1.

We have
gi = 0 if i 6∈ {−2,−1, 0, 1, 2} , g0 ∼= e7 ⊕ F,

dim g2 = dim g−2 = 1 , dim g1 = g−1 = 56 , dim g0 = 134.

We identify g = e7 with [g0, g0]. As e7-modules both g1 and g−1 are isomorphic to V (π1). Further, we
identify V (π1) with g1.

The following lemma plays a key role in the proof of Lemma 7.14.

Lemma 7.16. Let α1, α2 be roots of E8 such that α1 6= −α2. Then v
α1 + vα2 is a nilpotent element

and dimE8(v
α1 + vα2) ∈ {58, 92, 114}.
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Proof. If α1 = α2, then v
α1 + vα2 is conjugate to vα1 . The nilpotent element vα1 is a generic nilpotent

element of the corresponding Levi subalgebra with semisimple part isomorphic to A1. Therefore
dimE8(v

α1 + vα2) = 58.
If α1 6= ±α2, the vector vα1 + vα2 is a nilpotent element of the Lie algebra lα1,α2

corresponding
to the root system generated by α1, α2. We have three possibilities: (α1, α2) = 1, (α1, α2) = 0,
(α1, α2) = −1. In the first and third cases, we have lα1,α2

∼= sl3 = A2. In the second case, we have
lα1,α2

∼= sl2 ⊕ sl2 = 2A1. For any of these Lie algebras of rank 2 it is easy to check that:
1) if (α1, α2) = 1, then vα1 + vα2 is conjugate in lα1,α2

to vα1 (and therefore to vα2), and thus is a
distinguished nilpotent element for some root subalgebra A1,

2) if (α1, α2) = 0, then vα1 + vα2 is a distinguished nilpotent element of lα1,α2
∼= 2A1,

3) if (α1, α2) = −1, then vα1 + vα2 is a distinguished nilpotent element of lα1,α2
∼= A2.

Hence dimE8(v
α1 + vα2) = 58, 92, 114, respectively, for cases 1, 2, 3, see [CM93, 8.4, Table:

nilpotent elements for E8].

Proof of Lemma 7.14. For any weight α ∈ ∆1 and any vα ∈ gα we have

vα ∈V(π1)

and vα is a highest weight vector with respect to some choice of Borel subalgebra of g, i.e.

vα ∈ X(π1).

On the other hand vα ∈ X(π1) and thus

dimE8v
α = dimX(π1) = 58.

This completes part a).
We proceed to part b). By Lemma 4.1, any element of X2(π1) is G-conjugate to the sum of two

weight vectors. In our case this means that any x ∈ X2(π1) is G-conjugate to

vα1 + vα2

for some α1, α2 ∈ ∆1. From this statement and Lemma 7.16 part b) of Lemma 7.14 follows immedi-
ately.

Proof of Lemma 7.15. We shall construct an element x with dimE8x = 112. First note that all roots
of E8 are conjugate and that the Dynkin diagram of E8 has a unique subdiagram of type D4. Hence
there exists roots α1, α2, α3 such that the quadruple

(−π1, α1, α2, α3)

is a system of simple roots of Dynkin type D4, i.e.
1) (−π1, αi) = −1 for i = 1, 2, 3,
2) (αi, αj) = 0 for i, j ∈ {1, 2, 3}, i 6= j.
Condition 1) means that α1, α2, α3 ∈ ∆1. The element vα1 + vα2 + vα3 is a distinguished element

of 3A1, where by 3A1 we denote the subgroup of G corresponding to the root subsystem

∪i{−αi, αi} ⊂ ∆.

Therefore dimE8(v
α1 + vα2 + vα3) = 112, see [CM93, 8.4, Table: nilpotent elements for E8]. Hence,

for x = (vα1 + vα2 + vα3) ∈ V (π1), we have dimE8x = 112. This completes the proof.
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