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GEOMETRIZATION OF PRINCIPAL SERIES
REPRESENTATIONS OF REDUCTIVE GROUPS

by Masoud KAMGARPOUR & Travis SCHEDLER (*)

Abstract. — In geometric representation theory, one often wishes to describe
representations realized on spaces of invariant functions as trace functions of equi-
variant perverse sheaves. In the case of principal series representations of a con-
nected split reductive group G over a local field, there is a description of families
of these representations realized on spaces of functions on G invariant under the
translation action of the Iwahori subgroup, or a suitable smaller compact open sub-
group, studied by Howe, Bushnell and Kutzko, Roche, and others. In this paper,
we construct categories of perverse sheaves whose traces recover the families asso-
ciated to regular characters of T (Fq [[t]]), and prove conjectures of Drinfeld on their
structure. We also propose conjectures on the geometrization of families associated
to more general characters.
Résumé. — En théorie des représentations, on cherche souvent à écrire des

représentations réalisées dans des espaces de fonctions invariantes comme les fonc-
tions trace de faisceaux pervers équivariants. Dans le cas des représentations de la
série principale d’un groupe réductif G connexe scindé sur un corps local, il existe
une description des familles de telles représentations realisées dans des espaces de
fonctions sur G invariantes sous l’action de translation du sous-groupe d’Iwahori ou
d’un sous-groupe compact ouvert plus petit approprié, comme l’ont etudié Howe,
Bushnell et Kutzko, Roche, et d’autres. Dans cet article, nous construisons des
catégories de faisceaux pervers dont les traces redonnent les families associées aux
caractères réguliers de T (Fq [[t]]), et démontrons des conjectures de Drinfeld pour
leur structure. Nous proposons également des conjectures sur la géométrisation des
familles associées à des caractères plus généraux.

1. Introduction: main results and conjectures

To every complex of constructible sheaves on a variety over a finite
field, Grothendieck attached the trace of Frobenius function on its rational

Keywords: Principal series representations, geometric Satake isomorphism, compact
open subgroups, Hecke algebras, geometrization, clean perverse sheaves.
Math. classification: 22E50, 20G25.
(*) M. K. acknowledges the hospitality of the University of Calgary. T. S. was supported
by an AIM Fellowship and NSF grant DMS-0900233.
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points. He then initiated a program to study geometric (or sheaf-theoretic)
analogues of various classical constructions on rational points. In this ar-
ticle, we study geometric analogues of principal series representations of
G(Fq((t))), where G is a connected split reductive group over Fq[[t]]. Our
main theorems, stated in §1.3.1, concern geometrizing the principal series
representations that are associated to characters of the torus T (Fq((t)))
whose restrictions to T (Fq[[t]]) are regular, i.e., have trivial stabilizers un-
der the Weyl group action. In §1.4 we present conjectures concerning the
geometrization of more general families of principal series representations.
The geometric objects we study are certain (twisted equivariant) perverse

sheaves on quotients of the loop group of G. Before getting into details, let
us mention two notable features of this work. First, the quotients we con-
sider are not, in general, proper. As far as we know, considering perverse
sheaves on non-proper quotients of the loop group is not standard in geo-
metric representation theory. Second, some of the perverse sheaves that
arise in the regular setting turn out to be clean (see Theorem 1.7). This
means that these perverse sheaves are the extensions by zero of shifted lo-
cal systems on certain locally closed subvarieties. This fact is a reflection
of the particularly simple Hecke algebras that arise in the regular case.

1.1. Motivation

Let Fq be a finite field of order q, F = Fq((t)),O = Fq[[t]], and p = tO ⊆ O.
Let G be a connected split reductive group over O and T be a maximal
split torus. Choose a Borel subgroup B containing T . A principal series rep-
resentation of G(F ) is a representation obtained by parabolic induction of
a character of T (F ). Note that a principal series representation is, roughly
speaking, realized on a space of twisted functions on G(F )/B(F ). It is well
known that G(F ) and B(F ) are the sets of Fq-points of group ind-schemes
G and B over Fq. Therefore, the naive geometric analogue of principal se-
ries representations should be perverse sheaves on G/B. The problem is
that the latter ind-scheme is not an inductive limit of schemes of finite type
(we will henceforth call this property ind-finite type). For this reason, the
category of perverse sheaves on G/B is not well understood.(1) This issue
is the source of much difficulty in geometric representation theory.

(1)For some results regarding perverse sheaves on G/B see, e.g., [26], [25], and [4].
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GEOMETRIZATION OF PRINCIPAL SERIES 2275

1.1.1. A family of unramified representations

One way to overcome this difficulty is to geometrize representations in
families. As an example, let us consider the geometrization of unramified
(principal series) representations. Let W c = indG(F )

G(O) 1, where 1 denotes the
trivial character. We think of W c as a family of unramified (principal series)
representations. The endomorphism ring of this family identifies with the
spherical Hecke algebra H c = H (G(F ), G(O)). The Satake isomorphism
states that H c ∼→ K0(Rep(Ǧ)), where the latter is the Grothendieck group
of the category of finite dimensional rational representations of the dual
(complex reductive) group of G.

1.1.2. Geometrizing the unramified family

It is known that G(O) (resp. G(F )) is the group of Fq-points of a proal-
gebraic group GO (resp. a group ind-scheme G) over Fq. Fix a prime ` not
dividing q. Let Gr := G/GO denote the affine Grassmannian. Let

W c
geom = P(Gr), W c,der

geom = D(Gr),

H c
geom = PGO (Gr), H c,der

geom = DGO (Gr).

Here D denotes the bounded constructible derived category of Q`-sheaves
and P denotes the subcategory of perverse sheaves (see Appendix §B).
There is a convolution functor

? : W c
geom ×H c

geom → W c,der
geom .

This functor restricts to a functor ? : H c
geom × H c

geom → H c,der
geom . Let

LocSys(SpecFq) denote the monoidal category of `-adic local systems on
Spec(Fq). Note that this category is equivalent to the category of finite
dimensional continuous `-adic representations of Gal(Fq/Fq). The following
theorem is known as the geometric Satake isomorphism, and is due to
Lusztig [45], Ginzburg [32], Mirković and Vilonen [47], and Beilinson and
Drinfeld [5, §5].

Theorem 1.1.
(i) The category H c

geom is closed under convolution.
(ii) There is an equivalence of monoidal abelian categories H c

geom
∼→

Rep(Ǧ)� LocSys(SpecFq).(2)

(2)Most references work with the loop group over an algebraically closed field (e.g., C or
Fq). In this case, LocSys(SpecFq) disappears. On the other hand, Gaitsgory [31] works
over Fq ; see the proof of Proposition 1 in op. cit..
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2276 Masoud KAMGARPOUR & Travis SCHEDLER

The nontrivial part of Theorem 1.1.(i) is that the convolution of two
objects of H c

geom is perverse (and not merely an object of the equivariant
derived category H c,der

geom ). The next theorem states that this remains true
if one of the perverse sheaves is allowed to lie in the larger category W c

geom.

Theorem 1.2 ([31]). — H c
geom acts on W c

geom by convolution.

1.1.3. The subject of this paper

In this paper, we consider the problem of geometrizing families of prin-
cipal series representations associated to nontrivial characters µ̄ : T (O)→
Q×` . The families we consider have been studied by Howe, Bushnell and
Kutzko, Roche, and others. In particular, they explain how to realize these
families as representations induced from characters of compact open sub-
groups. From the geometric point of view, the advantage of inducing from
a compact open subgroup J is that the corresponding quotient of varieties,
G/J, turns out to be of ind-finite type.

Our main theorems, in the case of G = GLN , were conjectured by Drin-
feld in June 2005. Two of our main theorems are analogues of Theorems 1.1
and 1.2 in the regular setting. The other theorem concerns a phenomenon
unique to the regular setting: namely, that the irreducible objects of Hgeom
turn out to be clean.

1.1.4. Connections to local geometric Langlands

Frenkel and Gaitsgory have outlined a program for geometrizing (or cat-
egorifying) the local Langlands correspondence; see [28] and [27]. Theo-
rems 1.1 and 1.2 play important roles in their description of the unramified
and tamely ramified part of this correspondence. We expect that our main
results will have applications in the wildly ramified part of the Frenkel-
Gaitsgory program. In particular, in future work, we hope to construct the
geometric analogue of an irreducible principal series representation as a
category on which G((t)) acts. We expect that this category is related to
the category of representations of the affine Kac-Moody algebra ĝ at the
critical level via an infinite dimensional analogue of Bernstein-Beilinson lo-
calization, as conjectured in [28]. For some results in this direction, see [39].

ANNALES DE L’INSTITUT FOURIER
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1.2. Principal series representations via compact open
subgroups: recollections

We continue using the notation introduced at the beginning of previ-
ous section. Henceforth, we assume that q is restricted as in §3.1.2. Fix a
character µ̄ : T (O)→ Q×` .

1.2.1. A Family of principal series representations

Let

(1.1) Π := ι
G(F )
B(F )

(
indT (F )

T (O) µ̄
)
.

Here “ind” denotes the compact induction and ι denotes the (unnormal-
ized) parabolic induction. We think of Π as the family of principal series
representations of G(F ) associated to characters of T (F ) whose restriction
to T (O) is µ̄. In the language of [8], Π is a projective generator of the Bern-
stein block of representations of G(F ) corresponding to (T (O), µ̄). Inducing
endomorphisms, we obtain a canonical homomorphism

(1.2) EndT (F )

(
indT (F )

T (O) µ̄
)
→ EndG(F )(Π).

In the case that µ̄ is regular, one can show that this is an isomorphism;
see, e.g., [51, §1.9].

1.2.2. Realization of Π via compact open subgroups

The following theorem, in its full generality, is due to Roche. Previous
results in this direction (for GLN ) were obtained by Howe [37] and Bushnell
and Kutzko [20, 21].

Theorem 1.3 ([50]). — There exists a compact open subgroup J ⊂
G(F ) containing T (O) such that

(i) µ̄ extends to a character µ : J → Q×` .
(ii) There exists an isomorphism ofG(F )-modules W := indG(F )

J µ ∼= Π.

In the language of [20], (J, µ) is a type for the Bernstein block defined
by (T (O), µ̄).

TOME 65 (2015), FASCICULE 5
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Example 1.4. — Suppose the character µ̄ : T (O)→ Q×` factors through
a character ν of T (Fq). Then one can (and Roche does) take J to be the
Iwahori subgroup I ⊂ G(F ). Let T1 < T (O) be the subgroup generated by
the image of 1+p under all coweights, cf. §2.1.1 below. Then, the character
µ is defined to be the composition

I → I/Iu ∼= T (Fq) ∼= T (O)/T1
ν−→ Q×` ,

where Iu is the prounipotent radical of I. More generally, Roche’s subgroup
J equals the Iwahori subgroup if and only if (µ̄◦α∨) : Gm(O)→ Q×` factors
through a character of Gm(Fq) for all coroots α∨ : Gm → T of G.

Example 1.5. — Suppose G = GLN . Identify T (O) with (O×)N and
write µ̄ = (µ̄1, ..., µ̄N ). Suppose the conductor cond(µ̄i/µ̄j) equals a fixed
integer n for all 1 6 i, j 6 N . (The conductor of a character χ : O× → Q×`
is the smallest positive integer c for which χ(1 + pc) = {1}.) Then

J =


O× p[n2 ] · · · p[n2 ]

p[n+1
2 ] O× · · · p[n2 ]

...
...

. . .
...

p[n+1
2 ] p[n+1

2 ] · · · O×

 .

1.2.3. Endomorphism algebras

Given a group K, a character χ of K, and a space X on which K acts
(by a left action), we say a function f is (K,χ)-invariant if

f(k · x) = χ(k)f(x), ∀ k ∈ K, ∀x ∈ X.

In this language, W = indG(F )
J µ is the space of compactly supported

(J, µ−1)-invariant functions on G(F ) with respect to right multiplication
(the inverse is here since our convention is to use left actions: so this says
that f(j ·Rg) = f(g)µ(j)−1, where j ·Rg := gj−1). Let H := H (G(F ), J, µ)
denote the space of compactly supported (J × J, µ × µ−1)-invariant func-
tions. So H is the space of functions f : G(F )→ Q` satisfying

f(jgj′) = µ(j)f(g)µ(j′), ∀j ∈ J, g ∈ G(F ).

Convolution defines a right action ? : W ×H → W . It is a standard fact
that this action identifies H with EndG(F )(W ). The isomorphism of G(F )-
modules W ∼= Π defines an isomorphism of algebras H ∼= EndG(F )(Π).

ANNALES DE L’INSTITUT FOURIER
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1.2.4. Description of H in the regular case

In view of §1.2.1, in the case that µ̄ is regular, we obtain an isomorphism

(1.3) Ψ : H ∼→ K0(Rep(Ť )).

Since these algebras are commutative, one can show that Ψ is canonical;
i.e., it does not depend on the choice of isomorphism Π ∼→ W . Using general
results of Bushnell and Kutzko on types, Roche [50, §6] has proved that
Ψ−1 sends each irreducible character of Ť to an element of H supported on
a corresponding double coset of J , which determines the image uniquely up
to a nonzero constant. In this paper, we compute these constants explicitly;
see Theorem 3.3.

1.3. Geometrization in the regular case: main theorems

In this subsection, we geometrize Roche’s family W , the Hecke algebra
H , and the action of H on W by convolution, in the case that the family
W is associated to a regular character of T (O).
The combinatorial description of J makes it obvious that it is equal

to the group of Fq-points of a connected proalgebraic group J over Fq
(see §4.2.1 for an alternative explanation). Using standard constructions
from the sheaf-function dictionary, we construct a one-dimensional charac-
ter sheaf M on J whose trace of Frobenius function equals the character
µ. The ind-scheme G/J is of ind-finite type; thus, we can consider the cat-
egory of (twisted perverse) sheaves and the bounded constructible derived
category of sheaves on this quotient. We observe that G/J is not ind-proper
unless J is the Iwahori subgroup.
We define W der

geom to be the bounded (J,M−1)-equivariant constructible
derived category of sheaves on G. Since J acts freely on G, this derived
category can be defined naively; that is, it equals the category of (J,M−1)-
equivariant complexes of sheaves on G with bounded constructible coho-
mology. Let Wgeom denote the perverse heart of this triangulated category,
which should be thought of as the category ofM−1-twisted perverse sheaves
on G/J (we will define this more precisely in §4; see also the remark below).

Next, define Hgeom as the category of (J × J,M �M−1)-equivariant
perverse sheaves on G (again, we will define this more precisely in §4).
We define the convolution with compact support as a functor ? : W der

geom ×
Hgeom → W der

geom. There is also a convolution without compact support
defining a functor with the same source and target. A priori, they need not

TOME 65 (2015), FASCICULE 5



2280 Masoud KAMGARPOUR & Travis SCHEDLER

coincide, since G/J is not ind-proper (unless J is the Iwahori subgroup, as
mentioned above). However, it turns out that the two notions of convolution
nonetheless coincide (Corollary 5.6).

Remark 1.6. — One can probably define (J,M−1)-equivariant perverse
sheaves on G in (at least) three equivalent, but philosophically distinct,
ways:

(i) Twist the category of perverse sheaves on G/J by a certain gerbe
associated to the pair (J,M−1).

(ii) The local systemM becomes trivial after pulling back to a certain
finite central cover J̃ → J. One then defines (J,M−1)-equivariant
perverse sheaves on G as a certain full abelian subcategory of per-
verse sheaves on the ind-Deligne-Mumford stack G/J̃.

(iii) There exists a proalgebraic normal subgroup J′ < J such that
M is trivial on J′ and J/J′ is a commutative algebraic group
(Lemma 4.2). Thus,M is the pullback of a local systemM0 on the
quotient algebraic group A := J/J′. One then defines a (J,M−1)-
equivariant perverse sheaf on G to be an (A,M−1

0 )-equivariant
perverse sheaf on G/J′.

We only consider the last approach in the present text; see §4. For more
details regarding the first two approaches, see §B.5.

1.3.1. Statements of the main results

We continue to use the notation employed above. So W is the family
of principal series representation associated to a regular character of T (O)
and H is the endomorphism ring of this family. The abelian categories of
perverse sheaves Wgeom and Hgeom are the geometric analogues of these
spaces.

Theorem 1.7. — The simple objects of Hgeom are clean.

For a precise definition of clean, see Definition B.2.

Theorem 1.8.
(i) The category Hgeom is closed under convolution.
(ii) The functor Ψgeom : Hgeom → Rep(Ť )� LocSys(Fq) defined by

F 7→
⊕
F|tλJ′ [−dλ](logq bλ),

where the bλ are powers of q defined in Theorem 3.3, is a monoidal
equivalence.

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.9. — Convolution defines a monoidal abelian action ? :
Wgeom ×Hgeom → Wgeom.

Theorems 1.8 and 1.9 are the analogues, in the regular setting, of Theo-
rems 1.1 and 1.2, respectively. Observe that, taking the trace of Frobenius,
we obtain the isomorphism (1.3) and the action of H on W . For more
precise statements of the above theorems and their proofs, see §5.

Remark 1.10. — The abelian category Hgeom should be the perverse
heart of the bounded (J× J,M�M−1)-equivariant constructible derived
category of sheaves on G. For a discussion of definition of this twisted
equivariant derived category see §1.4.2. In view of cleanness (Theorem 1.7),
it is reasonable to ask whether the correct bounded (J × J,M �M−1)-
equivariant derived category in the regular setting is merely the bounded
derived category of Hgeom; we do not address this issue here (note that
this statement is, however, a special case of Conjecture 1.13).

Remark 1.11. — As mentioned in Example 1.4, if µ̄ factors through
T (Fq), then the corresponding subgroup equals the Iwahori subgroup I.
The category of perverse sheaves on the affine flag variety G/I and the
corresponding bounded derived category have been studied extensively; see,
for instance, [3], [11], [9], [13], and [12]. Therefore, in this case, it might
be possible to extract our results from the aforementioned (or related)
references. We have not attempted to do this. On the other hand, we are
not aware of any references where perverse sheaves on G/J are studied,
where J is one of Roche’s subgroups other than the Iwahori.

Remark 1.12. — There is some similarity between our setup and that
of [29]. In op. cit., the authors define and study a category of perverse
sheaves which geometrize (U(F ), χ)-invariant functions on G(F )/G(O),
where U < B is the unipotent radical, and χ : U(F ) → Fq is a generic
character, which together with a fixed character ψ : Fq → Q×` yields a
character ψ ◦ χ : U(F ) → Q×` . The irreducible objects of their category
are in bijection with dominant coweights. Their main result states that,
like in our situation, these irreducible perverse sheaves are clean, and that
their category is semisimple.(3) Note that, unlike our categories, their cat-
egories of perverse sheaves are defined in global terms, using Drinfeld’s

(3)Although our category Hgeom is not, that is an artifact of working over Fq instead of
over Fq as is done in [29]; note that, after base change to Fq , Hgeom becomes semisimple
in our setting.

TOME 65 (2015), FASCICULE 5
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compactification of the moduli space of bundles on curves;(4) also, their ge-
ometrization of the character χ : U(F )→ Fq is a homomorphism U→ Ga
(rather than a character sheaf).

1.4. Geometrization in the non-regular case: conjectures

The discussions of this subsection are not used anywhere else in the
paper; in particular, a reader who is only interested in the regular case or
not interested in conjectures can skip this subsection and go to §1.5.

Let µ̄ : T (O) → Q×` be an arbitrary character. We would like to ge-
ometrize the family Π = Πµ̄ of principal series representations induced from
characters of T (F ) whose restriction to T (O) is µ̄ (see §1.2.1 for the precise
definition of Π). By Theorem 1.3, Π ∼= W = indG(F )

J µ, and its endomor-
phism ring identifies with H = H (G(F ), J, µ). To geometrize, we would
like to replace (J, µ−1)- and (J × J, µ × µ−1)-invariant functions on G(F )
by (J,M−1)- and (J × J,M×M−1)-equivariant perverse sheaves on G.
However, it is known that, in general, the category of (J× J,M×M−1)-
equivariant perverse sheaves on G is not closed under convolution (this
fails already in the unramified setting: the convolution of two I-equivariant
perverse sheaves on G/I is not necessarily perverse).
In what follows, we propose two remedies:
(I) geometrize W and H using the equivariant derived categories;
(II) provided µ̄ is of a special form (which we call parabolic), geometrize

a closely related family of representations and its endomorphism
ring using perverse sheaves.

1.4.1. Roche’s description of H

According to [50, §6], for arbitrary µ̄, there exists a (possibly discon-
nected) split reductive group L over F such that

(1.4) H = H (G(F ), J, µ) ∼= H (L(F ), IL◦),

where L◦ is the connected component of the identity of L and IL◦ is an
Iwahori subgroup of L◦.(5) Note that in the unramified setting (i.e., µ̄ = 1),
we have L = L◦ = G; see Example 1.4. On the other hand, in the regular
setting, L = L◦ = T ; see §1.2.4.
(4)As explained in, e.g., [3, §1.1.1], this category can probably be alternatively defined in
a purely local way as a certain subcategory of perverse sheaves on the affine flag variety
G/I.
(5)Note that according to §8 of op. cit., L◦ is an endoscopic group of G (but not
necessarily a subgroup).

ANNALES DE L’INSTITUT FOURIER
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1.4.2. Geometrization via the derived category

Let H der
geom denote the (bounded) equivariant derived category

D(J×J,M�M−1)(G). Since the action of J × J is not free, the latter is
not necessarily the same as the derived category of (J × J,M �M−1)-
equivariant complexes of sheaves with bounded constructible cohomology.
We do not know of a reference that gives a proper definition. The correct
definition can probably be obtained by modifying the approach of Bernstein
and Lunts [7] (they consider the case where M is trivial). Alternatively,
one can try to twist triangulated categories following [49, §I.2]. Henceforth,
we assume that one has the correct definition of this twisted equivariant
derived category. Convolution of sheaves should then endow H der

geom with a
structure of monoidal triangulated category. The following is a conjectural
geometrization of (1.4).

Conjecture 1.13. — There exists an equivalence of monoidal triangu-
lated categories H der

geom
∼= DIL◦ (L/IL◦).

For applications to the Langlands program, we would like to have a de-
scription of H der

geom in Langlands dual terms. In the case that L is connected
(i.e. L = L◦), there is an answer explained to us by Bezrukavnikov : there
exists a canonical equivalence of triangulated categories

(1.5) DIL(L/IL) ∼→ D CohĽ(Ñ ×R
ľ
Ñ ).

where Ñ is the Springer resolution of the cone of nilpotent elements in ľ

and the ×R
ľ
means one must take a derived (dg-algebra) fibered product.(6)

Here ľ denotes the Lie algebra of the Langlands dual group L. As far as
we know the above result of Bezrukavnikov is unpublished. One can find
a similar statement in [10, Theorem 4.2.(a)]; however, the result is not
exactly the same.
The above conjecture (together with Bezrukavnikov’s unpublished re-

sult) gives a geometrization of H , in the sense that K0(H der
geom) ∼= H .

Moreover, the monoidal category H der
geom acts on W der

geom geometrizing the
action of H on W .

(6)According to Bezrukavnikov, the reason the fibered product is derived has to do with
the fact that Ñ ×ľ Ñ is not a complete intersection in Ñ × Ñ . To avoid this one can
work instead with the monodromic equivariant category DIL,u (L/IL) ∼→ D CohĽ (̃l×ľÑ ),
where l̃� ľ is the Grothendieck-Springer resolution, and IL,u is the prounipotent radical
of IL. Perhaps, in our situation, one might similarly prefer to define H der

geom as a certain
monodromic equivariant category; if correctly defined, we could ask for an analogue of
Conjecture 1.13 that states that the result is equivalent to DIu,L (L/IL).

TOME 65 (2015), FASCICULE 5
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1.4.3. Parabolic characters

To geometrize using only perverse sheaves (as opposed to the whole equi-
variant derived category) we need to consider not the family W , but a
closely related family which we will call W c. In the case µ̄ = 1, we defined
this family in §1.1. In general, we only know how to define this family
when the character µ̄ is parabolic (and do not know if it should exist more
generally).

Definition 1.14. — A character µ̄ : T (O) → Q×` is parabolic if the
stabilizer StabW (µ̄) ⊆W of µ̄ is a parabolic subgroup ofW , i.e., there exists
a parabolic subgroup P ⊆ G whose associated Weyl group is StabW (µ̄).(7)

Let µ̄ be a parabolic character. Let L denote the Levi of the parabolic
associated to µ̄. Thus, L is a connected split reductive subgroup of G. It
is easy to see that µ̄ extends to a character of L(O) which, by an abuse of
notation, will also be denoted by µ̄. Define a new family of principal series
representations by

(1.6) Πc := ι
G(F )
P (F )(indL(F )

L(O) µ̄).

We think of Πc also as a family of principal series representations associated
to µ̄. We believe that Πc can also be realized by inducing a character of
a compact open subgroup of G(F ). To this end, let Jc := J.L(O). One
can show that µ̄ : L(O) → Q×` extends to a character µc : Jc → Q×` . Let
W c := indG(F )

Jc µc and H c := EndG(F )(W c) = H (G(F ), Jc, µc).

Conjecture 1.15.

(i) There exists an isomorphism of G(F )-modules Πc ∼= W c.
(ii) There exists a “Satake-type" isomorphism H c ∼= K0(Rep(Ľ)).

Remark 1.16. — It should not be difficult to prove part (ii): first, H c

is a subalgebra of H , which by (1.4) is isomorphic to H (L(F ), IL). The
latter is the affine Hecke algebra for L, whose basis consists of functions sup-
ported on IL-double cosets labeled by the extended affine Weyl group of L.
Then, the Jc-double cosets of G(F ) which support functions of H c should
correspond to the IL-double cosets of L(F ) labeled by StabW (µ̄)-invariant
coweights of Ť , cf. §2.3. These, in turn, are also a basis for K0(Rep(Ľ)),
which should yield (ii).

(7)Equivalently, the group L associated to µ̄ of §1.4.1 is the Levi of a parabolic subgroup
of G.
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Example 1.17. — We now list some cases where the above conjecture is
known to be true:(8)

(i) Every regular character µ̄ : T (O) → Q×` is parabolic. In this case,
the G(F )-modules W c and W (and, therefore, the algebras H c and
H ) coincide.

(ii) The trivial character (corresponding to the unramified case) is par-
abolic. In this case, J = I and Jc = G(O).

(iii) If G = GLN then every character of T (O) is parabolic. In this case,
the above conjecture was proved in [37] (with a somewhat different
choice of Jc).

1.4.4. Geometrization of families associated to parabolic characters

Let µ̄ be a parabolic character and let Jc, µc,W c and H c be as above.
One can show that Jc is the group of points of a proalgebraic group Jc
and that µc is the trace of Frobenius function of a one-dimensional char-
acter sheaf Mc on Jc. Let H c

geom and W c
geom be the abelian categories of

twisted equivariant perverse sheaves corresponding to H c and W c. Explic-
itly, H c

geom = P(Jc×Jc,Mc×(Mc)−1)(G) and W c
geom = P(Jc,(Mc)−1)(G).

Conjecture 1.18.
(i) H c

geom is closed under convolution.
(ii) There exists an equivalence of monoidal abelian categories H c

geom
∼=

Rep Ľ� LocSys(SpecFq).

Conjecture 1.19. — H c
geom acts on W c

geom by convolution.

Note that the above conjectures specialize to Theorems 1.1 and 1.2 in
the unramified case and Theorems 1.8 and 1.9 in the regular case. We think
of the equivalence of Conjecture 1.18 as a geometric Satake isomorphism
for µ̄.

1.4.5. Central functor

One can ask if there is a categorification of the inclusion H c ∼= Z(H ) ↪→
H . In the unramified setting this was done by Gaitsgory [31]: there exists
a functor

Z : H c
geom = PGO (Gr)→Hgeom = PI(G/I),

(8)This conjecture is now proved, see [40].
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such that Z (−) ?− and − ?Z (−) yield well-defined, isomorphic functors
PGO (Gr)×PI(G/I)→PI(G/I). Considered as a functor to DI(G/I), Z
is monoidal. Moreover, according to [56, Theorem 7.3], Z can be upgraded
to a monoidal functor DGO (Gr) → DI(G/I), also with the property that
Z (F) ?− is isomorphic to − ?Z (F), and which induces an isomorphism
from the K-theory of the source to the center of the K-theory of the target.

Conjecture 1.20.
(i) There exists a functor Z : H c

geom → Hgeom such that Z (−) ? −
and − ? Z (−) yield well-defined, isomorphic actions of H c

geom on
Wgeom.

(ii) The functor Z can be upgraded to a monoidal functor H c,der
geom →

H der
geom, such that Z (−) ?− is isomorphic to − ?Z (−), and which

induces an isomorphism from the K-theory ring of the source to the
center of the K-theory ring of the target.

Roughly speaking, the above conjectures says that we can think of H c,der
geom

as a “monoidal center” of the triangulated category H der
geom. The monoidal

abelian category H c
geom is the perverse heart of this monoidal center.

Remark 1.21. — Let µ̄ be an arbitrary character of T (O). Possibly, one
could still geometrize H c as the perverse heart H c

geom of some “central”
subcategory of H der

geom. If so, we would hope that H c
geom is closed under

convolution and has a description in Langlands dual terms. Moreover, one
can ask if Conjectures 1.18 and 1.20 still hold, at least when the group L
from §1.4.1 is connected.

1.5. Restrictions on the field, group, and coefficients

In this paper, we work over Fq((t)), assuming that q is mildly restricted
depending on which reductive group we are considering; see §3.1.2 for de-
tails. This restriction is necessary because it is required by [50] for The-
orem 1.3.(ii) (we actually relax the conditions of that theorem in view of
[53]: see §3.1.2). We note that the main results of this paper and their
proofs (§§4 - 5) also hold for k((t)), where k is an algebraically closed field
of characteristic restricted as in §3.1.2; the main caveat is that one does
not necessarily have a µ̄, but only a choice of Roche’s group J and an ap-
propriate character sheaf M and subgroup J′ < J on which M is trivial;
see Remark 4.4 for details. We can also work over algebraically closed fields
of characteristic zero, at the price of making J be necessarily the Iwahori
subgroup; see Remark 4.5.
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In the unequal characteristic setting, one also has group ind-schemes
(resp. group schemes) G (resp. GO) such that G(Fq) = G(F ) (resp.
GO(Fq) = G(O)). However, as far as we know, there is no realization
of the affine Grassmannian as an ind-scheme of ind-finite type; see, for in-
stance, [42]. Therefore, we don’t know how to make sense of sheaves on the
affine Grassmannian in the unequal characteristic.
We consider connected split reductive groups G over O. One can ask if

there are analogues of our results for non-split groups. In this regard, we
note that Haines and Rostami have proved a version of Satake isomorphism
for non-split groups [36]. Furthermore, X. Zhu has proved an analogue
of Theorem 1.2 for non-split groups [55, Theorem 0.1]. In particular, for
quasisplit groups, where principal series representations still make sense,
we expect that our results should admit a generalization.
We work with Q`-sheaves on the étale topology. Over C, one can also

work with sheaves in the complex topology. In particular, in [47], Mirković
and Vilonen prove the geometric Satake isomorphism for sheaves of R-
modules on the complex topology of the loop group, where R is a commu-
tative Noetherian unital ring of finite global dimension. Our main results
and proofs (§§4 - 5) also extend to this setting, at least when R is a field;
see Remark 4.6 for details.
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2. Roche’s compact open subgroups

2.1. Conventions

In the present section, as well as §3, F and O need not be Fq((t)) and
Fq[[t]] as we assume in the rest of the paper; it suffices for F to be a local
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field with ring of integers O, unique maximal ideal p, residue field Fq, and
uniformizer t.

2.1.1. Reductive groups

Let G be a connected split reductive group over O. Fix a split maximal
torus T < G. Let Φ ⊂ Hom(T,Gm) denote the set of roots of G with
respect to T . Let Λ = Hom(Gm, T ) be the coweight lattice. To an element
λ ∈ Λ, we associate tλ = λ(t) ∈ T (F ).
For every α ∈ Φ, let α∨ denote the corresponding coroot. Let uα : Ga →

G be the corresponding one-parameter subgroup, where Ga is the additive
group. Let Uα < G be the image. For all i ∈ Z, let Uα,i = uα(pi) < G(F ).
Moreover, for i > 1, let Ti be the subgroup of T (O) generated by the image
of 1 + pi under all coweights, i.e., the image of 1 + pi under the natural
isomorphism of topological groups Λ⊗Z F

× ∼→ T (F ). In particular, for i >
1, Ti and Uα,i are the kernels of T (O)→ T (O/pi) and Uα(O)→ Uα(O/pi).
Fix a partition Φ = Φ+tΦ− into positive and negative roots. LetB = B+

denote the Borel subgroup defined by Φ+ and B− denote the Borel defined
by Φ−. Let U = U+ denote the unipotent radical of B and let U− denote
the unipotent radical of B−. Let Λ+ ⊆ Λ denote the subset of dominant
coweights; that is,

Λ+ := {λ ∈ Λ |α(λ) > 0 ∀ α ∈ Φ+}.

Then −Λ+ is the set of antidominant coweights. (Note that, by our con-
ventions, Λ+ ∩ −Λ+ is the sublattice of coweights whose image is in the
center of G.)

2.1.2. Representation theory over C vs. Q`

We fix, once and for all, a prime number ` not a factor of q, and an
isomorphism of fields Q` ∼= C. Using the isomorphism, we carry over results
regarding complex coefficients to the Q` case.

2.2. Roche’s compact open subgroup

Suppose that f : Φ→ Z is a function satisfying the properties
(a) f(α) + f(β) > f(α+ β), whenever α, β, α+ β ∈ Φ;
(b) f(α) + f(−α) > 1.
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Define the following subgroups of G(F ):

Uf := 〈Uα,f(α) | α ∈ Φ〉;
Uf,α := Uf ∩ Uα(F );
U±f := Uf ∩ U±(F );
Jf := 〈Uf , T (O)〉;
Tf :=

∏
α∈Φ α

∨(1 + pf(α)+f(−α)) < T (F ).

Then Roche proved (based on results from [18])

Lemma 2.1 ([50, Lemma 3.2]).

(i) Uf,α = Uα,f(α) for all α ∈ Φ;
(ii) The product map

∏
α∈Φ± Uα,f(α) → U±f is bijective for any ordering

of the factors in the product and any choice of sign ±;
(iii) Uf has the direct product decomposition Uf = U−f TfU

+
f ;

(iv) Jf has the direct product decomposition Jf = U−f T (O)U+
f .

Henceforth, we assume that f is fixed and write J = Jf for the corre-
sponding compact open subgroup of G(F ). The above lemma implies that,
under a suitable ordering of Φ (i.e., any ordering of Φ+ followed by any
ordering of Φ−, or vice versa), there are direct product decompositions (as
sets or varieties but not as groups).

tλJt−λ = T (O)×
∏
α∈Φ

Uα,f(α)+α(λ);(2.1)

J ∩ tλJt−λ = T (O)×
∏
α∈Φ

Uα,max{f(α),f(α)+α(λ)};(2.2)

(t−λU+
f t

λ) ∩ (t−νU+
f t

ν) =
∏
α∈Φ+

Uα,f(α)−min{α(λ),α(ν)}.(2.3)

We will make frequent use of the decomposition of Lemma 2.1.(iv). For
convenience, let J− := U−f , J

0 := T (O), and J+ := U+
f , so that J =

J−J0J+, which is a direct product decomposition. We refer to this as the
Iwahori decomposition of J ; we will also use that the decomposition remains
valid if the three factors J−, J0, and J+ are rearranged in any order. Note
that if f is defined to be 0 on the positive roots and 1 on the negative roots,
then J coincides with the Iwahori subgroup of G(F ) defined by Φ+, and
the above product is the usual Iwahori decomposition.

TOME 65 (2015), FASCICULE 5



2290 Masoud KAMGARPOUR & Travis SCHEDLER

2.3. Relevant double cosets

We are particularly interested in the following special double cosets of
J , since, by [50, Theorem 4.15], for a regular character µ̄ : T (O) → Q×` ,
they are the only ones that support (J × J, µ × µ−1)-invariant functions
(cf. §1.2.3), for J = Jfµ̄ and µ : J → Q×` as defined in op. cit., and recalled
in §3.1.1 below.

Definition 2.2. — A relevant double coset is a double coset of J in
G(F ) of the form JtλJ , for λ ∈ Λ.

We now establish some elementary properties of relevant double cosets.

Lemma 2.3. — Suppose λ ∈ Λ+.
(i) tλJ+t−λ ⊆ J+.
(ii) t−λJ−tλ ⊆ J−.
(iii) tλJ0t−λ = J0.

Proof. — (i) and (ii) follow immediately from (2.1) and definition of
dominant and antidominant coweights. (iii) is obvious. �

The following proposition will be crucial for us. Particularly note the
“miracle” of part (c), which will be a key ingredient of the proof of Propo-
sition 5.1.

Proposition 2.4.
(a) For all λ ∈ Λ+, t−λJtλJ = t−λJ+tλ × J0 × J−.
(b) For all λ, ν ∈ Λ+, JtλJtνJ = Jtλ+νJ .
(c) Suppose λ, ν, κ ∈ Λ. Then JtκJ∩JtλJtνJ is empty unless κ = λ+ν.
(d) For all λ, ν ∈ Λ+, JtνJt−νJ

⋂
Jt−λJtλJ = J .

Proof. — Lemma 2.3 implies that t−λJtλJ = (t−λJ+tλ)J0J−. Part (a)
follows by observing that t−λJ+tλ ⊆ U+(F ), and that the product map
U+(F )× T (F )× U−(F )→ G(F ) is injective.
For (b), note that

JtνJtλJ = Jtν(J+J0J−)tλJ

= J(tνJ+t−ν)tνJ0tλ(t−λJ−tλ)J

⊆ JtνJ0tλJ = Jtν+λJ.

The reverse inclusion is obvious.
Next, for (c), first note that, up to the choice of positive roots Φ+ ⊆ Φ

(which does not change J and therefore does not change the statement),
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we can assume that λ is dominant. Then,

JtκJ ∩ JtλJtνJ ⊆ JtκJ ∩ JtλJ−tνJ = J [J+J0tκJ+J0 ∩ J−tλJ−tνJ−]J.

The last equality is easily established using the Iwahori decomposition (and
that J0J+ = J+J0 and similarly J0J− = J−J0). Now, J+J0tκJ+J0 ⊂
tκJ0U+(F ) and J−tλJ−tνJ− ⊂ tλ+νU−(F ). Their intersection evidently
is {tλ+ν} if κ = λ+ ν and is empty otherwise.
Finally, for (d), the containment ⊇ is obvious. Then,

JtνJt−νJ ∩ Jt−λJtλJ ⊆ JtνJ−t−νJ ∩ Jt−λJ+tλJ

= J [J−tνJ−t−νJ− ∩ J+J0t−λJ+tλJ+J0]J :

⊆ J [tνJ−t−ν ∩ t−λJ0J+tλ]J
= J. �

Corollary 2.5. — Let λ, ν ∈ Λ+ or λ, ν ∈ −Λ+. Then, the multipli-
cation map defines a bijection (JtλJ)×J (JtνJ)→ Jtλ+νJ .

Here, for any subsets S1, S2 ⊆ G(F ) invariant under right and left multi-
plication by J , respectively, S1×JS2 := S1×S2/((s1, s2)∼ (s1j

−1, js2),∀j∈
J) (i.e., it is the quotient of S1 × S2 by the inner adjoint action of J).
Proof. — First of all, note that, by Proposition 2.4.(b), the multiplica-

tion map is surjective. To prove it is injective, suppose that xy = x′y′,
with x, x′ ∈ JtλJ and y, y′ ∈ JtνJ . Then x−1x′ ∈ Jt−λJtλJ , whereas
y(y′)−1 ∈ JtνJt−νJ . Since x−1x′ = y(y′)−1, Proposition 2.4.(d) implies
that x−1x′ ∈ J . �

2.4. Volumes of relevant double cosets and semismallness

In this section we prove some results we need about volumes of double
cosets. Fix a left-invariant Haar measure, vol, on G(F ) such that J has
measure 1.

Lemma 2.6. — For all λ ∈ Λ, vol(JtλJ) = q

∑
α∈Φ+

|α(λ)|
.

Proof. — By left-invariance, vol(JtλJ) is the number of left cosets of J
in JtλJ . Since J acts transitively by left multiplication on the set of left
cosets in JtλJ with stabilizer of tλJ equal to J ∩ (tλJt−λ), we obtain that
vol(JtλJ) = |J/(J ∩ (tλJt−λ))|. The result then follows from (2.2). �

Corollary 2.7.
(i) For all λ ∈ Λ, vol(JtλJ) = vol(Jt−λJ).
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(ii) For λ, ν ∈ Λ, logq vol
(
t−λJtλJ ∩ t−νJtνJ

)
= 1

2 [logq vol(JtνJ) +
logq vol(JtλJ)− logq vol(Jtν−λJ)].

Proof. — (i) follows immediately from Lemma 2.6. For (ii), up to our
choice of Φ+, we can and will assume that λ ∈ Λ+. Note that, by Proposi-
tion 2.4.(a),

t−λJtλJ ∩ t−νJtνJ = ((t−λJ+tλ)J0J− ∩ (t−νJtν)
)
J.

Next, we use that the product U+(F )T (F )U−(F ) is direct. This allows us
to re-express the above as(

(t−λJ+tλ ∩ t−νJ+tν)J0(J− ∩ t−νJ−tν)
)
J

= (t−λJ+tλ ∩ t−νJ+tν)J0(J−J0J+)

= (t−λJ+tλ ∩ t−νJ+tν)J.

Thus, by (2.3),

logq vol
((

(t−λJ+tλ) ∩ (t−νJ+tν)
)
J
)

=
∑
α∈Φ+

max{min{α(λ), α(ν)}, 0}

=
∑
α∈Φ+

1
2
(
α(λ) + max{α(ν), 0} − |α(λ)−max{α(ν), 0}|

)
= 1

2
(∑
α∈Φ

max{α(λ), 0}+ max{α(ν), 0}

− |max{α(λ), 0} −max{α(ν), 0}|
)

= 1
2
( ∑
α∈Φ+

|α(λ)|+ |α(ν)| − |α(λ− ν)|

= 1
2[logq vol(JtνJ) + logq vol(JtλJ)− logq vol(Jtν−λJ)]. �

2.4.1. Semismallness

Abusively, we will let vol also denote the product Haar measure on
G(F )×G(F ).
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Proposition 2.8. — Let λ, ν ∈ Λ. Let pλ,ν : (JtλJ)× (JtνJ)→ G(F )
denote the restriction of the multiplication map. For every x ∈ Jtλ+νJ ,(9)

logq vol((pλ,ν)−1(x))

= 1
2
(
logq vol(JtλJ) + logq vol(JtνJ)− logq vol(Jtλ+νJ)

)
.

Let P (x) := (pλ,ν)−1(x). Let π1 : (JtλJ) × (JtνJ) → JtλJ denote the
projection onto the first factor. Let π denote the restriction of π1 to P (x).
The proposition follows from Corollary 2.7 and the following lemma.

Lemma 2.9. — π is injective and its image is canonically identified with
t−λJtλJ ∩ tνJt−νJ .

Proof. — The fact that π is injective is evident. The image of π identifies
with y ∈ JtλJ such that y−1x ∈ JtνJ , i.e., y ∈ xJt−νJ . Write x = jtλ+νj′,
for j, j′ ∈ J . Then, the image of π equals

JtλJ ∩ xJt−νJ = JtλJ ∩ jtλ+νJt−νJ

∼→ JtλJ ∩ tλ+νJt−νJ

∼→ t−λJtλJ ∩ tνJt−νJ. �

3. Representations via compact open subgroups

3.1. Families of principal series representations

Fix a (continuous) character µ̄ : T (O) → Q×` . In §1.2.1, we defined a
family of principal series representations Π associated to µ̄. We now give
an alternative definition of this family. Let B0 := U(F )T (O). Abusively, let
µ̄ also denote the extension of µ̄ : T (O)→ Q×` to B0 such that µ̄|U(F ) = 1.
Then, it follows from the definition that

Π ∼= indG(F )
B0 µ̄ := {f : G(F )→ Q×` | f(gb) = f(g)µ̄(b),∀ b ∈ B0},

and the action is the left regular one; i.e., g · f(x) = f(gx).

(9)Note that according to Proposition 2.4.(c), the only relevant double coset in the image
of pλ,ν is Jtλ+νJ .
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3.1.1. Realization via compact open subgroups

For every α ∈ Φ, let cα := cond(µ̄ ◦ α∨) denote the conductor of µ̄ ◦ α∨;
that is, the smallest positive integer c for which µ̄(α∨(1 + pc)) = {1}. Let

(3.1) fµ̄(α) =
{
bcα/2c, if α > 0,
dcα/2e, if α < 0.

Here bxc denotes the largest integer less than or equal to x and dxe
denotes the smallest integer greater than or equal to x.

Lemma 3.1. — [50, Lemma 3.4] Suppose that 2 - q if Φ has an irre-
ducible factor of the form Bn, Cn, or F4, and 3 - q if Φ has an irreducible
factor of the form G2. Then, fµ̄ satisfies conditions (a) and (b) of §2.2.

The conditions in the lemma are designed so that the characteristic does
not divide a ratio of square-lengths of two roots; see op. cit. To avoid the
above restrictions for certain characters, see Remark 3.2.
In particular, in view of Lemma 2.1, we obtain an associated compact

open subgroup J = Jfµ̄ and the subgroup Tµ̄ = Tfµ̄ . By construction,
Tµ̄ ⊆ ker µ̄. Hence µ̄ defines a character of T (O)/Tµ̄. Now we have an exact
sequence

1→ Ufµ̄ → Jfµ̄ → T (O)/Tµ̄ → 1.
Therefore, the character of T (O)/Tµ̄ can be lifted uniquely to a character
µ : J → Q×` trivial on Ufµ̄ . Recall from the introduction that we set
W := indG(F )

J µ.

3.1.2. The isomorphism W ∼= Π and residue characteristic restrictions

Theorem 1.3.(ii) states that there is an isomorphism of G(F )-modules
W ∼= Π, provided that the characteristic of Fq is restricted: in particular,
the characteristic should not be a torsion prime for the Langlands dual
group to any semistandard Levi subgroup of G (i.e., connected subgroup
containing the maximal torus). Additionally, in order for J to be defined,
we assume the characteristic obeys the conditions of Lemma 3.1 (but see
Remark 3.2). In Roche’s paper, to prove [50, Theorem 4.15], additionally
the characteristic is further restricted so as to obtain a nondegenerate bi-
linear form on the Lie algebra (in particular, restricted to be greater than
n+ 1 in the An case, or alternatively to have certain more technical condi-
tions satisfied), but this restriction can be lifted by considering elements of
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the dual to the Lie algebra, as in [53], and not associating to them elements
of the Lie algebra itself using a pairing; cf. Appendix A.2.
Put together, for every irreducible direct factor of the root system of the

split reductive group, char(Fq) should not be one of the primes

(3.2)

Root system Excluded primes
Bn, Cn, Dn {2}
F4, G2, E6, E7 {2,3}

E8 {2, 3, 5}
In particular, our results hold unconditionally for type An groups, includ-
ing GLN . Additionally, in the case that J equals the Iwahori subgroup
(cf. Remark 1.4), then no restriction on the characteristic is needed, in
view of Proposition 4.1.(i), since all double cosets of the Iwahori contain
an element of N(T (F )) (cf. [50, §4]).

Remark 3.2. — We could avoid the restrictions of Lemma 3.1 if we
impose restrictions on the conductors cα of µ; this would potentially allow
characteristic 2 in the Bn case and characteristic 3 in the G2 case. The
important thing is to ensure condition (a) of §2.2. In view of the proof
of [50, Lemma 3.4], the problem arises where pα∨ = q(α + β)∨ − rβ∨ for
some q, r (p is the characteristic). So, to ensure the condition, whenever
〈α, β∨〉 = −p for roots α and β, we should ask that either cα+β > 1 or cβ
is odd. (Then, similarly, one gets that either cβ > 1 or cα+β is odd.) In
particular, if short roots β all satisfy cβ > 2, or if cβ is odd for all short
roots β, then the condition would appear to be satisfied.

3.1.3. Explicit (iso)morphism W → Π

Next, following a suggestion of Drinfeld, we give an explicit description
of a morphism W → Π. Define p0 : G(F )→ Q` by{

p0(g) = 0 if g /∈ JB0.
p0(jb) = µ(j)µ̄(b), ∀ j ∈ J, b ∈ B0.

One can show that p0 is a well-defined J-invariant function in Π (we
omit the easy proof). It follows that 1 7→ p0 is a homomorphism of J-
modules µ → ResG(F )

J Π. By compact Frobenius reciprocity [19, Proposi-
tion in §1.2.5], we obtain a morphism Ω : W → Π. One can probably show
that Ω is an isomorphism. We neither prove nor use this fact; we will only
use Ω in the proof of Theorem 3.3, and we only need to know that it is a
morphism of G(F )-modules.
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3.2. Endomorphism rings

Henceforth, we assume that µ̄ is regular. In this setting we have an
explicit canonical isomorphism Ψ−1 : K0(Rep(Ť )) ∼→ EndG(F )(W ) (1.3)
given as follows: (see, e.g., [51, §1.9]): For every λ ∈ Λ, let Θλ denote the
corresponding character of Ť . Then, the action of K0(Rep(Ť )) on Π is

(3.3) ([Θλ]f)(x) = f(xt−λ), f ∈ Π, x ∈ G(F ), λ ∈ Λ.

On the other hand, EndG(F )(W ) is identified with the Hecke algebra
H = H (G(F ), J, µ). We will abusively let Ψ−1 also denote the obtained
isomorphism K0(Rep(Ť )) ∼→H . Let

fλ : H → Q`, fλ(jtλj′) := µ(jj′), ∀j, j′ ∈ J ; fλ|G(F )\JtλJ = 0.

According to [50, Theorem 4.15], these functions are well-defined and form
a basis for H . We now express Ψ−1 explicitly in terms of this basis:

Theorem 3.3. — For all λ ∈ Λ, Ψ−1([Θλ]) = bλfλ where

bλ = q
−
∑

α∈Φ+
max{α(λ),0}

.

Remark 3.4. — In view of Lemma 2.6, bλb−λ = vol(JtλJ)−1.

The fact that Ψ−1 sends [Θλ] to a multiple of fλ is known as “preservation
of support” and is proved by Roche [50, §6] using methods of Bushnell and
Kutzko [20]. The computation of the scalars bλ appears to be new. The
first step in the computation is to show that b−1

λ = Ω(fλ)(tλ). Then one
explicitly computes Ω(fλ) in terms of p0. For details of the proof, see §A.1.

4. Geometrization of the vector spaces H and W

For the rest of this paper, we assume that the character µ̄ : T (O)→ Q×`
is regular. Our goal is to geometrize the vector spaces H and W , the
convolution product of H and the action of H on W by convolution.
We will deal with both set-theoretic and scheme-theoretic points of vari-

eties (set-theoretic points of SpecB are, by definition, the prime ideals of
B). When a point is scheme-theoretic, we will specify it as an R-point for
some Fq-algebra R; otherwise, we will be referring to a set-theoretic point.
For our conventions (and some recollections) regarding perverse sheaves
and bounded `-adic derived categories see Appendix §B. We only mention
here that if f : X → Y is a morphism of algebraic varieties, then the push-
forwards f! and f∗ are always derived, and accordingly we omit any prefix
of R (for right derived).
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4.1. Recollections on the affine Grassmannian

It is well known that there exists a group ind-scheme G over Fq such
that G(Fq) = G(F ). Moreover, there exists a proalgebraic group GO over
Fq such that GO(Fq) = G(O). The affine Grassmannian Gr is the fpqc
quotient G/GO. There exist proper schemes of finite type over Fq,

Gr1 ⊂ Gr2 ⊂ · · · ,

which are fixed under the action of GO (which factors through finite di-
mensional quotients of GO), and whose union is Gr; see, for instance, [45,
§11] and [32, Proposition 1.2.2]. Thus, Gr is an ind-proper scheme of ind-
finite type. According to [30, §5.2.1], this ind-scheme may be non-reduced.
This will not affect us, however, since we are only interested in perverse
sheaves on Gr (or on related ind-schemes).
Next suppose that K is a closed subgroup of GO such that GO/K is

finite dimensional. Let Y := G/K and let π : Y→ Gr denote the canonical
morphism. Then Yi := π−1(Gri) is a scheme of finite type and Y is the
union of the Yi. Therefore, Y is an ind-scheme of ind-finite type.

4.2. Geometrization of W and H

4.2.1. Geometrization of J and stabilizers

Let J be a group of the form defined in §2.2. There exists a proalgebraic
subgroup J < GO such that J(Fq) = J . Indeed, J has a combinatorial
description in terms of pn for various n, and it is easy to deduce that
it is the group of points of a proalgebraic group. Moreover, the Iwahori
decomposition of J implies that J is connected.
Alternatively, J can be constructed abstractly as follows: by Bruhat-Tits

theory [18], there exists a canonical affine smooth group scheme J over O
such that J(O) = J (characterized by additional properties). Applying the
Greenberg functor [35], we obtain for every n > 1, a connected algebraic
group J(n) over Fq such that J(n)(Fq) = J(O/pn). It follows that J :=
lim←−J(n) is a proalgebraic group over Fq and

J(Fq) = lim←−J(n)(Fq) = lim←− J(O/pn) = J(O).

Next, observe that J acts on G by left and right multiplication. For
every x ∈ G(Fq) = G(F ), one can consider the stabilizer StabJ×J(x). This
is a proalgebraic subgroup of J× J. Projection onto the first factor defines
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an isomorphism of proalgebraic groups StabJ×J(x) ∼= J ∩ xJx−1. When
G = GLN , one can show that StabJ×J(x) is connected for all x ∈ GLN (F ),
using the fact that GLN is the set of invertible elements of the algebra of
N×N matrices. For arbitrary (connected split reductive) G, we don’t know
if this stabilizer group is connected. However, the following will suffice for
our purposes. Let N(T (F )) denote the normalizer of T (F ).

Proposition 4.1.
(i) For all n ∈ N(T (F )), StabJ×J(n) is connected.
(ii) Assume f = fµ̄ for µ̄ : T (O) → Q×` a regular character. If x ∈

G(F ) = G(Fq) is not in JtλJ for any λ ∈ Λ, then
StabJ×J(x)◦(Fq) * ker(µ× µ−1).

We think of (i) as saying that the stabilizer of an element of the ex-
tended affine Weyl group Waff = N(T (F ))/T (F ), considered as an element
of G(F ) by any section of the quotient, is connected. Note that the stabi-
lizer does not depend on the choice of section, because, for all t ∈ T (F ),
StabJ×J(nt) ∼= J ∩ ntJt−1n−1 = J ∩ nJn−1, so the stabilizer of nt is inde-
pendent of t up to isomorphism.
Proof. — First we prove (i). Let n ∈ N(T ) have image w ∈ Waff in the

extended affine Weyl group. Furthermore, let w0 ∈ W ∼= Waff/Λ be the
image in the finite Weyl group. Note that nUα,in−1 = Uw(α,i), where Waff
acts on Φ × Z by the usual action. By Lemma 2.1.(ii), the direct product
T (O) ·

∏
α∈Φ Uα,f(α) equals J for any choice of ordering of Φ such that Φ+

appears first, followed by Φ−. Moreover, we can replace Φ± by w−1
0 (Φ±),

and infer that it is also acceptable to have w−1
0 (Φ+) appear first, followed by

w−1
0 (Φ−). Hence, J∩nJn−1 =T (O)·

∏
α∈Φ Uα,max{f(α),w(w−1

0 (α),f(w−1
0 (α)))2},

where the subscript of 2 denotes the second component of a pair in Φ×Z,
and we take an ordering where Φ+ appears first followed by Φ−. We con-
clude that this intersection is connected.
Part (ii) is a strengthening of [50, Theorem 4.15], which can be extracted

from op. cit. along with [2] and [1]. For details of the proof, see §A.2. �

4.2.2. Geometrization of µ

Let µ̄ : T (O) → Q×` be a (regular) character and let J = Jfµ̄ be the
corresponding compact open subgroup of G(O) (§3.1.1). To geometrize µ
(and later H and W ) it is convenient to define two auxiliary groups. Fix,
once and for all, a positive integer c such that µ̄|Tc is trivial. Define

(4.1) J ′ := 〈Ufµ̄ , Tc〉, A := J/J ′.
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For example, if µ̄ factors through a character of T (Fq), we can take J to be
the Iwahori group, and c = 1. In this case, J ′ is the prounipotent radical
of J .

Note that J ′ is well known as the subgroup associated to the function
f ′µ̄ : Φ ∪ {0} → Z>0 defined by f ′µ̄|Φ = fµ̄ and f ′µ̄(0) = c. According to
[54], there exists a canonical smooth group scheme J ′ over O such that
J ′(O) = J ′ (characterized by additional properties). As in §4.2.1, using the
Greenberg functor [35], we can construct a proalgebraic group J′ such that
J′(Fq) = J ′. We now give a proof of this fact independent of the results of
Greenberg and Yu.

Lemma 4.2. — The groups J ′ and A are the sets of Fq-points of con-
nected proalgebraic and connected commutative algebraic groups J′ and A
over Fq, respectively.

Proof. — Let TO < GO be the obvious proalgebraic subgroup whose
Fq-points is T (O). In view of the Iwahori decomposition J = J−J0J+, we
see that J ′ = J−(J ′ ∩ J0)J+, which is a direct product decomposition. It
suffices to show that T ′ := J ′∩J0 = 〈Tc, Tfµ̄〉 is the group of Fq-points of a
proalgebraic subgroup T′ < TO, and that the quotient TO/T′ ∼= J/J′ = A
has finite type. This is relatively easy to see, but for the convenience of the
reader (and independent interest), we explicitly describe T ′ and Tfµ̄ in
§A.3. �

It is clear from the assumptions that µ is trivial on J ′. In other words,
µ is the pullback of a character µ0 : A → Q×` along the canonical mor-
phism J → A. We now apply the construction of §B.7.1 to obtain a one-
dimensional character sheafM0 on A whose trace function is µ0. LetM be
the pullback ofM0 via the natural morphism J→ A. The local systemM
is our geometrization of µ : J → Q×` . The following result is an immediate
consequence of Proposition 4.1.(ii).

Corollary 4.3. — Let x ∈ G(F ) be a point which is not contained
in any relevant double coset. Then the restriction ofM to StabJ×J(x)◦ is
nontrivial.

Remark 4.4. — The results of this and subsequent sections (and in
particular the main theorems in §5) can be generalized in a manner that
allows one to replace Fq with any algebraically closed field of characteristic
restricted as in §3.1.2. To do so, one must eliminate µ̄ and begin with J,J′,
and M0. In more detail, instead of beginning with µ̄, one begins with a
choice of Roche’s subgroup J = Jf , cf. §2.2, where f is determined by
coefficients cα > 1 as in (3.1), i.e., for all α ∈ Φ+, either f(α) = f(−α)
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or f(α) = f(−α) − 1. One must then pick a c such that c > cα for all α,
and define the corresponding J′ < J. Next, one can allowM0 to be a one-
dimensional character sheaf on A such that: (i)M0 is regular: its pullback
to TO under the projection TO � TO/T′ ∼= J/J′ = A has trivial stabilizer
under the Weyl group action (i.e., the corresponding local system on TO
is not isomorphic to its pullback under the action of any element of the
Weyl group); and (ii) the restriction ofM0 to the one-parameter subgroup
of TO corresponding to each coroot α∨ is nontrivial on α∨(1 + pcα−1).
As before, M is defined to be the pullback of M0 to J. Provided the
centralizers of restrictions of M0 as in the proof of Proposition 4.1.(ii)
(Appendix A.2) remain semisimple (which will be true, for instance, ifM0
is obtained from one of theM0 in the case of Fq by base change), all the
statements and proofs go through with this generalization. We note that,
in the algebraically closed setting, the Tate twists should be suppressed.

Remark 4.5. — One can also consider analogues of our results over an
algebraically closed field of characteristic zero. However, since the affine
line is simply connected in this case, Ga admits no nontrivial character
sheaves. Thus, the restriction of M0 to α∨(1 + pcα−1) is always trivial if
cα > 1, and we are reduced to the case cα = 1 for all α, with J the Iwahori
subgroup. Probably, if one replaces perverse sheaves by possibly irregular
holonomic D-modules, this drawback can be alleviated.

Remark 4.6. — If we work over SpecC, we can also consider sheaves
in the complex topology, and then, as in [47], we can use coefficients in
an arbitrary commutative Noetherian ring of finite global dimension. In
the case that R is a field, all of the results and proofs here go through
without modification (see, e.g., [24] for the necessary facts about perverse
sheaves in this context), with cα = 1 for all α, in accordance with the
previous remark. We believe (but have not carefully checked) that our
main results also extend to the case of commutative Noetherian rings of
finite global dimension, provided one replaces the mention of simple or
irreducible objects (e.g., Corollary 4.10) by the statement that all objects
of Hgeom are finite direct sums of objects of the form jλ! ⊗R L, for L a
finitely-generated R-module.

4.2.3. Geometrization of W and H

Recall that W is defined to be the vector space of functions on G(F )
which satisfy f(gj) = f(g)µ(j) for all g ∈ G(F ) and j ∈ J . Equivalently,
W is the vector space of functions on G(F )/J ′ satisfying f(ga) = f(g)µ0(a)
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for all g ∈ G(F )/J ′ and a ∈ A. Similarly, H is the vector space of functions
on G(F )/J ′ satisfying f(jga) = µ0(j)f(g)µ0(a) for all j ∈ J and a ∈ A.
Using this observation, geometrizing W and H becomes straightforward.
Let X := G/J′. By the discussion in §4.1, X is a union of schemes Xi

of finite type over Fq. The bounded constructible derived category D(X)
of sheaves on X is, by definition, the inductive limit of D(Xi) (see Ap-
pendix §B for our conventions regarding the derived category and perverse
sheaves).
The connected algebraic group A acts freely on X by the right multipli-

cation action r : A ×X → X, r(a, x) := xa−1. Similarly, J acts on X by
the left multiplication action l : J ×X → X. The scheme Xi is invariant
under the action of J×A. Indeed,

π(JXiA) ⊆ π(GOXiA) ⊆ GOGri = Gri.

The left action of J on each Xi clearly factors through a finite dimensional
quotient. Let Ji be such a quotient for each i which factors the quotient
J � A, and let li : Ji ×Xi → Xi be the resulting map descending from
l. Furthermore, let Mi be the pullback of M0 to Ji under the quotient
Ji � A. Each Mi is a multiplicative local system on Ji. Let W i

geom be
the full subcategory of perverse sheaves on Xi satisfying r∗F ∼=M−1

0 �F ,
and let H i

geom be the full subcategory of perverse sheaves on Xi satis-
fying (li × r)∗F ∼= Mi �M−1

0 � F . Let Wgeom denote the direct limit
of the abelian categories W i

geom, and let Hgeom denote the direct limit of
the abelian categories H i

geom. We consider the objects of Wgeom as the
(A,M−1

0 )-equivariant perverse sheaves on X, and the objects of Hgeom as
the (J×A,M×M−1

0 )-equivariant perverse sheaves on X.
Taking trace of Frobenius of elements of the abelian categories Wgeom

and Hgeom, we recover the vector spaces W and H .

4.3. Objects of Hgeom

4.3.1. Relevant orbits

Recall that we called double cosets of the form JtλJ relevant. We call the
schemes Jλ := J(tλJ′)A ⊆ X relevant orbits. All the facts that we proved
about relevant double cosets in §2.3 hold for relevant orbits. This is because
our arguments, which concerned Fq-points, carry over to R-points for any
Fq-algebra R. Similarly, the facts about volume proved in §2.4 compute the
dimension of the associated schemes, under the correspondence

logq(volY ) = dim Y− dim A,
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where Y is one of the subsets obtained from cosets used in §2.4, and Y ⊆ X
is the associated subscheme of X satisfying Y(Fq) = Y/J ′.
Below, we will often use the following basic fact: each stratum Xi contains

only finitely many relevant orbits. This is true because Gri contains only
finitely many cosets of the form tλGO for λ ∈ Λ (which follows, for example,
by taking a standard choice of Gri; see, e.g., [32]).

4.3.2. Geometrization of fλ

Recall that fλ : JtλJ → Q` is defined by fλ(jtλj′) = µ(j)µ(j′). Our goal
is to geometrize the following statements:

(i) The restriction of µ×µ−1 to StabJ×J(x) is trivial for all x ∈ JtλJ ;
(ii) fλ is the unique function on JtλJ whose pullback to J × J under

the map (j1, j2) 7→ j1t
λj2 equals µ× µ−1;

(iii) fλ is the unique function on JtλJ , up to a scalar multiple, which is
(J × J, µ× µ−1)-invariant.

Here and below, J × J on G(F ) acts by left and right multiplication, i.e.,
(j1, j2) · g = j1gj

−1
2 .

Lemma 4.7.
(i) For every λ ∈ Λ and x ∈ Jλ, the restriction of M �M−1

0 to
StabJ×A(x) is trivial.

(ii) There exists a unique, up to isomorphism, local system F ′λ on Jλ
such that (πλ)∗F ′λ ∼= M �M

−1
0 , where πλ : J ×A → Jλ denotes

the map (j, a) 7→ jtλa−1J′. Moreover, F ′λ has rank one.
(iii) Suppose G is a (J×A,M�M−1

0 )-equivariant local system on Jλ.
Then G ∼= F ′λ⊗L where L is the pullback, via Jλ → Spec(Fq), of a
local system on Spec(Fq).

Proof. — Note thatM�M−1
0 is pulled back fromM0�M−1

0 on A×A.
To prove (i), it is enough to show that the restriction ofM0�M−1

0 to the
image of StabJ×A(tλJ′) in A×A is trivial. The latter is contained in the
diagonal, {(a, a) | a ∈ A} ⊆ A ×A, and the restriction ofM0 �M−1

0 to
this locus is a tensor product of two inverse local systems, which is trivial.
(ii) follows immediately from (i) by equivariant descent, since πλ is the

quotient by the (free) action of StabJ×A(tλ).
For (iii) consider the local system L := (F ′λ)−1 ⊗ G on Jλ. Then, L is a

(J×A)-equivariant local system on Jλ. Hence, (l×r)∗(L) is a local system
on (J×A)× Jλ which is trivial in the (J×A) direction. If we restrict to
(J × A) × {tλJ′}, we obtain that (πλ)∗(L) (with πλ as in (ii)) is pulled
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back from the local system L|tλJ′ on tλJ′ ∼= SpecFq. Thus, L is also pulled
back from a local system on SpecFq. �

4.3.3. The local systems Fλ and their extensions

Let Fλ := F ′λ[dim Jλ](− logq bλ), where (m) denotes the Tate twist by
m. Then Fλ is a J×A-equivariant perverse sheaf on Jλ and

(4.2) Tr(Fq,Fλ) = (−1)dim Jλbλfλ.

(see §B.7 for our conventions regarding the trace of Frobenius). Let jλ :
Jλ ↪→ X denote the natural inclusion. To these are associated derived
functors jλ! and jλ∗ from D(Jλ) to D(X). We use the abusive abbreviations

(4.3) jλ! := jλ! Fλ, jλ!∗ := jλ!∗Fλ, jλ∗ := jλ∗Fλ;

We will eventually see that jλ! ∼= jλ!∗
∼= jλ∗ (Theorem 5.4).

Lemma 4.8. — jλ! , jλ!∗, and jλ∗ belong to Hgeom.

Proof. — By definition, jλ!∗ is a perverse sheaf. Since J ×A is solvable,
all of its orbits are affine. Now we use the fact if a scheme X is separated
and j : Y → X is a locally closed immersion and Y is affine, then j is an
affine map. It follows that the morphisms jλ is an open affine embedding.
Therefore, jλ! and jλ∗ are perverse sheaves as well. To prove the result,
it remains to show that these perverse sheaves are (J × A,M �M−1

0 )-
equivariant. Using the projection formula (twice),

l∗(jλ! Fλ) ∼= (Id×jλ)!(l∗Fλ) ∼= (Id×jλ)!(M� F) ∼=M� jλ! Fλ.

Thus, jλ! is (J,M)-equivariant. Similarly, one shows that jλ∗ is (J,M)-
equivariant for the left multiplication action. Now jλ!∗ is the image of the
canonical morphism jλ! → jλ∗ . Since the canonical morphism is functorial,
it is easy to see that l∗(jλ!∗) ∼=M� jλ!∗. One proves in an analogous manner
that jλ! , jλ∗ and jλ!∗ are (A,M−1

0 )-equivariant for the right multiplication
action. �

4.3.4. Restriction to irrelevant points

Let an irrelevant point x ∈ X denote a point which does not lie in any
relevant orbit. Recall that if f ∈H , then f(x) = 0 for all irrelevant points
x. In this section, we prove a geometric analogue of this statement.

Proposition 4.9. — Let y ∈ X be an irrelevant (set-theoretic) point.
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(i) The stalk of every F ∈Hgeom at y is zero.
(ii) The stalk at y of every (J × A,M �M−1

0 )-equivariant complex
G ∈ W der

geom is zero.

Proof. — It is clear that (i) is a consequence of (ii), so we only prove (ii).
First, we claim that it suffices to assume that y is closed. Indeed, other-

wise, since finitely many relevant orbits lie in each stratum Xi, only finitely
many can intersect the closure ȳ of y. Now the complement of these rel-
evant orbits in ȳ is a dense open subvariety U of ȳ. If the stalks at the
(necessarily irrelevant) closed points in U vanish, then the restriction of G
to U vanishes. Hence, the restriction of G to y ∈ U also vanishes.
So, assume that y is closed. By Lemma B.10, it suffices to show that

M�M−1
0 is nontrivial on the connected component of the identity of the

stabilizer of y; then it would follow that all cohomology sheaves of G have
zero stalk at y, and hence also that the stalk of G at y is zero. For Fq-points
the result follows from Corollary 4.3. For Fqn -points one can use the norm
maps (Remark B.14). In more detail, we can replace µ̄ by the corresponding
character of T (Fqn [[t]]) and work over the field Fqn . This implies the result
for all set-theoretic points y. �

Corollary 4.10. — The irreducible objects in Hgeom are of the form
jλ!∗ ⊗ L, where L is the pullback, via Jλ → SpecFq, of a one-dimensional
local system on SpecFq.

Proof. — Note that jλ!∗ is irreducible for every λ ∈ Λ, since Fλ is ir-
reducible (in fact, one-dimensional). For the converse, let F be an irre-
ducible object of Hgeom. Then there must exist a J ×A-invariant locally
closed subscheme Y ⊂ Xi of one of the strata Xi of X, and an irre-
ducible (J × A,M �M−1

0 )-equivariant local system G on Y such that
F = jY

!∗G[dim Y], where jY : Y ↪→ X is the inclusion. Hence, Y must lie
in the union of the finitely many relevant orbits in Xi. Since it is J ×A-
invariant, Y equals a finite union of relevant orbits. As F is irreducible, Y
is also irreducible. Therefore, there must exist λ ∈ Λ such that Jλ ∩Y is
open and dense in Y. Since Y is J ×A-invariant, in fact Jλ ⊆ Y. Thus,
we conclude that F ∼= jλ!∗(F|Jλ). Hence, Lemma 4.7 implies that it has
the desired form (note that all irreducible local systems on SpecFq are
one-dimensional). �
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5. Convolution product and main results

5.1. Definition of convolution

Let p : G ×J X → X denote the product map (where ×J, as in the
setting of Fq-points in §2.3, denotes the quotient of the product by the
inner adjoint action of J, j · (g, x) = (gj−1, jx)). The convolution with
compact support is the functor defined by

(5.1) ?! : Wgeom ×Hgeom → W der
geom, (F ,G) 7→ p!(F�̃G).

Here F�̃G is the the twisted external product of twisted equivariant sheaves
(§B.6). We usually write ? for ?!. There are associativity isomorphisms

(5.2) F ? (G ? G′) ∼→ (F ? G) ? G′, ∀G,G′ ∈Hgeom, F ∈ W der
geom

satisfying natural properties; see, for instance, [5, §7] or [31]. One can easily
check that

Tr(Frqn ,F) ? Tr(Frqn ,G) = (−1)dim A Tr(Frqn ,F ? G),
∀F ∈ Wgeom, G ∈Hgeom.

(5.3)

Thus, up to sign, this geometrizes the usual convolution product W ?H →
W (5.1).

5.2. Convolution of jλ!

Using Lemma 2.6, Theorem 3.3, (4.2), and (5.3), one can easily show
that

(5.4) Tr(Frqn , jλ! ? jν! ) = Tr(Frqn , jλ+ν
! ).

The following is the geometric analogue of (5.4). It is the key result for
proving our main theorems, and was suggested to us by D. Gaitsgory.

Proposition 5.1. — For all λ, ν ∈ Λ, we have an isomorphism jλ! ?j
ν
!
∼=

jλ+ν
! .

We remark that, in the case that λ and ν are both dominant or antidomi-
nant, the proposition follows easily from the isomorphism Jλ×J Jν ∼= Jλ+ν

(Corollary 2.5). For the general case, we combine the fact that the only
relevant orbit in the closure of Jλ ×J Jν is Jλ+ν (Proposition 2.4.(c)) and
the semismallness result proved in §2.4.1 to show that jλ! ? jν! is perverse.
It is then easy to show that it must be isomorphic to jλ+ν

! . For details of
the proof see §A.4.
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Remark 5.2. — While in the proof of Proposition 5.1 we only show the
existence of an isomorphism jλ! ?j

ν
!
∼= jλ+ν

! , using Theorem 1.8.(ii), one can
construct canonical isomorphisms which satisfy the associativity property
that the two isomorphisms jλ! ? j

µ
! ? j

ν
!
∼= jλ+µ+ν

! are equal.

Corollary 5.3. — For all λ, ν ∈ Λ and all local systems L,K on
SpecFq,

Ext•W der
geom

(jλ! ⊗ L, jν! ⊗K) =
{

Ext•Spec Fq (L,K), if λ = ν,

0, otherwise.

The above corollary is proved using the monoidal property of jλ! estab-
lished in Proposition 5.1; see §A.5 for details.

5.3. Proof of Theorem 1.7: cleanness of irreducible objects

The following theorem clearly implies Theorem 1.7:

Theorem 5.4. — For every λ ∈ Λ, jλ! ∼= jλ!∗.

Proof. — By Corollary 4.10, all objects are obtained by iterated exten-
sions of objects of the form jλ!∗ ⊗ L, for L a local system on SpecFq. Let
jν!∗ ⊗ L be an irreducible perverse subsheaf of jλ! . If we precompose the
inclusion jν!∗ ⊗ L ↪→ jλ! with the defining surjection jν! ⊗ L � jν!∗ ⊗ L, one
obtains a nonzero map jν! ⊗ L → jλ! . By Corollary 5.3, this implies ν = λ.
Now, suppose that jλ!∗ ⊗ L ↪→ jλ! is an injection. Applying Corollary 5.3
again, the composition jλ! ⊗ L � jλ!∗ ⊗ L ↪→ jλ! is obtained from a map
L → Q`. This map is injective, since it is also obtainable as the composi-
tion L ∼= jλ! ⊗ L|tλJ′

∼= jλ!∗ ⊗ L|tλJ′ ↪→ jλ! |tλJ′
∼= Q`. Hence the canonical

map jλ! ⊗ L� jλ!∗ ⊗ L is an isomorphism. �

5.4. Monoidal equivalence

We now prove Theorem 1.8.(i). Corollary 5.3 and Theorem 5.4, together
with Corollary 4.10, imply that every object of Hgeom is isomorphic to a
finite direct sum of objects of the form jλ! ⊗ L, where L is a local system
on SpecFq. Therefore, to prove Hgeom is closed under convolution, it is
enough to show that, for all coweights λ and ν and all local systems L and
L′ on SpecFq, (jλ! ⊗ L) ? (jν! ⊗ L′) ∈ Hgeom. This follows at once from
Proposition 5.1.
The above paragraph shows that (Hgeom, ?) is monoidal. The fact that

the functor Ψgeom is monoidal is proved in §A.6.
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5.5. Convolutions with and without compact support are
isomorphic

Recall that we have two, a priori different, monoidal actions of Hgeom
on W der

geom given by ? = ?! and ?∗. We now prove that these two actions are
isomorphic by proving that their adjoints are isomorphic.

Proposition 5.5. — For every F ,G ∈ W der
geom, there is a canonical func-

torial isomorphism

HomW der
geom

(F ?! j
λ
! ,G) ∼= HomW der

geom
(F ,G ?∗ j−λ∗ ).

The above proposition is probably known, at least in the untwisted set-
ting. For completeness, we include a proof in §A.7.

Corollary 5.6. — There exists an isomorphism between the actions
of Hgeom on W der

geom given by ?! and ?∗.

Proof. — By §5.4 Hgeom is a rigid category (in fact, it is a Picard cate-
gory). Therefore, the adjoint functor to − ?! j

λ
! is isomorphic to − ?! j

−λ
! .

On the other hand, by the above proposition, this adjoint functor is also
isomorphic to − ?∗ j−λ∗ . We conclude that the functors − ?! j

λ
! and − ?∗ jλ∗

are isomorphic. Using cleanness (Theorem 5.4), we conclude that the func-
tors − ?! j

λ
! and − ?∗ jλ! are isomorphic. For any L ∈ LocSys(SpecFq), it

follows also that − ?! (jλ! ⊗ L) is isomorphic to − ?∗ (jλ! ⊗ L). The result
then follows from §5.4. �

As explained in the next subsection, one can (probably) show that the
canonical morphism ?! → ?∗ (obtained from the general functorial maps
f! → f∗, which we call “forgetting compact support”) is an isomorphism
between the two actions of Hgeom on W der

geom. (However, we do not need this
fact). We note that the idea of showing ?! and ?∗ are isomorphic by proving
that their adjoints are isomorphic was suggested to us by D. Gaitsgory. The
same idea is employed in [15, §G] and [17, §6.7].

5.5.1. Aside: relationship to Grothendieck-Verdier duality

In [17, Appendix A] and [16], Boyarchenko and Drinfeld explain the
following picture. A monoidal category (C,⊗1,1) is a called an r-category
if for every Y ∈ C the functor Hom(− ⊗1 Y,1) is representable by some
object DY and the contravariant functor D : C → C is an antiequivalence.
D is called the duality functor. In every r-category, there is a second tensor
product defined by

X ⊗2 Y := D−1(DY ⊗1 DX).
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Moreover, there is a monoidal natural transformation X ⊗1 Y → X ⊗2 Y ,
which is an isomorphism if and only if C is rigid.
As an example, let G be a connected algebraic group over a field k. Let

ι : G → G be the map ι(g) = g−1. Let D : D(G) → D(G) denote the
Verdier duality functor and D : D(G) → D(G) denote D ◦ ι∗ = ι∗ ◦ D.
Then (D(G), ?!) is an r-category with duality functor D. The second tensor
product is convolution without compact support, ?∗. According to [17,
Appendix A], the natural transformation ?! → ?∗ defined above should
coincide with the canonical map of “forgetting compact support.”
Now we apply the above considerations to our situation. The argument in

[17, Appendix A] for proving (D(G), ?!,D) is an r-category applies verbatim
to show that (Hgeom, ?!,D) is an r-category. (This amounts to a special
case of Proposition 5.5 where one takes F ,G ∈Hgeom.) The second tensor
product in Hgeom is ?∗. In analogy with D(G), the natural transformation
?! → ?∗ should coincide with the canonical map coming from forgetting
the support (but we have not checked this). As Hgeom is rigid, we see that
the canonical morphism ?! → ?∗ is an isomorphism.
Next, we have two monoidal actions of (Hgeom, ?!) on W der

geom: one given by
?! and the other one given by ?∗, via the monoidal equivalence (Hgeom, ?!) ∼→
(Hgeom, ?∗). One can show that the canonical “forgetting compact support”
maps define a monoidal natural transformation going from the first action
to the second one. Moreover, it follows from the following general lemma
that this is an isomorphism.

Lemma 5.7. — Let C be a rigid monoidal category with unit object 1,
D a monoidal category, F,G : C → D two monoidal functors, and η ∈
Hom(F,G) a monoidal natural transformation such that η1 : F (1)→ G(1)
is an isomorphism. Then, η is an isomorphism.

A version of the above lemma appears in [52, Proposition 5.2.3].

5.6. Action of Hgeom on Wgeom

The following implies Theorem 1.9.

Theorem 5.8. — Let F ∈Hgeom and G ∈ Wgeom. Then G?!F ∈ Wgeom.

Proof. — It is enough to show that G?!j
λ
! is perverse for every λ ∈ Λ. Let

pλ = p◦(Id×jλ). Then pλ! (G�̃Fλ) ∼= G?!j
λ
! . Since pλ is an affine morphism,

by Artin’s Theorem B.1, G ?! j
λ
! ∈ pD>0

(A,M−1
0 )(X). By Corollary 5.6 and

cleanness, we obtain an isomorphism G ?! j
λ
!
∼= G ?∗ jλ∗ . Applying Artin’s
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Theorem again, G ?∗ jλ∗ ∈ pD60
(A,M−1

0 )(X). Hence, G ?! j
λ
! ∈ pD60

(A,M−1
0 )(X)

as well. �

Appendix A. Postponed proofs

A.1. Proof of Theorem 3.3

First we describe the morphism Ω : W → Π explicitly. Let f0 ∈ W be
the function f0(j) = µ(j) for j ∈ J and f0(g) = 0 for g /∈ J . Then W has
a basis consisting of functions gi · f0 where gi ∈ G(F ) ranges over a set
of representatives for G(F )/J ; see, e.g. [19, §1.2.5]. Define a morphism of
G(F )-modules Ω : W → Π by f0 7→ p0, where p0 was defined in §3.1.3.
Next, suppose that Ω′ : W → Π is any morphism of G(F )-modules. Using
the fact that EndG(F )(Π) is commutative, one can easily show that

Ω′(f ?Ψ−1(φ)) = φ(Ω′(f)), ∀f ∈ W , φ ∈ EndG(F )(Π).

Lemma A.1. — bλΩ(fλ)(tλ) = 1.

Proof. — By the above, Ω(f ?(bλfλ)) = [Θλ](Ω(f)) for all f ∈ W . Hence,

Ω(bλfλ) = Ω(f0 ? (bλfλ)) = [Θλ](Ω(f0)) = [Θλ](p0).

The result follows by evaluating both sides at tλ. �

Hence, to compute bλ, it suffices to compute Ω(fλ)(tλ). First we need
two lemmas.

Lemma A.2. — For all j ∈ J ,

(A.1) p0(tλjt−λ) =
{
µ(j), if tλjt−λ ∈ JB0,

0, otherwise.

Proof. — Write j = j−j0j+, with j− ∈ J−, j0 ∈ J0, and j+ ∈ J+. Then,
tλjt−λ = (tλj−t−λ)(tλj0j+t−λ). So, first of all,

(A.2) tλjt−λ ∈ JB0 ⇐⇒ tλj−t−λ ∈ J−,

since we know that tλj−t−λ ∈ U−(F ), the group of unipotent lower-
triangular matrices. So, we find that

p0(tλjt−λ) = µ(j0)p0(tλj−t−λ),

which yields (A.1). �

Lemma A.3. — Ω(fλ) =
∑
i µ(ji)jitλ · p0, where ji is a set of represen-

tatives of the finite quotient J/(J ∩ tλJt−λ).
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Proof. — By definition, Ω(f0) = p0. Next, for arbitrary λ, consider the
left cosets of J in JtλJ . J acts transitively on these by left multiplication,
so these cosets have the form {jitλJ}, where ji is a set of representatives
of the finite quotient J/(J ∩ tλJt−λ). Thus, fλ =

∑
i µ(ji)jitλ · f0, where

each jitλ · f0 is the unique function in W supported on the left coset jitλJ
whose value at jitλ is 1. Applying Ω yields the result. �

To prove the desired equality, note that

(A.3) Ω(fλ)(tλ) =
∑
i

µ(ji)p0(t−λj−1
i tλ).

For each ji, write ji = j+
i j

0
i j
−
i for j+

i ∈ J+, j0
i ∈ J0, and j−i ∈ J−.

Substituting (A.1) and (A.2) into (A.3), we obtain

(A.4) Ω(fλ)(tλ) = |{ji : t−λ(j−i )−1tλ ∈ J−}|.

To conclude, recall that ji are representatives of J/(J ∩ tλJt−λ). Note
that the RHS of (A.4) identifies with |K/(J ∩ tλJt−λ)|, where K has the
same form as J except with f(α) replaced by f(α) + max{α(λ), 0} for
α ∈ Φ− (leaving f(α) the same when α ∈ Φ+). Hence, logq Ω(fλ)(tλ) =∑
α∈Φ+

max{α(λ), 0}. In view of Lemma A.1, this implies the desired for-
mula. �

A.2. Proof of Proposition 4.1.(ii)

We will follow to some extent the arguments of [50, Theorem 4.15], with
an innovation from [53] to reduce restrictions on the residue characteris-
tic. Note that [50] works in the mixed-characteristic setting where F has
characteristic zero (and O/p = Fq), unlike us. However, as pointed out
there, those arguments extend to our equal-characteristic setting by re-
placing Proposition 4.11 there by the more general [2, Theorem 7.1], which
is for arbitrary local fields F with residue field Fq (see Theorem A.4 below),
proved similarly.
The proof is by induction on the semisimple rank of G. If G is a torus,

then the assumption x /∈ JtλJ is vacuous, so the result follows. So we
assume G has positive semisimple rank and that the result holds follows
for all connected split reductive groups of strictly smaller rank (for all
characters, using Roche’s corresponding subgroup).

Let ` = cond(µ) > 1. This means ` is the smallest positive integer such
that µ(1+p`) = {1}. If ` = 1, then J is the Iwahori subgroup, in which case
the Bruhat decomposition implies that x ∈ JnJ for some n ∈ N(T (F )). In
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this case, we can assume x = n, and the result follows from part (i) of the
proposition. Henceforth, we assume ` > 2.

A.2.1. Review of some notation used in [50]

Following [50, §4], define the groups

L := 〈T`−1, Uα,`−1, Uβ,f(β) | cα < `, cβ = `〉,
Ki := 〈Ti, Uα,i | α ∈ Φ〉 (∀i > 1),

K̃` :=
{
K`, if ` is even,
〈K`, Uα,`−1 | α > 0, cα = `〉, if ` is odd.

Note that L ⊆ J . Moreover, Kb`/2c ⊇ L ⊇ K`−1 ) K̃`. Finally, Ki/K2i is
abelian for all i > 1.

Next, we recall the Lie algebras of the above subgroups and bijections
Ki/K2i

∼→ Ki/K2i from op. cit. Let g, t, and uα be the Lie algebras of G,
T , and Uα over F . Let X = Hom(T,Gm) be the lattice of characters of T
and X∨ = Hom(Gm,T) the lattice of coweights. There is a natural map
X∨⊗ZF

∼→ t. Let ti ⊂ t be the O-sublattice which is the image of pi⊗ZX
∨

(note that ti is the Lie algebra of Ti). Similarly, let uα,i ⊂ uα be the O-
sublattice which is the image of pi under the isomorphism F ∼→ uα defined
by the map Lie(uα) (note that uα,i is the Lie algebra of Uα,i). Define the
following O-sublattices of g, which are the Lie algebras of the groups L,Ki,
and K̃`:

L := t`−1 ⊕
⊕

α:cα<`
uα,`−1 ⊕

⊕
α:cα=`

uα,f(α),

Ki := ti ⊕
⊕
α∈Φ

uα,i,

K̃` :=
{
K`, if ` is even,
t` ⊕

⊕
α>0,cα=` uα,`−1 ⊕

⊕
α:cα<` or α<0 uα,`, if ` is odd.

Next, for i > 1, the bijections Lie(uα) : pi ∼→ uα,i and uα : pi ∼→ Uα,i induce
a bijection of sets uα,i ∼→ Uα,i. Similarly, the bijections X∨ ⊗Z pi ∼→ ti and
X∨ ⊗Z (1 + pi) ∼→ Ti, together with the bijection pi ∼→ (1 + pi), b 7→ 1 + b,
induce a bijection of sets ti ∼→ Ti. Using these and the direct product and
sum decompositions Ki = ti⊕

⊕
α∈Φ uα,i and Ki = Ti ·

∏
α∈Φ Uα,i (for some

choice of ordering of the roots), one obtains a noncanonical bijection

ϕi : Ki ∼→ Ki,
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depending on the choice of ordering of α ∈ Φ. In fact, ϕi = ϕ1|Ki for all
i > 1. We also have

ϕL := ϕ1|L : L ∼→ L.

Since Ki/K2i is abelian, the resulting isomorphism ϕi : Ki/K2i
∼→ Ki/K2i

is independent of the ordering of roots and hence canonical. Similarly, the
isomorphism ϕL : L/K̃`

∼→ L/K̃` is independent of the ordering of roots
and hence canonical.
Let ψ : F → Q×` be an additive character such that p ⊆ ker(ψ) and

O * ker(ψ). Then, a := µ ◦ ϕL is a character of L/K̃`, and can be viewed
as an element of (t`−1/t`)∗ (an element acting trivially on the off-diagonal
part

⊕
α:cα<` uα,`−1 ⊕

⊕
α:cα=` uα,f(α) of L).

Following [50], define

I(µ|H) := {g ∈ G(F ) : µ(h) = µ(g−1hg),∀h ∈ H ∩ gHg−1}.

The relationship to our objects of study is: g ∈ I(µ|H) if and only if, for
all pairs (h, g−1hg) ∈ StabH×H(g), µ(h)µ(g−1hg)−1 = 1. That is,

(A.5) g ∈ I(µ|H) ⇐⇒ StabH×H(g) ⊆ ker(µ× µ−1).

A.2.2. Proof of the proposition in the case x ∈ I(µ|L)

We will need the following result, which follows from [50, Proposition
4.11] and [2, Theorem 7.1] (slightly modifying the proof to use the dual Lie
algebra as in [53]; for instance, [53, Lemma 5.1] replaces [1, Lemma 1.8.1]
with the same proof).

Theorem A.4. — I(µ|L) = LCG(F )(a)L.

Here, CG(F )(a) is the centralizer in G(F ) of a. According to [53, Proposi-
tion 7.3], under our restrictions on residue characteristic, this is the group
of F -points of a semistandard Levi subgroup, call it CG(a), of G. As ex-
plained in the proof of [50, Theorem 4.15], up to multiplying µ by a suit-
able character of G (which leaves J unchanged, since such characters are
trivial on [G,G] and hence the cα are unchanged), we can assume that
CG(a) 6= G, and CG(a) is a connected split reductive group of strictly
lower semisimple rank than G. Then, the subgroup Jµ,CG(F )(a) < CG(F )(a)
associated to µ is nothing but the intersection Jµ,CG(F )(a) = CG(F )(a) ∩ J .
By induction on the semisimple rank of G, we can therefore assume that,
if the element x in the statement of the proposition is in CG(F )(a), then
StabJµ,CG(F )(a)×Jµ,CG(F )(a)(x)◦(Fq) * ker(µ× µ−1). Therefore, the proposi-
tion follows for x. Hence, it also follows if x ∈ JCG(F )(a)J , and hence if
x ∈ LCG(F )(a)L.
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A.2.3. Proof of the proposition in the case x /∈ I(µ|L)

By (A.5), StabL×L(x)(Fq) * ker(µ× µ−1). Our goal is to show

StabL×L(x)◦(Fq) * ker(µ× µ−1)

Note that StabL×L(x)(Fq) = {(g, x−1gx) : g ∈ L ∩ xLx−1} ∼= L ∩
xLx−1. We will need to recall the following observation of [1]. For all
x ∈ G(F ), let Kx,r := Kr ∩ Ad(x)Kr. Similarly define Kx,r as well as
K̃x,` and K̃x,`. Then, as observed in [1, (1.5.2)], for all x ∈ G(F ) and
all r > 1, Kx,r/Kx,2r is abelian, and ϕr restricts to an isomorphism ϕx,r :
Kx,r/Kx,2r

∼→ Kx,r/Kx,2r, which is independent of the ordering of the roots.
It follows from the definition of ϕr that ϕx,r is the map on Fq-points

of an isomorphism of commutative algebraic groups. In the case that ` is
even, we deduce by restriction that one also has a canonical isomorphism

(L ∩Ad(x)L)/K̃x,` ∼→ (L ∩Ad(x)L)/K̃x,`,

which is the map on Fq-points of an isomorphism of commutative algebraic
groups. It is easy to generalize to the case where ` is odd.
Now, since (L ∩ Ad(x)L)/K̃x,` is the group of Fq-points of a product

of finitely many copies of Ga, the same is true for (L ∩ Ad(x)L)/K̃x,`.
So, this quotient is connected. Now, since {(g, x−1gx) : g ∈ K̃x,`(Fq)} ⊆
ker(µ× µ−1), we conclude the desired statement. �

A.3. Completion of the proof of Lemma 4.2

Let cα := f(α) + f(−α) (this is consistent with our other definition
cα = cond(µ̄ ◦ α∨) when f = fµ̄). For all m > 1, let Tf,m be the subtorus
of T generated by all coroots α∨ such that cα 6 m. Clearly, Tf,i 6 Tf,j
for i 6 j. Furthermore, T ∩ [G,G] = Tf,m for m > maxα∈Φ cα. Observe
that Tf is the product (not direct) of Tf,m(1 + pm) for all m, where for
any algebraic subtorus S < T , S(1 + pm) denotes the subgroup of S(O)
generated by the coweights of S evaluated at 1 + pm. It follows easily that
one has an isomorphism of groups

(A.6) Tf ∼= Tf,1(1 + p)×
∏
m>2

(Tf,m/Tf,m−1)(1 + pm).

From this one sees that Tf is the Fq-points of a canonical proalgebraic (and
prounipotent) subgroup of TO. Similarly, for m > maxα∈Φ cα,

(A.7) 〈Tf , Tm〉 ∼= Tf × (T/Tf,m)(1 + pm),
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and one concludes also that this is the Fq-points of a canonical proalgebraic
subgroup of TO (depending on c as well as f). Finally, since A = T (O)/T ′
is a quotient of T (O)/Tm, which is finite, so is A, and the geometric version
of this statement is that A is an algebraic group (of finite type).
Applying the above to f = fµ̄, one sees that Tfµ̄ and T ′ are the Fq-

points of canonical proalgebraic subgroups of TO, and that A ∼= TO/T′ is
an algebraic group.

A.4. Proof of Proposition 5.1

Let Jλ,ν := JtλJ ×J Jν ⊆ G ×J X and let pλ,ν : Jλ,ν → X denote
the restriction of p to Jλ,ν . Note that there is a natural action of J × A
on Jλ,ν given by left multiplication by J (on the first factor, JtλJ) and
right multiplication by A (on the second factor, Jν), where, by convention,
we use the right multiplication action a ·R j := ja−1 (even though A is
commutative).

Lemma A.5. — For all λ, ν ∈ Λ,
(i) F ′λ�̃F ′ν is a (J×A,M�M−1

0 )-equivariant local system on Jλ,ν .
(ii) jλ! ? jν! ∼= pλ,ν! (Fλ�̃Fν).
(iii) jλ! ? jν! ∈ pD>0(X).
(iv) jλ! ? jν! is (J×A,M�M−1

0 )-equivariant.

Proof. — By Lemma B.12, F ′λ�̃F ′ν is a local system on Jλ,ν . Since F ′λ
and F ′ν are both equivariant, so is F ′λ�̃F ′ν ; thus, (i) is established. For (ii)
see Lemma B.13. Since Jλ,ν (and therefore pλ,ν) is affine, Theorem B.1
implies (iii). Finally, for (iv) we apply the projection formula to compute

l∗(jλ! ? jν! ) = l∗pλ,ν! (Fλ�̃Fν) ∼= (IdJ×pλ,ν)!l
∗(Fλ�̃Fν) ∼=

(IdJ×pλ,ν)!(M�(Fλ�̃Fν)) ∼=M�pλ,ν! (Fλ�̃Fν) ∼=M�(jλ! ? jν! ). �

Next, we prove that jλ! ?jν! ∼= jλ+ν
! . Let x ∈ X. We claim that (jλ! ?jν! )x =

0 if x /∈ Jλ+ν . Indeed, by Lemma A.5.(ii), jλ! ? jν!
∼= pλ,ν! (Fλ�̃Fν). By

Proposition 4.9 the stalk of this complex at x ∈ X is nonzero only if x
is a relevant point in the image of pλ,ν . By Proposition 2.4.(c), the only
relevant orbit inside this image is Jλ+ν .

Now we claim that we are in a position to apply Theorem B.5 to prove
that jλ! ? jν! is perverse. It is clear that pλ,ν is an affine morphism. Next,
let P denote the partition of the closure of the image of pλ,ν consisting of
three locally closed subschemes: Jλ+ν ,Jλ+ν \ Jλ+ν , and the complement
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of Jλ+ν . Note that, as the closure of the image of pλ,ν is irreducible, one
of these locally closed subschemes must, in fact, be open and dense. By
Proposition 2.8, for every closed point x ∈ Jλ+ν ,

(A.8) dim((pλ,ν)−1(x)) = 1
2 [dim(Jλ,ν)− dim(Jλ+ν)].

In fact, in view of Lemma 2.9 and Proposition 2.4.(a), we have an isomor-
phism

(A.9) (pλ,ν)−1(x) ∼= A 1
2 [dim(Jλ,ν)−dim(Jλ+ν)].

From this, it follows that pλ,ν is semismall at every x ∈ Jλ+ν (at non-closed
points y, the LHS should be replaced by the dimension of the generic fiber
at closed points in the closure of y, cf. (B.3), and the result follows from
the one for closed points). Since the stalk of jλ! ? jν! at every point outside
Jλ+ν vanishes, Theorem B.5 shows that jλ! ?jν! ∼= pλ,ν! (Fλ�̃Fν) is perverse.
Since jλ! ? jν! is perverse and its stalks vanish outside of Jλ+ν , it must be

isomorphic to
j!j
∗(jλ! ? jν! ) ∼= j!j

∗pλ,ν! (Fλ�̃Fν),

where j = jλ+ν . By (A.9), the fibers of pλ,ν over Jλ+ν are affine spaces.
Therefore, applying proper base change, since Fλ and Fν are shifts of rank-
one local systems, we conclude that jλ! ? jν! ∼= j!F , where F is a shift of
a rank-one local system on Jλ+ν , which is perverse. By Lemma 4.7.(iii),
F ∼= Fλ+ν ⊗ L where L is a rank-one local system on SpecFq. Keeping
track of Tate twists, we see in fact that L = Q`, as a consequence of (A.9)
and the definitions of Fλ,Fν , and Fλ+ν). We conclude that jλ! ? jν! ∼= jλ+ν

! .

Remark A.6. — Note that Jλ+ν is not, in general, open in the image
of Jλ,ν under the multiplication map, pλ,ν . This is more evident when we
mod by A and consider the map Jλ,ν/A→ X/A. Here, for example, when
λ = −ν, the image of Jλ,−λ/A has positive dimension if λ 6= 0, but J0/A
is a point.

A.5. Proof of Corollary 5.3

Note that J0 is closed. Let 1 := j0
!
∼= j0

∗ . Then F ? 1 ∼= 1 ? F ∼= F
for all F ∈ Hgeom. Let F ,G,H ∈ Hgeom and assume that H ? F and
H ? G are in Hgeom. Then H ? − defines a homomorphism Hom(F ,G) →
Hom(H ? F ,H ? G). Now assume there exists H′ ∈ Hgeom such that
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H′ ?H = 1. Then the composition

Hom(F ,G)→ Hom(H ? F ,H ? G)→ Hom(H′ ?H ? F ,H′ ?H ? G)
= Hom(1 ? F ,1 ? G) = Hom(F ,G)

is the identity. Similarly, the composition

Hom(H ? F ,H ? G)→ Hom(H′ ?H ? F ,H′ ?H ? G)
= Hom(F ,G)→ Hom(H ? F ,H ? G)

is the identity. Hence Hom(F ,G) ∼= Hom(H ? F ,H ? G). The same holds
when we replace Hom by Ext• or take convolution on the right instead of
the left (with H having a right inverse).
Applying the above considerations, which also apply using Hom (i.e.,

Ext) in W der
geom, and applying Proposition 5.1, we conclude

Ext•W der
geom

(jλ! ⊗ L, jν! ⊗K) = Ext•W der
geom

(jλ! ? j−ν! ⊗ L, jν! ? j−ν! ⊗K)

= Ext•W der
geom

(jλ−ν! ⊗ L, j0
! ⊗K)

= Ext•W der
geom

(jλ−ν! ⊗ L, j0
∗ ⊗K)

= Ext•Spec Fq ((j
0)∗jλ−ν! ⊗ L,F0 ⊗K).

For the final equality, we use that the twisted J-equivariant derived cat-
egory of sheaves supported on J itself is canonically isomorphic to the
category of local systems on SpecFq, as a special case of Lemma 4.7.(ii).
Thus, the result is zero unless λ = ν, in which case it is Ext•Spec Fq (F0 ⊗

L,F0 ⊗K) = Ext•Spec Fq (L,K). �

A.6. Proof of the fact that Ψgeom is monoidal

Let F and G be (J × A,M �M−1
0 )-equivariant local systems on Jλ

and Jν , respectively. To endow Ψgeom with a monoidal structure, we now
produce canonical isomorphisms of vector spaces

(jλ! F ? jν! G)|tλ+νJ′ [−dλ+ν ](logq bλ+ν)
'−→ F|tλJ′ ⊗ G|tνJ′ [−dλ − dν ](logq(bλbν))

(A.10)

Note that, by definition, jλ! F ? jν! G = p!(jλ! (F)�̃jν! (G)) = pλ,ν! (F�̃G). By
using proper base change, a morphism of the form (A.10) is the same as a
morphism

(p|p−1(tλ+ν))!(F�̃G)|p−1(tλ+ν)[−dλ+ν ](logq bλ+ν)
→ F|tλJ′ ⊗ G|tνJ′ [−dλ − dν ](logq(bλbν)).
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By adjunction, this corresponds to a morphism

(F�̃G)|p−1(tλ+ν)[−dλ+ν ](logq bλ+ν)

→ (p|p−1(tλ+ν))!(F|tλJ′ ⊗ G|tνJ′
)
[−dλ − dν ](logq(bλbν))

(A.11)

Now, by Lemma 2.9 and Corollary 2.7, p−1(tλ+ν) ⊆ Jλ ×J Jν is an affine
subspace of dimension 1

2 (dλ+dν−dλ+ν) (cf. Proposition 2.8). Next we use
the identity

logq(bλ+ν/(bλbν)) = 1
2(dλ + dν − dλ+ν),

which follows from the definition of bλ together with Lemma 2.6. Using
this identity, the LHS and RHS of (A.11) are isomorphic to (p|p−1(tλ+ν))∗
(F|tλJ′ ⊗ G|tνJ′)[−dλ+ν ](logq(bλ+ν)). In particular, the LHS and RHS are
isomorphic shifts of local systems; therefore, we have canonical isomor-
phisms

Hom(LHS,RHS) = Hom(LHS|tλ,ν , RHS|tλ,ν )
= End(F|tλ ⊗ G|tν [−dλ − dν ](logq(bλbν))).

Finally to produce the morphism (A.11), we take the identity element of
the endomorphism algebra.
A similar procedure shows that the fibre of a triple convolution identifies

with the tensor product of the three fibres which implies the hexagon axiom
for Ψgeom.

It remains to prove that the morphism constructed in (A.10) is an iso-
morphism. To see this, first note that the morphism is, by construction,
nonzero (since the identity morphism is nonzero, and adjunction preserves
nonzero morphisms). Next, if we base change from SpecFq to SpecFq, then
by Corollary 4.10, F and G are direct sums of copies of the trivial rank-one
local system. Then, the fact that (A.10) is an isomorphism follows from the
rank-one case, where every nonzero morphism is an isomorphism.

A.7. Proof of Proposition 5.5

Let pλ denote the multiplication morphism G ×J Jλ → X. Let d =
dim(Jλ). Then,

Hom(F ?! j
λ
! ,G) = Hom((pλ)!(F�̃Fλ),G)

∼= Hom(F�̃Fλ, p!
λG)

∼= Hom(F�̃Fλ, p∗λG[2d](d)).

TOME 65 (2015), FASCICULE 5



2318 Masoud KAMGARPOUR & Travis SCHEDLER

In the last isomorphism, we used that p!
λ = p∗λ[2d](d), since pλ is a smooth

morphism of relative dimension d.

Lemma A.7. — Hom(F�̃Fλ, p∗λG[2d](d)) ∼= Hom(p∗−λF ,G�̃F−λ).

Using the lemma, we can easily complete the proof similarly to the above:

Hom(p∗−λF ,G�̃F−λ) ∼= Hom(F , (p−λ)∗(G�̃F−λ))
∼= Hom(F ,G ?∗ j−λ∗ ).

It remains to prove Lemma A.7. The proof relies on converting between
the functors −�̃Fλ and p∗λ−. We first explain how to do this in a simpler
(and probably standard) situation, where G is an algebraic group (i.e., of fi-
nite type), H ⊆ G is a subvariety, we replace Fλ by Q`|H, and eliminate the
twists and twisted products. The analogous lemma in this simpler situation
can be formulated as follows. Let p̃ : G×G→ G denote the multiplication
map (we use tildes to distinguish from the maps we will define eventually
on the level of G×J X and in the twisted setting.) Let F ,G ∈ D(G). Let
H−1 be the image of H under the inversion automorphism of G.

Lemma A.8. — HomG×H(F�Q`, p̃∗G|G×H)∼=HomG×H−1(p̃∗F|G×H−1 ,

G �Q`).

Proof. — Let Γ̃ : G ×G → G ×G denote the isomorphism Γ̃(g, x) =
(gx, x). Then there is a commutative diagram

(A.12) G×G Γ̃ //

p̃

��

G×G

π̃1
��

G G.

Therefore, p̃ = π̃1Γ̃, and hence Γ̃∗(F �Q`) ∼= Γ̃∗π∗1F ∼= p̃∗F .
Next, let ι̃2 : G×G→ G×G denote the isomorphism ι̃2(g, x) = (g, x−1).

We need the identity

(A.13) (Γ̃ι̃2)2 = IdG×G = (ι̃2Γ̃)2.

Finally,

HomG×H(F �Q`, p̃∗G|G×H)
∼= HomG×H−1(F �Q`, ι̃∗2p̃∗G|G×H−1)
∼= HomG×H−1(p̃∗F|G×H−1 , Γ̃∗ι̃∗2p̃∗G|G×H−1)
∼= HomG×H−1(p̃∗F|G×H−1 , ((ι̃2)−1)∗(Γ̃−1)∗p̃∗G|G×H−1)
∼= HomG×H−1(p̃∗F|G×H−1 ,G �Q`),
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as desired. �

Proof of Lemma A.7. — Let Kλ = JtλJ ⊂ G. We want to imitate
the proof of the previous lemma with H replaced by Kλ. Since we have
difficulty working with objects over G × Kλ, as it is not ind-finite, we
instead descend Γ̃|G×Kλ to an isomorphism

(A.14) Γλ : G×J Jλ ∼→ (G× J\G)/J′, (g, x) 7→ (gx, x),

where J′ acts diagonally by (g, x) · j := (gj, xj).
Similarly, the inversion map in the second component, ι̃2, descends to

(A.15) ι2 : G×J X ∼→ (G× J′\G)/J, (g, x) 7→ (g, x−1),

where again J acts diagonally by (g, x) · j := (gj, xj).
We will need the equivalence

τλ : P(A,M−1
0 )((G× J′\Kλ)/J) ∼→ P(A,M0)((G× J\Kλ)/J′),

G 7→ G ⊗ (Q` � (F ′λ)−1).
(A.16)

Here (Q` � (F ′λ)−1) is the local system J′\Kλ)/J′ obtained by equivariant
descent from the local system Q` � (F ′λ)−1 on G×Kλ, and we view both
categories in (A.16) as categories of twisted-equivariant perverse sheaves
on (G×J′\Kλ)/J′ (lifting from a quotient by J to ordinary A-equivariant
objects on the quotient by J′).
The identity analogous to (A.13) in this twisted setting is

(A.17) (Γ∗λτλ(ι−1
2 )∗)−1 ∼= Γ∗−λτ−λ(ι−1

2 )∗.

From now on, an overlined quantity means the object living over the ap-
propriate base (indicated by the subscript of Hom) obtained by equivariant
descent. For instance, F�̃G = F � G. Also, note that F ′λ =M×M−1 for
all λ, working over the base Jλ (which is a quotient of J× J). Then,

HomG×JJλ(F�̃F ′λ, p∗λG)
∼= Hom(G×J′\K−λ)/J((ι−1

2 )∗(F�̃F ′λ), (ι−1
2 )∗p∗λG)

∼= Hom(G×J′\K−λ)/J(F � (M×M−1), (ι−1
2 )∗Γ∗λ(G�̃Q`))

τ−λ∼= Hom(G×J\K−λ)/J′(F �Q`, τ−λ(ι−1
2 )∗Γ∗λ(G�̃Q`))

Γ∗−λ∼= HomG×JJ−λ(p∗−λF ,Γ∗−λτ−λ(ι−1
2 )∗Γ∗λ(G�̃Q`))

(A.17)∼= HomG×JJ−λ(p∗−λF , ι∗2τ−1
λ (G�̃Q`))

∼= HomG×JJ−λ(p∗−λF ,G�̃F ′−λ).
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Now, the same computation with the appropriate shifts and Tate twists
(using Remark 3.4) yields the desired result. �

Appendix B. Recollections on perverse sheaves

B.1. Definition of perverse sheaves

Let X be a connected scheme of finite type over a field k, which we
assume to be finite or algebraically closed. Fix a prime ` invertible in k.
Let D(X) denote the derived category of Q`-sheaves on X with bounded
constructible cohomology [23, §1.1.2-1.1.3]. Let pD60(X) ⊆ D(X) denote
the full subcategory consisting of all complexes K such that

(B.1) dim supp Hi(K) 6 −i, ∀ i ∈ Z.

Equivalently, for all (not necessarily closed) points x ∈ X,

(B.2) Hn(Kx) = 0 ∀ n > −dim(x).

Using Verdier duality (or the notion of cosupport), one similarly defines
pD>0(X) (see, e.g., [6]). The category of perverse sheaves is defined by

P(X) := pD>0(X) ∩ pD60(X).

The following theorem is essentially due to Artin; see [6, Theorem 4.1.1].

Theorem B.1. — If f : X → Y is an affine morphism of separated
schemes of finite type over k, the functor f∗ : D(X) → D(Y ) takes
pD60(X) into pD60(Y ). By Verdier duality, this is equivalent to saying
that the functor f! takes pD>0(X) into pD>0(Y ).

B.2. Intermediate extensions and cleanness

Let j : Y ↪→ X be an embedding of a locally closed subvariety Y . Recall
the intermediate extension function j!∗ : P(Y ) → P(X), which has the
properties j∗j!∗F ∼= F , and which takes irreducible perverse sheaves to
irreducible perverse sheaves.

Definition B.2. — Let F ∈ P(Y ). The intermediate extension j!∗F
is called clean (or a “clean extension”) if j!∗F ∼= j!F .
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B.3. Semismall morphisms

The standard reference for semismall morphisms and their relationship
to perverse sheaves is [34, §6.2]. Here we follow the treatment of [41, §III.7],
since this reference does not assume properness.

A partition P of Y is a collection {Yα} of disjoint locally closed sub-
schemes of Y such that

(i) Y =
⊔
Yα,

(ii) one of these subschemes is open and dense.

Definition B.3. — Let Y be a separated scheme of finite type over
k. Let P be a partition of Y . Let y ∈ Yα ⊆ Y be a possibly non-closed
point. A morphism of separated schemes f : X → Y is called semismall at
y ∈ Yα ⊆ Y with respect to P if

(B.3) dim(f−1(y))− dim(y) 6 1
2 [dim(X)− dim(Yα)].

For the following result, see [41, Lemma 7.4].

Lemma B.4. — Let F be a constructible Q`-sheaf on X. Suppose f :
X → Y is a morphism of separated schemes of finite type over k. Let P be
a finite partition of Y . If f is semismall at every point y ∈ Y with respect
to P, then f!(F [dim(X)]) ∈ pD60(Y ).

Theorem B.5. — Let f : X → Y be an affine morphism of separated
schemes of finite type over k. Let L be a local system on X and set K :=
f!(L[dimX]). Let P be a finite partition of Y . Assume that for every y ∈ Y
either

(i) Ky = 0, or
(ii) f is semismall at y with respect to P.

Then K ∈P(Y ).

Proof. — By Theorem B.1, K ∈ pD>0(X). It remains to show that K ∈
pD60(X). According to (B.2), it is sufficient to check the required vanishing
at each stalk y ∈ Y . If y is not in the image of f , then Ky = 0 and the
condition is automatically satisfied. This is also the case if y is in the image
of f and Ky = 0. If we are in neither situation, then the result follows from
Lemma B.4. �
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B.4. Twisted equivariant sheaves

Let G be a connected algebraic group over k. Recall that this means
that G is a smooth connected group scheme of finite type over k. Let
m : G×G→ G denote the multiplication.

Definition B.6. — A one-dimensional character sheaf on G is a local
system L satisfying m∗L ∼= L� L.

Remark B.7. — Another name for a one-dimensional character sheaf is
a multiplicative local system. We note that character sheaves are usually
defined to be irreducible perverse sheaves on a group over an algebraically
closed field. It is, therefore, more appropriate to call L⊗k k̄[dim(G)] a one-
dimensional character sheaf. Working over an arbitrary field and ignoring
the shift is, however, more convenient for our purposes.

Let L be a one-dimensional character sheaf on G. Let X be a separated
scheme of finite type over k equipped with an action a : G×X → X.

Definition B.8. — The category P(G,L)(X) of (G,L)-equivariant per-
verse sheaves on X is the full subcategory of P(X) consisting of perverse
sheaves F satisfying a∗F ∼= L� F .

If L is trivial, we recover the usual notion of equivariant perverse sheaves;
see [46, §0].

Remark B.9. — Let G′ be a connected normal subgroup of G and let
A := G/G′. Let L0 be a one-dimensional character sheaf on A, and let
L be its pullback to G. Suppose G (and therefore G′) acts freely on X.
Let X ′ = G′\X. Note that A acts freely on X ′ and G\X = A\X ′. Let
r : X → X ′ denote the canonical projection. Then

r∗[dim(G)] : P(A,L0)(X ′)→P(G,L)(X)

is an equivalence of categories.

B.4.1. Support of twisted equivariant sheaves

Given an algebra R over k, an R-point x ofX is a morphism x : SpecR→
X. Now the stabilizer Gx is the sub-group scheme of G fixing the map x.
If x ∈ X is a set-theoretic point, we can think of it as a point in the above
sense in the standard manner, by letting R be the algebra of functions on
x (an extension field of k).
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Let G be an algebraic group and L be a nontrivial one-dimensional char-
acter sheaf on G. Suppose G acts on a variety X. Let x be a set-theoretic
point of X and let Gx denote the stabilizer of X. Then Gx is a subgroup
of G. Let G◦x denote the connected component of the identity of Gx. Let F
be a (G,L)-equivariant sheaf on X.

Lemma B.10. — If the restriction L|G◦x is nontrivial, then the restriction
F|x := x∗F is zero.

Proof. — The restriction x∗F is an (G◦x,L|G◦x)-equivariant local system
on x, with respect to the trivial action. Let π : {x} × G◦x � {x} denote
the projection, which is also the action map. Since x∗F is equivariant,
x∗F �Q` = π∗x∗F ∼= x∗F �L|G◦x . However, by assumption, the first local
system is constant in the G◦x direction, but if x∗F is nonzero, the second
is not. Hence, x∗F is zero. �

B.5. Alternative definitions of twisted sheaves

The purpose of this subsection is to expand on Remark 1.6. The discus-
sions of this subsection are not used anywhere else in the paper.

B.5.1. Central extensions and one-dimensional character sheaves

Let L be a one-dimensional character sheaf on G. Let π1(G) = π1(G, e)
denote the algebraic fundamental group of G. It is well known that the
local system L defines a homomorphism π1(G)→ Q×` . Let us assume that
this homomorphism factors through χL : BL → Q×` , where BL is a finite
quotient of π1(G). The local systems we consider in this article satisfy this
property. In this situation, the epimorphism π1(G) � BL defines a finite
covering G̃→ G. Using the fact that L is multiplicative, one can show that
G̃ is a central extension of G; see the introduction of [38]. Thus, we obtain
a central extension

(B.4) 1→ BL → G̃→ G→ 1

in the category of algebraic groups over k.

Remark B.11. — If k has positive characteristic, there exist étale covers
of G which cannot be endowed with the structure of a central extension of
G; see [38, §2.4 and §B.4].
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B.5.2. Twisted sheaves via gerbes

Let Y denote the quotient stack G\X. Note that Y is an Artin stack.(10)

The central extension (B.4) gives rise to a homomorphism H1(Y,G) →
H2(Y,BL); see [33]. Composing with the morphismH2(Y,BL)→H2(Y,Q×` )
defined by χL : BL → Q×` , we obtain a morphism

(B.5) H1(Y,G)→ H2(Y,Q×` ).

The scheme X is a G-torsor on Y ; therefore, it defines an element in
H1(Y,G). Let L denote the Q×` -gerbe on Y defined by the image of this
element under the morphism (B.5). Then the notion of (G,L)-twisted equi-
variant (perverse) sheaf coincides with the notion of L -twisted perverse
sheaf on Y . We note that the idea of twisting sheaves by gerbes goes back
to [33]. In [49], Reich applies twisting to the constructible derived category
and the category of perverse sheaves.

B.5.3. Twisted sheaves via equivariant sheaves

The character sheaf L pulls back to a trivial local system on G̃. Therefore,
(G,L)-equivariant perverse sheaves on X are automatically G̃-equivariant,
where G̃ acts on X via the natural map G̃ � G. Moreover, one can show
that we have an equivalence of categories between (G,L)-equivariant per-
verse sheaves on X and the full abelian subcategory of perverse sheaves
on the algebraic stack G̃\X whose pullback to X are (BL, χL)-equivariant
(i.e., BL acts on the fibers by χL).

B.6. Twisted external product �̃

The notion of twisted external product of perverse sheaves has been
used widely (e.g., in [29, §1.4], [31, §0.2], [47, §4] and [48, §2.2]). In this
subsection, we give an overview of this construction and apply it to twisted
equivariant sheaves.

Let Y and Z be separated schemes of finite type over a field k. Let H be
a connected algebraic group over k and let p : X → Y be a right H-torsor.
Suppose H acts on Z on the left. Define a free left action of H on X × Z
by

(B.6) h · (x, z) 7→ (x · h−1, h · z)

(10)For `-adic sheaves on an Artin stacks see [43].
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We denote by X×HZ the quotient of X×Z by H. Let q : X×Z → X×HZ
the canonical quotient map. We define twisted external product of sheaves
as follows:

• Let F and G be H-equivariant perverse sheaves on X and Z. Then
F � G is a perverse sheaf on X ×Z equivariant with respect to the
action (B.6). Thus, we obtain a canonical perverse sheaf on X×HZ.

• Suppose G is as above, but F is now a perverse sheaf on Y . Then
p∗F is an H-equivariant perverse sheaf on X. The construction of
the previous paragraph applies to give us a perverse sheaf F�̃G
on X ×H Z. Roughly speaking, F�̃G is F “along the base” and G
“along the fiber”.

• By definition, �̃ is a functor

�̃ : PH(X)×PH(Z)→P(X ×H Z),
satisfying q∗F ∼= (p∗F)� G.

(B.7)

• The functor �̃, with the property expressed in (B.7), makes sense
in the following more general situation: Y is a “strict ind-scheme”
of ind-finite type over k, Z is a strict ind-scheme of ind-finite type
over k equipped with a “nice action” of a pro-algebraic group H

over k. (For the notions “strict ind-scheme” and “nice action” see
[31].) In this case, althoughX need not be of ind-finite type,X×HZ
remains of ind-finite type, since it is a fibration over Z with fibers
isomorphic to Y . The fact that it is nonetheless legitimate to work
with H-equivariant perverse sheaves on X is explained in [48, §2.2].

• More generally, suppose that H ′ < H is a proalgebraic subgroup
such that A := H/H ′ is an algebraic group. Let M0 be a multi-
plicative local system on A. Let M be the pullback of M0 to H.
Let Y ′ := X/H ′, which is an A-torsor over Y . Suppose F and G are
(H,M−1)- and (H,M)-equivariant perverse sheaves on X and Z,
respectively; more precisely (to deal with the case that X may not
be ind-finite), we let F be the pullback of an (A,M−1

0 )-equivariant
local system on Y ′ (cf. Remark B.9). Then F�̃H′G is (untwisted)
equivariant with respect to the action of A which descends from
(B.6). Hence, it descends to a canonical perverse sheaf F�̃G on
X ×H Z. Thus, �̃ also defines a functor

P(H,M−1)(X)×P(H,M)(Z)→P(X ×H Z).
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B.6.1. Twisted external product of local systems

Let Y ′ (resp. Z ′) denote a locally closed subscheme of Y (resp. Z) of
dimension d (resp. d′). Let X ′ ⊆ X denote the restriction of the G-torsor
X to Y ′. Let d′′ := dim(X ′ ×H Z ′). Suppose L is a local system on Y ′

and L′ is an H-equivariant local system on Z ′. The proof of the following
lemmas are left to the reader.

Lemma B.12. — L[d]�̃L′[d′] ∼= L′′[d′′], where L′′ is a local system on
X ′ ×H Z ′.

Lemma B.13. — Let

j : X ′ ↪→ X ′, j′ : Z ′ ↪→ Z ′, j′′ : X ′ ×H Z ′ ↪→ X ′ ×H Z ′.

Assume that j!(L[d]), j′!(L′[d′]), and j′′! (L′′[d′′]) are perverse.(11) Then

j!(L[d])�̃j′!(L′[d′]) ∼= j′′! (L′′[d′′]).

B.7. Trace of Frobenius

Let Fq be a field with q elements. Let Fq be an algebraic closure of Fq.
The Frobenius substitution ϕ ∈ Gal(Fq/Fq) is the automorphism x 7→ xq

of Fq. The geometric Frobenius Frq, or simply the Frobenius, is the inverse
of ϕ.
LetX be a separated scheme of finite type over Fq. Let x : Spec(Fq)→ X

be an Fq-point of X, and let x̄ be a geometric point lying above x. If
G ∈ D(X), then the fiber Gx̄ is a finite dimensional Q`-vector space on
which Gal(Fq/Fq) acts [23, §1.1.7]. We denote by Tr(Frq,G)(x) ∈ Q` the
trace of Frobenius acting on this vector space. Thus, we obtain the trace
function of G

Tr(Frq,G) : X(Fq)→ Q`.

Similarly, we have trace functions Tr(Frqn ,G) : X(Fqn)→ Q` for all n > 1;
see [44, §0.9 and §1.1.1]. Note that with our conventions

(B.8) Tr(Frq,G(n)) = q−n Tr(Frq,G),

where G(n) denotes the nth Tate twist of G [15, §E.1].

(11)This assumption can probably be dropped if one defines twisted external products
for equivariant complexes.
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B.7.1. Character sheaves on connected commutative algebraic groups

Suppose L is a one-dimensional character sheaf on a connected algebraic
group G over Fq (Definition B.6). The property m∗L ∼= L�L ensures that
the trace function is a one-dimensional character Tr(Frq,L) : G(Fq) →
Q×` . For a general noncommutative algebraic group, there may exist one-
dimensional characters of G(Fq) which do not arise in this manner; see,
e.g., [14, §1.5.5].
If G is commutative, then every one-dimensional character of G(Fq) can

be obtained as the trace of Frobenius function of a one-dimensional char-
acter sheaf on G. To see this, let

0→ G(Fq)→ G
Frq − id−→ G→ 0

denote the Lang central extension. Let η : G(Fq) → Q×` be a character.
Pushing forward the above central extension by η−1, we obtain a one-
dimensional local system N on G. One can check that Tr(Frq,N ) = η; see
[22, Sommes Trig], [44, Example 1.1.3], and [15, §1.8].

Remark B.14. — If G is commutative, then for every integer n, we have
a “norm map” Nn : G(Fqn)→ G(Fq). Namely, Nn(x) =

∏n−1
i=0 Friq(x), with

the product taken in G(Fqn) (cf. [22, Sommes Trig, §1.6]). Let ηn := η◦Nn.
Then, one can show that Tr(Frqn ,N ⊗Fq Fqn) = ηn; see op. cit. or [44,
§1.1.3.3].
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