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Abstract

The HIV-1 protease is a major target of inhibitor drugs in AIDS therapies. The therapies

are impaired by mutations of the HIV-1 protease that can lead to resistance to prote-

ase inhibitors. These mutations are classified into major mutations, which usually occur

first and clearly reduce the susceptibility to protease inhibitors, and minor, accessory

mutations that occur later and individually do not substantially affect the susceptibility

to inhibitors. Major mutations are predominantly located in the active site of the HIV-1

protease and can directly interfere with inhibitor binding. Minor mutations, in contrast,

are typically located distal to the active site. A central question is how these distal

mutations contribute to resistance development. In this article, we present a systematic

computational investigation of stability changes caused by major and minor mutations

of the HIV-1 protease. As most small single-domain proteins, the HIV-1 protease is

only marginally stable. Mutations that destabilize the folded, active state of the prote-

ase therefore can shift the conformational equilibrium towards the unfolded, inactive

state. We find that the most frequent major mutations destabilize the HIV-1 protease,

whereas roughly half of the frequent minor mutations are stabilizing. An analysis of

protease sequences from patients in treatment indicates that the stabilizing minor muta-

tions are frequently correlated with destabilizing major mutations, and that highly resis-

tant HIV-1 proteases exhibit significant fractions of stabilizing mutations. Our results

thus indicate a central role of minor mutations in balancing the marginal stability of the

protease against the destabilization induced by the most frequent major mutations.
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1 | INTRODUCTION

The HIV-1 protease plays an essential role in HIV replication by cleaving

newly synthesized polyprotein chains at several places into functional

protein components of the virus. The cleavage of the polyprotein

chain occurs at a tunnel-shaped active site enclosed by the two iden-

tical chains of the dimeric HIV-1 protease.1,2 In its unbound state,

the HIV-1 protease adopts a semiopen conformation that enables

the entry of the polyprotein chain into the active-site tunnel. The

binding of the polyprotein substrate induces a change to the closed

conformation of the protease in which substrate cleavage occurs.3,4

Because of its essential role for HIV replication, the HIV-1 protease

is a major target in AIDS therapy. Nine drugs approved for highly

active antiretroviral therapies are inhibitors of the HIV-1 protease.1,5
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These protease inhibitors bind in the active-site tunnel and, thus,

prevent substrate binding.

During therapy, mutations of the HIV-1 protease can lead to resis-

tance to protease inhibitors. The development of resistance typically

involves several mutations.1,6 Mutations that usually occur first and

individually reduce the susceptibility7 to one or several protease

inhibitors are called “major” mutations.8 Mutations that occur later

and individually do not substantially affect the susceptibility to inhibi-

tors are called “minor” mutations. At present, 23 major mutations and

50 minor mutations involved in resistance development have been

classified.8 Major mutations of the HIV-1 protease involved in drug

resistance are predominantly located in the active-site tunnel or at the

dimer interface and can directly interfere with drug binding by chang-

ing the shape of the active-site tunnel.1,5 Minor mutations, in contrast,

are predominantly located distal to the active-site tunnel.

A central question is how minor mutations contribute to resistance

development. Structural investigations of mutant proteases indicate

that some minor mutations may indirectly affect the active-site tunnel

via a propagation of structural changes from the distal site of mutation

to the active site,5,9 via coordinated structural rearrangements of multi-

ple mutations,10 or via coordinated changes in the structural dynamics

that may affect the balance between substrate cleavage and drug bind-

ing.11 Other minor mutations have been shown to increase the thermal

stability of the HIV-1 protease and to compensate stability decreases

caused by major mutations.12 Highly drug-resistant mutants of the

HIV-1 protease with a large number of mutations can be more stable

than the wildtype (WT).13,14 The stability of the WT protease dimer

depends on the monomer concentration and ranges from 4 to 10 kcal/

mol for micro- to millimolar concentrations,15,16 which are typical stabil-

ity values of marginally stable proteins.17-21

Here, we systematically investigate mutation-induced stability

changes ΔΔG of the HIV-1 protease via calculations with the program

Rosetta.22,23 The Rosetta prediction accuracies for ΔΔG exceed the

accuracies of other programs,23-25 in particular for mutations of

smaller amino acids into larger amino acids, which frequently occur in

the HIV-1 protease. Our ΔΔG calculations indicate that the most fre-

quent major mutations destabilize the HIV-1 protease, and that

roughly half of the frequent minor mutations are stabilizing. We find

that the stabilizing minor mutations are often correlated with

destabilizing major mutations, and that highly resistant HIV-1 prote-

ases exhibit significant fractions of stabilizing mutations. These results

indicate a central role of minor mutations in maintaining the marginal

stability of the HIV-1 protease.

2 | METHODS

We have chosen the high-resolution and high-quality structure

2PC026 for the stability calculations in the unbound state of the HIV-

1 protease. The resolution of this structure is 1.4 Å, which is signifi-

cantly higher than the resolution of other unbound structures. For the

stability calculations in the bound state, we have chosen the three

high-resolution and high-quality structures 4EJD,27 4EJK,27 and 4E4328

with the same sequence as 2PC0. We have performed the stability cal-

culations with the recommended Rosetta protocol 16, which includes

limited backbone flexibility.23 Backbone flexibility appears to be of

particular importance for reliable predictions of stability changes for

mutations of smaller amino acids into larger amino acids,23,29 which fre-

quently occur in the HIV-1 protease. Rosetta results are multiplied with

a factor 0.57 kcal/mol to obtain units of kcal/mol.23 A comparison of

calculated and experimentally measured ΔΔG values for a set of 1210

mutations indicates that Rosetta results have an average prediction

error between 0.5 and 1 kcal/mol (see Figure 2 in Reference 23). A com-

parison of experimentally determined melting-temperature changes

ΔTm and ΔΔG values calculated for the high-quality structure 2PC0

points towards an average prediction error of our calculations of about

0.5 kcal/mol, because the average deviations in ΔΔG from the regres-

sion line of Figure 1 are 0.4 kcal/mol. We have performed seven

Rosetta runs for each considered mutant, and have discarded the two

smallest and two largest ΔΔG values of these runs to exclude outliers.

The reported results are averages of the remaining three ΔΔG values.

For all possible single-residue mutations of the unbound HIV-1 prote-

ase, the mean of the SDs of these remaining three ΔΔG values is

0.1 kcal/mol and, thus, significantly smaller than the average prediction

error of Rosetta. The mean SD for the ΔΔG values of all seven Rosetta

runs per mutation is 0.5 kcal/mol due to outliers. For some HIV-1

mutations, in particular for some mutations of smaller amino acids into

larger amino acids such as the mutation A71V (see Section 3), the

required reconfiguration of the backbone or neighboring sidechain

appears to be beyond the scope of the recommended Rosetta protocol,

which leads to steric overlaps. To avoid unreliable results from steric

overlaps, we exclude ΔΔG results for destabilizing single-residue muta-

tions with average Lennard-Jones repulsive energies between atoms in

different residues that exceed 1.5 kcal/mol. The average Lennard-Jones

repulsive energies are calculated for the Rosetta runs with the selected

three ΔΔG values.

3 | RESULTS AND DISCUSSION

3.1 | Calculated stability changes are highly
correlated with experimentally determined changes of
the melting temperature

We first validate our ΔΔG calculations by a comparison to experimen-

tally measured changes in the melting temperature. Chang and

Torbett30 have measured the changes ΔTm of the melting temperature

induced by selected single and double mutants of the HIV-1 protease

in the absence of substrate or drug molecules. The common major

mutations V82A, I84V, and L90M, which are associated with resis-

tance against several approved inhibitors,7 lead to a decrease of the

melting temperature Tm relative to the WT. This decrease in the melt-

ing temperature reflects a thermal destabilization and is significantly

more pronounced for the double mutant I84V-L90M, compared to

the single mutants I84V and L90M. In contrast, double mutants that

contain the major mutation I84V and one of the minor mutations

L10I, L63P, and A71V have melting temperatures ΔTm close to the
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WT value, which indicates that these minor mutations compensate

the thermal destabilization induced by I84V. The double mutant I84V-

V77I exhibits a melting temperature close to the single mutant I84V.

In Figure 1, the melting-temperature changes ΔTm measured by

Chang and Torbett are plotted against stability changes ΔΔG calcu-

lated with Rosetta23 for the open conformation of the HIV-1 prote-

ase, which is the ground-state conformation in the unbound state.

The double-mutant A71V-I84V is excluded from the figure because of

steric overlaps in Rosetta, which occur also for the single mutant

A71V. These steric overlaps indicate that the reconfiguration of the

backbone and/or neighboring sidechains induced by the “small-to-

large” mutation A71V is beyond the scope of the recommended

Rosetta protocol for calculating stability changes.23 The calculated

ΔΔG values of all other single and double mutants considered by

Chang and Torbett are highly correlated with the experimentally mea-

sured melting-temperature changes ΔTm. For the major mutation

L90M, the relative large change ΔTm ’ −5�C of the melting tempera-

ture is consistent with the relative large stability change of ΔΔG

’ 3.2 kcal/mol calculated with Rosetta. For the major mutations

V82A and I84V, the smaller decreases in the melting temperature

observed by Chang and Torbett are in agreement with smaller ΔΔG

values, compared to L90M. For the double mutants L10I-I84V and

L63P-I84V, both the measured melting temperature and the calcu-

lated stability are closer to the WT values than for the single mutant

I84V, which reflects a compensatory, stabilizing effect of the minor

mutations L10I and L63P.

From the slope − 0.53 (kcal/mol)/
�
C of the regression curve in

Figure 1 and from the measured values ΔTm = −0.6�C for A71V-I84V

and ΔTm = −2.8�C for I84V, we obtain the estimate ΔΔG = −1.2 kcal/

F IGURE 2 Distributions of calculated stability changes in the
unbound, open state of the HIV-1 protease (A) for 1427 single-
residue mutations without steric clashes in Rosetta out of

99 � 19 = 1881 possible mutations, (B) for the major mutations of
Table 1, and (C) for the frequent minor mutations of Table 2. Blue
bars indicate stabilizing mutations with ΔΔG ≤ −0.5 kcal/mol. The
mutation-induced stability changes ΔΔG in the unbound state have
been calculated for the high-resolution and high-quality X-ray
structure with protein data bank code 2PC0.26 The 1427 mutations
and stability changes in (A) are listed in the Supporting Information.
The stability changes for the major and frequent minor mutations in
(B) and (C) are given in Tables 1 and 2. The distribution in (C) includes
the ΔΔGopen values estimated from experimental data for the
mutations L10I and A71V (see Section 3.1) [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 1 Calculated stability changes ΔΔG vs experimentally
determined melting-temperature changes ΔTm induced by single- and
double-residue mutations in the unbound state of the HIV-1 protease.

Values of ΔTm are from Chang and Torbett.30 The slope of the dashed
regression line is −0.53 (kcal/mol)/�C, the Pearson correlation
coefficient is −0.95, and the P-value is 9.4 � 10−4 without the
wildtype data point. The deviations in ΔΔG from the regression line
range from 0 to 0.6 kcal/mol, with an average of 0.4 kcal/mol. Rosetta
results are multiplied with a factor 0.57 kcal/mol to obtain units of
kcal/mol.23 A comparison of calculated and experimentally measured
ΔΔG values for a set of 1210 mutations indicates that Rosetta
calculations have an average prediction error between 0.5 and 1 kcal/
mol (see Figure 2 in Reference 23). Errors of the experimentally
determined melting-temperature changes ΔTm have not been
reported [Color figure can be viewed at wileyonlinelibrary.com]
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mol for the stability change of the minor mutation A71V, assuming

additivity of the ΔΔG values for the single mutations of the resi-

dues A71 and I84, which are not in direct contact. For the mutation

L10I, we obtain the estimate ΔΔG = −1.3 kcal/mol from the experi-

mentally determined ΔTm values −0.4�C and − 2.8�C for L10I-I84V

and I84V, which indicates that the Rosetta result ΔΔG = −0.2 kcal/

mol underestimates the magnitude of the stabilizing effect of the

mutation L10I.

3.2 | Roughly half of the frequent minor mutations
are stabilizing

Tables 1 and 2 summarize the calculated stability changes for all major

and frequent minor mutations of the HIV-1 protease.8 We have per-

formed Rosetta calculations for both the open conformation and the

closed conformation of the HIV-1 protease. The stability changes

ΔΔGclosed of the closed conformation are calculated for the “empty”

state of the protease without substrate or drug molecules. The overall

mutation-induced free energy change in the bound state is the sum of

the stability change ΔΔGclosed of the protein and the binding-free

energy change ΔΔGbinding of a drug or substrate molecule. In addition

to the stability changes, Tables 1 and 2 contain the frequencies fnaive

and fPI of major and minor mutations before and during treatment

with protease inhibitors.

We focus first on the calculated stability changes ΔΔGopen for the

open conformation because the protease is in general more vulnerable

to stability loss in this conformation. The closed protease conforma-

tion of the bound state is additionally stabilized by the binding free

energy ΔGbinding of the substrate or drug molecule. According to the

calculated ΔΔGopen values of Table 1, the four most frequent major

TABLE 1 Calculated stability changes for major mutations

Mutation fnaive fPI ΔΔGopen ΔΔGclosed

D30N 0.1 4.8 −2.5 −1.3 (0.3)

V32I 0 4.0 2.3 0.6 (1.2)

M46I 0.3 17.2 1.1 −1.1 (0.4)

M46L 0.3 7.6 −0.5 −0.3 (0.2)

I47A 0 0.6 4.6 4.0 (0.4)

I47V 0 3.4 1.5 1.2 (0.4)

G48V 0 2.5 — 1.7 (3.1)

I50L 0 1.8 −0.2 −0.1 (0.5)

I50V 0 1.5 −0.6 1.3 (0.3)

I54L 0 2.1 1.3 3.5 (0.7)

I54M 0 1.6 −0.4 3.8 (0.9)

Q58E 0.4 5.3 3.8 3.7 (0.3)

T74P 0 1.4 −1.1 −0.1 (0.3)

L76V 0 3.4 — —

V82A 0.2 18.7 1.5 1.2 (0.4)

V82F 0 1.5 0.6 −0.4 (1.8)

V82L 0 0.2 −0.3 0.3 (0.4)

V82S 0 0.9 2.1 1.8 (0.2)

V82T 0 1.8 0.2 0.7 (0.5)

N83D 0 0.8 5.0 4.0 (0.4)

I84V 0.1 9.2 0.8 0.9 (0.1)

N88S 0 1.2 1.0 0.7 (0.1)

L90M 0.4 22.8 3.2 3.2 (0.3)

Note: The mutations in the table are classified as major by Wensing et al8

for at least one protease inhibitor. The mutation frequencies fnaive before

treatment and fPI during treatment with protease inhibitors are the

percentages of 105 599 sequences of untreated patients and 26 838

sequences of treated patients, respectively, that contain the mutation (one

sequence per patient, last in treatment). These sequences are provided by

the Stanford University HIV Drug Resistance Database.38,39 The

calculated stability changes ΔΔGopen and ΔΔGclosed in the open and closed

conformation of the HIV-1 protease are given in units of kcal/mol. The

stability change ΔΔGopen is calculated for the high-resolution and high-

quality X-ray structure with protein data bank code 2PC0.26 The stability

change ΔΔGclosed is the mean of three values calculated for the three

high-resolution and high-quality structures 4EJD,27 4EJK,27 and 4E4328

with the same sequence as 2PC0. The numbers in brackets are the SDs of

these three values. To avoid unreliable results from steric overlaps, we

exclude Rosetta results for destabilizing mutations with overall Lennard-

Jones repulsive energies between atoms in different residues that exceed

1.5 kcal/mol.

TABLE 2 Calculated stability changes for frequent minor
mutations

Mutation fnaive fPI ΔΔGopen ΔΔGclosed

L10F 0.1 6.9 −2.5 −0.7 (0.1)

L10I 6.8 22.8 −1.3a −0.9 (0.5)

L10V 4.2 9.0 0.2 −0.3 (0.4)

G16E 9.6 7.1 — —

K20I 9.7 7.2 −1.0 −2.5 (0.5)

K20R 9.7 16.6 −1.9 0.4 (0.3)

L33F 0.5 9.8 −0.7 −0.9 (0.3)

M36I 56.1 51.7 −2.2 0.1 (0.7)

I54V 0.1 19.9 0.5 1.8 (0.4)

D60E 11.1 11.3 1.4 1.4 (0.4)

I62V 14.1 26.8 1.5 0.9 (0.2)

L63P 35.7 54.1 − 1.1 −1.1 (0.9)

I64V 8.0 14.0 2.9 1.9 (0.7)

A71T 4.1 6.7 — —

A71V 3.2 20.2 −1.2a —

G73S 0 5.4 — —

V77I 17.9 20.2 0.8 −0.3 (0.2)

L89M 45.8 19.7 2.0 3.0 (0.8)

I93L 45.8 39.9 2.5 2.6 (0.4)

Note: The mutations in the table are classified as minor by Wensing et al.8

The mutation frequencies fnaive before treatment and fPI during treatment

with protease inhibitors and the stability changes ΔΔGopen and ΔΔGclosed

in the open and closed conformation of the HIV-1 protease have been

calculated as in Table 1. The stability changes are given in units of

kcal/mol.
aEstimated from experimental data (see Section 3.1).
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mutations M46I, V82A, I84V, and L90M are destabilizing. Among the

remaining, less frequent major mutations, the four mutations D30N,

M46 L, I50V, and T74P are stabilizing with stability changes

ΔΔGopen ≤ −0.5 kcal/mol. The remaining major mutations are either

destabilizing with values ΔΔGopen ≥ 0.5 kcal/mol, or rather neutral

with stability changes in the range − 0.5 < ΔΔGopen < 0.5 kcal/mol.

The calculated stability changes thus indicate that major mutations

are predominantly destabilizing, in particular the four most common

major mutations M46I, V82A, I84V, and L90M. We use threshold

values of −0.5 and 0.5 kcal/mol for stabilizing and destabilizing muta-

tions, respectively, because we estimate the average prediction error

of our ΔΔG calculations to be about ±0.5 kcal/mol (see Section 2).

Among the minor mutations that occur with frequencies fPI ≥ 5%, in

contrast, the eight mutations L10F, L10I, K20I, K20R, L33F, M36I,

L63P, and A71V are stabilizing with values ΔΔGopen ≤ −0.5 kcal/mol,

the seven mutations I54V, D60E, I62V, I64V, V77I, L89M, and I93L are

destabilizing with values ΔΔGopen ≥ 0.5 kcal/mol, and the mutation

L10 V is rather neutral with ΔΔGopen = 0.2 kcal/mol. The stability

changes calculated with Rosetta thus indicate that about half of the

more frequent minor mutations are stabilizing rather than destabilizing.

Besides the three stabilizing mutations L10I, L63P, A71V identified by

Chang and Torbett from experimentally measured changes of the melt-

ing temperature (see Figure 1), our calculated ΔΔGopen values point

towards the five rather frequent additional stabilizing minor mutations

L10F, K20I, K20R, L33F, and M36I.

Figure 2 compares the distribution of stability change ΔΔGopen for

the major mutations of Table 1 and the frequent minor mutations of

Table 2 to the distribution of stability changes for 1427 single-residue

mutations without steric clashes in Rosetta out of all 99 � 19 = 1881

possible single-residue mutations. The distribution of stability changes

for all possible mutations without steric clashes has a characteristic

single-peaked and slightly asymmetric shape that has also been found

for other proteins.31 Out of the 1427 single-residue mutations of

Figure 2A, 206 mutations are stabilizing with ΔΔGopen ≤ −0.5 kcal/mol,

which amounts to a fraction of 14%. The distribution of stability

changes for major mutations in Figure 2B has a shape that is rather sim-

ilar to the shape of the distribution in Figure 2A, with the caveat that

the distribution of Figure 2B only includes the relatively small number

of 21 mutations with reliable ΔΔGopen values from Table 1. Out of

these 21 mutations, four are stabilizing with ΔΔGopen ≤ −0.5 kcal/mol,

which corresponds to a fraction of 19% that is comparable to the frac-

tion of stabilizing mutations in Figure 2A. The distribution of stability

changes for frequent minor mutations in Figure 2C includes eight stabi-

lizing mutations with ΔΔGopen ≤ −0.5 kcal/mol out of 16 mutations

with reliable ΔΔGopen values in Table 2, which is a fraction of 50%.

This fraction of stabilizing frequent minor mutations is significantly

larger than the fraction of stabilizing mutations in Figure 2A,B.

A lower threshold of −1 kcal/mol for stabilizing mutations leads to

the same conclusion, because seven out of 16 frequent minor muta-

tions with reliable ΔΔGopen values, that is, a fraction of 44%, have

values of ΔΔGopen ≤ −1 kcal/mol. In contrast, the fractions of muta-

tions with ΔΔGopen ≤ −1 kcal/mol among all possible mutations and

among major mutations are both 10%.

3.3 | Stabilizing minor mutations are frequently
correlated with destabilizing major mutations

Pair correlations of mutations associated with resistance to protease

inhibitors can be determined from the protease sequences of patients

in treatment.32-34 We calculate the correlation coefficient ϕ of two

mutations from the currently available 26 838 sequences of treated

patients (one sequence per patient). The ϕ coefficient is the appropriate

correlation coefficient for binary variables (absence or presence of a muta-

tion), ranges from −1 to 1, and is equivalent in interpretation to the Pear-

son correlation coefficient. For two mutations X and Y, the ϕ coefficient

is ϕ = (NXYN00 − NX0N0Y)/([NX0 + NXY] + [N00 + N0Y] + [N00 + NX0] +

[N0Y + NXY]), where NXY is the number of sequences with both mutation

X and Y, N00 is the number of sequences with neither X nor Y, and NX0

and N0Y are the numbers of sequences with only mutation X and Y,

respectively. Table 3 lists all correlated pairs of major and frequent minor

mutations X and Y with ϕ ≥ 0.2. Besides the ϕ coefficients, Table 3

includes the stability changes ΔΔGX and ΔΔGY for the single mutations X

and Y in the open conformation of the HIV-1 protease. Missing values

indicate Lennard-Jones repulsive energies larger than 1.5 kcal/mol, which

point towards steric overlaps in the Rosetta calculations that lead to

unreliable results.

Among the 26 pairs of correlated major and frequent minor muta-

tions in the table, 23 pairs exhibit reliable ΔΔG values for both the

major mutation X and the minor mutation Y. In a majority of 16 of these

23 pairs, a destabilizing major mutation X with ΔΔGX ≥ 0.5 kcal/mol is

correlated with a stabilizing minor mutation Y with ΔΔGY ≤ −0.5 kcal/

mol. For 15 of the 16 pairs with a destabilizing major and a stabilizing

minor mutation, the major mutation is one of the four most common

major mutations M46I, V82A, I84V, and L90M. For the mutation

M46I, three of the four minor mutations correlated with ϕ ≥ 0.2 are sta-

bilizing. For V82A, four out of the five correlated minor mutations

are stabilizing. For I84V, all four correlated frequent minor mutations Y

are stabilizing, and for L90M, four of the six correlated minor mutations

Y with reliable ΔΔGY values are stabilizing. In the 16 pairs with a

destabilizing major mutation and stabilizing minor mutation, the minor

mutations L10I, L33F, and A71V occur four times, L10F occurs twice,

and K20R and L63P occur once. For the mutations of Table 3, the sum

ΔΔGX + ΔΔGY of the stability changes for the single-residue mutants

does not deviate from the stability change ΔΔGXY of the double

mutants by more than ± 0.5 kcal/mol, which is within the numerical

accuracy of our Rosetta calculations. The stability changes ΔΔGX and

ΔΔGY for the single mutants X and Y thus appear to be additive within

numerical accuracy.

The correlations of major and frequent minor mutations of Table 3

are highly significant with P-values smaller than 10−100, but typically do

not exceed values of ϕ ’ 0.4, except for the correlated pair V82A and

I54V with ϕ = 0.54. This range of correlation coefficients clearly below

the maximum value of 1 is plausible for correlations that result from

stabilization because a destabilizing major mutation can be stabilized by

different minor mutations and, thus, does not require a particular minor

mutation. The relatively large correlation coefficient ϕ = 0.54 for the

pair V82A and I54V may result from a correlated structural change.
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Previous correlation analyses have been based on smaller num-

ber of sequences.32-34 Based on 3475 sequences of treated patients,

Rhee et al33 have identified 92 pairs of positively correlated protease

mutations with statistical significance. This set of 92 pairs includes

17 of the 26 correlated pairs of major and frequent minor mutations

with correlation coefficient ϕ ≥ 0.2 listed in Table 3, which we have

identified based on 26 838 sequences of treated patients. Varghese

et al34 have analyzed 11 351 sequences from treated and untreated

patients that include one or more resistance-associated mutation.

Based on their analysis, Varghese et al have identified 75 pairs of

correlated mutations with correlation coefficient larger than 0.1,

which include nine of the 26 correlated pairs of major and frequent

minor mutations of Table 3. In contrast to previous analyses, we have

focussed here on pairs of major and frequent minor mutations, and

have combined the correlation analysis with an analysis of mutation-

induced stability changes.

3.4 | Highly resistant HIV-1 proteases exhibit
significant fractions of individually stabilizing
mutations

In standard essays,35,36 the resistance of protease mutants to inhibitors

is inferred from the half-maximal inhibitory concentration IC50 at which

virus replication is inhibited by 50%. The fold resistance is the ratio of

TABLE 3 Correlated major and
frequent minor mutations

Major mutation X Minor mutation Y ϕ ΔΔGX ΔΔGY ΔΔGXY

M46I L10F 0.29 1.1 −2.5 −1.0

M46I L10I 0.20 1.1 −1.3a

M46I I54V 0.31 1.1 0.5 2.1

M46I A71V 0.26 1.1 −1.2a —

M46L L33F 0.20 −0.5 −0.7 −1.1

M46L I54V 0.28 −0.5 0.5 0.0

M46L A71V 0.20 −0.5 −1.2a —

G48V L10I 0.20 — −1.3a

I54L L33F 0.23 1.3 −0.7 0.5

L76V I54V 0.21 — 0.5 —

V82A L10I 0.32 1.5 −1.3a

V82A K20R 0.27 1.5 −1.9 0.2

V82A L33F 0.32 1.5 −0.7 0.8

V82A I54V 0.54 1.5 0.5 2.1

V82A A71V 0.34 1.5 −1.2a —

I84V L10F 0.27 0.8 −2.5 −2.2

I84V L10I 0.20 0.8 −1.3a

I84V L33F 0.21 0.8 −0.7 0.3

I84V A71V 0.26 0.8 −1.2a —

L90M L10I 0.28 3.2 −1.3a

L90M L33F 0.23 3.2 −0.7 2.3

L90M I54V 0.33 3.2 0.5 3.7

L90M I62V 0.28 3.2 1.5 4.9

L90M L63P 0.31 3.2 −1.1 2.3

L90M A71V 0.41 3.2 −1.2a —

L90M G73S 0.37 3.2 — —

Note: The calculated stability changes ΔΔGX and ΔΔGY for the single-residue mutations X and Y in

the open, unbound conformation of the HIV-1 protease are from Tables 1 and 2, respectively. The

stability changes ΔΔGXY for the double mutants are calculated with Rosetta for the open, unbound

conformation in the same way as ΔΔGX and ΔΔGY. The sum ΔΔGX + ΔΔGY of the stability changes for

the single residue mutants agrees with ΔΔGXY within the numerical accuracy of the calculations, that is,

within ± 0.5 kcal/mol, which indicates that the stability changes are additive for the mutations in this

table. As in Tables 1 and 2, hyphens indicate that ΔΔG values have been excluded due to steric overlaps

in Rosetta calculations. The ΔΔG values for double mutants that include the mutation L10I are not listed

because the value ΔΔGY = −1.3 kcal/mol for the single-residue mutation L10I has been estimated based

on experimental data (see Section 3.1 and Table 2). The calculation of the correlation coefficient ϕ is

described in the text.
aEstimated from experimental data (see Section 3.1 and Table 2).
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the IC50 values for the mutant and WT. A fold resistance of 1 indicates

unchanged resistance, while fold resistances larger than 1 indicate

increased resistance. In a high-quality filtered dataset, the Stanford HIV

Drug Resistance Database provides fold resistances of eight clinically

approved inhibitors for 1808 protease isolates from patients.

In Figure 3A, the maximum fold resistance of the double

mutants among the 1808 isolates is plotted against the calculated

stability change ΔΔG for the open, unbound protease conforma-

tion. The large majority of the mutants have fold resistances around

the WT value 1. The stability changes ΔΔG for these mutants range

from −2 to 6 kcal/mol. Double mutants with significantly larger fold

resistances up to 10 tend to be stabilizing with ΔΔG values

between −2 and 0.

For protease isolates with more than two mutations, the calcu-

lation of stability changes is less reliable due to addition of errors

and possible concerted structural rearrangements. For those

mutants, we simply determine the fraction nst/(nst + nde) of individ-

ually stabilizing mutations where nst is the number of mutations

with calculated stability changes ΔΔG ≤ −0.5 kcal/mol for the

single-residue mutant, and nde is the number of individually

destabilizing mutations with ΔΔG ≥ 0.5 kcal/mol. The fraction of

individually stabilizing mutations ranges from 0 for mutants without

any such mutations to 1 for mutants that exhibit only individually

stabilizing mutations or individually neutral mutations with stability

changes −0.5 < ΔΔG < 0.5 kcal/mol in single-residue mutants. For

highly resistant mutants with mean fold resistancies larger than

100 for the eight inhibitors, the fraction of individually stabilizing

mutations ranges from about 0.25 to 0.65, with an average of 0.43

(see Figure 2B). Figure 3 thus indicates that maintaining or increasing

the stability of the HIV-1 protease plays an important role for

drug resistance. Mutants with high mean fold resistancies contain

significant fractions of individually stabilizing mutations that balance

the destabilizing effects of major, resistance-inducing mutations.

3.5 | Mutations at position I54 destabilize the closed
conformation relative to the open conformation

The calculated stability changes ΔΔGopen and ΔΔGclosed for the open

and closed state of HIV-1 can be different because of the conforma-

tional variations between the states. A striking example is the major

and minor mutations of residue I54 located in the “flaps” of the HIV-1

protease, which close during binding. The calculated stability changes

of the two major mutations I54L and I54M and the frequent minor

mutation I54V indicate that all three mutations clearly destabilize

the closed conformation relative to the open conformation (see

Tables 1 and 2). A theoretical analysis indicates that the catalytic

rate in the presence of inhibitors can be increased by a factor exp

((ΔΔGclosed − ΔΔGopen)/RT) if product unbinding is rate-limiting,

which is plausible for the HIV-1 protease.37 The mutations of the

distal residue I54 thus may contribute to resistance by destabilizing

the closed conformation relative to the open conformation. This

contribution to resistance due to mutation-induced shifts of the

conformational equilibrium is drug-independent, in agreement with

an analysis of fold resistancies, which indicates that all mutations of

I54 are associated with decreased susceptibility to six to seven of

the eight considered protease inhibitors.7

4 | CONCLUSIONS

In this article, we have investigated the stability changes ΔΔG of

the HIV-1 protease induced by major and minor mutations with

the program Rosetta.22,23 Our results indicate that roughly half of

(A) (B)

F IGURE 3 (A) Maximum fold resistance of eight clinically approved protease inhibitors vs calculated stability changes ΔΔG in the open,
unbound protease conformation for double mutants in the high-quality filtered dataset of the Stanford HIV Drug Resistance Database with
overall 1808 protease isolates from patients. Mutants with unreliable ΔΔG values are excluded (see Section 2). For double mutants containing the
mutation A71V, the stability change ΔΔG is calculated by superposition of stability changes for single mutants. (B) Average fold resistance vs
fraction of individually stabilizing mutations for all protease isolates in the high-quality filtered dataset with more than one mutation and reliable
ΔΔG values for all individual mutations of the isolates
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the frequent minor mutations of the HIV-1 protease are stabilizing

(see Table 1). These stabilizing minor mutations are often correlated

with the most frequent, destabilizing major mutations (see Table 3)

and, thus, appear to play a central role in maintaining the marginal

stability of the HIV-1 protease. Highly resistant HIV-1 proteases

exhibit significant fractions of stabilizing mutations (see Figure 3B).
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