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Abstract. We develop the properties of the n-th sequential topological complexity TCn,
a homotopy invariant introduced by the third author as an extension of Farber’s topo-
logical model for studying the complexity of motion planning algorithms in robotics. We
exhibit close connections of TCn(X) to the Lusternik-Schnirelmann category of carte-
sian powers of X, to the cup-length of the diagonal embedding X ↪→ Xn, and to the
ratio between homotopy dimension and connectivity of X. We fully compute the numer-
ical value of TCn for products of spheres, closed 1-connected symplectic manifolds, and
quaternionic projective spaces. Our study includes two symmetrized versions of TCn(X).
The first one, unlike Farber-Grant’s symmetric topological complexity, turns out to be a
homotopy invariant of X; the second one is closely tied to the homotopical properties of
the configuration space of cardinality-n subsets of X. Special attention is given to the
case of spheres.
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1. Introduction, main results, and organization

A motion planning algorithm (mpa) for an autonomous system (robot) S is a rule assigning,
to each pair (A,B) of initial-final positions of S, a (continuous) motion from A to B [La91,
LV06]. If X stands for the space of all possible states of S, and P (X) is the space of all
paths γ : [0, 1] → X, then a mpa for S is a (non-necessarily continuous) section for the
end-points evaluation map e : P (X)→ X ×X defined as e(γ) = (γ(0), γ(1)).

For practical applications one is interested in continuous mpa’s. However it is easy to see
that the end-points evaluation map e admits a continuous section if and only if the space
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of states X is contractible. The alternative is to look at the Schwarz genus of the map e,
which leads to Farber’s concept of topological complexity. This gives a way of recognizing
mpa’s with the least possible order of instability (see [Fa04, Section 4]). The recognition
is done directly from the homotopical properties of the space of states of the robot.

Definition (Farber). Given a path-connected topological space X, the topological com-
plexity of X, TC(X), is the least positive integer k such that the cartesian product X×X
can be covered by k open subsets U1, U2, . . . , Uk on each of which e admits a continuous
section si : Ui → P (X). Each pair (Ui, si) is called a local motion planner with domain Ui.
We set TC(X) =∞ if no such k exists.

A symmetrized version of topological complexity arises when attention is restricted to local
planners for which the motion from A to B is the reverse of the motion from B to A, [FG07].
A number of properties of topological complexity and symmetric topological complexity
can be found in [Fa03, Fa06, Fa08, FG07, FG08, FY04]. The papers [FTY03, GL09] identify
these concepts in the case of real projective spaces as their immersion and embedding
dimensions, respectively.

This paper is concerned with the third author’s generalization of the above concepts. In
such a view, the motion planning does not only depend on a couple of initial-final states
of a robot, but in a sequence of prescribed intermediate stages that the robot should
reach through the motion. Such a setting is standard in industrial production processes
in which the manufacture of a given good goes through a series of production steps. The
corresponding need to identify best possible sequential motion planning algorithms leads to
a homotopy invariant TCn(X), the n-th topological complexity of X, introduced in [Ru10]
and reviewed in Section 2 (where we use normalized notation, i.e. in such a way that
contractible spaces have TCn = 0.)

In Section 3 we discuss basic properties of TCn, including methods for calculating this
homotopy invariant. In Theorem 3.9 we describe optimal bounds for TCn(X): lower
bounds are given in terms of the cup-length of elements in the kernel of the iterated
diagonal, whereas connectivity and homotopy dimension of X lead to upper bounds. The
subadditivity of TCn is settled in Proposition 3.11. As an application, we obtain the full
determination of the numerical value of TCn(X) when X is either a product of spheres
(Corollary 3.12), a closed simply connected symplectic manifold (Corollary 3.15), or a
quaternionic projective space (Corollary 3.16).

Many of our results generalize existing properties for Farber’s TC. For instance, in Corol-
lary 3.3 we show the following close connection between higher topological complexity and
the Lusternik-Schnirelmann category of cartesian powers of spaces:

Theorem. For a path-connected space X, cat(Xn−1) ≤ TCn(X) ≤ cat(Xn).

Theorem 3.5 below gives TCn(G) = cat(Gn−1) for a path-connected topological group
G, which extends the n = 2 property proved by Farber in [Fa04, Lemma 8.2]. Lupton
and Scherer have recently proved that this property extends to not-necessarily homotopy-
associative Hopf spaces (see [LS13]).
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Section 4 deals with symmetric versions of higher topological complexity. We begin by
introducing TCΣ(X), a variation of the symmetric topological complexity TCS(X) intro-
duced in [FG07]. We prove that the numerical values of the two invariants differ at most
by a unit (Proposition 4.2). Such a fact should be prised by noticing that, although Farber
and Grant observe that TCS(X) is not a homotopy invariant, TCΣ(X) depends only on
the homotopy type of X. It should be noted that the homotopy invariance also fails in
general for the monoidal topological complexity introduced by Iwase and Sakai (see [IS10,
Definition 1.3 and Remark 1.4]), where the stasis property is imposed on the motion plan-
ning problem, instead of the symmetry condition we impose on TCΣ. We construct the
corresponding higher analogues TCS

n and TCΣ
n , and prove the homotopy invariance of the

latter (Proposition 4.7).

The calculation of TCS
n can turn out to be an extremely difficult task, mainly due to what

seems to be a limited current knowledge of precise homotopy information about braid
spaces (even braid manifolds, for that matter). In Section 5 we exhibit evidence leading
to conjecture that

(1) TCS
n(Sk) ≤

[
(n+ 2)(k − 1) + 4

]
(n− 1)/2k

holds for integers k ≥ 1 and n ≥ 2. In particular, we observe in Corollary 5.5 that the
equality TCS

n(Sk) = 2(n− 1) holds provided n = 2 or k = 1.
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Dirk Schütz and the Mathematisches Forschungsinstitut Oberwolfach for organizing a won-
derful Arbeitsgemeinschaft mit aktuellem Thema in Topological Robotics. The third au-
thor is grateful for the support during a visit at the Max-Planck Institute for Mathematics
in Bonn, Germany. The fourth author would like to thank the Centro di Ricerca Matem-
atica Ennio De Giorgi, Scuola Normale Superiore di Pisa, for supporting his participation
in the research program “Configuration Spaces: Geometry, Combinatorics and Topology”,
during which a part of his work on this paper was done. The second, third and fourth
authors were partially supported, respectively, by Conacyt Research Grant 102783, Si-
mons Foundation Grant 209424, and Grants-in-Aid for Scientific Research, Ministry of
Education, Culture, Sports, Science and Technology, Japan: 23540082. The authors wish
to express their most sincere gratitude to Peter Landweber for valuable suggestions on
earlier versions of this paper, and for pointing out an important extension of the authors’
original evidence for the conjectural assertion in (13).

2. Preliminaries on notation

We use the normalized version of Schwarz’s concept of the genus of a map [Sv66].

Definition 2.1. The Schwarz genus (also known as sectional category) of a map p : E → B
is the least number k such that there is an open covering U0, U1, . . . , Uk of B for which the
restriction of p to each Ui (i = 0, 1, . . . , k) admits a homotopy section, i.e. a (continuous)
map si : Ui → E such that psi is homotopic to the inclusion Ui ↪→ B. We agree to set
genus (f) = −1 for f : X → Y with X = ∅ = Y .
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The following result, proved in [Sv66, Proposition 22 on page 84] (see also the comments
in Section 1 on page 54 of [Sv66]), will be used in the proof of Proposition 3.11. Here we
agree that a normal space is, by definition, required to be Hausdorff. This convention will
also be in force throughout Section 3.

Proposition 2.2. Let f × f ′ : X ×X ′ → Y × Y ′ be the product of two maps f : X → Y
and f ′ : X ′ → Y ′. If Y × Y ′ is normal, then genus (f × f ′) ≤ genus (f) + genus (f ′).

Definition 2.3. Let X be a path-connected space. The n-th topological complexity of X,
TCn(X), is the Schwarz genus of the fibration

(2) eXn = en : XJn → Xn, en(γ) = (γ(11), . . . , γ(1n))

where Jn is the wedge of n closed intervals [0, 1] (each with 0 ∈ [0, 1] as the base point),
and 1i stands for 1 in the ith interval.

Note that (2) is the standard fibrational substitute for the iterated diagonal map dn =
dXn : X → Xn, so TCn(X) = genus (dXn ). More generally, for a contractible space Yn with n
distinct distinguished points v1, . . . , vn ∈ Yn, consider the evaluation map eYn : XYn → Xn,
eYn(f) = (f(y1), . . . , f(yn)). Because of the contactibility of Yn, the genus of eYn is equal
to TCn(X), the proof is just as the one in [Ru10, Remark 3.2.5]. In particular, we can
take Yn to be a tree with n leaves, or the unit interval In, say with distinguished points
vi = (i− 1)/(n− 1), i = 1 . . . , n. In the latter case we see that the n-th higher topological
complexity gives a topological measure of the complexity of the motion planning problem
where the robot is required to visit n ordered prescribed stages. For this reason, we also
refer to TCn as the n-th sequential topological complexity. Farber’s TC is TC2 +1.

Other fibrations (which not necessarily give fibrational substitutes of the iterated diagonal)
can be used to define TCn. Indeed, let Gn be any connected graph where n ordered distinct
vertices v1, . . . , vn have been selected. We assert that the evaluation map eGn : XGn → Xn

at the chosen vertices has genus (eGn) = TCn(X). To see this, choose maps In → Gn → Jn
preserving the selected vertices. For instance, the latter map can be taken so to collapse
most of Gn to the base point in Jn, except that the first half of each directed edge (vi, v)
in Gn is mapped linearly onto the directed edge (1i, 0) in Jn (in particular vertices vi
are mapped to vertices 1i). Since the induced maps XJn → XGn → XIn are compatible
with the three evaluation maps, we get genus (eIn) ≤ genus (eGn) ≤ genus (eJn). But, as
explained in the paragraph above, the extremes in the previous chain of inequalities agree
with TCn(X).

We close this section setting notation relevant to the construction (in Section 5) of our
two symmetric versions of higher topological complexity.

The action of the symmetric group Σn on {11, . . . , 1n} extends to one on Jn. This yields
corresponding Σn-actions on Xn and XJn in such a way that (2) is an equivariant map.
The action is free on the configuration space Confn(X) of n ordered distinct points in X
and, consequently, on e−1

n (Confn(X)). Thus, at the level of orbit spaces we get a fibration

εXn = εn : Yn(X)→ Braidn(X)
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where Yn(X) = e−1
n (Confn(X))/Σn and Braidn(X) = Confn(X)/Σn—the latter being the

usual “braid” configuration space of cardinality-n subsets of X.

We think of genus (εXn ) as giving a measure for the topological complexity of the n-th
ubiquitous motion planning problem on X. This concept serves in Section 4 as the building
block relating our two symmetrized forms of TCn, see Theorem 4.8 and Definition 4.13.
Section 5 will be devoted to exploring genus (εS

k

n ).

Note that the commutative diagram (where horizontal arrows are canonical projections)

(3)

e−1
n (Confn(X)) −−−→ Yn(X)

en

y yεn
Confn(X) −−−→ Braidn(X)

is a pull-back square, so that (local) sections of εn correspond to Σn-equivariant (local)
section of en. In particular, the homotopy fiber of εn is (ΩX)n−1, just as for en ([Ru10,
Remark 3.2.3]). For instance, a copy of (ΩX)n−1 sits inside the fiber of en over an n-tuple
(x1, x2, . . . , xn) as the strong deformation retract consisting of multipaths {γj}nj=1 for which
γ1 is the constant path at x1. Here and below the term “multipath” refers to an element
γ ∈ XJn , and we will use the notation γ = {γj}nj=1 where γj is the restriction of γ to the
j-th wedge summand of Jn.

3. Properties of higher topological complexity

The higher topological complexities of a space X are closely related to the category of
cartesian powers of X. The first indication of such a property comes from the inequality

(4) TCn(X) ≤ cat(Xn)

which is an immediate consequence of the well known fact that the Schwarz genus of a
fibration does not exceed the category of the base space. On the other hand, the inequality
cat(X) ≤ TC2(X) is well known, and can be generalized to:

Proposition 3.1. For any path-connected space X,

cat(Xn−1) ≤ TCn(X).

Proof. Let TCn(X) = k and choose a covering B0 ∪B1 ∪ · · · ∪Bk = Xn such that there is
a continuous section si for eXn over Bi for i = 0, . . . , k. Let p : Xn → X be the projection
onto the first factor, choose x1 ∈ X, and put Ai = p−1(x1) ∩ Bi. Note that {Ai}ki=0 is an
open cover for p−1(x1). Since p−1(x1) is homeomorphic to Xn−1, it suffices to show that
each Ai is contractible within p−1(x1).

For a point (x1, x2, . . . , xn) ∈ Ai consider the n paths γ1, . . . , γn making up the multipath
si(x1, x2, . . . , xn) = {γj}nj=1. Then γj(1) = xj and γj(0) = x0 for some x0 ∈ X which
is independent of j ∈ {1, . . . n}. Then, the constant path δ1 at x1, and the paths δj
(j = 2, . . . , n)—formed by using the time reversed path γ−1

j the first half of the time,

and γ1 the second half—are the components of a path δ = (δ1, . . . , δn) in p−1(x1) from
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δ(0) = (x1, x2, . . . , xn) to δ(1) = (x1, x1, . . . , x1). The continuity of si implies that δ
depends continuously on (x1, x2, . . . , xn), so we have constructed a contraction of Ai to
(x1, x1, . . . , x1) in p−1(x1). Thus, cat(Xn−1) ≤ TCn(X). �

Remark 3.2. Using the fact that cat(Xn) ≥ n ifX is not contractible ([CLOT03, Theorem
1.47]), we see that Proposition 3.1 recovers [Ru10, Proposition 3.5].

Proposition 3.1 and (4) yield:

Corollary 3.3. For any path-connected space X,

cat(Xn−1) ≤ TCn(X) ≤ cat(Xn).

We next show that the lower bound in Corollary 3.3 is optimal for topological groups.

Proposition 3.4. For any path-connected topological group G,

TCn(G) ≤ cat(Gn−1).

Proof. Let ε denote the neutral element of G. Let k = cat(Gn−1) and choose an open
covering A0 ∪ · · · ∪ Ak = Gn−1 where each Ai (i ∈ {0, . . . , k}) contracts in Gn−1 to an
(n− 1)-tuple pi. Since G is path-connected, each contracting homotopy can be extended
as to arrange that pi = (ε, . . . , ε) = ε(n−1) for all i = 0, . . . , k.

Then, for i ∈ {0, . . . , k} set

Bi = {(g, ga2, . . . , gan) | (a2, . . . , an) ∈ Ai, g ∈ G},

which is open in Gn. We assert that eGn admits a (continuous) section over each Bi. Indeed,
for each i the contractibility of Ai in Gn−1 yields a path γa in Gn−1 joining ε(n−1) to each
a = (a2, . . . , an) ∈ Ai ⊂ Gn−1 and depending continuously on a ∈ Ai. Augment γa to
a path γ′a from ε(n) to (ε, a2, . . . , an) ∈ Bi with the first coordinate remaining constant.
Then, for any g ∈ G, gγ′a is a path joining (g, . . . , g) = gε(n) ∈ Gn to (g, ga2, . . . , gan) ∈ Bi

and depending continuously on n-tuples in Bi. Then, we get the required section

si : Bi → GJn

where, on the jth interval of Jn, si(g, ga2, . . . , gan) is the jth coordinate of gγ′a.

The proof will be complete once we check that B0∪ · · · ∪Bk = Gn. Take (b1, . . . , bn) ∈ Gn

and put g = b1 and ai = g−1bi. Then there exists j such that (a2, . . . , an) ∈ Aj. So,
(b1, . . . , bn) ∈ Bj. �

Corollary 3.3 and Proposition 3.4 combined yield:

Theorem 3.5. For any path-connected topological group G,

TCn(G) = cat(Gn−1).

Alternatively, we can look at the growth of TCn in terms of the difference of any two
consecutive values of n.
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Corollary 3.6. Let G be a path-connected topological group all of whose finite cartesian
powers Gk are normal 1. Then for n ≥ 3,

TCn(G)− TCn−1(G) ≤ cat(G).

Proof. This is a consequence of Theorem 3.5 and the product inequality for the category—
valid under the current normality assumptions in view of Proposition 2.2. �

Unlike with topological groups, higher topological complexities of an arbitrary path-
connected space X do not appear to be completely determined by the category of cartesian
powers of X. Nonetheless, we can directly obtain the following bound on the difference of
two consecutive higher topological complexities of X.

Proposition 3.7. Let X be a path-connected space all of whose finite cartesian powers
Xk are normal. Then for n ≥ 3,

TCn(X)− TCn−1(X) ≤ cat(X2).

Proof. Use the argument in the proof of Corollary 3.6, replacing Theorem 3.5 by the
inequalities in Corollary 3.3. �

In particular TCn(X) is bounded from above by a linear function on n with slope cat(X2).
According to [Ru10, (5.1)], this slope can be improved to TC2(X).

Next we consider the higher analogue of the usual cup-length lower bound for TC. Recall
dn = dXn : X → Xn stands for the iterated diagonal map. In the following definition we
allow cohomology with local coefficients.

Definition 3.8. Given a space X and a positive integer n, cl(X,n) denotes the cup-length
of elements in the kernel of the map induced in cohomology by dXn . Thus, cl(X,n) is the
largest integer m for which there exist cohomology classes ui ∈ H∗(Xn;Ai) such that
d∗nui = 0 for i = 1, . . . ,m and

u1 ` · · · ` um 6= 0 ∈ H∗(Xn;A1 ⊗ · · · ⊗ Am).

The following result, which follows directly from [Sv66, Theorems 4 and 5’], bounds
TCn(X) from below by cl(X,n), and from above by a ratio between the connectivity
conn(X) and homotopy dimension hdim(X) of X—the latter being the smallest dimen-
sion of CW complexes having the homotopy type of X.

Theorem 3.9. For any path-connected space X we have the inequalities

cl(X,n) ≤ TCn(X) ≤ n hdim(X)

conn(X) + 1
.

We will also need the following bound on cl(X × Sk, n) in terms of cl(X,n).

1As noted in Section 2, we assume that a normal space is, by definition, Hausdorff. Thus, in view of
the classical Birkhoff-Kakutani theorem, the normality hypothesis in Corollary 3.6 holds when G satisfies
the first axiom of countability—i.e. provided G is metrizable.
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Theorem 3.10. For any path-connected space X and positive integers n and k we have
cl(X × Sk, n) ≥ cl(X,n) + n − 1. This inequality can be improved to cl(X × Sk, n) ≥
cl(X,n) + n provided k is even and H∗(X) is torsion-free.

Proof. Let v be a generator of Hk(Sk) = Z. Let pi : (Sk)n → Sk be the projection onto
the ith factor and put vi = p∗i (v) for i = 1, . . . , n. Assume that cl(X,n) = m and take
u1, . . . , um such that d∗n(uj) = 0 for j = 1, . . . ,m and u1 ` · · · ` um 6= 0.

To prove the first assertion note that d∗n(vi − v1) = 0 for i > 1, while the basis element
v2 ` · · · ` vn ∈ H∗

(
(Sk)n

)
appears in the reduced expansion (using distributivity) of

(v2 − v1) ` · · · ` (vn − v1). Hence,

u1 ` · · · ` um ` (v2 − v1) ` · · · ` (vn − v1) 6= 0.

Thus cl(X × Sk, n) ≥ cl(X,n) + n− 1.

Assume now that k is even and that H∗(X) is torsion-free. The element v1 + v2 + · · · +
vn−1− (n−1)vn lies in the kernel of d∗n and has cup nth power equal to a non-zero multiple
of v1 ` v2 ` · · · ` vn. Hence,

u1 ` · · · ` um ` (v1 + v2 + · · ·+ vn−1 − (n− 1)vn)n 6= 0.

Thus cl(X × Sk, n) ≥ cl(X,n) + n. �

In [Fa03] Farber obtained the subadditivity of TC2 under suitable topological hypothesis.
The corresponding property for higher topological complexity is given next.

Proposition 3.11. Let X and Y be path-connected spaces. If (X × Y )n is normal, then
TCn(X × Y ) ≤ TCn(X) + TCn(Y ).

Proof. The natural homeomorphisms

(X × Y )n → Xn × Y n,

((x1, y1), . . . , (xn, yn)) 7→ (x1, . . . , xn, y1, . . . , yn), xi ∈ X, yj ∈ Y
and

(X × Y )Jn → XJn × Y Jn ,

(ϕ : Jn → X × Y ) 7→ ((pX ◦ ϕ : Jn → X), (pY ◦ ϕ : Jn → Y ))

fit into the commutative diagram

(X × Y )Jn −−−→ XJn × Y Jn

eX×Y
n

y yeXn ×eYn
(X × Y )n −−−→ Xn × Y n.

So, the desired conclusion follows directly from Proposition 2.2. �

As revealed in the case of spheres (next), Proposition 3.11 is optimal in general.

Corollary 3.12. TCn(Sk1 × Sk2 × · · · × Skm) = m(n − 1) + l where l is the number of
even dimensional spheres.
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Proof. Note that TCn(Sk) = cl(Sk, n) for all k, [Ru10, Section 4]. Then the inequal-
ity cl(Sk1 × · · · × Skm , n) ≥ m(n − 1) + l follows from Theorem 3.10 by induction, so
TCn(Sk1 × · · ·×Skm) ≥ m(n− 1) + l by Theorem 3.9. The opposite estimate follows from
Proposition 3.11. �

The calculation of the higher topological complexity of the k-dimensional torus T k =
(S1)k, partially solved for k = 2 in [Ru10, Proposition 5.1], is a consequence of either
Corollary 3.12 or Theorem 3.5.

Corollary 3.13. TCn(T k) = k(n− 1).

Theorem 3.14. Let X be a CW complex of finite type, and R a principal ideal domain.
Take u ∈ Hd(X;R) with d > 0, d even, and assume that the n-fold iterated self R-tensor
product um ⊗ · · · ⊗ um ∈ (Hmd(X;R))⊗n is an element of infinite additive order. Then
TCn(X) ≥ mn.

Proof. For i = 1, . . . , n, let pi : Xn → X be the projection onto the ith factor and put
ui = p∗i (u) ∈ Hd(Xn;R). In view of Theorem 3.9, the required inequality follows from

(5) v := (u2 − u1)2m(u3 − u1)m · · · (un − u1)m 6= 0.

In order to check (5), note that v comes from the tensor product, which injects into the
cohomology of the cartesian product by the Künneth Theorem (this is where the finiteness
hypotheses are used). So, calculations can be performed in the former R-module. Now,
assuming that dim(X) ≤ dm+ 1, we have

v = (u2 − u1)2m(u3 − u1)m · · · (un − u1)m

= (−1)m
(

2m

m

)
um1 u

m
2 (u3 − u1)m · · · (un − u1)m

= (−1)m
(

2m

m

)
um1 u

m
2 u

m
3 (u4 − u1)m · · · (un − u1)m

= · · ·

= (−1)m
(

2m

m

)
um1 u

m
2 · · ·umn ,

which is non-zero by hypothesis. On the other hand, for dim(X) arbitrary, consider the
skeletal inclusion j : X(dm+1) → X and note that v 6= 0 since j∗(v) 6= 0. �

Corollary 3.15. For every closed simply connected symplectic manifold M2m we have
TCn(M) = nm.

Proof. This follows from Theorem 3.14 (taking u to be the cohomology class given by the
symplectic 2-form on M , and noting that the hypothesis on um⊗ · · · ⊗ um holds since the
coefficients are taken over the reals), inequality (4), the product inequality for category,
and the inequality cat(M2m) ≤ m which follows from [Sv66, Theorem 5, page 75]. (This
argument also yields cat(M2m) = m, a well known fact.) �
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Of course, Corollary 3.15 applies to complex projective spaces. In the quaternionic case
essentially the same proof gives:

Corollary 3.16. The quaternionic projective space of real dimension 4m, HPm, has
TCn(HPm) = nm.

Note that Corollaries 3.15 and 3.16 imply that the upper bound in Corollary 3.3 as well
as both bounds in Theorem 3.9 are optimal in general.

4. Symmetric topological complexity

In this section we introduce two symmetric versions of TCn. One of them, TCΣ
n , has the

advantage of being a homotopy invariant. The other, TCS
n, gives (up to our normalization

convention) the natural generalization of the symmetric topological complexity studied
by Farber and Grant in [FG07]. We begin with the n = 2 case of the homotopically
well-behaved version.

Consider the involutions τ : X ×X → X ×X and τ : P (X)→ P (X) defined by τ(x, y) =
(y, x) and τ(γ)(t) = γ(1− t), for (x, y) ∈ X ×X and γ ∈ P (X). We work with symmetric
subsets A ⊆ X ×X (i.e. those for which τA = A), and equivariant maps s : A → P (X)
(i.e. those satisfying τ(s(a)) = s(τ(a)) for all a ∈ A).

Definition 4.1. TCΣ(X) is the least integer k such that X×X = A0∪A1∪ · · · ∪Ak where
each Ai is open, symmetric, and admits a continuous equivariant section si : Ai → P (X)
of the map e2 in (2).

Before proving (in Proposition 4.7 below) that TCΣ(X) is a homotopy invariant of X,
we show that its numerical value differs by at most one from the numerical value of
Fraber-Grant’s symmetric topological complexity. In accordance with the normalization
hypothesis in this paper, we must compare TCΣ(X) with

(6) TCS
2 (X) = genus (ε2) + 1

where ε2 is the map on the right hand side of (3). Note that, under the perspective
of [FG07], the “+1” summand in (6) is meant to take into account the obvious equivariant
section of e2 on the diagonal.

Proposition 4.2. For each ENR X we have

TCS
2 (X)− 1 ≤ TCΣ(X) ≤ TCS

2 (X).

Remark 4.3. We will prove a more general version of Proposition 4.2 (Theorem 4.8
below). The proof of the general version is considerably more elaborate as it requires a
rather involved use of equivariant euclidean neighborhood retracts. For the sake of clarity,
we offer first the much simpler argument proving Proposition 4.2.

Proof of Proposition 4.2. To prove the first inequality, take an open covering X × X =
A0 ∪ · · · ∪ Ak where each Ai is symmetric and has a continuous equivariant section of e2.
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The Z/2-action τ on X×X yields the orbit map ρ2 : X×X → (X×X)/τ . Then, for each
i = 0, . . . , k, ρ2(Ai−d2(X)) is open and has a section of ε2, and thus genus (ε2) ≤ TCΣ(X).

For the second inequality, take B0, . . . , Bl, with B0 ∪ · · · ∪Bl = ρ2(X ×X − d2(X)) where
each Bi is open and has a section of ε2. Then each ρ2

−1(Bi) is symmetric, open in X ×X,
and admits an equivariant section of e2, cf. [FG07, Lemma 8]. Further, since X is an ENR,
there is a symmetric open neighborhood of d2(X) supporting an equivariant section of e2

(see the proof of [FG07, Corollary 9]). Consequently TCΣ(X) ≤ 1 + genus (ε2). �

The two examples below show that both bounds in Proposition 4.2 are optimal in general.

Example 4.4. For X contractible we have TC2(X) = TCΣ(X) = 0 while TCS
2 (X) = 1.

Indeed, take a point x0 ∈ X and a contraction H : X × I → X, with H(x, 0) = x and
H(x, 1) = x0 for all x ∈ X. Given (a, b) ∈ X ×X, take the path σ = s(a, b) : I → X such
that σ(t) = H(a, 2t) for 0 ≤ t ≤ 1/2 and σ(t) = H(b, 2− 2t) for 1/2 ≤ t ≤ 1. Then s is an
equivariant section for eX2 and, in view of the general inequality

TC2(X) ≤ TCΣ(X),

this gives TC2(X) = TCΣ(X) = 0. The same argument, but now using (6), gives
TCS

2 (X) = 1 (see [FG08, Example 7]).

Example 4.5. The numbers TCS
2 (Sk) and TC2(Sk) have been computed in [FG07, Corol-

lary 18] and [Fa03], respectively. Here we use the inequalities TC2 ≤ TCΣ ≤ TCS together
with the fact that TCS

2 (Sk) = 2 = TC2(S2k) to deduce TCΣ(S2k) = TCS
2 (S2k) = 2

for all k. On the other hand, since TC2(S2k+1) = 1, the above argument only gives
1 ≤ TCΣ(S2k+1) ≤ TCS

2 (S2k+1) = 2. Incidentally, note that the construction in [Fa08,
Example 4.8] gives an open covering S2k+1 × S2k+1 = A0 ∪ A1 by symmetric sets Ai, and
continuous sections of e2 over each Ai, i = 0, 1. However, one of these sections is not
equivariant, which prevents us from deducing TCΣ(Sk) = 1.

We next define higher analogues of TCΣ. Recall that for a given n, the symmetric group
Σn acts on Xn and on XJn by permuting coordinates and paths, respectively. Further,
the fibration en in (2) is Σn-equivariant. We now work with symmetric subsets A ⊆ Xn

(i.e. those for which σA = A for all σ ∈ Σn), and equivariant maps s : A→ XJn (i.e. those
satisfying σ(s(a)) = s(σ(a)) for all a ∈ A and σ ∈ Σn). Definition 4.1 can now be extended
to:

Definition 4.6. TCΣ
n (X) is the least integer k such that Xn = A0 ∪A1 ∪ · · · ∪Ak where

each Ai is open, symmetric and admits a continuous equivariant section si : Ai → XJn for
the map en in (2).

Proposition 4.7. TCΣ
n (X) is a homotopy invariant of X.

Proof. It suffices to prove that, given f : Y → X and g : X → Y with gf ' 1Y , we have
TCΣ

n (X) ≥ TCΣ
n (Y ) for all n. Let H : 1Y ' gf be a homotopy H : Y × [0, 1] → Y such

that H(y, 0) = y and H(y, 1) = gf(y).
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Let A be an open symmetric subset of Xn, and let s : A→ XJn be an equivariant section
of eXn over A. Given a = (a1, . . . , an) ∈ A, let si(a) denote the restriction of s(a) ∈ XJn to
the ith wedge summand of Jn (this is a path in X joining x0 and ai for some x0 ∈ X that
depends continuously on a). Note that the equivariance of s gives

(7) si(aσ(1), . . . , aσ(n)) = sσ(i)(a1, . . . , an) for σ ∈ Σn.

Take B := (fn)−1(A), where fn stands for the n-th cartesian power of f , and consider the
map s′ : B → Y Jn which, at a given b ∈ B with fn(b) = a, has s′i(b) := (g ◦ si(a)) · γi as
its restriction to the ith wedge summand of Jn, where γi is the path in Y given by

γi(t) = H(bi, 1− t).
Then, s′ is an equivariant continuous section of eYn over B in view of (7)).

In this setting, if X = A0 ∪ · · · ∪ Ak where each Aj (j = 0, . . . , k) is open, symmetric,
and admits a continuous equivariant section of eXn , then Y = B0 ∪ · · · ∪ Bk where each
Bj —defined as above using Aj —is open, symmetric, and admits a continuous equivariant
section of eYn . Hence, TCΣ

n (X) ≥ TCΣ
n (Y ). �

The following assertion is our higher analogue of Proposition 4.2.

Theorem 4.8. If X is an ENR, and εn is the map on the right hand side of (3), then

(8) genus (εn) ≤ TCΣ
n (X) ≤ genus (εn) + · · ·+ genus (ε2) + n− 1.

The first inequality in (8) follows just as in the proof of Proposition 4.2: If en admits
an equivariant section over A ⊂ Xn, then εn admits a section over ρn(A ∩ Cn(X)) where
ρn : Xn → Xn/Σn stands for the canonical projection. Our efforts will therefore focus on
the second inequality in (8), whose proof requires some preparation.

Definition 4.9. A topological space X with an action of a compact Lie group G is called a
euclidean neighborhood G-retract (G-ENR) if X can be G-equivariantly embedded, as a G-
equivariant retract of a G-symmetric neighborhood of X, into an orthogonal representation
of G.

In what follows we will make implicit use of the following fact: if a G-ENR X is G-
equivariantly embedded in a given orthogonal representation RN of G, then there exists
a G-symmetric neighborhood U of X in RN and a G-equivariant retraction U → X. As
noticed at the end of the introduction in [J76], such a property follows by applying the
equivariant version of the Tietze Theorem (Tietze-Gleason Theorem, [Br72, Gl50]) to the
non-equivariant argument in [Do95, Proposition and Definition IV.8.5].

We shall use the following weaker version of [J76, Theorem 2.1]2.

Theorem 4.10 (Jaworowski). Let L be a finite group acting on an ENR Z. Then Z is
an L-ENR if for every subgroup G of L, the fixed point set ZG is an ENR.

2Although Jaworowski’s theorem was originally set in terms of a combination of the concepts of ANR’s
and ENR’s, for our formulation the reader should keep in mind the fact that any ENR is an ANR (which
is elementary in view of the Tietze Theorem).
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Next, consider the Σn-equivariant filtration

(9) dn(X) = D1(X) ⊂ · · · ⊂ Dn−1(X) ⊂ Dn(X) = Xn

where, for i ∈ {1, . . . , n}, Di(X) is the closed set consisting of the n-tuples (x1, x2, . . . , xn)
such that the set {x1, x2, . . . , xn} has cardinality at most i. For instance, Dn−1(X) is the
so called fat diagonal in Xn, otherwise denoted by ∆n(X). Compare the filtration in (9)
with the one considered at the end of Section 1 in [Ka08].

Set D0(X) = ∅, and for 1 ≤ i ≤ n let Ci stand for the difference Di(X) − Di−1(X),
the subspace of n-tuples (x1, x2, . . . , xn) such that the set {x1, x2, . . . , xn} has cardinal-
ity i. Note that Cn = Confn(X) and that for i < n, each partition P = {P1, . . . , Pi} of
{1, 2, . . . , n} into i nonempty sets determines a closed subspace Ci

P ⊂ Ci formed by those
tuples (x1, . . . , xn) in Ci satisfying xr = xs whenever both r and s lie in the same part Pj
for some j.

Note that Ci is the disjoint union of the Ci
P ’s, each of which maps homeomorphically onto

Confi(X) under a suitable coordinate projection. [For instance, for n = 3 the three closed
subspaces partitioning C2 are determined by the three requirements x1 = x2, x1 = x3,
and x2 = x3; in the latter case, the required projection can be chosen to be (x1, x2, x3) 7→
(x1, x2).] Therefore, we have a continuous (surjective) map πi : C

i → Ci(X).

Let P i denote the subspace of e−1
n (Ci) consisting of those multipaths α = {αi}ni=1 satisfying

αk = α` whenever αk(1k) = α`(1`). Proceeding as above, we get a continuous surjection
Πi : P

i → e−1
i (Confi(X)) in such a way that in the following commutative diagram

(10)

XJn ←−−− P i Πi−−−→ e−1
i (Confi(X)) −−−→ Yi(X)

en

y en

y ei

y yεi
Xn ←−−− Ci πi−−−→ Confi(X) −−−→ Braidi(X)

the second and third squares are pullbacks, and the two left-most horizontal maps are
inclusions but do not determine a pullback square.

Our last ingredient in preparation for the proof of (8) is given by taking an arbitrary open
subset W of Braidi(X). We then let A = π−1

i (W ′) where W ′ stands for the inverse image
of W under the projection Confi(X) → Braidi(X). Clearly W ′ is Σi-symmetric and A is
Σn-symmetric. This setup will be in force in the following two auxiliary results, which are
the basis of our proof of the second inequality in (8).

Lemma 4.11. The space A is a Σn-ENR.

Proof. Note first that every Ci
P is an ENR, because it is homeomorphic to Ci(X) which,

in turn, is an open subset of the ENR X i. Now, every g ∈ Σn yields a homeomorphism
from any given Ci

P onto some Ci
P ′ . In particular for P = P ′, if there is some x ∈ Ci

P fixed
by g, then g · y = y for all y ∈ Ci

P , i.e. (Ci
P)g = Ci

P . Hence, for any subgroup G of Σn, the
set (Ci

P)G is either empty or the whole of Ci
P , and therefore an ENR. Consequently, (Ci)G
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is an ENR since Ci is the disjoint union of the various Ci
P ’s, and AG is an ENR since A is

open in Ci. Thus, by Theorem 4.10, A is a Σn-ENR, as asserted. �

Lemma 4.12. Assume s : A → P i is a Σn-equivariant section of the second vertical
map in (10). Then there is a Σn-symmetric neighborhood U of A in Xn that admits a
Σn-equivariant section σ : U → XJn of the first vertical map in (10).

Proof. We begin by noticing that, as a consequence of Theorem 4.10, Xn is a Σn-ENR.
Indeed, for any subgroup G of Σn, the fixed point set of G on Xn is an intersection of
hyperplanes xi = xj in Xn. Hence, (Xn)G is an ENR since it is homeomorphic to Xm

for m ≤ n. Thus, we can take Σn-equivariant embeddings A → Xn → RN , and a Σn-
equivariant retraction r′ : O → A of a Σn-symmetric neighborhood O of A in RN , where
RN is an orthogonal representation of Σn.

Set V = O ∩ Xn. Then V is a Σn-symmetric neighborhood of A in Xn, and r = r′|V :
V → A is a Σn-equivariant retraction. Note that V is an open Σn-symmetric subset of
the Σn-ENR Xn, and so V is a Σn-ENR too. We can then choose an open Σn-symmetric
neighborhood Y of V in RN , and a Σn-equivariant retraction ρ : Y → V . Let U ⊂ V
consist of all points v ∈ V such that the segment from v to i◦ r(v) lies in Y where i stands
for the inclusion A ↪→ V (cf. [Do95, Corollary IV.8.7]). Clearly U is a neighborhood of A
in V , and hence in Xn. Furthermore, the composition i ◦ r|U and the inclusion U ↪→ V
are homotopic via the homotopy

Φ : U × I → V, Φ(u, t) = ρ (t · u+ (1− t) · i ◦ r(u)) .

Note that U is Σn-symmetric and Φ is Σn-equivariant, since the Σn-action on RN is or-
thogonal and so it maps lines to lines.

We use the homotopy Φ in order to construct a Σn-equivariant section σ : U → XJn of
the first vertical map in (10). For x ∈ U , consider the path β : I → V , β(t) = Φ(x, t),
starting at y = β(0) = r(x) ∈ A and ending at x. Since V is a subset of Xn, we can set
x = (x1, . . . , xn), y = (y1, . . . , yn), and β = (β1, . . . , βn), so each βi is a path in X from
yi to xi. Further, s(y) gives a multipath {αi}ni=1 with αi(1) = yi and αi(0) = αj(0) for
all 1 ≤ i, j ≤ n. Then the multipath {αi · βi}ni=1 determines an element σ(x) ∈ XJn with
en(σ(x)) = x. This defines the required Σn-equivariant section over U . �

Note that the two pull-back squares in (10) imply that the hypothesis in Lemma 4.12 holds
whenever W (the arbitrary open subset of Braidi(X) taken in the paragraph previous to
Lemma 4.11) is chosen to admit a section of the fourth vertical map in (10). Thus we
obtain the following:

Proof of Theorem 4.8 (conclusion). In view of Lemmas 4.11 and 4.12 we can choose 1 +
genus (εi) Σn-equivariant local sections for en whose domains cover Ci, and thus a total of

(11)
n∑
i=2

(1 + genus (εi)) + 1 = genus (εn) + · · ·+ genus (ε2) + n
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Σn-equivariant local sections for en whose domains cover Xn. Here the “+1” on the left-
hand side of (11) accounts for the obvious equivariant section on the diagonal D1(X). The
theorem follows. �

A comparison of Proposition 4.2 and Theorem 4.8 suggests the following generalization
of (6):

Definition 4.13. For n ≥ 2 set

TCS
n(X) = genus (εn) + · · ·+ genus (ε2) + n− 1.

This is a minor variation of the one proposed in the short final section in [Ru10], and will
be explored next for X a sphere.

5. Schwarz genus of εn and configuration spaces of spheres

The following result, which is a specialization of [Sv66, Theorem 5, page 75] (recalling that
(ΩX)n−1 is the homotopy fiber of the map εn = εXn : Yn(X) → Braidn(X) in (3)), gives a
general upper bound for genus (εn) analogous to that in Theorem 3.9.

Proposition 5.1. If X is an (s − 1)-connected space and Braidn(X) has the homotopy
type of a d-dimensional CW space, then genus (εn) ≤ d/s.

For instance, genus (εXn ) = 0 for any contractible space X. This generalizes the phenom-
enon noted in Example 4.4. Part of the goal of this section is to show that the bound in
Proposition 5.1 becomes an equality in some concrete situations—other than those noted
for a contractible space X. Yet, the following considerations are written in conjectural
terms; non-conjectural statements start from equation (14) on.

The conjectural inequality in (1) is based on Proposition 5.1. To illustrate the idea, start
by recalling from Example 4.5 the equality TCS

2 (Sk) = 2 valid for any k. Farber and Grant
prove that TCS

2 (Sk) is no greater than 2 by producing a symmetric motion planner with
two local rules. Their construction makes use of a well-known explicit Σ2-equivariant de-
formation retraction Conf2(Sk)→ Sk that implies a corresponding homotopy equivalence

(12) Braid2(Sk) ' RPk.

Here we note that Proposition 5.1 gives an alternative direct way to deduce the inequality
TCS

2 (Sk) ≤ 2: all that is needed is the fact that hdim(Braid2(Sk)) = k. In order to extend
this simple argument for higher TCS

n we would need to have a good hold on the homotopy
dimension of Braidn(Sk). Remark 5.3 below provides evidence toward the following:

Conjecture 5.2. For n ≥ 2 and k ≥ 1, hdim(Braidn(Sk)) = (k − 1)(n− 1) + 1.

Remark 5.3. Note that the validness of Conjecture 5.2 for n = 2 follows from (12).
Likewise, the case k = 1 of Conjecture 5.2 is well known: Braidn(S1) has the homotopy
type of S1 (cf. [Ka08, Proposition 2.5]). On the other hand, from the calculations of
homology groups in [FZ00], it can be proved that Conjecture 5.2 is true if Braidn(Sk) is
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replaced by Confn(Sk) when k ≥ 3. At any rate, since the homotopy dimension of a space
is not less than the homotopy dimension of any of its covering spaces, we have

hdim(Braidn(Sk)) ≥ hdim(Confn(Sk)) = (k − 1)(n− 1) + 1.

Therefore the crux of the matter in settling Conjecture 5.2 (and, as a consequence, the
equality hdim(Confn(Sk)) = (n − 1)(k − 1) + 1) rests in producing a CW complex of
dimension (k − 1)(n− 1) + 1 which has the Σn-equivariant homotopy type of Confn(Sk).
The second and fourth authors of this paper have an ongoing project aiming at such a goal;
the basic ideas have been presented in the second half of [BGRT11]. However, it turns
out that those ideas require an important tuning and have actually become a completely
independent paper (which will appear elsewhere). The present paper then focuses on the
first half of [BGRT11], i.e. the development of the properties of the sequential topological
complexity.

We have mentioned that the validness of (1) would follow from Conjecture 5.2. In fact, in
view of Proposition 5.1, we see that Conjecture 5.2 would actually imply the validness of
the more detailed but still conjectural estimate:

(13) genus (εi) ≤ i− 1− i−2
k
, for X = Sk and i ≥ 2.

The remainder of the section is devoted to presenting evidence for the validness and general
optimality of (13).

We have observed that (13) holds true for i = 2. As for its optimality, it is worth observing
that Farber and Grant prove in [FG07, Section 3] the inequality

(14) TCS
2 (Sk) ≥ 2

by means of an involved extension of Haefliger’s calculation of the mod 2 cohomology ring
H∗(Braid2(M);Z/2) for M a closed smooth manifold. But a simpler argument is available.
Start by observing that if (14) were to fail, then there would exist a continuous section σ

for εS
k

2 . In such a situation we could consider the composite

Sk
α−→ Conf2(Sk)

σ̃−→ e−1
2 (Conf2(Sk)) ↪→ PSk

where α(x) = (x,−x) and σ̃ would be the (Z/2-equivariant) pull-back of σ under (3). The
adjoint of this composite would then yield a homotopy H : Sk × [0, 1] → Sk between the
identity H(−, 0) and the antipodal map H(−, 1), and which would in addition satisfy the
relation

(15) H(x, t) = H(−x, 1− t).

But this is impossible since the identity on Sk (which has degree 1) cannot be homotopic
to the presumed map H(−, 1/2) which, in view of (15), would factor as

Sk
proj−→ RPk → Sk,

and would therefore have even degree.
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The above argument, as well as the closely related proof of Proposition 5.4 below, were
pointed out to the authors by Peter Landweber.

Proposition 5.4. Let k be a positive odd integer. For X = Sk and i ≥ 2, genus (εi) ≥ 1.
Further, genus (εi) = 1 provided k = 1.

Proof of Proposition 5.4. The second assertion follows from the first one in view of Propo-
sition 5.1 and the first part of Remark 5.3. To prove the first assertion, we derive a
contradiction from the assumption that εi admits a global continuous section σ. Consider
the map c : Sk → (Sk)Ji given as the composite

Sk
α−→ Confi(S

k)
σ̃−→ e−1

i (Confi(S
k)) ↪→ (Sk)Ji .

Here α(x) = (x, zx, z2x, . . . , zi−1x), where z ∈ S1 is a primitive ith root of unity acting on
Sk in the standard way (recall k is odd), and σ̃ is the Σn-equivariant section of the map
ei : e−1

i (Confi(S
k))→ Confi(S

k) obtained as the pull-back in (3) of the assumed σ. Thus,
for each x ∈ Sk, c(x) is a multipath {cj(x)}i−1

j=0 ∈ (Sk)Ji , where each cj(x) is a path in Sk

starting at a point s(x) ∈ Sk and ending at zjx, for a continuous map s : Sk → Sk. Note
that the equivariance of σ̃ gives

(16) cj(zx) = cj+1(x)

for all x ∈ Sk—here the value of j is to be interpreted modulo i. Then the map H : Sk ×
[0, 1] → Sk defined by H(x, t) = c0(x)(t) is a homotopy starting at s and ending at the
identity. In particular, s : Sk → Sk has degree 1. The contradiction comes by observing
that the degree of s would be divisible by i. Indeed, (16) gives

s(zx) = c0(zx)(0) = c1(x)(0) = s(x),

so that s factors as Sk
proj−→ Lk(i)→ Sk where Lk(i) is the standard lens space Sk/(Z/i). �

Corollary 5.5. The known equality TCS
2 (Sk) = 2 (valid for any integer k > 0) extends to

TCS
n(Sk) = 2(n− 1) for k = 1.

Remark 5.6. The first conclusion in Proposition 5.4 is partially extended by Karasev-
Landweber’s result in [KL12] asserting that genus (εS

k

3 ) ≥ 1 for k not of the form 4 · 3e
with e ≥ 0. Note that the conjectural (13) would in fact sharpen the above estimate to
an equality.
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