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Abstract

The impact of a laser field on the process of photon radiation by an ultra-relativistic electron in

an atomic field is investigated. The angular distribution and the spectrum of the radiated photon

are derived. By means of the quasiclassical approximation, the obtained results are exact in the

parameters of the laser field and the atomic field. It is shown that the impact of the laser field is

significant even for fairly average values of the laser field parameters routinely achievable nowadays.

Therefore, an experimental observation of the influence of the laser field on bremsstrahlung in the

atomic field is a very feasible task.
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I. INTRODUCTION

Quantum electrodynamics (QED) processes in atomic fields are of great interest from

an experimental point of view, because the principles of detection of charged particles and

photons at high energies are based on such processes. For example, bremsstrahlung and

photoproduction of electron-positron pairs are the main processes determining the propa-

gation of electromagnetic showers in matter. Also, they represent background processes in

the study of strong and electroweak interactions, as well as in the search for new physics.

For QED processes in an atomic field, the effective coupling constant for heavy atoms is

η = Zα, which can be of the order of unity. Here, Z is the atomic charge number, α = e2

is the fine structure constant, with e being the electron charge, and units with ~ = c = 1

are employed. Therefore, in these cases it is necessary to perform calculations exactly in η,

which is a nontrivial task.

The method of quasiclassical Green’s functions of the Dirac equation in atomic fields

developed in recent years has made a breakthrough in the theoretical description of the

fundamental high-energy QED processes in these fields [1]. The quasiclassical approach

allows one to obtain results for an arbitrary atomic potential, taking into account the finite

size of the nucleus and screening effects, and without requiring the analytical solution of the

Dirac equation.

Another important example of processes in external fields are QED processes in strong

laser fields. The recent rapid development of laser technologies makes it possible to produce

high-intensity laser fields (intensities up to 1022 W/cm2), which opens up new opportunities

for experimental and theoretical studies of QED in the nonlinear strong-field regime [2–6, 8].

The influence of the laser field on QED processes is characterized by two dimensionless

parameters, ξ = |e|E/mω0 and χ = (ε/m)(E/Ec), where m is the electron mass, E and

ω0 are the laser electric field amplitude and its angular frequency, ε is the energy of the

incident particle and Ec = m2/|e| = 1.3 × 1016V/cm is the critical electric field. Here, we

have implicitly assumed that the laser field can be approximated as a plane wave, that the

particle is initially counterpropagating with respect to the laser field and that, in the case

of massive particles like electrons or positrons, it is ultrarelativistic. Several QED processes

in a strong laser field, such as electron radiation in a laser wave, pair production, photon

splitting, and others, are being extensively studied and we refer the reader to the reviews
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[3–5, 7, 8].

It is interesting to investigate how the presence of a laser field affects QED processes in a

strong atomic field. This question has been studied in detail exactly in the parameters ξ and

χ but in the leading approximation in η. For example, the process of electron-positron pair

production has been considered in Ref. [9, 10], bremsstrahlung in Ref. [11], and Delbrück

scattering in Ref. [12]. Calculating the probabilities of such processes with exact account

of the parameters of both laser and atomic fields is not an easy task, since there is no exact

solutions of the Dirac equation in the superposition of a laser field (even under the plane-

wave approximation) and an atomic field. However, the quasiclassical approach allows one

to find the Green’s function and the wave function of an ultrarelativistic electron in the

superposition of an atomic field and a laser field exactly in the parameters of both the

external fields, but approximately in the parameter m/ε (we recall that ε is the energy of

the incoming particle). Within the quasiclassical approach, the investigation of e+e− pair

photoproduction in the superposition of atomic and laser fields has been performed in Refs.

[6, 13]. In these works, it was shown that the presence of the laser field induces a suppression

of the cross section of e+e− pair photoproduction in an atomic field. This effect is similar

to the Landau-Pomeranchuk-Migdal effect (LPM) [14, 15], which is the suppression of e+e−

photoproduction cross section and the bremsstrahlung spectrum at high energies due to

multiple scattering by atoms in matter. In the case of electron-positron photoproduction,

in order to observe the LPM effect in matter photon energies as high as ω & 2.5TeV are

necessary, which makes extremely hard the experimental observation of the LPM in this

case. To observe the effect of suppression of the e+e− photoproduction cross section due to

a laser field, one can also have much lower photon energies (ω & 10 GeV ) and a laser field

strength already available (1021W/cm2).

The LPM effect for bremsstrahlung is much easier to observe than a similar effect for

photoproduction. In fact, the formation length l for both processes is given by the same

formula l ∼ λcεε
′/ωm, where ω is the photon energy, λc = 1/m = 3.9 × 10−11 cm is

the Compton wavelength, and where for photoproduction ε and ε′ are the electron and

positron energies, respectively, whereas for bremsstrahlung ε and ε′ are the initial electron

and final electron energies, respectively. Thus, unlike that for photoproduction, in the case

of bremsstrahlung the quantity ε′/ω becomes much larger than unity in the soft part of the

spectrum ω ≪ ε, resulting in an increase of the formation length l. Therefore, multiple
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scattering has a stronger effect on bremsstrahlung than on photoproduction. This explains

why the LPM effect for bremsstrahlung has been already measured [16, 17] for incoming

electron with energy 25GeV in the detected photon energy region ω = 0.5− 500MeV.

In this paper, we study the effect of the laser field on the process of bremsstrahlung of high-

energy electrons in an atomic field. Calculations are performed exactly in the parameters

ξ, χ, and η, but in the leading approximation in the parameters m/ε ≪ 1 and mξ/ε ≪ 1.

We show that the laser field greatly modifies the bremsstrahlung spectrum and the angular

distribution of the outgoing photon. As in the case of the LPM effect in matter, experimental

observation of the effect of the laser field on the process of bremsstrahlung is much more

favorable than that on the photoproduction process for the same physical reason mentioned

above in the case of the LPM effect in matter.

The paper is organized as follows. In Sec. II we present the derivation of the matrix

element of the process. In Sec. III, we discuss the angular distribution and the spectrum of

the emitted photon. In Sec. IV, we consider in detail the case of monochromatic circularly-

polarized plane wave. In Sec. V, we investigate the case of a weak laser field. Finally, in

Sec. VI, the main conclusions of the paper are presented.

II. MATRIX ELEMENT

Let an ultrarelativistic electron with momentum p, directed almost along the z-axis, and

energy ε =
√

p2 +m2 interact with the atomic potential V (r) in the presence of a counter-

propagating plane wave, described by the vector potential A(t + z), with z ·A(t+ z) = 0.

We use the quasiclassical electron wave functions, obtained exactly in the parameters of the

atomic and laser fields but in the leading approximation in the parameters m/ε, mξ/ε and

in the angles between the momenta of the final particles and the momentum of the initial

electron [13].

In the absence of the atomic field, the radiation process in the laser field is described

in terms of a probability per unit time. This probability is well known [3, 7] and can be

subtracted in the final answer. After such a subtraction is carried out, one can describe the

radiation process in terms of a cross section. At high energies this cross section reads

dσ =
α

(2π)4
|M |2dω

ω
dk⊥ dp

′
⊥ , (1)
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where k and p′ are the photon and the final electron momenta, respectively, ω = |k| = ε−ε′

and ε′ =
√

p′2 +m2 are the photon and the final photon energies, respectively, and in

general X⊥ denotes a component of the vector X perpendicular to z-axis. Strictly speaking,

different quantities are conserved in the atomic field and in the laser field. In the atomic

field energy is conserved, whereas in the laser field (plane wave) the conserved quantities are

the transverse momentum p⊥ and the light-cone energy p− = pz + ε. In the ultrarelativistic

case and in the counterpropagating setup, it is p− = 2ε + O(m2/ε2), such that within our

approximations the energy is conserved in the superposition of these two fields.

The matrix element M in Eq. (1) has the form

M = −
∫

dTdρ Ū
(out)
p′,µ′ (T,ρ) e

∗ · γ e−ik⊥·ρ+ik2
⊥
T/2ω U (in)

p,µ (T,ρ) , (2)

where γν are the Dirac matrices, e is the emitted photon polarization vector, T = (t+ z)/2,

and ρ = (x, y). The wave functions U
(in)
p,µ (T,ρ) and U

(out)
p′,µ′ (T,ρ) are the solutions of the

Dirac equation in the superposition of the laser and atomic fields, with µ and µ′ indicating

the signs of the electron helicity [13]. The superscripts (in) and (out) indicate that the

asymptotic forms of U
(in)
p,µ (T,ρ) and U

(out)
p′,µ′ (T,ρ) at large r contain, in addition to the plane

wave, the spherical divergent and convergent waves, respectively (we assume that |A(x)| → 0

for |x| → ∞, without requiring the plane wave to be monochromatic).

The wave functions U
(in)
p,µ (T,ρ) and Ū

(out)
p,µ (T,ρ) have the form [13]:

U (in)
p,µ (T,ρ) = exp

{

−im
2

2ǫ
T + ip⊥ · ρ− i

2ǫ

∫ T

0

dτ [p⊥ −A(τ)]2
}

×
[

1− i

2ǫ
α · ∂ρ −

1− α3

4ǫ
α ·A(T )

]

up,µ

∫

dq−

iπ
exp

[

iq2− − i

∫ ∞

0

dτ V (ρ−, T − τ)

]

,

Ū (out)
p,µ (T,ρ) = exp

{

i
m2

2ǫ
T − ip⊥ · ρ+

i

2ǫ

∫ T

0

dτ [p⊥ −A(τ)]2
}

× ūp,µ

[

1− i

2ǫ
α · ∂ρ +

1− α3

4ǫ
α ·A(T )

]
∫

dq+

iπ
exp

[

iq2+ − i

∫ ∞

0

dτ V (ρ+, T + τ)

]

,

ρ± = ρ± τ
p⊥

ǫ
+

[

√

∓2T

ǫ
q± +

1

ǫ

∫ T

0

dyA(y)

]

θ(∓T ) , (3)

whereA(T ) = eA(2T ) = eA(t+z), where q± are two two-dimensional vectors perpendicular

to the z-axis, where α = γ0γ, and where up,µ is the corresponding solution of the free Dirac

equation.
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Within our accuracy, we write the matrix element M as follows

M = ūp′,µ′

{

ê∗M0 +

[

(1− α3)αê∗

4ε′
− ê∗(1− α3)α

4ε

]

·M1 −
αê∗

2ε′
·M2 −

ê∗α

2ε
·M3

}

up,µ ,

(4)

where the quantitiesM0 andM1,2,3 are some functions reported below. For definite helicities

of the particles, the matrix element M reads (cf. the corresponding result in Ref. [18]):

M =
δµµ′e∗

λ

εε′
· [εδλµ(−ε′θp′kM0 −M2 +M1) + ε′δλµ̄(−εθpkM0 +M3 +M1)]

−mµδµ′µ̄δλµω√
2εε′

M0 , (5)

where λ is the sign of the helicity of the photon and where θp = p⊥/ε, θp′ = p′
⊥/ε

′,

θk = k⊥/ω and θxy = θx − θy.

First, we consider the term M0, which we represent as a sum M0 =M+
0 +M−

0 , where the

terms M+
0 and M−

0 correspond to the contributions of the integral over positive values of T

and negative values of T , respectively. In the term M+
0 we make the substitution

ρ → ρ−
√

2T

ε
q− − 1

ε

∫ T

0

dyA(y)

and then take the integrals over q+ and q−. We obtain

M+
0 =

∫ ∞

0

dT

∫

dρ exp
{

− i∆⊥ · ρ− i∆‖T − i∆2
⊥T/2ε

+ i
ω

2εε′

∫ T

0

dτ [A2(τ)− 2ε′A(τ) · θp′k]

− i

∫ ∞

0

dτ [V (ρ+ τθp′ , T + τ) + V (ρ− τθp, T − τ)]
}

, (6)

where ∆ = p′ + k − p. Similarly, we obtain for the term M−
0

M−
0 =

∫ 0

−∞

dT

∫

dρ exp
{

− i∆⊥ · ρ− i∆‖T + i∆2
⊥T/2ε

′

+ i
ω

2εε′

∫ T

0

dτ [A2(τ)− 2εA(τ) · θpk]

− i

∫ ∞

0

dτ [V (ρ+ τθp′ , T + τ) + V (ρ− τθp, T − τ)]
}

. (7)

The influence of the laser field on the bremsstrahlung cross section is most important at

high electron energies since the parameter χ = (ε/m)(E/Ec) is proportional to ε/m. Already

at relatively low energies ε & 100MeV the formation length l = εε′/ωm2 is significantly
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larger than the screening radius rscr ∼ Z−1/3/mα (the so-called case of full screening). It

is this energy region that we consider in our work. In the expressions for the amplitudes

in this energy region, all angles in the integrand are small. Using this circumstance we can

make in the term M+
0 the substitutions T → T − ρ · θp, ρ → ρ+ Tθp and the replacement

V (ρ + τθp′, T + τ) → V (ρ + τθp, T + τ). Similarly, in M−
0 these transformations are

T → T − ρ · θp′, ρ → ρ + Tθp′, and V (ρ− τθp, T − τ) → V (ρ− τθp′ , T − τ). As a result

we have

M0 = Ξ(∆⊥)[Ψ+(ε
′θp′k) + Ψ−(εθpk)] ,

Ξ(∆⊥) =

∫

dρ exp[−i∆⊥ · ρ− iV(ρ)] , V(ρ) =
∫ ∞

−∞

dz V (ρ, z) ,

Ψ±(X) =

∫ ∞

0

dT exp

{

i
ω

2εε′

∫ ±T

0

dτ [(X −A(τ))2 +m2]

}

. (8)

The remaining terms are obtained in the same way and the result is

M1 = Ξ(∆⊥)
[

ΨA
+(ε

′θp′k) +ΨA
−(εθpk)

]

,

M2 = −∆⊥Ξ(∆⊥)Ψ−(εθpk) , M3 = −∆⊥Ξ(∆⊥)Ψ+(ε
′θp′k) ,

ΨA
±(X) =

∫ ∞

0

dT A(±T ) exp
{

i
ω

2εε′

∫ ±T

0

dτ [(X −A(τ))2 +m2]

}

. (9)

By substituting Eq. (9) in Eq. (5), by summing over the helicities of the final particles

and averaging over the initial electron helicity, we find

M2 =
R(∆⊥)

2ε2ε′2
[

(ε2 + ε′2)|f1 + g1|2 +m2ω2|f0 + g0|2
]

,

R(∆⊥) =

∫

dρ1dρ2 e
−i∆⊥·(ρ1−ρ2)

[

e−iV(ρ1)+iV(ρ2) − 1
]

,

f0 = Ψ+(ε
′θp′k) , g0 = Ψ−(εθpk) ,

f1 = ΨA
+(ε

′θp′k)− ε′θp′kΨ+(ε
′θp′k) ,

g1 = ΨA
−(εθpk)− εθpkΨ−(εθpk) . (10)

In Eq. (10) we have subtracted a contribution independent of the atomic field (corresponding

to the term −1 in the square bracket in the expression of R(∆⊥)). The expression (10) to-

gether with Eq. (1) defines the differential bremsstrahlung cross section in the superposition

of the atomic and laser fields. By integrating over p′
⊥ one obtains the angular distribution

of photons at fixed ω. Then, taking the integral over k⊥ one obtains the expression for the

photon spectrum.
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III. ANGULAR DISTRIBUTION AND SPECTRUM OF PHOTONS

In order to derive the angular distribution of the process, we substitute Eq. (10) in

Eq.(1), pass from the variable p′
⊥ to ε′θp′k and take the integrals over ε′θp′k, ρ1 and ρ2,

using the relation
∫

dρ
[

e−iV(ρ+x)+iV(ρ−x) − 1
]

= −8πη2x2 [L− logmx− C] , (11)

valid for full screening within the Thomas-Fermi model [19] when logmx≪ L. Here

L = log 183Z−1/3 − Reψ(1 + iη)− C , (12)

where C is the Euler constant and ψ(x) = d ln Γ(x)/dx. Then, the differential cross section

can be written as the sum of two terms:

dσ

dωdk⊥
=

dσ1
dωdk⊥

+
dσ2

dωdk⊥
,

dσ1
dωdk⊥

= − 4αη2

πm4ωD
Im

∫

dτ1dτ2τ1e
iφ+

{

[

2L− C + i
π

2
− log τ1 + iζ1F (ζ1)

]

× [(1 + iζ1) (v · v− +D)− v− · b1]

− v− · (v − b1)−D −
(

1− e−iζ1
)

[

D + v · v− + i
v− · b1
ζ1

]

}

,

dσ2
dωdk⊥

= −i 2αη2

πm4ωD

∫

dτ1dτ2e
iφ−

{

[

2L− C + i
π

2
− log τ− + iζ2F (ζ2)

]

× [i− τ−(1 + iζ2)(D + v · v+) + τ−b2 · (v + v+)]

− 2i+ τ−(v − b2) · (v+ − b2)− ζ2 + τ−D

+ τ−
(

1− e−iζ2
)

[

i
(v + v+) · b2

ζ2
+ v · v+ +D

]

}

,

τ± = τ1 ± τ2 , b =
εθpk

m
, b1 = b−

∫ τ1

0

Ax

τ1
dx , b2 = b−

∫ τ1

τ2

Aτ

τ−
dτ ,

v± = A±τ2 − b , v = Aτ1 − b , Aτ =
1

m
A

(2εε′τ

ωm2

)

, ζ1 = τ1b
2
1 , ζ2 = τ−b

2
2 ,

φ± = τ± +

∫ τ1

∓τ2

(Aτ − b)2dτ , F (x) =

∫ 1

0

dte−ixt log t , D =
ω2

ε2 + ε′2
. (13)

Note that the contribution dσ1/dωdk⊥ is given by the terms in Eq. (10) proportional to

f0g
∗
0 and to f1 · g∗

1 , whereas the contribution dσ2/dωdk⊥ by the terms proportional to |f0|2

and to |f1|2. The terms |g0|2 and |g1|2 do not contribute to dσ/dωdk⊥. Using Eq. (13) it is
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possible to obtain the cross section dσpp/dε dp⊥ of e+e− pair production by a photon with

the energy ω in combined atomic and laser fields, where ε is the produced electron energy,

p is the electron momentum, and p⊥ is the transverse component of p with respect to k.

In order to do this it is necessary to perform the substitutions p → −p, ε → −ε, k → −k,

and ω → −ω.
Taking the integral over k⊥ in Eq. (13) we arrive at the photon spectrum

dσ

dω
= − 4αη2ω

m2ε2D
Re

∫

dτ1dτ2
τ 2+

ei(τ++φ)

{

[

2L− C + i
π

2
− log

τ1τ2
τ+

+ iζF (ζ)

]

×
[

2iτ1τ2
τ+

+ iζs1 · s2 − (β + s1) · (β − s2) +Dτ1τ2(1 + iζ)

]

− 3iτ1τ2
τ+

+ (β + s1) · (β − s2)−Dτ1τ2 −
ζτ1τ2
τ+

−
(

1− e−iζ
)

[

Dτ1τ2 +
iτ1τ2
τ+

+ i
(s1 − s2) · β

ζ
+ s1 · s2

]

}

,

φ =

∫ τ1

−τ2

Aτ
2dτ −

(
∫ τ1
−τ2

Aτdτ)
2

τ+
, ζ = β2 τ+

τ1τ2
, β =

τ2
τ+

∫ τ1

0

Aτdτ +
τ1
τ+

∫ −τ2

0

Aτdτ ,

s1 = τ1Aτ1 −
τ1
τ+

∫ τ1

−τ2

Aτdτ , s2 = τ2A−τ2 −
τ2
τ+

∫ τ1

−τ2

Aτdτ . (14)

Note that the term dσ2/dωdk⊥ does not contribute to the spectrum, because dσ/dω is

determined by the interference of the terms in Eq. (2) corresponding to the integration over

positive and negative values of T (f0 and g0, f1 and g1, respectively). Using Eq. (14) it is

possible to obtain the cross section dσpp/dε by multiplying Eq. (14) by the factor ε2/ω2 and

by performing the substitution ε→ −ε and ω → −ω.
The expressions (13) and (14) are obtained for an arbitrary phase dependence of the

potential A(T ) and any values of the laser field parameters. Below we consider in detail

some special cases of A(T ).

IV. MONOCHROMATIC CIRCULARLY-POLARIZED PLANE WAVE

For a circularly-polarized monochromatic plane wave we have

Aτ = ξ [cos(Ωτ) e1 + sin(Ωτ) e2] , Ω =
4εε′ω0

ωm2
, (15)

where e1 and e2 are two unit vectors perpendicular to z-axis, ω0 it the laser angular fre-

quency, ξ = |e|E/mω0, and E is the amplitude of the electric field of the laser. In this case
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the expression of the spectrum considerably simplifies and it reads

dσ

dω
= − 4αη2ω

m2ε2D
Re

∫

dτ1dτ2
τ 2+

eiτ+[1+κ(τ+)]

{

[

2L− C + i
π

2
− log

τ1τ2
τ+

+ iζF (ζ)

]

×
[

τ1τ2
τ+

(2i− ζ)−G2 +G1(1 + iζ)

]

− 3iτ1τ2
τ+

+G2 −G1 −
(

1− e−iζ
)

[

G1 +
iτ1τ2
τ+

+ i
G2

ζ

]

}

,

G1 = −τ1τ2
[

κ(τ+) + 2f(τ+)− 2ξ2 cos2(τ+Ω/2)−D
]

, f(τ) = ξ2
sin(Ωτ)

Ωτ
,

G2 =

[

f(τ1)− f(τ+) +
τ−
2τ+

(κ(τ1)− κ(τ+))

]

+ (τ1 ↔ τ2) , κ(τ) = ξ2
[

1− sin2(Ωτ/2)

(Ωτ/2)2

]

,

ζ = τ+κ(τ+)− τ1κ(τ1)− τ2κ(τ2) , (16)

where D is defined in Eq. (13). If one passes in Eq. (16) from the variables τ1 and τ2 to the

variables τ = τ+ and y = τ1/τ+, one finds that for Ω = 1 + ξ2 there is a divergence of the

integral at large τ . The condition Ω = 1 + ξ2 is equivalent to the relation

ω = ω∗ =
4ε2ω0

m2(1 + ξ2) + 4εω0

. (17)

Now, for optical lasers (ω0 ∼ 1 eV) we have εω0/m
2 ≪ 1 for electron energies up to ε ∼

20GeV, and below for simplicity we write all expressions in the leading approximation in

the parameter εω0/m
2. Thus,

ω∗ =
4ε2ω0

m2(1 + ξ2)
≪ ε . (18)

The quantity ω∗ is nothing but the maximum frequency of the photon produced in a collision

of the electron with the energy ε and a circularly-polarized plane wave with the frequency

ω0. The divergence is related to the cascade process when an electron radiates a photon

in a pure laser field and then scatters in the atomic field (or vice versa). Exactly at the

resonance (Ω = 1 + ξ2) the expression (16) is not applicable because the relation (11) used

in our derivation is valid under the condition logmx ≪ L ∼ log(1/mrscr). As a consequence

of this condition, we find that Eq. (16) is applicable if |ω/ω∗ − 1|(1 + ξ2) ≫ 1/(mrscr)
2.

This statement follows from the asymptotics of Eq. (16) obtained at |ω/ω∗ − 1| ≪ ξ:

dσ

dω
=

4αη2ξ2ω∗

3m2(1 + ξ2)2(ω∗ − ω)2

{

L+
1

2
log

[ |ω − ω∗|(1 + ξ2)

ω∗

]

− 1

6

}

. (19)

We emphasize that, for the case of a circularly-polarized laser field, due to the conservation

of the z-component of the total angular momentum the absorption of more than one laser

photon is strongly suppressed in the ultrarelativistic regime under investigation. The ab-

sorption of two laser photons, in particular, can occur only if the electron helicity changes

10



sign in the emission process and the emission probability with spin flip ism2/ε2 times smaller

than the probability of emission without spin flip.

For ω ≪ ω∗ and any value of ξ, we obtain

dσ

dω
=

16η2α

3m2(1 + ξ2)ω

[

L+
1

2
log(1 + ξ2) +

1

12

]

. (20)

In the angular distribution in Eq. (13), there is also a divergence in the integral over τ

at a frequency

ω = ω∗
θ =

nω∗

1 + u
, u =

ε2θ2kp
m2(1 + ξ2)

, (21)

where n ≥ 1 is an integer number. This divergence is also due to the possibility of a cascade

process.

In the vicinity of ω∗
θ at ξ2 ≪ 1, we have the following asymptotic form for n = 1 and

|ω/ω∗ − 1| ≪ ξ:

dσ

dωdk⊥
=

8αη2ξ2ε2b2 ω∗
θ

πm4(1 + b2)4(ω − ω∗
θ)

4
[L− 5/2 + log(b+ 1/b) + log |ω/ω∗

θ − 1|] , (22)

where b = εθkp/m.

Analogously, for ω ≪ ω∗
θ and any value of ξ, we have

dσ

dωdk⊥
=

8η2αε2

πm4(1 + u)4ω3

{

[

L− 3/2 + log (1 + u) +
1

2
log(1 + ξ2)

]

(1 + u2) + 2u

}

. (23)

Finally, we note that in all cases there is no divergence for a finite laser pulse, due to the

finite duration of the interaction of the combined laser and atomic fields with the electron.

V. WEAK LASER FIELD

The effects of the laser field depend on the values of the two parameters, ξ and χ =

(εω0/m
2)ξ [3, 7]. As it was pointed out above, for optical lasers the relation χ ≪ ξ holds

up to electron energies of the order of 20GeV. For a routinely achievable intensity of

I = 1018W/cm2 we have that we have ξ = 0.51 at λ = 850 nm and χ = 0.015 for ε = 5GeV.

Since Aτ ∝ ξ, we can expand Eq. (14) with respect to Aτ for ξ2 ≪ 1 and write dσ/dω as

the sum dσ/dω = dσa/dω + dσl/dω, where

dσa
dω

=
4αη2

m2ω

[

(

1 +
ε′2

ε2
− 2ε′

3ε

)

L+
1

9

ε′

ε

]

,

11



dσl
dω

= − 4αη2ω

m2Dε2
Re

∫

dτ1dτ2
τ 2+

eiτ+

{

(

2L− C + i
π

2
− log

τ1τ2
τ+

)

×
[

−2τ1τ2φ

τ+
− (β + s1) · (β − s2) + iDτ1τ2(φ+ ζ)

]

+
3τ1τ2(φ+ ζ)

τ+
+ 2β · (s1 − s2)− s1 · s2 − iDτ1τ2(φ+ 2ζ)

}

, (24)

with the used notations given in Eq. (14). For the case of the circularly-polarized monochro-

matic plane wave considered above, all integrals can be taken and the result is:

dσl
dω

=
4αη2ξ2ω

m2Dε2
Re

{

L+
1

2
+

6L (9y2 − 7)− 3y2 + 1

18 (y2 − 1)2
+ y2

[(

L− 3

2

)

l1

− l21 + l22
8

− 2y (3y2 − 2) l2 + (5− 7y2) l1

12 (y2 − 1)2
− 1

2
Li2(

1

y2
)

]

− 8y3
ε′

ε

[

L(y2 − 1)

y3
+

(12L+ 1) (7y2 − 5)

72y3 (y2 − 1)
+

(yl1 − l2)

12 (y2 − 1)

−
(

L− 3

2

)

(yl1 + l2) + (y − 1)Li2

(

1

y

)

+ (y + 1)Li2

(

−1

y

)]

}

, (25)

where y = ω/ω∗, l1 = log(1− 1/y2), l2 = log[(y + 1)/(y − 1)].

In the vicinity of the resonance (at |1− y| ≪ 1) we have

dσl
dω

=
4αη2ξ2ω∗

3m2(ω∗ − ω)2

[

L+
1

2
log |1− ω/ω∗| − 1

6

]

. (26)

Outside of the resonance we obtain

dσl
dω

=− 16η2ξ2α

3m2ω

(

L− 5

12

)

(27)

for y ≪ 1, and

dσl
dω

=
16αη2χ2ε′2

m2ω3

[

10

(

1 +
ε′2

ε2
− 64

75

ε′

ε

)

L− 9

(

1 +
ε′2

ε2
− 1756

2025

ε′

ε

)

]

(28)

for y ≫ 1. This asymptotics agrees with the corresponding result in Refs. [4, 20].

In the region ω > ω∗ radiation in a pure laser field is almost absent for the parameters

regime under investigation, such that this region is the most appropriate from the experi-

mental point of view in order to observe the impact of the laser field on bremsstrahlung in

the atomic field. For 1 ≫ ω/ω∗ − 1 ≫ 1/(mrscr)
2, the term dσl/dω becomes of the same

order of the term dσa/dω even at ξ ≪ 1, which is easily accessible experimentally. This

12



statement is illustrated in Fig. 1, where the ratio (dσl/dω)/(dσa/dω) is shown as a function

of ω at ξ = 0.5 and ε = 5GeV (corresponding to χ = 0.015), when ω∗ = 371MeV. It is

worth noting that these parameters can be achieved by modern high-power lasers without

tightly focusing the laser energy such that the plane-wave approximation is well justified.

420 440 460 480 500

0

1

2

3

4

ω [MeV]

d
σ
l

d
ω

(

d
σ
a

d
ω

)

−
1

FIG. 1: Ratio
dσl/dω

dσa/dω
as a function of ω at ξ = 0.5 and ε = 5GeV (corresponding to χ = 0.015).

For these parameters it is ω∗ = 371MeV.

The figure clearly shows how the presence of the laser field substantially modifies the

bremsstrahlung spectrum.

VI. CONCLUSION

In the present paper, we have investigated in detail the impact of a laser field approxi-

mated as a plane wave on the process of photon radiation by an ultra-relativistic electron in

an atomic field. We have derived the corresponding angular distribution and the spectrum

of the radiated photon. By means of the quasiclassical approximation, the obtained results

are exact in the parameters of the laser field and the atomic field. In particular, we have

shown that the impact of the laser field is significant even for fairly average values of the laser

field parameters, which are routinely obtained in the laboratory nowadays. This makes an

experimental observation of the influence of the laser field on bremsstrahlung in the atomic

field to be a very feasible task.
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