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Today’s ensemble weather prediction systems provide reliable and sharp probabilis-

tic forecasts—yet they are still rarely communicated to outside users because of two

main worries: the difficulty of communicating probabilities to lay audiences and

their presumed reluctance to use probabilistic forecasts. To bridge the gap between

the forecasts available and their use in day-to-day decision making, we encourage

scientists, developers, and end-users to engage in interdisciplinary collaborations.

Here, we discuss our experience with three different approaches of introducing prob-

abilistic forecasts to different user groups and the theoretical and practical challenges

that emerged. The approaches range from quantitative analyses of users’ revealed

preferences online to a participatory developer–user dialogue based on trial cases

and interactive demonstration tools. The examples illustrate three key points. First, to

make informed decisions, users need access to probabilistic forecasts. Second, fore-

cast uncertainty can be understood if its visual representations follow validated best

practices from risk communication and information design; we highlight five impor-

tant recommendations from that literature for communicating probabilistic forecasts.

Third, to appreciate the value of probabilistic forecasts for their decisions, users need

the opportunity to experience them in their everyday practice. With these insights

and practical pointers, we hope to support future efforts to integrate probabilistic

forecasts into everyday decision making.
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1 INTRODUCTION

Probabilistic forecasts have been available for many years

within weather services (e.g., probabilities for exceeding pre-

cipitation thresholds or for the occurrence of thunderstorms).

Yet with the exception of standardised weather forecasts for

airports and several flood forecasting offices (Frick and Hegg,

2011), probabilistic forecasts are rarely communicated to out-

side users. Historically, uncertainty in weather forecasts –

in the form of odds or verbal terms – was first communi-

cated in the United Kingdom, France, and the United States

about 200 years ago (Murphy, 1998). More than 150 years

later, the advent of numerical weather prediction models

heralded a new era and transformed these initial ideas into

operational probabilistic forecast products. While the early

probability forecasts were based on subjective and statistical

interpretations of the intrinsic uncertainty in single numeri-

cal forecasts, the estimation of uncertainty later relied on the

combination of several forecast runs of one numerical weather

model (a “time-lagged ensemble”; Branković et al., 1990)

or of numerical forecasts from different operational centres

(a “poor-man’s ensemble”; Ebert, 2001). The first global
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medium-range ensemble prediction systems (EPSs) came into

operation in the 1990s (Houtekamer et al., 1996; Molteni

et al., 1996; Palmer et al., 1992; Toth and Kalnay, 1993;

1997). The early EPSs suffered from underdispersiveness,

indicating that the systems failed to correctly represent

all sources of uncertainty (Buizza et al., 2005). Since

then, intensive research and development efforts in data

assimilation, initial condition perturbation, and model physics

representation have continuously improved the performance

of operational EPSs (Bauer et al., 2015; Palmer, 2018 give

overviews and historical context). In order to provide reliable

and sharp forecasts that can increase the economic value of

risk assessments and decision making (Palmer, 2002), sta-

tistical calibration methods are used to complement physical

modelling (e.g. Roulston and Smith, 2003; Hamill et al.,
2004; Gneiting et al., 2005; Raftery et al., 2005).

While the calibration of operational probabilistic forecasts

still leaves room for improvement, the main obstacle to mak-

ing probabilistic forecasts commonplace is the difficulty of

communicating probabilities to lay audiences. The worry is

that uncertainty may be misunderstood, resulting in risky

behaviour or loss of trust. However, there is growing evi-

dence from research in risk communication and decision

making that probabilistic information can facilitate decision

making (Joslyn and LeClerc, 2013) and that presenting prob-

abilities in transparent formats can fundamentally improve

laypeople’s understanding of them (Hoffrage et al., 2000;

Gigerenzer et al., 2007). In fact, probabilistic information

is actually favoured by laypeople (Morss et al., 2008). It

can increase trust in forecasts (LeClerc and Joslyn, 2015)

and may improve decision making (Roulston et al., 2006).

Forecast uncertainty must be presented clearly for these ben-

efits to take effect; when, for instance, it is expressed using

poorly defined verbal probability expressions, interpretations

vary dramatically across people and situations (Weber and

Hilton, 1990; Budescu et al., 2014; Pardowitz et al., 2015).

Nonetheless, the current practice of withholding probabilis-

tic information rather than striving to express it transparently

impedes a shared decision-making process between meteoro-

logical experts, institutions, and the public (Gigerenzer and

Muir Gray, 2011 discuss this issue for medicine). Rather than

enabling institutions and the public to make informed deci-

sions, meteorologists often find themselves – reluctantly –

deciding on behalf of others by issuing deterministic warnings

without knowing the particular needs of their end-users.

In order to encourage wider dissemination of proba-

bilistic forecasts, the World Meteorological Organisation

published guidelines on communicating forecast uncer-

tainty and explicitly emphasised the need to address the

challenge of communicating and responding to “low proba-

bility, high impact” events (Gill, 2008). Despite these efforts,

the challenge of bridging the gap between the informa-

tion available from weather services and its integration in

day-to-day decision making persists (Taylor et al., 2018).

With the aim of fully exploiting the information in ensemble

predictions, the German national weather service (Deutscher

Wetterdienst, DWD) has augmented its personnel resources

to intensify both the user dialogue and the development of

ensemble-based, user-optimised forecast products. The Hans

Ertel Centre for Weather Research (Simmer et al., 2016)

enables the DWD to build long-term collaborations with

social and behavioural scientists. This presents a unique

opportunity to explore weather-related risk communication

(i.e. the communication of probabilistic information) in inter-

disciplinary research groups, and to develop, in cooperation

with end-users, methods and approaches for introducing

probabilistic weather information.

In this article, we present three practical applications

that communicate probabilistic weather forecasts to three

professional user groups that differ considerably in their

background, tasks and weather-dependent decisions. The

applications were developed and analysed in interdisci-

plinary collaborations of DWD staff, key users of the DWD’s

services, and social and behavioural scientists outside the

DWD. For each application, we used a different approach to

introduce probabilistic forecasts and to tailor them to users’

decision processes. The main goal of this article is to share

and discuss our experience with the various approaches, the

strengths and limitations we encountered, and the theoretical

and practical challenges that emerged. In addition, we pro-

vide pointers to best practices and relevant literature from

risk communication research, social and behavioural science

to support future efforts to integrate probabilistic forecasts

into everyday decision making.

2 THREE DIVERSE PRACTICAL
APPLICATIONS

One of the main duties of the DWD is safeguarding citizens

and critical infrastructures in Germany by providing timely

and reliable meteorological services and weather warnings.

To achieve this, the DWD collaborates closely with agen-

cies and parties responsible for emergency management and

critical infrastructure.

In the following, we present our efforts to mean-

ingfully integrate probabilistic weather forecasts into the

decision-making processes of (a) emergency managers, (b)

road workers, and (c) electrical transmission grid operators.

The main duty of all three user groups is to ensure the secu-

rity and safety of citizens and critical infrastructure. They

prevent and react to possible weather-related hazards as part

of their day-to-day business. In the face of this uncertainty,

probabilistic forecasts would allow them to make informed

decisions (Murphy, 1966; Palmer, 2002). We therefore pro-

vided them with such forecasts – even if they initially did

not request them or indicated that they preferred deterministic

forecasts. In doing so, we followed a shared decision-making

approach that aims to inform decision makers rather than to

withhold information about uncertainty and make decisions
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on their behalf. After all, forecasters possess neither the users’

domain knowledge about the concrete decisions for which the

forecasts are used nor their understanding of the constraints

in responding to forecasts and actual weather conditions.

The user groups differ considerably with respect to

their educational background, their daily tasks and the

weather-dependent decisions they need to make:

1. Emergency managers: decision makers in a large number

of control and dispatch centres across Germany, respon-

sible for coordinating resources and personnel across

emergency services before, and as a reaction to, severe

weather events. Their educational background is heteroge-

neous; most of them completed an apprenticeship prior to

upgrading their skills to become emergency managers.

2. Road workers: “hands-on” practitioners with a specialised

apprenticeship and very detailed local knowledge about

the weather. The head of a large road operation centre

is often educated in civil engineering or similar disci-

plines. This user group has only a few weather-dependent

decisions to make.

3. Transmission system operators (TSOs): staff at the four

German TSOs, with regional to nationwide responsibil-

ity, educated in physics, mathematics, or engineering, and

trained to perform complex tasks. Their work comprises

a large number of different weather-dependent tasks and

also includes the development of automatic applications.

To tailor probabilistic forecasts to the needs of each user

group and to ensure their sustained use, our work was guided

by the following four questions:

1. Who are the users and what are their tasks and

weather-dependent decisions?

2. How can we introduce probabilistic forecasts and tailor

them to users’ decision processes?

3. What kind of visualisation of probabilistic weather fore-

casts is suitable for users to make these decisions?

4. How valuable are the new probabilistic forecasts for users’

decisions?

As the disparate characteristics and tasks of the user groups

posed unique challenges, we used different approaches to

develop each practical application. In the first example, we

analysed users’ revealed preferences by collecting and evalu-

ating users’ interactions with a dedicated online information

platform. Here, the approach was to provide different rep-

resentations in parallel in order to passively observe and

quantify which ones users selected under real operational

constraints. The second example introduced probabilistic

forecasts along with a suitable trial case that was jointly

defined during a workshop with a selected sample of users.

Here, the approach emphasised the training aspect and direct

personal interaction with the users. It focused on applying

probabilistic forecasts to one particular type of decision.

In the third example, we collaborated closely with users

in expert teams to consider the entire range of possible

applications of probabilistic forecasts from scratch. In con-

trast to the first two user groups, this group has an education

in physics, mathematics, or engineering and is trained to

develop solutions for complex problems. Here, the approach

on the one hand is to jointly incorporate probabilistic fore-

casts into existing automatic decision applications and, on the

other hand, to integrate tailored probabilistic forecasts into

a demonstration tool that showcases their potential benefits

and allows us to quickly implement changes in the displayed

information and realise new requirements.

Both the underlying weather forecast database and the

forecast horizons (from short-term to medium-range) differ

amongst the three applications. The first two examples com-

prise probabilistic forecasts from a model output statistics

system, while the third example uses probabilistic forecasts

from a mesoscale ensemble prediction system. In the DWD’s

assessment, all are sufficiently reliable (calibrated) for events

that occur about 1–10 days per year at a location; for less fre-

quent events, verification results are not stable. Once users

can provide appraisals based on long-term experience, we will

have to evaluate whether this forecast quality is sufficient for

each respective application. However, from the perspective of

risk communication research,1 the first important step – and

the focus of this paper – is communicating probabilistic infor-

mation and successfully integrating it into decision processes,

regardless of the underlying models and lead times (provided

these are well-calibrated).

2.1 Probabilistic forecasts for emergency management

Providing weather forecasts and warnings to emergency

managers is one of the DWD’s main duties. This diverse

user group includes fire brigade control and dispatch centres,

volunteer fire fighters, police, paramedics, and emergency

managers from other technical organisations (Kox et al.,
2015; 2018b). The largest subgroup consists of control and

dispatch centres as well as commanding fire fighters, who

are responsible for coordinating emergency services and

deploying vehicles and personnel. However, their educa-

tional backgrounds can differ considerably, ranging from

practitioners to users with an academic background.

Although this subgroup’s main duties are carried out as

a reaction during or after an event, weather forecasts and

early warnings are relevant for planning and preparation to

maintain the ability to quickly respond to emergencies dur-

ing severe weather events (Kox et al., 2018b). For instance,

weather forecasts can inform decisions to call in off-duty

1The concept of risk has different meanings in different disciplines (Kozyreva

and Hertwig, 2019; Kozyreva et al., 2019). For instance, in psychology and

judgement and decision making, “risk” typically refers to situations in which

the probabilities of potential outcomes are known (Luce and Raiffa, 1957)

whereas in economics, “risk” often refers to the variability in outcomes

(Weber et al., 2004). Finally, laypeople often focus on other characteristics

of hazardous events, such as their catastrophic potential or controllability

(Slovic, 1987).
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staff, relocate staff, or prepare vehicles and equipment. Cur-

rently, emergency managers receive deterministic warnings

and forecasts through an online information system (FeWIS)

operated by the DWD. It provides weather information tai-

lored to user regions on various temporal scales, from general

early warning information a week ahead to nowcasting infor-

mation (Kox et al., 2018a). Official weather warnings are

issued up to 12 hrs in advance on a municipal level and typi-

cally serve as a signal for a range of decisions by emergency

managers, such as whether to declare an emergency.

This points to a major challenge for deterministic warnings:

to determine the optimal probability threshold for issuing a

warning, forecasters need to know how important it is for

the decision maker to prevent or ensure particular possible

outcomes, that is, the relative utility of the different possi-

ble consequences (Luce and Raiffa, 1957; Murphy, 1966).

The varying requirements among users further amplify this

challenge: a study of emergency managers revealed that their

preferred lead times differ (Kox et al., 2015), which may

reflect varying institutional requirements (Demeritt et al.,
2010), capacities, population densities, or geographical areas.

The same study (Kox et al., 2015) finds that the probability

thresholds at which emergency managers would start prepa-

rations also vary. When presented with a hypothetical storm

forecast and asked to indicate at which probability they would

start preparatory measures, about 30% of managers indicated

a probability of 50% and about 35% a probability of 70%. This

implies that there is no single probability threshold for issuing

a warning that could account for every user’s needs – partic-

ularly in large user groups. Deterministic warnings therefore

actually require a close interaction between forecasters and

users that is rarely feasible in practice.

Probabilistic forecasts offer a solution: they allow users to

apply their own decision thresholds as they see fit (Murphy,

1977) and thus increase the value of their decisions (Palmer,

2002). To date, however, even the severe weather watch (pre-

warning) that covers longer lead times of up to 48 hrs consists

merely of verbal descriptions of a possible weather devel-

opment and its likelihood (e.g. wind speeds above 100 km/h

are “likely” or local thunderstorms “may” occur). Yet ver-

bal probability expressions are ill-suited to inform emergency

managers decisions because they are ambiguous: they are

interpreted differently by different people and the interpreta-

tion depends on the base rate and the severity of the target

event (Weber and Hilton, 1990; Budescu et al., 2014; Kox

et al., 2015; Pardowitz et al., 2015).

Numerical probabilistic forecasts, in contrast, can convey

the same quantitative information to everyone while enabling

users to start preparations at a self-determined probability

threshold that fits their individual needs (Murphy, 1966;

Palmer, 2002). Probabilistic forecasts bridge the gap between

more certain short-term warnings and earlier but less certain

weather watches (expressed in ambiguous verbal probability

expressions) by providing continuous information from 48 hrs

to 1 hr in advance. However, this solution may or may not

fit current institutional practice or the needs of emergency

managers, who often have to make decisions as a reaction to

official warnings rather than in anticipation of likely upcom-

ing weather conditions (Kox et al., 2018b).

In order to evaluate the potential of probabilistic forecasts,

we used a new approach to investigate two questions: Do

emergency managers consider probabilistic information use-

ful under operational constraints? Which representations do

they prefer, and when? This case-study was part of the inter-

disciplinary research project WEXICOM funded by the Hans

Ertel Centre for Weather Research (Simmer et al., 2016).

WEXICOM investigates how to advance the communication,

understanding and use of uncertainty of weather warnings

and weather risks.

2.1.1 Introducing forecast uncertainty
To test which information emergency managers might find

useful, we developed and implemented five different rep-

resentations of probabilistic forecasts for the most rele-

vant weather conditions for emergency managers in Ger-

many: wind, precipitation, and thunderstorms (the latter

defined as the occurrence of lightning; Figure 1b; Kox

et al., 2015). Using the online system FeWIS Pro, users can

choose between different representations of forecast uncer-

tainty (Figure 2). The system makes it possible to analyse

users’ online behaviour by tracking which representation was

selected and when from a collective user ID (usually shared by

multiple managers within one control centre). This procedure

was ethically approved by an Institutional Review Board.

The approach has several methodological advantages. First,

observing behaviour allows for quantifying emergency man-

agers’ revealed preferences under real operational constraints.

In contrast, self-reported preferences do not necessarily match

people’s actual preferences in real situations: What we say is

not necessarily what we do (Frey et al., 2017). We observed

this phenomenon in our second case-study (Section 2.2).

Furthermore, in self-reports users do not always prefer the

information they understand best (Hildon et al., 2011; Okan

et al., 2015). Second, users can gain experience with prob-

abilistic information and their various representations before

their understanding is tested or before they evaluate the repre-

sentations (Hogarth and Soyer, 2015; Lejarraga et al., 2016;

Wulff et al., 2018, discuss the importance of experience in

decision making). Third, different information and represen-

tations are available in parallel, so that the needs of different

user groups, in different situations or under different weather

conditions, can be identified.

The design of the representations (Figure 2) was informed

by empirically validated recommendations from research in

other domains (e.g. medical risk communication) to facil-

itate the comprehension of uncertainty. Conceptually, the

representations display forecast uncertainty in two ways:

either as probabilities for binary events (in FeWIS Pro

for exceeding warning thresholds or the occurrence of a

http://www.geo.fu-berlin.de/en/met/wexicom/index.html
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FIGURE 1 (a) shows an official deterministic warning in FeWIS, and (b) the corresponding probabilistic forecast in the new system, FeWIS Pro. The

probabilistic system allows the user to select one of three variables of interest (wind, precipitation, or thunderstorms) and display the forecast in five different

representations. The map centres on the area of responsibility of each user (here Berlin) as well as the surrounding region and shows exceedance probabilities.

The colours convey the probability of exceeding a selected warning threshold (here orange) for wind at a particular time, which can be adjusted using the

slider below. By clicking on the buttons at the bottom right, the user can choose between four representations that give a temporal overview for a selected grid

point on the map (pink square). Here, the diagram on the right shows the probabilities for exceeding the yellow, orange, and red thresholds, respectively,

within the next 48 hrs; all four representations are explained in more detail in Figure 2. [High-resolution images for all applications are available at the

following Open Science Framework repository: https://osf.io/k6nb7].

thunderstorm), or as probability thresholds for continuous

physical variables (10, 25, 50, 75, and 90%iles; in FeWIS Pro

for wind speed and precipitation). All representations display

model output statistics from the DWD’s operational Warn-

MOS product. The forecasts are available with a 48 hrs lead

time (1 hr intervals for the first 12 hrs, then at 3 hrs intervals;

spatial resolution is always 20 km × 20 km). The forecasts

are updated every hour.

Which representations do emergency managers prefer and

why? On the one hand, one might expect emergency man-

agers to prefer probabilities for exceeding warning thresholds

because they may seem similar to the deterministic warn-

ings that underlie their current decision practice. On the

other hand, a representation of the likely physical values, for

instance of wind speeds, may be more familiar and easier

to understand than probabilities. Including both types of

information in parallel enabled us to evaluate which kind of

information was useful to emergency managers under actual

operational constraints.

2.1.2 Visualisation of probabilistic forecasts:
Recommendations from risk communication research
There is still relatively little research on how to best com-

municate uncertainty for continuous variables, which are

typical in meteorological forecasts but less so in, say, medical

risk communication (Spiegelhalter et al., 2011). Therefore,

we synthesised results and best practices on visualisation

from other research domains, such as medical and financial

risk communication, as well as basic research on human

perception. Below we discuss five best practices we con-

sidered when developing FeWIS Pro due to their relevance

for communicating probabilistic forecasts in meteorology

and other domains and provide broader pointers to research

articles and systematic reviews.

Encode quantitative information in a way that fosters
accurate decoding. Colour is less suited for reading exact

information than bar or line graphs (Cleveland and McGill,

1985). When using colour, limit the number of shades to

maintain perceptual differentiability (Kosslyn and Koss-

lyn, 2006). If chosen appropriately, different shades can be

detected even by those who suffer from the most common

forms of colour blindness (Wong, 2011). For continuous

variables, like probabilities, a single-colour scale allows for

an effortless interpretation of the ordering, with darker values

indicating a higher probability (Harrower and Brewer, 2003;

Gehlenborg and Wong, 2012; Stauffer et al., 2015 give advice

on colour scales). In contrast, conventional multi-colour

scales, as sometimes used by meteorologists, require a leg-

end to decipher the ordering – which means additional effort

and potential mistakes (Borland and Ii, 2007). The map in

FeWIS Pro uses a single-colour scale to represent the prob-

ability of exceeding a particular warning threshold (e.g. for

storm >100 km/h; Figure 1). It also makes reading numerical

information easier via mouseover texts that appear whenever

the pointer hovers over any part of the representation. They

https://osf.io/k6nb7
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FIGURE 2 Four representations of forecast uncertainty for wind during storm Herwart, which passed through Germany from 2100 CEST 28 October to

1400 CET 29 October 2017 (issued at the time of the first weather watch at 1300 CEST 27 October, for the next 48 hrs; x-axes). (a) and (b) display the

probabilities of exceeding warning thresholds (y-axes). (b) also shows a comparison to climatology (indicated by dashed lines) on a log-scale; the height of

the bars indicate how much more likely it is that the threshold will be exceeded compared to what is usual for the current season. (c) and (d) display forecast

uncertainty through predefined probability thresholds (quantiles), here for wind speeds (y-axes). For (c), the box shows the interquartile range and the

antennae show the 10 and 90%iles. For (d), the upper end of the bar (90%ile) highlights the worst case, i.e. the wind speed unlikely to be exceeded (10%). The

upper end of the medium grey bar shows the 75%ile and the dark grey bar the 50%ile. [High-resolution images for all applications are available at the

following Open Science Framework repository: https://osf.io/k6nb7].

show as text the time and value for the particular part of

the representation, as well as how to interpret the forecast

uncertainty.

Explain probabilities. Conveying probabilities as relative

frequencies instead of single-event frequencies has been

shown to help people comprehend uncertainty (Gigerenzer

and Edwards, 2003; McDowell and Jacobs, 2017; but see

Joslyn and Nichols, 2009 for the opposite finding in the

weather domain). Descriptions in relative frequencies force

the communicator to specify the reference class: “In 30 out of

100 days with a forecast like this, ...” rather than “The prob-

ability of X is 30%” (Murphy et al., 1980; Gigerenzer et al.,
2005). However, single numbers like percentages can be bet-

ter suited than relative frequencies for comparing different

values, especially with variable denominators (for overviews

of best practices for communicating probability information

see e.g. Gigerenzer et al., 2007; Lipkus, 2007; Visschers et al.,
2009; Trevena et al., 2013). Given these previous findings, we

choose a complementary approach and display probabilities

as percentages across all representations, but use mouseovers

to explain their meaning in terms of relative frequencies (“In

X out of 100 situations with a forecast like this...”). We offer

further explanation in the help files using spatial frequency

representations (using icon arrays; Ancker et al., 2006).

Prevent deterministic misinterpretations of forecast uncer-
tainty. People tend to misinterpret probabilities in a deter-

ministic way (Joslyn and LeClerc, 2013). For instance, when

asked which of three descriptions is the best interpretation

of a forecast of a 30% chance of rain tomorrow, most peo-

ple choose the interpretation that it will rain in 30% of the

forecast area or 30% of the forecast time (Murphy et al.,
1980; Gigerenzer et al., 2005) over the correct probabilistic

interpretation: it will rain on 30% of days with this forecast.

Although people’s answers may indicate that they are partly

aware of the spatial and temporal uncertainty inherent in any

forecast (i.e. about where or when it will rain), deterministic

misinterpretations are nevertheless a cause for concern. Such

misinterpretations imply that if it does not rain anywhere in

the forecast area or time period, the forecast constitutes a false

alarm – even though a lack of rain is still reconcilable within

the correct, probabilistic interpretation.

To prevent the deterministic misinterpretation of proba-

bilities as physical values (e.g. wind speed or the amount

of precipitation), we intentionally avoided any similarities

https://osf.io/k6nb7
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with the colour scheme of the DWD’s four levels of warn-

ings (yellow, orange, red, and violet) when developing our

single-colour scale for probabilities. Emphasising particular

points on a graph, such as the medians (Broad et al., 2007)

or the bounds of an uncertainty interval, may inappropriately

withdraw attention from the uncertainty of the forecast; fur-

thermore, in interval forecasts, for instance, people may mis-

interpret the interval between a lower and an upper probability

quantile as a range, such as diurnal variation in tempera-

ture (Cumming, 2007; Savelli and Joslyn, 2013). Therefore,

FeWIS Pro’s boxplots (Figure 2c) display neither medians nor

end caps on whiskers, which could suggest an upper bound.

When reading barplots, people tend to believe that points

within the bar are more likely than outside the bar – even if

they are equidistant relative to the top of the bar (Newman

and Scholl, 2012; Okan et al., 2018). FeWIS Pro’s barplots

(Figure 2d) factor this tendency in by displaying the 90%ile as

the full height of the stacked bars, which implies that values

outside the bar are in fact less likely than those within the bar.

Put rare but severe events into perspective. High-impact

weather is rare. The challenge is to communicate that even

small probabilities are important when evaluating severe

risks. One approach is to communicate the relative increase

in probability compared to a baseline. If the baseline provides

a useful comparison, this can help laypeople to put numbers

into perspective (Peters et al., 2009; Barrio et al., 2016). How-

ever, to avoid misunderstandings, both the baseline risk itself

and the absolute level of the target risk should be included

(Bodemer et al., 2014); otherwise, people may overestimate

the increase in risk because relative increases in risk from

a low baseline tend to look large. This can result in poten-

tial overreaction or loss of trust (Gigerenzer et al., 2007).

Displaying values using logarithmic axes enlarges the visual

difference between small values and can thus highlight small

probabilities (Lipkus, 2007). However, at the same time, log-

arithmic axes may impair people’s ability to accurately read

off the absolute risks (Lipkus, 2007). In one representation in

FeWIS Pro, we chose the climatology as the baseline, which

shows the probability on a “normal” day for that season, and

only plot forecasts that are above the baseline (using a log-

arithmic scale; Figure 2b). Mouseovers display the increase

relative to the climatology (e.g. “five times more likely than

usual at this time of year”), the climatological probability and

the absolute probability of exceeding the warning threshold.

Choose the level of detail in accordance with what can be
reasonably predicted. Despite the common desire of users to

receive ever more detailed and certain information, communi-

cators should resist conveying more precise predictions than

are available (Stephens et al., 2012). Communicating fore-

casts and their uncertainty in more detail than the underlying

models can provide may raise false expectations about the pre-

dictability of weather events - especially in lay audiences. In

order to make the spatial resolution of the forecasts transpar-

ent, we coloured each 20 km×20 km area of the map accord-

ing to the forecast probability without smoothing their borders

(Figure 1b). For the same reason, the width of the intervals

in the diagrams (Figure 2) matched the temporal resolution

of the underlying forecasts (i.e. forecasts for each hour for the

first 12 hrs and then forecasts for blocks of 3 hrs onwards).

2.1.3 Evaluating the usefulness of the forecasts: Lessons
learned
We compared the representations users preferred and the

lead times at which they started searching for information

for two severe storms in Germany in October 2017: Xavier
and Herwart. This case-study allowed us to analyse user

preferences under real operational constraints during severe

weather.

As the probabilistic forecasts have a lead time of 48 hrs, we

analysed users’ behaviour from 48 hrs before to 24 hrs after

the storm. Xavier passed through Germany on 5 October 2017

from 0800 to 2000 CEST, moving from the northwest to the

southeast of the country (CEST=Central European Summer

Time=UTC+0200). The first weather watch for the north-

west was issued at 1208 CEST on 4 October, followed by

a warning at 2204 CEST. Herwart started on 28 October

2017 at 2100 CEST and lasted until 1400 CET on 29 Octo-

ber, moving from the northwest of Germany towards the east

(CET=Central European Time=UTC+0100; CEST ended on

29 October 2017). The first weather watch for the northwest

was issued at 1300 CEST on 27 October, followed by a warn-

ing at 1545 CEST. Depending on a storm’s path, users may

start looking for information at different points in time. For

each storm, we therefore only considered users who had rea-

son to expect being affected first (i.e. for Xavier and Herwart,
the northwest of Germany). We defined this group as all

users for whose areas the probabilistic forecasts in FeWIS

Pro predicted wind speeds with a 90%ile of ≥110 km/h dur-

ing the first third of each storm. This procedure resulted in 93

collective users for Xavier and 114 for Herwart.
For both severe storms, the selected representations (aggre-

gated over wind, precipitation, and thunderstorm) showed

a clear preference for the spatial representation of the map

(Figure 3), which displays the probability of exceeding

warning thresholds (Figure 1b). When comparing the four

representations that give a temporal overview, the representa-

tion showing the probability of exceeding warning thresholds

was slightly preferred over boxplots or barplots during Xavier,

but overall differences were small. During Herwart, in con-

trast, the boxplot was the second most-used information after

the map. Thus, the preference for the map likely reflects a

preference for a spatial overview rather than a more general

preference for probabilities for exceeding a warning thresh-

old over quantile information. The spatial overview may be

particularly useful for emergency managers to coordinate peo-

ple and resources within their area because it shows which

areas are most likely to be affected. At the same time, infor-

mation about the likely range of wind speeds, as provided in

boxplots, was also clearly used. Figure 4 shows that quantile
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Exceedance probability
 map

Exceedance probability
 barplot

Climate comparision

Quantile boxplot

Quantile barplot

0% 10% 20% 30% 40%

Xavier

Exceedance probability
 map

Exceedance probability
 barplot

Climate comparision

Quantile boxplot

Quantile barplot

0% 10% 20% 30% 40%

Herwart

FIGURE 3 Which representations were preferred during storms Xavier and Herwart? Relative proportion of times users selected a representation during the

storms. In total, users selected a representation 439 times during Xavier and 722 times during Herwart. [High-resolution images for all applications are

available at the following Open Science Framework repository: https://osf.io/k6nb7].

information was consulted especially frequently about 12 hrs

before and even more during the event.

The analysis of users’ behaviour also allowed us to examine

the lead times at which emergency managers looked for infor-

mation. For Xavier, users started checking the probabilistic

forecasts around 24 hrs before the event and even before the

first weather watch was issued (Figure 4). Peak activity was

observed shortly before and during the event. For Herwart,
in contrast, user activity before the storm was almost as high

as during the storm. The earlier search for information may

reflect the fact that Herwart occurred just three weeks after

Xavier had caused significant damage throughout Germany.

The awareness of potential impacts was thus likely much

higher before Herwart than before Xavier, and this may have

resulted in more anticipatory search and preparation by emer-

gency managers. Importantly, users’ behaviour shows that

probabilistic forecasts were consulted at least as much during

the storms as before they hit.

This latter result is also supported by a survey of 100 FeWIS

Pro users. Emergency managers indicated that the proba-

bilistic forecasts were useful not only for preparatory action

and planning, but also for managing resources and personnel

during the event: 57% indicated that they considered the

probabilistic forecasts useful in advance (when events are still

uncertain), 66% found them useful when they became more

concrete, 43% considered probabilistic forecasts useful dur-

ing severe weather events, and 27% even indicated using them

on a regular basis. Overall, users were satisfied with the sys-

tem (M = 3.8 on a 5-point rating scale), with ratings for ease

of use (M = 3.2) and understanding (M = 3.4) being a little

lower.

FeWIS Pro currently offers an online manual, video expla-

nations, and pop-up graphic explanations; the latter two are

used quite frequently. Providing further explanations in the

form of videos or interactive learning through online games,

simulations (Hogarth and Soyer, 2015), or quizzes may be

a promising way to direct attention to important aspects of

the representations and facilitate comprehension. Almost all

respondents (88%) indicated that they would like to continue

receiving probabilistic forecasts in the future.

In sum, the frequent use of FeWIS Pro and the positive

response of survey participants shows that the probabilistic
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FIGURE 4 When did users start searching information before, during, and after storms Xavier and Herwart? Total number of selected representations by

time (per 6-hour-interval). The colour indicates which representations were selected. The vertical dotted and solid lines show the times when the first weather

watch and warning were issued, respectively. The horizontal red lines below the bars mark the period when the storms passed through Germany.

[High-resolution images for all applications are available at the following Open Science Framework repository: https://osf.io/k6nb7].
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forecasts were clearly informative for emergency managers.

The map and its spatial overview was the most popular

representation, but boxplots, which show the likely range of

wind speeds or precipitation, were also frequently selected;

combining a map and quantile information into a spatial rep-

resentation of quantiles may thus fit the users’ needs even

better than the representations we have implemented so far.

The fact that users looked for forecasts more than 12 hrs

before the event indicates that probabilistic forecasts can help

to bridge the gap between short-term warnings (up to 12 hrs

lead time) and the earlier, uncertain weather watch (up to

48 hrs lead time). As suggested by previous research, emer-

gency managers would in fact use probabilistic forecasts even

during a storm (Kox et al., 2018b). Here, emergency man-

agers preferred quantile information, such as boxplots, about

the range of possible wind speeds, which may have helped

them to maintain their ability to respond during the event

and to prepare for daily requirements and the operations

happening directly afterwards.

How probabilistic forecast information can best be com-

bined with deterministic warnings given the current institu-

tional practices of emergency managers in Germany is still an

open question (Kox et al., 2018b). Nevertheless, our results

are encouraging and indicate that probabilistic forecasts are

indeed useful for a number of different decisions of emer-

gency managers under real operational constraints.

2.2 Probabilistic forecasts for road authorities

Road authorities and operation centres have a long tradition

of collaborating with the DWD; supporting them is a cru-

cial part of the DWD’s public services. Members of this user

group share the common goal of preventing accidents and

traffic jams, but differ in terms of personnel at their main-

tenance depot. For instance, some maintenance depots are

staffed 24 hrs a day, seven days a week, while others cover

weekends and nights with standby staffing and external ser-

vice providers. Yet in terms of educational background, the

user group is quite homogeneous; road workers complete a

specialised apprenticeship and can take advanced training in

management duties.

In wintertime, on-duty road workers decide on two main

weather-dependent questions:

(i) Is a preventive application of gritting salt necessary?

(ii) Is it necessary to prepare for snow clearance and

gritting?

The head of the road operation centre has a further

weather-dependent duty:

(iii) Scheduling standby duty on weekends and public holi-

days.

All decisions require predictive planning in order to prepare

equipment and adapt service schedules. The first two road

operation decisions rely on SWIS, a web-based interactive

tool that the DWD developed to supply this user group with

tailored information. Besides general weather information

such as radar and satellite maps and weather reports, SWIS

provides observations and associated road weather forecasts

at around 1,500 German road weather stations, with a 27 hrs

lead time. The third decision requires forecasts with a longer

lead time – up to seven days into the future. This longer fore-

cast horizon was initially not included in SWIS for the users’

local area as they did not request it and mentioned relying on

the regional, text-based weather report within SWIS or free

websites for this information.

The development of SWIS relies on well-established inter-

actions between DWD and road authorities. A user workshop

is held every two years at the DWD headquarters to encour-

age the dialogue between meteorologists and users. The aim

is to jointly identify strengths and weaknesses of SWIS and to

schedule new developments. During these workshops, mem-

bers of the DWD present verification results of road weather

forecasts, as well as new developments. In turn, users ask

questions, highlight new requirements, and give feedback on

the past winter season and the ability of SWIS to support their

work. In addition to the user workshop, DWD staff members

offer regular tutorials on SWIS and are in close contact with

road operation centres during the winter in order to advise on

the actual weather situation.

For the first two road operation decisions, users focus on

short-term forecasts that cover the next 10 hrs. The reason

for this is twofold: first, the preparation time required for a

road operation is relatively short (1–3 hrs), and second, the

interest and confidence in numerical road weather forecasts

beyond a short lead time has traditionally been limited. For

time horizons beyond 10 hrs, for example, to schedule standby

duty over several days into the future, users preferred to rely

on their own observations of the roads in their catchment,

text-based regional weather reports and their experiences of

the local weather conditions and likely developments. How-

ever, the confidence in road weather forecasts has increased

over time and the interest shown in a more graphical pre-

sentation is generally higher in the new generation of road

workers than in their older colleagues. As a result, SWIS has

evolved in recent years from a text-based information plat-

form to an interactive tool with maps and charts covering

forecast horizons of up to 27 hrs.

Road workers previously did not have the opportunity to

experience probabilistic forecasts in SWIS. However, prior

to the introduction of probabilistic forecasts, we had already

introduced a graphical tool within SWIS for combining fore-

casts for a variable of interest for several road weather stations

in one graph, for example, road temperature (Figure 5). The

tool allowed them to get an overview of road weather condi-

tions as well as of the spatial variability in their catchment.

Working with these graphs familiarised users with variability

and may have helped them to develop an informal understand-

ing of forecast uncertainty.
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FIGURE 5 Transition from text-based weather forecasts (a) to graphical presentations of temperature (blue) and road temperature (red) forecasts (b, c) within

the graphical tool of the road weather information system SWIS. With point forecasts as a function of time (b, c) rather than forecasts for predefined regions in

a table (a), users can define groups of road weather stations that they want displayed in the same chart. The default graph shows the coloured envelope around

the point forecasts for the selected stations (b); users can also display the individual forecasts (c). The combined presentation of the forecasts familiarises

users with variability. [High-resolution images for all applications are available at the following Open Science Framework repository: https://osf.io/k6nb7].

2.2.1 Introducing forecast uncertainty
As users’ confidence in road weather forecasts and interest in

graphical information increased, an active discussion between

users and DWD staff began on how best to use probabilistic

forecasts for winter services. This was a far cry from early

discussions, in which users objected to probabilistic forecasts

for short-term decisions; with the great burden of responsi-

bility for preventing accidents, they were wary of basing their

decisions on “uncertain” information.

Therefore, in collaboration with the road authorities, we

identified the long-term planning of personnel resources as

a suitable trial case. In our view, this weather-dependent

decision was particularly suitable to explore how to use

probabilistic forecasts for three reasons. First, users need

forecasts for up to seven days into the future to schedule

stand-by duties. At the time, not even deterministic fore-

casts for their catchment and the upcoming week were avail-

able to users within SWIS, and thus no established routines

with familiar products existed. Second, users already under-

stood that forecasts for the long-term future tend to be more

uncertain than those for the short-term horizon, and were

thus prepared to accept a probabilistic, uncertain forecast in

this context. Third, the stakes were low; there was no risk

to human lives or property. Taking preventive action and

preparing staff for a road mission incurs higher personnel

costs – regardless of whether or not that activity proves to have

been necessary. Not taking action means that additional per-

sonnel might have to be called at short notice and at a higher

price. The risk was thus purely financial.

The users’ hesitation and concerns around probabilistic

forecasts indicated the need for a participatory approach that

allowed for a close dialogue with the meteorological ser-

vice in order to overcome reservations (Palmer, 2002) and

engage users in order to promote the understanding and poten-

tial benefits of probabilistic forecasts for their work. A close

interaction was feasible due to the already well-established

interactions with road authorities and the similarity of users’

weather-dependent decisions.

To introduce probabilistic forecasts, we organised a test

user workshop for the new products called “trend forecasts”.

The aim was twofold: first, to explain probabilistic forecasts

and demonstrate their potential benefit for users’ work, and

second, to jointly develop possible visualisations for their

implementation in SWIS. The road authorities identified 40

test users, all of whom were responsible for planning person-

nel, to be invited to the workshop. Each federal state and kind

of road operation centre was represented within this sample.

The programme included a tutorial about forecast uncertainty

https://osf.io/k6nb7
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in numerical weather predictions and how weather services

try to address it with ensemble prediction systems (EPS). The

interactive presentation illustrated the practical implications

for users and the information content of probabilistic forecasts

using realistic weather scenarios. The aim was to highlight

the differences between the familiar, deterministic short-term

forecasts and the new long-term, probabilistic forecasts.

To demonstrate the potential benefits of probabilistic fore-

casts, we explained the cost–loss concept (Murphy, 1977;

Richardson, 2001) with the help of the trial case, and dis-

cussed the quantification of costs and losses for this particular

decision. In addition, we explained how to understand a prob-

abilistic forecast and what kind of information can be drawn

from it by showing examples inspired by the users’ own daily

tasks.

We opened the dialogue with simple quiz questions about

the interpretation of probabilistic forecasts in order to engage

the users after the presentation and to assess how the concept

of EPS, derived products, and their information was received

and understood. The answers revealed that the large majority

of users understood the idea of probabilistic forecasts.

To demonstrate the implications of probabilistic forecasts

for users’ decisions, we then relied on a simple economic

game. The users had to decide whether or not to plan for

stand-by road workers for the upcoming weekend (3–4 days

lead time) based on a probability for snow – knowing that

additional personnel were associated with additional costs

even without an on-site operation.

Finally, we set aside 2 hrs to discuss possible visualisations

of probabilistic forecasts and their implementation in SWIS.

We used a World Café format (Schieffer et al., 2004; Fouché

and Light, 2011; Kox et al., 2018a) for which we prepared dif-

ferent possible visualisations as suggestions to be discussed,

changed, and refined.

For the following winter season, we asked workshop par-

ticipants to test the new trend forecasts and complete a survey

at the end of the test phase.

2.2.2 Visualisation of probabilistic forecasts: building on
what is familiar to users
Based on the discussion during the user workshop, we imple-

mented the new probabilistic forecasts in SWIS as an exten-

sion of the existing graphical tool providing local forecasts

described above. Our aim was to build on the presentation

the users were familiar with and to introduce users to forecast

uncertainty in an informal way.

For temperature, the trend forecasts show only one uncer-

tainty envelope, covering the most likely, middle 68% of

the probability distribution for each road weather station

(Figure 6). If the user combines several stations within

one graph, the default setting displays an overall uncer-

tainty envelope, showing the range between the minimum

and maximum of all lower and upper quantiles across the

selected stations. Users can also add the median of the

temperature forecast; by default, however, the median is not

shown in order to focus attention on the uncertainty of the

forecasts (Broad et al., 2007). A next step would be to tai-

lor the uncertainty envelope directly to users’ informational

needs once they have gained experience with the forecasts.

An interesting way to do this would be to experimentally

elicit how wide users prefer the envelope to be (that is, how

“certain” they want to be) while still finding it informative

(Yaniv and Foster, 1995).

In earlier discussions, users had identified two temperature

thresholds (2 ◦C and 0 ◦C) that are critical to their decisions

and are therefore highlighted in the graph in yellow and red,

respectively. A second important step for future development

is also to display the probabilities that temperature falls below

these two thresholds. This would provide users with proba-

bility information about the risk of road ice and slickness that

matches the overall task goal and their decision thresholds

(Joslyn et al., 2009).

For the precipitation forecasts for rain, snow, and sleet, the

plots of the short-term precipitation forecast served as a model

for the representation of the probabilistic forecast (Figure 7).

We maintained the colour coding for the states of precipitation

and the presentation of road weather stations as separate rows.

However, in the short-term forecast view, the user sees quan-

titative precipitation forecasts, whereas in the medium-range

forecast view the user sees the probability of any rain, snow,

or sleet. Probabilities of the different precipitation states are

shown as stacked bars. To visually highlight high probabil-

ities yet avoid a deterministic misinterpretation (Joslyn and

LeClerc, 2013) as amount of precipitation, the bars are by

default centred around a baseline. The numerical probabilities

are not shown on the y-axes, but are displayed on mouseover

(Figure 7). Users can also choose a non-centred bar chart if

they prefer.

In the future, our aim is to consistently show quantitative

probabilistic forecasts for the entire forecast horizon from

short- to long-term. Currently, deterministic and probabilis-

tic forecasts are available in parallel because users have not

agreed to entirely replace the existing short-term determinis-

tic forecast with the quantitative probabilistic forecasts.

2.2.3 Evaluating the usefulness of the forecasts: Lessons
learned
There are tentative, qualitative conclusions we can draw from

the discussions during the workshop, the feedback users sent

during the subsequent winter season, and from the follow-up

survey.

Users clearly appreciated the collaborative nature of the

development process and the opportunity to help design new

products. They valued our meteorological presentation about

forecast uncertainty, as well as the extensive time for ques-

tions and discussions during the workshop.

The workshop was useful for preventing misunderstand-

ings of probabilistic forecasts and addressing user objections
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FIGURE 6 Example of probabilistic long-term temperature forecasts within SWIS. The transition from the short-term temperature graph in Figure 5 to

uncertainty forecasts (as illustrated here) is only a minor visual change. (a) shows the default setting, which displays one envelope showing the range between

the minimum and maximum of all lower and upper bounds of the inner 68%iles of the selected stations. In (b), the forecast mean temperature for each station

is also shown (dark blue). The two user-specified, critical temperature thresholds (2 ◦C and 0 ◦C) are highlighted in yellow and red, respectively.

[High-resolution images for all applications are available at the following Open Science Framework repository: https://osf.io/k6nb7].

directly. For instance, the users’ main concern with proba-

bilistic forecasts was how to get from a range of possible out-

comes to a deterministic decision. Here, the economic games

using the jointly defined trial case helped get even reluctant

users on board and to collaboratively develop a visual repre-

sentation of the probabilistic forecasts that support their deci-

sion processes. Moreover, during the discussion users reacted

more positively towards probabilistic information when it was

framed as being about the “confidence” in the forecast rather

than about the “uncertainty” of the forecast.

The games and the accompanying discussions suggested

that users had a good basic understanding of probabilistic

forecasts. However, they chose to take action at fairly low

thresholds. When asked for a threshold directly, users agreed

that a probability of 10% for snow was sufficient to schedule

stand-by personnel. From what we know about the cost–loss

ratio for this particular decision, we would have anticipated a

higher threshold as the costs for waiting and calling additional

staff at short notice are still not that high, according to earlier

bilateral conversations with some users. One potential expla-

nation, suggested by user comments, is that they are generally

used to act in a risk-averse manner in order not to miss events

(e.g. snowfall or ice) and thus endanger the lives of road

users. An alternative explanation may be that decisions were

hypothetical without real costs or consequences. Moreover,

users had no opportunity yet to experience the probabilistic

forecasts together with the corresponding weather conditions

when making their decisions in reality.

Interestingly, users’ thresholds after testing the probabilis-

tic forecasts back at their depots over the winter season

markedly differed from the thresholds they selected during

the workshop. In the follow-up survey (N = 20), no sin-

gle user reported having taken action (i.e. increasing stand-by

weekend personnel) at a 10% probability of snowfall. The

reported thresholds at the end of the winter season actually

ranged, fairly uniformly, from 20% to 80%. Despite the vari-

ance, the higher thresholds at least suggest that users adjusted

the thresholds based on their day-to-day experience.

https://osf.io/k6nb7
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FIGURE 7 The evolution from short-term deterministic precipitation forecasts towards probabilistic precipitation forecasts in SWIS. Short-term

deterministic forecasts for several user-defined locations (y-axis) train the user to consider different forecast scenarios (a). Colours indicate different states of

the expected precipitation (rain, snowfall, sleet); the intensities of the colours indicate the respective amounts. Medium-range probabilistic forecasts are

shown as centred around a baseline (b) or as a bar chart starting at the bottom of the y-axes (c). [High-resolution images for all applications are available at the

following Open Science Framework repository: https://osf.io/k6nb7].

The greatest challenge that emerged was a strong pushback

against the cost–loss concept (Murphy, 1977; Richardson,

2001) for most of the decisions taken by road workers beyond

the trial case. Road workers work daily to prevent accidents.

They are reluctant to assign numbers to costs and losses for

the associated decisions, thereby ultimately putting a price on

a human life (cf. “taboo trade-offs”; Tetlock, 2003). This is

presumably why we were not able to put values to the costs

and losses of the trial case decision problem during the work-

shop. We will address this issue in upcoming regular meetings

in order to better understand the users’ perspective and to

then jointly develop a strategy on how to include probabilistic

forecast information into those decisions.

Overall, our main success with this user group was the

positive feedback on the new forecast products from a large

number of users. They use the probabilistic forecasts daily,

and have even recently requested that the system show proba-

bilistic forecasts for more road weather parameters, in partic-

ular for road temperature and humidity. We take this as a clear

sign that this user group has accepted probabilistic forecasts

and found them useful for their work.

2.3 Probabilistic forecasts for transmission system
operators

Germany is a leader in producing renewable energy from

solar and wind power. The shift towards renewable energy

means that weather increasingly affects electrical power gen-

eration and transmission in Germany and beyond. First,

weather variability implies variability in solar and wind

energy production. As a result, the total electricity demand

needs to be covered by a variable mix of conventional and

renewable energy sources. Second, the weather influences the

functionality of the energy grid system itself (e.g. transport

capacity in overhead power lines). These weather depen-

dencies create a number of new challenges for transmission

system operators (TSOs) in particular and the entire electric-

ity market in general. Wind and solar power forecasts are

now key to anticipating and regulating a variety of power

generation and transmission processes in order to secure both

a constant energy supply and the stability of the energy

grid.

As a result, the energy sector has new and growing needs for

information from weather services. In order to specify those

needs and optimise weather and climate products, the DWD

is engaged in several interdisciplinary research projects that

aim at optimising DWD’s numerical weather prediction mod-

els and developing forecast products tailored to user needs.

As the DWD’s duty is to support operators of critical infras-

tructures, we focus in these projects on the requirements of

the four German TSOs.

All these research projects are organised in consortia bring-

ing together the DWD, power forecast service providers and

experts from the TSOs. Both power forecast service providers

https://osf.io/k6nb7
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and TSOs are highly educated, mostly in physics, mathemat-

ics, or engineering. Power forecast providers are trained to

develop numerical and statistical models for energy applica-

tions. TSOs are used to analyse complex models and data and

to make far-reaching decisions under time pressure.

The task of power forecast service providers is to transform

meteorological forecasts into power production forecasts,

providing wind and solar power forecasts on different

spatio-temporal resolutions and horizons and offering tools

and products to support TSOs and the entire electricity mar-

ket in their decisions. They input weather information into

their statistical and physical power models and follow-up

applications (e.g. virtual power plants). In our research

projects, their task is twofold: they develop techniques that

correctly propagate weather-dependent uncertainties through

the power models and follow-up applications and they quan-

tify other sources of uncertainty within their applications.

They also collaborate with TSOs and the DWD to develop

solutions for implementing probabilistic information in

applications for TSOs.

TSOs feed the power forecasts from the service providers

into their (currently deterministic) grid models and forecast

tools to inform decisions on energy trading, plant operation,

and grid operations that ensure grid stability and system secu-

rity. TSOs also use weather information directly to dynami-

cally adapt the transmission capacity in overhead power lines

to weather conditions (“dynamic line rating”), in high-impact

weather situations, and as additional information when power

forecasts differ significantly across providers.

As soon as updated forecasts are available, TSOs can select

from a number of procedures to correct for power forecast

errors and adjust their decisions online. As a result, grid sta-

bility and security have to date not been jeopardised, even

in the case of large forecast errors. However, each correction

incurs additional costs, such as the costs of procuring expen-

sive balancing energy or compensating wind and solar power

plant operators when TSOs had to down-regulate the energy

that plant operators feed into the grid. Moreover, with the

planned increase of installed wind and solar power in Ger-

many, the vulnerability to forecast errors will rise. As the

economic pressure on TSOs and the potential for forecast

errors to endanger network stability increases in the near

future, users see quantifying the uncertainty associated with

weather and power forecasts and propagating them through

downstream models as the right way forward.

2.3.1 Introducing forecast uncertainty
Our starting point for introducing probabilistic forecasts was

quite favourable, as TSOs were already aware of forecast error

and intended to address it with new forecast information, ulti-

mately adapting their decision procedures. For the energy

sector as a whole, the research community already provides

a wealth of methods and ideas for using forecast uncertainty

to increase economic benefit and the reliability of the power

system (e.g. Pinson et al., 2007; Matos and Bessa, 2011; Zhou

et al., 2013). Although several tasks have been identified that

can profit from probabilistic forecast information, they are so

far predominantly at the power plant level and address plant

operators and power traders (e.g. Bessa et al., 2017).

The duties of TSOs, in contrast, are more manifold and

require forecasts on a variety of spatial scales. Moreover,

the vulnerability to forecast errors and mitigation possibil-

ities differs across tasks. Thus, a successful integration of

new probabilistic weather forecasts into existing regulation

processes requires a close dialogue with both power forecast

service providers and TSOs. While the tasks and associated

decision processes are numerous and complex, the total TSO

user group in Germany is rather small, which made it pos-

sible for us to collaborate closely with experts from all four

German TSOs. During regular meetings and workshops with

all project partners, we first gathered the weather-dependent

decision processes that are necessary to ensure grid stability

and energy supply. One challenge that emerged is the high

number of continuously updated decision processes for TSOs.

These processes are currently designed for deterministic fore-

casts; without automatic decision support, manually convert-

ing probabilistic forecasts into categorical decisions would

overburden the users. Although the TSOs recognised the need

for a paradigm shift, this requires new software solutions to

optimally process probabilistic and uncertainty input.

Before introducing probabilistic forecasts to grid opera-

tions, we therefore needed to first analyse the vulnerability

to forecast errors and the potential benefit of probabilis-

tic forecasts separately for each task and work towards an

optimal integration into existing (automatic decision) pro-

cesses. As most of this work is still in progress, we report

here on ongoing activities and our approach for advanc-

ing the use of probabilistic information. We divide the

tasks identified by TSOs into three groups: power forecast

applications, weather-dependent grid operation, and critical

weather conditions for the transmission grid. For the first two

applications, forecasts need to be directly fed into automatic

applications. For the third, forecasts are provided as weather

warnings and additional weather information.

Power forecast applications. TSOs must specify the

expected generation of renewable energy that will be fed into

their system. Each TSO needs a spatially aggregated forecast

for their control area and for the whole of Germany to balance

generation and consumption, identify power procurement,

anticipate and prevent congestion, and trade renewable power

at day-ahead and intraday energy exchange markets. Along

with uncertainties in the weather and power prediction mod-

els, further uncertainties arise from incomplete knowledge of

installed capacities of wind and solar power plants and from

unknown regulating activities of plant operators and distri-

bution system operators upstream. Ideas on how to integrate

probabilistic forecasts into trading strategies are currently

only available for power producers acting on a power plant

scale (e.g. Pinson et al., 2007; Bessa et al., 2017). For trading

activities, TSOs therefore use forecasts from several service



224 FUNDEL ET AL.

providers that are spatially aggregated to reduce these uncer-

tainties through averaging effects. To this end, TSOs also

asked for improved weather and power forecasts rather than

for probabilistic information. The main problem is that for

critical weather situations (e.g. low stratus, timing and local-

isation of cyclones) the predictions of all weather models

suffer from similar large systematic errors. The challenge

for the meteorological community is to reduce these biases

in order to provide sufficiently reliable forecasts for these

weather situations.

Power forecasts are also needed to simulate expected load

flow, congestion, and contingencies in the transmission grid.

These grid simulations aim at finding an optimal and secure

network topology given the expected feed-in and load fluxes.

Thus, they require spatially explicit power forecasts to sim-

ulate the conditions at grid nodes and transformer stations

and, ultimately, for the entire grid. At these spatial scales, it

becomes important to consider uncertainties in the weather

and resulting power forecasts. TSOs are particularly inter-

ested in integrating possible weather and power scenarios into

their simulations and operational security analyses. For this

application, the challenge is to generate useful power sce-

narios derived from ensemble weather predictions as input

for all feeding points in the grid and, even more impor-

tantly, to develop strategies for converting these scenarios into

preventive measures if necessary.

Weather-dependent grid operation processes. The inter-

mittent, decentralised, and spatially distributed power

generation results in changing transmission grid require-

ments. For instance, the power generated from wind turbines

in the north and east of Germany has to be transported to

the industrial plants in the south. In order to complement the

expensive, long-term grid expansion necessary to meet these

requirements, TSOs are obligated by governmental author-

ities to maximise the transmission capacities of overhead

power lines. One solution is a dynamic line rating, where

load is increased under ambient weather conditions that are

favourable for transmission capacities, and reduced under

unfavourable conditions (Michiorri et al., 2015). To calculate

transmission and conductors’ ampere capacity, weather fore-

casts and associated uncertainties are necessary for each span

of the line. Low winds are particularly important, as they do

not cool down the lines as much as higher winds do and thus

reduce the lines’ capacity. Given the estimated capacities, a

risk policy then defines the maximum allowed probability

for a line’s capacity to be exceeded. From the probabilities

and the overhead line model results, the grid operator derives

the maximum current that ensures that conductors will not be

damaged and that the lines do not sag below a critical point.

For this application, the challenge for the weather service

is to provide high-quality probabilistic weather forecasts at

very small spatial scales.

Critical weather conditions for grid operators. To further

understand how vulnerable TSOs are to weather forecast

errors in their trading activities and to identify critical weather

conditions for which TSOs could benefit from probabilistic

forecasts, we established an on-demand messaging system

for TSOs to report cases where forecast errors resulted in

high costs for correction procedures. Our project staff then

characterised the weather situations at the time of each inci-

dent and evaluated the performance of the forecasts. With

a large number of cases collected over the entire project

duration of four years, we classified the critical weather con-

ditions and developed tailored probabilistic forecast products

for visualisation. TSOs use these weather forecasts as an

additional guideline for their trading decisions, yet (so far)

without a standardised procedure on how to incorporate the

uncertainty information.

In order to address weather-related hazards to the trans-

mission grid, TSOs throughout Europe have jointly specified

weather conditions and criteria that could result in multiple

losses of grid elements (“exceptional contingencies”; Euro-

pean Commission, 2017). When these weather conditions are

sufficiently likely, TSOs perform operational security anal-

yses that take these potential losses into account. Critical

weather conditions include high wind speeds or conditions

under which ice could accumulate on overhead lines.

Unlike the first two application areas, these forecasts and

weather warnings are not directly fed into automatic appli-

cations. Rather, they aim to support the TSOs in a number

of decisions concerning the trading activities, the power

procurement or the plant schedule. To provide users with

direct and easy access to this additional weather informa-

tion, we developed a demonstration tool to enhance the

developer–user dialogue. It displays real-time forecasts and

allows grid operators to test and experience the new forecasts

under critical weather conditions.

2.3.2 Visualisation of probabilistic forecasts: develop a
demonstration tool as testbed
This newly developed demonstration tool gives users

hands-on experience with new forecasts and allows them

to rapidly test the forecasts under real conditions. All

collaboration partners in our research projects can access this

tool and learn to use it during workshops and tutorials.

The tool presents visualisations of four types of forecasts

from the limited-area COSMO-D2 ensemble prediction sys-

tem (Gebhardt et al., 2011; Peralta et al., 2012): probabilistic

wind forecasts at typical hub heights, probabilistic radiation

forecasts, and – as a result of the analysis of critical weather

situations – forecasts for low stratus risk (Koehler et al.,
2017), as well as forecasts from a cyclone detection algorithm

(Steiner et al., 2017). These forecasts aim at providing TSOs

with uncertainty information that are as yet not included

in their automatic applications. Although the uncertainty in

weather forecasts is only one part of the total uncertainty

these applications ultimately need to account for, we hope

to sharpen the awareness for the possible consequences of

significant uncertainties. For example, an uncertain weather
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forecast in a specific area could result in a more conserva-

tive power procurement strategy than it would from using a

deterministic forecast.

The tool also displays the DWD’s official weather warn-

ings. The next important development step is to implement

the decision thresholds at which the exceptional contingencies

security analyses have to be performed. With these forecasts,

our goal is to directly inform the decision process for when

to perform the special, fail-safe security analyses in order to

prepare the grid for weather-induced losses.

Figure 8 shows an example of how the mean and spread of

the radiation forecast is represented simultaneously by colour

and hatching, respectively, in order to call the user’s attention

to areas for which forecasts are particularly uncertain.

To reduce the cognitive load evoked by multidimensional

data, we developed a traffic light system, displayed in the

upper-right corner, that spatially aggregates the forecasts

shown on the map, reducing the values to three predefined

categories. Our aim here is to provide a quick overview of

potential weather-related problems, which was requested in

the iterative development process with the users. In the case of

a critical forecast, a user can zoom in for more detailed infor-

mation from maps for the area of interest and for the entire

forecast horizon.

As a starting point, we used discussions with the users as

a basis for setting probability thresholds and the values for

defining the warning levels for the traffic light system. As

grid operators become more familiar with the new forecasts,

we will encourage them to develop standardised strategies

for using the probabilistic forecasts for specified decisions

(e.g. necessary power procurement). By doing so, the users

will then be able to evaluate how beneficial the forecasts are

to their decisions. We hope this will also allow us to refine

the implemented thresholds for the traffic light system based

on user feedback and suggestions collected in future project

meetings and discussions.

2.3.3 Evaluating the usefulness of the forecasts: Future
challenges
Our work with the TSOs and power forecast service providers

is still in progress and the developments outlined here will

need to mature before we are able to draw practical con-

clusions about our approaches to introducing probabilistic

forecasts. Nevertheless, we can already summarise some key

points characterising this user group and its requirements, as

well as identify the most important next research steps and the

main future challenges.

First, most of the decisions the TSOs identified have purely

financial implications. Some decisions are associated with

very high financial risks, such as compromised grid security

or a deficient electricity supply. Yet the correction measures

TSOs can use to adapt their decisions also imply significant

costs, which raises the economic pressure to optimise the

decision processes and with this the underlying information

and decision tools. Here, the challenge is to quantify the costs

and losses for each decision in the face of a large number of

different possible loss scenarios in order to calculate useful

probability thresholds.

Second, the reason probabilistic forecasts are not already

being implemented for all suitable decisions lies in the

complexity of the applications and the resulting high

demands on the software needed. This issue is reflected by

the large number of current research projects addressing

energy–meteorological problems. TSOs are aware of the

limitations of their decision processes and are seeking appro-

priate solutions; for example, first attempts exist to extend

the operational security analyses by a number of weather and

power scenarios. The challenge here for meteorologists and

power service providers is to contribute to the paradigm shift

taking place at TSOs by developing models and tools that

use probabilistic forecasts and by optimising decisions based

on probabilistic forecasts.

Third, new automatic applications will have to be tested

prior to their introduction in operational practice. This will

require a simulation environment and software that includes

both the existing, deterministic application and the new appli-

cation that is based on probabilistic forecasts. Given the mul-

titude of potential applications and their interdependencies,

the challenge for TSOs will be to develop suitable evaluation

strategies and a robust migration plan.

Fourth, our demonstration tool for visualisations of fore-

casts that are critical to grid stability will improve as we

implement more user requirements, in particular the criteria

for exceptional contingencies. In order to then evaluate the

benefit of these new warnings, we need to develop ways

to compare day-to-day practice with and without the visu-

alisation tool. The challenge here will lie in compiling a

robust database that includes the rather rare critical weather

conditions upon which the decisions are based.

3 DISCUSSION

How can users deal with the uncertainty inherent in weather

forecasts? They can rely on deterministic forecasts and try

to make decisions based on their own experience of forecast

uncertainty. Because a single person’s experience is lim-

ited, they will often have to take corrective actions as soon

as updated forecasts are available. This approach usually

results in additional costs (e.g. for redispatching fire engines,

last-minute increases in on-duty personnel, or adjusting the

feed-in to the power grid). Rising economic pressures in

the public and private sectors make such costs increasingly

problematic. Users are therefore looking for alternative strate-

gies to proactively deal with the uncertainty in weather

forecasts.

One such strategy is for users to make decisions based on

probabilistic forecasts produced by ensemble prediction sys-

tems or statistical models. The main aim of this article was
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FIGURE 8 Simultaneous visualisation of mean global radiation and associated spread of the forecasts on our interactive demonstration webpage, based on

the COSMO-D2-EPS model. The operational implementation of a calibration process for these is under way (Ben Bouallègue et al., 2016; Ben Bouallègue,

2017). The coloured areas on the map indicate the expected radiation level; the shaded areas indicate where radiation forecasts are associated with high

uncertainty. In the upper right corner, a traffic-light system shows the spatially aggregated time series of warning levels. The user can interact with the map,

browse through the forecast horizon, or zoom onto the area of interest. The time series in the traffic-light system is coupled with the spatial radiation forecasts

and enables the user to directly jump to a critical time step in the map. [High-resolution images for all applications are available at the following Open

Science Framework repository: https://osf.io/k6nb7].

to discuss our experience with different approaches to intro-

ducing and communicating probabilistic forecasts, to note the

strengths and limitations of these approaches, and to highlight

theoretical and practical challenges that emerged.

3.1 How to introduce uncertainty?

Our three practical examples illustrate that there is no

one-size-fits-all solution. Each user group and each practical

application must be considered individually when introducing

probabilistic forecast information.

The approach that is most appropriate in a given case will

depend on a number of factors, such as users’ prior experience

with and attitude towards probabilistic forecasts, or the kind

and number of decisions that may benefit from probabilistic

forecasts. Moreover, the heterogeneity and size of a user

group constrains how far results from one sample of the group

may generalise towards the whole group.

In our experience, users without prior experience with

probabilistic forecast, such as emergency managers and road

workers, may view probabilistic forecasts with both inter-

est and hesitation. As the case of road workers illustrates,

this hesitation does not necessarily reflect a comprehension

problem, but rather a concern around how to translate a

probabilistic forecast into a decision. This concern becomes

stronger if lives depend on the users’ decisions, as in the

example of the road workers or emergency managers.

The first two examples explored two very different

approaches to overcoming this hesitation and introducing

probabilistic forecasts. The approach for emergency managers

was to provide different representations of probabilistic fore-

casts in parallel without tailoring them closely to a particular

decision. The strength of this approach is that it creates a

large observational database of user behaviour under real

operational conditions, making it possible to observe and

objectively quantify users’ actual revealed preference instead

of relying on self-reports. This is particularly useful with

large, heterogeneous user groups such as the emergency man-

agers. By collecting data continuously on a long-term basis,

we can study how preferences for various representations of

forecast uncertainty differ between regular and severe weather

conditions, and how preferences evolve more generally over

time as users become more familiar with the way forecast

uncertainty is communicated. As most users in this type of

group are not introduced to the new forecasts in person, this

approach must include carefully designed explanations and

follow-up tests to ensure comprehension and elicit the deci-

sions made based on the information. Moreover, it calls for

some prior knowledge about the users’ requirements, such as

appropriate lead times, to ensure the information they receive

is relevant. In this case, this was already available from pre-

vious studies (Kox et al., 2018a; 2018b) and DWD staff’s

interactions with users; in other cases, surveys or qualita-

tive research methods may be necessary as a first step to

understand the context in which decisions are made (e.g.

Creswell and Creswell, 2017 give information about qualita-

tive research methods).

The approach for road workers, in contrast, relied on

close, personal developer–user contact and a heavily guided

introduction to the new probabilistic forecast products. This

https://osf.io/k6nb7
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participatory approach proved helpful for understanding

users’ decision processes and constraints, and for developing

a common language, mutual understanding, and a success-

ful, sustainable cooperation. Users’ critical questions could

readily be answered and misconceptions could be clarified

in a timely fashion. Engaging users and jointly defining trial

cases in the workshop helped them integrate new forecast

products into their decision processes in the test phase after-

wards; tailoring the forecast to a particular decision jointly

with users can open the door to a wider adoption of proba-

bilistic forecasts by the whole user group. Typically this type

of approach is only feasible with smaller samples of users. Yet

the preferences identified in a small sample of users will only

represent the preferences of other users if the members of the

whole group and their tasks are sufficiently homogeneous. It

is also important to note that in such close dialogues between

researchers, developers and end-users, all sides necessarily –

and by intention – mutually influence each other. This means

that the researchers involved are not “objective” observers

detached from their object of study (Slocum-Bradley, 2005;

Fouché and Light, 2011; Ritchie et al., 2013 give more infor-

mation about participatory qualitative research).

The challenges that arose in the case of the transmission

system operators were quite different from the other two

applications. There were no major challenges associated

with users’ knowledge or willingness to use probabilistic

forecasts. Users had a highly technical background and were

familiar with forecast uncertainty from other forecast mod-

els. Furthermore, they were aware that research suggests that

probabilistic forecasts lead to more reliable power systems

and economic benefits, and were therefore already looking for

these forecasts. Moreover, the stakes, while high, were mostly

purely financial. Instead, challenges arose due to the highly

automated, complex systems and the multiple tasks and pro-

cesses that may profit from probabilistic forecasts. To address

these issues, we relied on a close collaboration of expert teams

from DWD, power forecast providers and grid operators, and

a demonstration tool for all newly developed applications so

they can be reviewed under real conditions by the end-users.

3.2 How are probabilistic forecasts received by the
users?

A key insight that emerged across all user groups and

approaches was that users need to experience probabilistic

forecasts firsthand. This seems true even – indeed, especially

– if users are initially sceptical about the potential benefits

of probabilistic forecasts, such as road workers. Probabilis-

tic forecasts must be ready to use under real operational

conditions in order for users to gain experience with the

products themselves, integrate them into their decisions, and

evaluate which information is useful for a particular deci-

sion or situation (Hogarth and Soyer, 2015; Hertwig et al.,
2019; Lejarraga et al., 2016; Wulff et al., 2018 discuss the

importance of experience in decision making).

The discrepancies we noticed between self-reported

needs and how users actually deal with uncertainty in their

day-to-day work are a strong case in point. For instance, the

emergency managers initially reported in a survey that they,

on average, can work with lead times of only 6 hrs (Kox

et al., 2015), but in practice they used probabilistic forecasts

even earlier than 12 hrs before an event. This indicates that if

longer-term probabilistic forecasts are made available, users

may find them useful despite their initial belief to the con-

trary, and even adapt their decision routines. Moreover, the

probabilistic forecasts may be used for decisions that might

not have been suggested otherwise; for example, emergency

managers used the probabilistic forecast during a severe

weather event to plan post-event duties.

Similarly, the road workers in our second example stated

during the introductory workshop that they would call for

additional personnel as soon as the probability for snowfall

reached 10%, but in the survey they completed after the win-

ter season they indicated much higher probability thresholds.

When asked to indicate a probability threshold before the

probabilistic forecast product is introduced, users can only

resort to whatever prior considerations about the decision

problem they bring to the table. Once probabilistic forecasts

are available in practice, however, users can adapt their prob-

ability thresholds based on their actual experience with the

forecasts.

Whether the thresholds will converge on an appropri-

ate value for a given user is an empirical question that

is difficult to answer without knowing users’ utilities for

different outcomes, i.e. how important it is for users to prevent

or ensure particular outcomes. However, the unwillingness to

assign values to human life points to a general limitation of

the cost–loss model for evaluating the benefit of probabilis-

tic forecasts (Lazo, 2010), as it requires putting all outcomes

on the same monetary or utility scale. Although economics

and psychology offer methods for systematically eliciting the

utility of outcomes that do not have a market price, these

typically measure decision makers “willingness to pay” (cf.

“contingent valuation” methods; Carson, 2012) to prevent or

ensure a certain outcome. Yet for taboo trade-offs (Tetlock,

2003), people may refuse to name a price, or the price they

give may not reflect a stable preference (Hausman, 2012). For

road workers, for instance, ultimately lives may be at stake

when they decide whether or not to salt a road. Moreover, such

non-economic stakes are not necessarily reflected in decision

experiments used to understand the benefits of probabilistic

forecast (e.g. using a road salting task; Joslyn and LeClerc,

2013).

An alternative for evaluating the benefit of probabilis-

tic forecasts are field experiments (Levitt and List, 2009)

that compare objective outcome measures before and after

the introduction of new forecasts; or that compare a group

using these forecasts to the outcomes of a comparable

control group not using them. However, these approaches

require access to actual data (e.g. about costs and accidents)
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on a larger scale, and due to their methodological chal-

lenges may be most feasible in interdisciplinary research

collaborations.

3.3 How to communicate forecast uncertainty?

As with the approach to integrating probabilistic forecasts

into decision-making processes, there is no single best

way to communicate probabilistic information (Fischhoff

et al., 2012). Users differ in their background and decision

processes, which require distinct types and amounts of infor-

mation (Raftery, 2014).

Thus the first important point to consider is which kind

of information best fits the decisions that have to be made.

For instance, does a decision depend on the particular prob-

ability that a threshold is exceeded, such as the probability

of (any) snow in the case of thresholds for road workers,

or does it depend on the possible range, as in the case of

emergency workers who used boxplots during a storm as

information when the wind may decrease to plan post-event

duties? A second important point is that less can be more.

Users may appreciate products that simplify and summarise

– for instance via a traffic light system, as in the case of

the grid operators, or by providing an overall view as in

the case of the road workers – yet allow the user to access

more detail when needed. Today, interactive platforms can

permit users to choose between different representations of

a forecast to inform different decisions (as in case of the

emergency managers), rather than combining everything in

one complex representation or offering only one representa-

tion for all decisions. As we currently lack research testing the

benefit of interactive representations for the comprehension

of uncertainty, future studies in this area would be particu-

larly valuable (Spiegelhalter et al., 2011). As a third point,

we found it useful to build on what is familiar to users, espe-

cially if they lacked experience with probabilistic forecasts. In

the case of the road workers, we found that displaying uncer-

tainty qualitatively at first can pique users’ interest in numer-

ical uncertainties. Online information systems make it easy

to provide users with both the quantitative forecast and its

interpretation simultaneously (e.g. using mouseovers as in the

application for emergency managers). Presenting quantitative

information and its correct interpretation alongside familiar

expressions, for instance by combining graphs and verbal

probabilities, may make it easier for users to make the tran-

sition to the less-familiar quantitative information (Budescu

et al., 2014). Similarly, building on familiar representations,

for instance of variability (for road workers) or probabilities

for conventional thresholds (for emergency managers) may be

useful as well.

A positive framing, such as referring to “confidence fore-

casts” instead of “uncertainty forecasts,” could also help users

to overcome their hesitation; this was suggested by the case of

the road workers. An interesting question for future research

would be to test which framing is closest to the ways laypeople

talk about uncertainty in daily life (e.g. how sure some-

thing is, what the chances of something are, or how precisely

one knows something), and whether the framing would fos-

ter lay users’ comprehension of different ways to represent

uncertainty.

Despite the need to tailor how forecast uncertainty is

communicated to each user group and to each application,

research on risk communication and information design offers

examples of best practice that are broadly relevant and appli-

cable to communicating forecast uncertainty in meteorology

and other domains in general. In Section 2.1.2 we dis-

cussed five relevant recommendations as a first guide for

developers:

1. Encode quantitative information in a way that fosters

accurate decoding.

2. Explain probabilities, for instance through relative fre-

quencies.

3. Prevent deterministic misinterpretations of forecast uncer-

tainty.

4. Put rare but severe events into perspective.

5. Choose the level of detail in accordance with what can be

reasonably predicted.

In addition, explanatory video clips were a promising way

to direct attention to important aspects of the representations.

Other tools, such as online games and quizzes, may also be

effective; here, more research is needed to understand how

interactive learning may help users grasp concepts (Spiegel-

halter et al., 2011).

3.4 Interdisciplinary cooperation to meet future
challenges

The paradigm shift from deterministic thinking towards work-

ing with probabilities in decision making is an ongoing but

auspicious process. Although the dialogue between meteo-

rologists and end-users requires considerable time and effort,

it is necessary if practical applications are to profit from the

valuable information in ensemble-based weather products. To

this end, interdisciplinary exchange between meteorologists

and social, behavioural, and cognitive scientists is essential.

Meteorologists and developers will benefit from using the

tools and methods available in social, behavioural and cogni-

tive science to systematically test and develop practical appli-

cations. In turn, social, behavioural and cognitive research

will benefit from study designs that reflect real-world set-

tings and their challenges, such as the reluctance to put a

price on life, or from opportunities for field experiments. We

strongly encourage all sides to seek out such collaborations

and provide sufficient resources to support them. Combin-

ing interdisciplinary expertise will not only improve practical

applications but also advance the scientific understanding of

how to communicate probabilistic forecasts and the increas-

ing uncertainty across short-, medium- and long-term fore-

casts.
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4 CONCLUSIONS

The extensive research and development effort of the past 25

years in ensemble weather forecasting has resulted in valuable

quantitative information about forecast uncertainty. Proba-

bilistic information promises to be beneficial for a variety of

decision-making processes.

The presented applications illustrate three key points:

1. Without probabilistic information, people can only guess

the underlying uncertainty of forecasts. Communicating

probabilistic forecasts is thus critical to support informed

decisions by users with varying needs.

2. Probabilistic information can be understood by laypeo-

ple if representations are well-developed, tailored to user

needs, and tested (Fischhoff et al., 2012).

3. Users need the opportunity to use probabilistic forecasts in

their actual work in order to experience potential benefits

and develop probabilistic thresholds for their decisions.

With our discussion of three cases and the practical point-

ers to research insights from various fields, we hope to foster

interest in interdisciplinary and evidence-based approaches,

and in the broader use of the research tools and methods avail-

able across disciplines. A final challenge for promoting the

use of probabilistic weather forecasts remains: how can we

quantify the benefit of forecast uncertainty for users’ real-life

decisions in an objective way? Based on our experience, we

are confident that the joint effort of interdisciplinary groups of

scientists, developers, and practitioners can successfully meet

this challenge in the future.
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