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Abstract1

Human aging is characterized by impaired spatial cognition and reductions in the distinc-2

tiveness of category-specific fMRI activation patterns. Yet, little is know about age-related3

decline in neural distinctiveness of spatial information. Here, we asked whether neural tun-4

ing functions of walking direction are broadened in older versus younger adults. To test this5

idea, we developed a novel method that allowed us to investigate changes in fMRI-measured6

pattern similarity while participants navigated in different directions in a virtual spatial7

navigation task. We expected that directional tuning functions would be broader in older8

adults, and thus activation patterns that reflect neighboring directions would be less dis-9

tinct as compared to non-adjacent directions. Because loss of distinctiveness leads to more10

confusions when information is read out by downstream areas, we analyzed predictions of a11

decoder trained on these representations and asked (1) whether decoder confusions between12

two directions increase proportionally to their angular similarity, (2) and how this effect13

may differ between age groups. Evidence for tuning-function-like signals was found in the14

retrosplenial complex and primary visual cortex. Significant age differences in tuning width,15

however, were only found in the primary visual cortex, suggesting that less precise visual16

information could lead to worse directional signals in older adults. Yet, age differences in17

visual tuning were not related to behavior. Instead, directional information encoded in RSC18

correlated with memory on task. These results shed new light on neural mechanisms under-19

ling age-related spatial navigation impairments and introduce a novel approach to measure20

tuning specificity using fMRI.21

Keywords: spatial navigation; aging; neural dedifferentiation; tuning functions,22

fMRI, MVPA23
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1 Introduction24

A central goal of aging research is to understand how aging-related neurobiological changes25

affect computational functions of the brain. One important approach has been to investigate26

how aging changes the representation of sensory information in the brain (Voss et al., 2008;27

Carp, Park, Polk, & Park, 2011; Schmolesky, Wang, Pu, & Leventhal, 2000), which in turn28

might affect cognitive operations that rely on these representations (Baltes & Lindenberger,29

1997; Li, Lindenberger, & Sikström, 2001). A prominent finding in this regard is that neural30

patterns are less specific to the category of sensory information in older adults, a phenomenon31

commonly referred to as neural dedifferentiation (e.g. D. C. Park et al., 2004; Koen & Rugg,32

2019, for recent reviews). Here, we studied age-related neural dedifferentiation in the domain33

of spatial navigation.34

In particular, in this study we asked if aging changes how brain areas sensitive to visual35

and spatial information encode angular walking direction during navigation (Cullen & Taube,36

2017; Blair & Sharp, 1996). In young animals, electrophysiological recordings of visually-37

and direction-sensitive neurons in primary visual cortex (V1) (De Valois & De Valois, 1980)38

and the thalamus (Taube, Muller, & Ranck, 1990a, 1990b) have revealed that although most39

neurons have a preferred stimulus, they are not firing in an all-or-none fashion. Rather,40

cells tend to fire proportionally to the similarity between the observed stimulus and their41

preferred stimulus, exhibiting response properties that are well approximated by a so-called42

Gaussian ‘tuning function’ centered around the preferred stimulus. Modelling work has also43

shown that a population of cells with those tuning properties will optimally encode an ap-44

proximately Gaussian likelihood function of the stimulus given the population response; and45

suggested that this likelihood function is read out, or decoded, by downstream populations46

that compute optimal behavior based on sensory input (Jazayeri & Movshon, 2006; Aver-47

beck, Latham, & Pouget, 2006). The focus of the present paper was therefore to understand48

age-related differences in the properties of population-based tuning functions that encode49

directional information.50

Understanding age-effects on population-level tuning properties is important given the51

large number of previous investigations that have suggested a loss of specificity of neural52

representations in older animals and humans. This originated from reports of fMRI activation53
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patterns in inferior temporal cortex losing categorical specificity with increasing age, i.e.54

activity patterns evoked by face-, place- or word- stimuli are more similar in older versus55

younger adults (e.g. D. C. Park et al., 2004; Voss et al., 2008; Burianová, Lee, Grady, &56

Moscovitch, 2013; Carp et al., 2011). Neural dedifferentiation has also been linked to memory57

impairment with older age (Zheng et al., 2018; Koen, Hauck, & Rugg, 2019) and related58

changes to similarity of neural representations might play a crucial role in the encoding and59

retrieval of memory content (Koen, Hauck, & Rugg, 2018; Sommer et al., 2019). Moreover,60

electrophysiological recordings in V1 of senescent Rhesus monkeys have found that tuning61

curves of orientation responsive neural populations broaden with age, effectively widening62

the spectrum of orientation angles a single neuron responds to (Leventhal, Wang, Pu, Zhou,63

& Ma, 2003; Schmolesky et al., 2000).64

According to the neural broadening hypothesis these changes in firing properties of neural65

populations are a potential mechanism behind neural dedifferentiation, a notion which found66

support in a recent fMRI study (J. Park et al., 2012).67

However, while electrophysiological recordings showed broadening within a single, con-68

tinuous domain (e.g. visual orientation), the fMRI evidence is based on increased pattern69

similarity across distinct domains processed in anatomically separate brain areas (e.g., faces70

vs. houses). This is an important difference because the broader tuning functions over71

a continuous domain found in animals likely relate to changes in local inhibitory control72

(Leventhal et al., 2003). The mechanisms underlying cross-category dedifferentiation across73

areas as found in humans, on the other hand, must be non-local and are generally much less74

well understood. Thus, our focus on age-related changes in tuning properties of direction75

sensitive areas would allow us to build a closer link to animal studies. Moreover, the in-76

vestigation of representations underlying spatial navigation might lead to insights into why77

age-related memory impairments are particularly pronounced in the spatial domain (Moffat,78

2009; Lester, Moffat, Wiener, Barnes, & Wolbers, 2017), since spatial memory relies on a79

sense of direction, for instance during path integration (McNaughton, Battaglia, Jensen,80

Moser, & Moser, 2006; Seelig & Jayaraman, 2015).81

To investigate age-related changes in visual and directional encoding of angular walking82

direction, we analyzed fMRI data from a previous study that used a spatial virtual reality83

3

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/791228doi: bioRxiv preprint first posted online Oct. 2, 2019; 

http://dx.doi.org/10.1101/791228
http://creativecommons.org/licenses/by-nc-nd/4.0/


(VR) navigation paradigm (Schuck, Doeller, Polk, Lindenberger, & Li, 2015). This work has84

shown that the neural underpinnings of different spatial navigation strategies are changed,85

and partly dedifferentiated in older adults (see also: Schuck et al., 2013). In the present paper86

we went beyond this work by investigating the encoding of directional information that is87

involved in any spatial strategy. Our hypotheses were threefold: first, we expected that fMRI88

signals stemming from directionally- and visually-tuned neural populations will allow us to89

decode walking direction above chance (directional and visual similarity were linked in the90

present data, as they are in daily life). Second, the similarity of two representations arising91

from different directions should be inversely proportional to the angular difference between92

these directions. Because our focus was on representational structure from the perspective93

of downstream areas which read out population level tuning functions (Jazayeri & Movshon,94

2006; Averbeck et al., 2006), we investigated the probability of a decoder in confusing similar95

patterns, rather than the similarity directly. A tuning function-like signal should lead to96

systematically more confusions between neighbouring directions, effectively taking the shape97

of a Gaussian tuning function as seen in the analysis of electrophysiological recordings in98

animals (Mazurek, Kager, & Van Hooser, 2014). Finally, our most central hypothesis was99

that older adults should show decreased specificity of directional representations, which we100

tested by comparing the width of the fMRI-derived tuning functions.101

2 Materials and Methods102

2.1 Participants103

This study is a re-analysis of data from 26 younger (21–34) and 22 older (56–74) male104

participants, as reported in Schuck et al. (2015). In addition to the exclusion criteria used105

in the original study (insufficient task performance, signal loss), we excluded participants106

with an unsuitable distribution of walking direction events that resulted in too little data107

for at least one direction to train the classifier (three participants, one younger, two older;108

for details see supplementary material section one). Additionally, one younger and one109

older participant had to be excluded due to missing directional information or excessive110

motion during the task, respectively. Therefore, 43 participants (24 younger, 21–34 years,111
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µage = 27.87, σage = 4.01; 19 older, 56–74 years, µage = 67, σage = 3.93) entered the analysis.112

Additional subject characteristics can be found in (Schuck et al., 2015).113

2.2 Virtual Reality Task114

Participants performed a desktop-based virtual environment (VE) spatial memory task while115

they underwent fMRI. The task was programmed using UnrealEngine2 Runtime software116

(Epic, https://www.unrealengine.com) and participants were familiarized with all proce-117

dures before entering the MRI scanner, for details see Schuck et al. (2015). The VE displayed118

a grass plane surrounded by a circular, non-traversable stone wall with a diameter of 180119

virtual meters (vm; 1 vm = 62.5 Unreal Units). Beyond the stone wall distal orientation120

cues, including multiple mountains, clouds, and the sun, were projected at infinite distance.121

Inside the arena a landmark was placed in the form of a traffic cone, see Figure 1. Par-122

ticipants were able to freely move around the arena. All movements were controlled using123

an MR-compatible joystick (NAtA Technology, Coquitlam, Canada) and exhibited constant124

speed. Right and left tilts of the joystick led to corresponding rotations of the player’s125

viewing direction. Forward and backward tilts controlled walking. A full crossing of the126

environment took approximately 15 seconds. Location and viewing direction of the player127

were recorded every 100ms.128

Figure 1: Trial structure of the VR task during feedback trials. After an object was cued it had to

be placed at the remembered location. After replacing the object feedback was presented in the form of

the true object location where it had to be picked up to start the next trial. Maximum time window for

replacing and collecting was 120 s. Free movement during all parts of the feedback trials were used for

further analysis. Figure adapted from Schuck et al. (2015).

Participants were first asked to encode the locations of objects that were shown within129
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the arena. Afterwards, the participants’ main task was to navigate to the locations of these130

objects after a cue was displayed (see Figure 1; 5 objects, 6 trials per object, maximum131

time to relocate an object was 120s, for details see Schuck et al. (2015)). The analyses132

presented in this paper are solely concerned with directional signals independent of task133

condition. Thus, we considered all periods of fMRI recording that involved free navigation134

in a known environment. Encoding and transfer trials mentioned in the original publication135

were excluded since in encoding trials the environment was novel and movement was directed136

by cues and transfer trials involved changes to the environment that could potentially lead137

to direction remapping (e.g., Taube et al., 1990b).138

2.3 Image acquisition139

A 3 Tesla Siemens Magnetom Trio (Siemens, Erlangen, Germany) research-dedicated MRI140

scanner was used for MRI data acquisition. An MP-RAGE pulse sequence (1×1×1mm voxels,141

TR = 2500ms, TE = 4.77ms, TI = 110ms, acquisition matrix = 256 × 256 × 192, FOV =142

256mm, flip angle = 7◦, bandwidth = 140 Hz
Px ) was used to collect T1-weighted structural143

images before and after the full task. Functional data was acquired using a T2*-weighted144

echo-planar imaging (EPI) pulse sequence (3 × 3 × 3mm voxels, slice thickness = 2.5mm,145

distance factor = 20%, TR = 2400ms, TE = 30ms, image matrix = 72 × 72, FOV =146

216mm, flip angle = 80◦, 43 axial slices, GRAPPA parallel imaging, acceleration factor: 2,147

interleaved acquisition). Slices collected during the EPI sequence were rotated to approxi-148

mately −30◦ relative to the anterior-posterior-commisure plane to reduce signal drop-out in149

areas of the MTL. The task was split into two functional runs, each taking between ten and150

40 minutes depending on participant performance.151

2.4 Image preprocessing152

All imaging data were preprocessed and analyzed using SPM12. The pipeline for each subject153

consisted of spatial realignment, slice timing correction, coregistration to the anatomical scan154

and segmentation of the structural scan. Grey- and white-matter segmented anatomical im-155

ages were used to create age-group specific MNI templates using SPM’s DARTEL (Ashburner156

& Friston, 2009) to avoid age effects resulting from normalization to a template based on157
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younger adults. Anatomical ROIs were defined in MNI space using the Harvard-Oxford158

Cortical Atlas and the Talairach Atlas and afterwards transformed into the the subject’s in-159

dividual functional space using the inverse of the participant-specific transformation matrix160

to the DARTEL template. All further analyses were conducted within-subject.161

2.5 fMRI analyses162

Participants could determine their orientation by tracking their own rotation and attending163

to the visually displayed distal orientation cues. The analysis was therefore focused on164

the following set of ROIs that had previously been related to (head) directional signals or165

visual processing: the retrosplenial complex (RSC), the subiculum, a joint hippocampus166

and entorhinal cortex ROI, the thalamus (Taube, 2007; Shine, Valdés-Herrera, Hegarty, &167

Wolbers, 2016), and primary visual cortex (V1). Although joystick movements resulted168

in relative direction changes which were independent of the travelled direction (a left tilt169

resulted in a left rotation relative to the direction before joystick movement), a ROI of the170

primary motor cortex (M1) was used to capture potentially spurious, motion-related effects171

on decoding and served as a baseline. Using a control ROI as our baseline also avoids issues172

inherent to performing population inference based on t-tests of decoding results against a173

numerical baseline (Allefeld, Görgen, & Haynes, 2016).174

Univariate estimation of directional fMRI signals Participants’ behavior was175

characterized by their walking direction. Walking direction could be derived from the angle176

of the vector connecting consecutively logged locations in the VE. Continuous navigation of177

each participant was segmented into separate periods (events) during which walking direction178

stayed within one of six, discrete, 60◦ bins for longer than 1 second. Stopping continuous179

movement or shifting walking direction beyond the border of a bin marked the end of an180

event. Viewing direction of the player was logged directly by the task program and matched181

the walking direction during forward walking. Backward walking periods were identified by182

marking periods during which viewing and walking direction differed by 180◦(±20◦). These183

events were excluded from the main analysis and considered separately (see below). The184

resulting direction events were then used to construct general linear models (GLMs) for185
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univariate estimation of direction specific fMRI activation signals.186

Since successive directions might be auto-correlated during free navigation (participants187

change more often from 30◦ to 60◦ than to 180◦, etc.), performing a GLM on temporally188

auto-correlated fMRI signals can result in biased pattern similarities (Cai, Schuck, Pillow,189

& Niv, 2019). This effect can lead to spurious similarities between neural patterns of similar190

walking directions. We reduced this estimation bias by temporally and directionally separat-191

ing adjacent events on the analysis level. Specifically, we separated odd and even numbered192

forward walking events and modelled them in two distinct GLMs. This separation of odd193

and even events ensured that events within the same GLM were separated by at least the194

minimal duration of another event (1 second) and resulted in an average of 5.1 TRs between195

two events, which corresponds to 12.25 s (SD=9.68). Such temporal separation exponen-196

tially reduced noise correlations between events, as can be illustrated by considering a 1-step197

autoregressive model of the form198

Xt ∝ ϕ1Xt−1, (1)

whereby ϕ1, known as the AR(1) coefficient, expresses the relation between the signal X199

at time t and the same signal during the previous measurement time-point t − 1 (constant200

and error terms are left out for simplicity). The relation between the signal two time steps201

apart can be found by substituting Xt−1 in Eqn. (1) by its own auto-regression model,202

Xt−1 ∝ ϕ1Xt−2, and is thus described by Xt ∝ ϕ2
1Xt−2. The now quadratic AR(1) term203

shows that the autocorrelation between the two measurements drops exponentially as a204

function of the number of ‘time steps’ between the measurements, i.e. the AR(1) coefficient205

of the signal recorded p time steps apart is an exponential function of the AR(1) coefficient206

ϕ1207

ϕp = ϕp
1. (2)

The value of ϕp comprises a signal component (similarity of directional representations)208

and a noise component (effects of previous noise components on following ones, e.g. caused209

by the slow nature of the hemodynamic response function). It therefore presents an upper210

bound of noise autocorrelation between consecutive events as some of the correlation might211

be due to similarities in directional representations. While the average AR(1) coefficient212

was .361 in RSC and .442 in V1, the correlations induced by temporal proximity between213
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events in our GLMs were reduced to only .033 (SD=.046) and .063 (SD=.072) respectively.214

Note that these are average values over more detailed analyses which also revealed higher215

auto correlation in V1 for younger adults (for details see supplementary material section216

two). In addition to reducing temporal noise correlations, the separation of neighboring217

directions into more distant events ensured that temporally adjacent events mostly did not218

reflect neighboring directions, also reducing correlations among regressors (for details see219

supplementary material section three).220

Directional GLM regressors were built to model data in each half run. Because the221

experiment contained two runs, events were split in four equal sets for each of the directions.222

This resulted in 24 direction regressors in total that were later used to perform cross-validated223

decoding. Direction regressors reflected onsets and duration of events as described above.224

The average event duration was 3.05 s (SD = 2.12 s). On average there were 114.98 events225

per subject (SD = 27.70). In addition, six run-specific motion and two run-wise intercept226

regressors were included, resulting in 38 regressors per GLM.227

For an overview of the analysis pipeline see Figure 2.228

Classification of directional fMRI patterns For all classification analyses, a229

multi-class linear support vector machine was trained on data from three folds and used230

to predict directions in the hold-out fold. Decoder training/testing was conducted using231

sciKit-learn (version 0.19.1, Pedregosa et al., 2011), nibabel (version 2.3.0, available at232

https://github.com/nipy/nibabel; Brett et al., 2018), and nilearn (version 0.4.1, available233

at https://github.com/nilearn; Abraham et al., 2014) packages in Python 3.6 (Python234

Software Foundation, version 3.6, available at http://www.python.org). Default settings235

(L2 penalty, penalty parameter C = 1, one-vs-rest multi-class strategy) and a maximum of236

105 iterations were used for classifier training.237

Our main classification analyses were performed on direction-related beta maps and con-238

ducted separately for each GLM and ROI. Cross validated decoding results obtained from239

odd and even GLMs were averaged afterwards. In addition to testing the classifier on beta240

maps, we also applied it directly to data from single events. For each individual event, we241

calculated the precise average direction. This allowed us to relate classifier predictions to242
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Figure 2: Schematic of analysis procedure. A: Individual navigation patterns during fMRI recording

were separated into events corresponding to six possible angular walking directions. B: Odd (black) and

even (blue) numbered events were analysed identically but as separate data sets to minimize confounds.

C: Events entered a GLM yielding beta maps as representations of each walking direction in a four-fold

structure. D: A classifier was trained on three of the four folds and predicted the walking direction

for each beta map in the left out fold (exemplary numbers). E: Differences between predicted and true

walking directions gave a direction invariant Confusion Matrix (CM). Confusion matrices were pooled

over both data sets and normalized. F: Hypotheses concerning the predictive pattern of the classifier were

tested by fitting two models: A uniform model assuming all false predictions are equally likely (H0; red)

and a Gaussian model assuming errors to be less likely the more they diverge from the correct walking

direction (H1; green). The Gaussian pattern should arise if the similarity of beta maps is a function of

their angular difference, a prediction of a tuning function-like signal.

higher resolved direction labels of 10◦ per bin. Furthermore, the classifier was applied to243

backwards walking events. Because visual and walking direction diverged during backwards244

walking, this allowed us to quantify the influence of the visual scene on classification accuracy245
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in different ROIs.246

To test if classification accuracies exceeded chance level, accuracy levels in each ROI were247

compared to results from a permutation test (distribution of 1000 classification accuracies248

arising from training with randomly permuted labels) and to classification accuracy obtained249

in primary motor cortex (M1), using one-sided paired t-tests. P-values were Bonferroni-250

corrected for multiple comparisons across ROIs.251

Influence of directional similarity on representational overlap of fMRI252

patterns To test whether fMRI patterns that reflect similar walking directions are more253

overlapping than patterns associated with less similar walking directions, we analyzed the254

confusion matrix of the fMRI decoder. The confusion matrix reflects how often each category255

was decoded given a neural representation associated with each single category, e.g. how256

often did the classifier predict 120◦ although the walking direction was actually 60◦, and257

etc. In a first step, we aligned the average proportions of classifier predictions around the258

true direction, and derived an average distribution of predictions around the true category,259

i.e. at - 120◦, -60◦, 0◦, + 60◦, + 120◦ and ±180◦, relative to the target (averaged over260

folds and odd/even GLMs). This offered a confusion function, reflecting representation261

similarity/confusibility between two categories as a function of their angular difference (see262

Figure 2). We then quantified whether the confusion function reflected a tuning function263

by fitting a Gaussian bell curve to the data that peaks at the target direction, as done in264

electrophysiological animal research (Mazurek et al., 2014). The Gaussian curve is described265

by266

g(x) = 1
Z e
− 1

2τx
2
, (3)

where x is a given direction relative to the target, τ reflects the precision of the Gaussian267

(1/σ2), and Z ensures normalization. This model had only one free parameter, precision268

τ that reflects the width of the tuning function. We compared this model to a null model269

that assumed evenly distributed off-target predictions independent of direction. According270

to this model, off-target predictions should be described by271

u(x¬0◦) =
100− a

5
, (4)
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which uniformly distributes the percentage remaining after subtraction of the value at the272

target direction, a, a free parameter.273

Both models thus had only one free parameter and were compared based on the sum of274

squared errors (SSE) between the model predictions and the confusion function. Decoding275

at the correct category (the center of the confusion function) was excluded from the curve276

fit analysis in order to make the tuning function analysis independent from overall decoding277

accuracy and avoid a bias towards the uniform model, where model prediction at the center278

is always matched to the data via the free parameter a. For each ROI, participants’ SSE279

differences between both models were entered into a one-sided t-test to test for a better280

fit of the Gaussian vs uniform model. We also derived a tuning function from the classifier281

predictions when applied to single forward or backward events by quantifying how often each282

of the 60 ◦ labels from the training set was predicted for each of the 10◦ bins in the test set.283

We then compared the fitted precision parameters between age groups and ROIs, testing284

our hypothesis that directional information is encoded with higher precision in younger285

compared to older adults (one-sided t-test). Since the precision parameter was non-normally286

distributed for some cases, tests for group comparisons were chosen accordingly.287

Effects of ROI and Age group on classification To evaluate differences and288

interactions between ROIs and age groups, we used a model comparison between nested289

linear-mixed effects (LME) models. All models included a random intercept per participant.290

Fixed effects were entered in a stepwise inclusion approach: Model 1 included fixed effects of291

the intercept and the ROI, Model 2 included fixed effects of intercept, ROI and age group,292

and Model 3 included an additional interaction between ROI and age group. The three293

models were compared using a likelihood ratio test and followed up by post-hoc t-tests.294

Using GLM derived beta maps for classification ensured fully balanced training sets. Yet,295

imbalances could still exist on the level of events from which regressors were constructed. To296

check for potential group differences in the number of direction events, a ’class balance score’297

was calculated that reflected the deviation of the event distribution from uniform (root mean298

squared error between the measured relative number of events belonging to each class and299

the corresponding uniform distribution). The number of events and balance score of each300
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fold and subject entered a set of nested LME models similar to the ones described above.301

The models included intercept and age-group (Model 1). No differences between age groups302

in balance score were found (χ2(1) ≤ .745, p ≥ .388). Likewise, no difference between age303

groups in number of events were found (χ2(1) ≤ .150, p ≥ .698).304

Differentiation of viewing and walking direction The classifier was trained on305

forward walking events, during which viewing and walking direction were identical. During306

backwards walking, however, viewing and walking directions are opposed (180◦ shifted).307

Thus, the more a classifier depends on visual information, the more it will predict 180◦308

shifted directions during backward walking. We therefore quantified the influence of visual309

information on decoding accuracy, as well as on the shape of the confusion function, by310

comparing classifier predictions for forward versus backwards walking events. Backwards311

walking events on average made up 26.8% (SD = 13.4%) of all events. Note that in both312

cases the classifier was trained on forward direction beta maps so the amount of backwards313

walking events did not influence the classifier’s predictions. Visual influence on direction314

signals was measured by calculating the relative differences in predictions at the target (0◦)315

and opposed (180◦) directions between the backward and the forward test set.316

Additionally, we asked whether the influence of visual information was different in younger317

and older adults. This would hint towards a broader form of dedifferentiation compared to318

changes in the similarity structure of neural responses to a continuous stimulus. In each319

ROI, visual influence scores of both age groups were therefore compared using a Welch two320

sample t-test.321

2.6 Behavioral analysis322

A detailed analysis of the behavioral results can be found in Schuck et al. (2015). Briefly,323

location memory was quantified as the Euclidean distance between the remembered and324

true location during the feedback phase (distance score). Our analyses in the present paper325

focused on the relation between the Euclidean distance and measures for neural specificity.326

We therefore used Euclidean distance as the dependent variable in two linear models which327

contained the factors Age and one ROI specific measures of neural specificity (either decoding328
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accuracy or Gaussian precision). All variables were z-scored before entering the linear model329

and analyses were conducted in R (version 3.6.1, R Development Core Team, 2011).330

3 Results331

3.1 Classification of walking direction332

Classification accuracies for each ROI can be found in Figure 3. One-sided permutation333

tests (104 iterations) indicated above-chance classification accuracy in the V1, RSC, and334

Subiculum (all padj. ≤ .006) but none of the other ROIs (padj. ≥ .054). Only decoding335

accuracy in the RSC- and V1 masks, however, exceeded classification level in M1 (both336

t(42) < 2.58, padj. ≤ .033). While V1 classification can be expected to be based on visual337

signals, MRI sensitivity to directional signals in RSC is in line with other investigations338

(Shine et al., 2016). We therefore proceeded with only these two ROIs for which we had339

clear evidence we could measure directional signals in the present data set.340

Decoding accuracy tended to be higher in younger adults indicated by an increased model341

fit from including age group: χ2(1) = 10.90, p < .001) and was also higher in V1 than RSC342

(post-hoc t-test, t(41) = −8.72, padj. < .001). The interaction between ROI and age did343

not further improve model fit (χ2(1) = 2.31, p = .072), indicating that age differences were344

not significantly different between ROIs. Post-hoc t-tests revealed a significant difference345

between age groups in V1 (t(75) = −3.66, padj. < .001), but not the RSC (t(75) = −1.86,346

padj. = .066).347

3.2 Tuning function like representations of direction348

To test differences in similarity structure of directional representations, we fitted a Gaussian349

and a uniform model to the classifier confusion patterns, as described above. A paired t-test350

of model SSEs across groups revealed that the Gaussian curve fitted the classifier confusions351

better than the opposing uniform model in both the RSC and V1 (all t(42) > 3.75, padj. <352

.001). The Age × ROI interaction significantly improved model fit (χ2(1) = 4.305, p = .038).353

This reflects the fact that the Gaussian model fitted the data better in V1 compared to354

RSC in younger but not in older adults (post hoc tests: t(42) = −4.07, padj. < .001 and355
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Figure 3: Decoder performance. A: Classification accuracy in each ROI (colored diamonds) compared

to distribution arising from 104 decoder runs with permuted labels (white violin plots, single values as

black dots). Chance-level performance shown by grey line. ROIs above dashed line show significant

above-chance accuracy measured by one-sided permutation tests and adjusted for multiple comparisons.

B: Classification accuracies across investigated ROIs compared to M1. Single participant values shown

as dots. Group means shown by color matching diamond. ROIs with significantly higher classification

accuracies compared to M1 shown above dashed line.

t(42) = −.84, padj. = .812, respectively). SSE comparisons can be found in Figure 4.356

3.3 Differences in tuning width between age groups357

Next, we investigated whether Gaussian precision differed between younger and older adults358

in either RSC or V1. Because normality was violated in at least one case (V1 precision359

in younger adults was non-normally distributed, Kolmogorov-Smirnov test, D = .515, p <360

.001), we used non-parametric Wilcoxon rank sum tests for these analyses. In V1, this test361
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Figure 4: Quantification of tuning function-like signal A: Comparison between models fitted to confusion

functions of RSC and V1 decoder. Depicted are within participant changes in SSE between models

(violin plots as in Figure 3). Individual participant values for both models are connected by grey lines.

Top dashed lines indicate significantly better fit of Gaussian model (within subject t-tests, one-sided,

adjusted). B: Difference in model evidence when comparing RSC and V1 for both age groups. Evidence

for Gaussian model is given by SSEUniform − SSEGaussian, so values above 0 indicate a better fit of the

Gaussian model. Dashed line indicates significant differences in a post-hoc t-test after correction for

multiple comparisons. C: Depiction of confusion functions of RSC and V1 decoder. Participant specific

confusion functions shown as thin lines. Thick line shows mean confusion function over all participants.

indicated significantly higher precision in younger compared to older adults (W = 138.5,362

padj. = .029, one-sided). In the RSC, no such effect was found (t(40.98) =, padj. = .917, Welch363

two sample t-test, one-sided). ROI-wise comparisons of precision and averaged confusion364

matrices in V1 for both age groups are shown in Figure 5.365

To achieve higher resolution regarding the similarity of directional signals, and better366

support for our fitted models, we repeated the above analyses with classifier results when367
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Figure 5: Tuning width of confusion function A: Group comparison of precision of Gaussian model fit

to confusion function for RSC and V1, plots as in Figure. 3. Top dashed line indicates significantly higher

precision in younger adults (one-sided t-test, adjusted). One high precision outlier (young participant)

is not displayed in the V1 plot. B: Visualization of averaged best fitting Gaussian models of confusion

functions for both age groups. Dotted lines and shaded area indicate standard error of the mean. Models

were normalized to represent the percentage classified at the six measurement points of the confusion

function.
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applied to the single event test set. Results of all analyses are shown in Figure 6. As expected,368

during forward walking events decoding accuracy was higher than in a permutation test in369

RSC as well as V1 (all padj. < .001; see Figure 6A). Average high-resolution confusion370

functions can be found in Figure 6B. Applying the Gaussian and uniform models to the371

confusion functions indicated Gaussian like pattern similarites as expected in the RSC and372

V1 (t(43) ≤ −5.82, padj . ≤ .001, paired t-tests of SSEs associated with each model; see373

Figure 6C). Similar to the classifier tested on beta maps, age-group differences in precision374

of the fitted Gaussians only showed a higher precision in younger adults compared to older375

adults in the V1 (t(29.95) = −3.47, padj. = .001) but not in the RSC (t(35.82) = −.63,376

padj. = .531, two sample t-tests, assumption of normality not violated; see Figure 6D).377

3.4 Influence of visual scene processing on decoding accuracy378

Backwards walking events in the test set allowed us to investigate the influence of viewing379

direction on classification accuracy in each of the ROIs, since walking and viewing direction380

are opposite to each other. Visual influence on the directional signal was quantified as a381

decrease in (correct) predictions of walking direction combined with a simultaneous increase382

in 180◦ shifted predictions (in line with viewing direction) for backward relative to forward383

walking events. This measure of visual influence was then compared between ROIs.384

A comparison of visual influence scores can be seen in Figure 7A. A paired t-test showed385

a significant difference of the visual influence between the V1 and the RSC ROI with lower386

visual influence in the RSC (t(42) = −7.15, p = .001), indicating qualitative differences in387

the nature of the decoded representations in RSC versus V1.388

We next asked whether the influence of visual information was different in younger and389

older adults, hinting at a broader form of dedifferentiation. Visual influence scores were lower390

in older adults compared to younger adults in V1 (t(33.28) = −3.95, padj. < .001) but not391

RSC (t(37.51) = −.34, padj. > .999). See Figure 7B for an age group comparison of visual392

influence scores. Confusion functions of the decoder trained on forward walking and tested393

on backward walking are shown in Figure 7C.394
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Figure 6: Analysis of decoders tested on single events. A: Classification accuracies of V1 and RSC

decoders when tested on single events instead of beta maps. Depiction as in Figure 3B. Stars indicate

significant above-chance classification accuracy given by a permutation test (104 permutations, one-

sided, adjusted). B: High resolution confusion functions of RSC and V1 decoder with a bin-width of 10◦.

Depicted as in Figure 4C. C: Comparison between models fitted to high resolution confusion functions

of RSC and V1 decoder. Depicted as in Figure 4A. Top dashed lines indicate significantly better fit

of Gaussian model (paired t-test, one-sided, adjusted). D: Group comparison of precision of Gaussian

model fit to high resolution confusion function for RSC and V1. Plots displayed as in 5A. Top dashed

line indicates significantly higher precision in younger adults (one-sided t-test, adjusted).

3.5 Behavioral results395

We explored relations between task performance and measures for neural specificity in each396

ROI, predicting distance scores by age group and either decoding accuracy or Gaussian397

precision. Both measures of neural specificity stemming from a decoder trained and tested398

on directional beta maps. Predicting distance scores using the predictors age group and399

decoding accuracy in the RSC showed a negative relation with distance score independent400
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Figure 7: Influence of visual scene on direction prediction for RSC and V1. A: Comparison of visual

influence score of RSC and V1 decoder. Plots as in Figure 3. Higher values above zero indicate a

stronger tendency to predict the viewing direction while walking backwards. Dashed line indicates no

visual influence. Top solid line and star show a significant difference in visual influence score between

ROIs. B: Comparison of visual influence score between younger and older age group in each ROI.

Solid line and star indicate significant comparison. C: Individual (thin lines) and average (heavy line)

confusion function for RSC and V1 decoders tested on backwards walking events where walking and

viewing direction are opposite to each other (180◦ divergence, indicated by labeled arrows). Functions

peaking at 180◦ correspond to high visual influence.
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of the age group, indicating worse task performance with less decoding accuracy (r = −.172,401

p = .015, ryounger = −.542, rolder = −.279). Other linear models did not show any relation402

between distance score and measures of neural specificity that was independent of the age403

group. Relations between either decoding accuracy or Gaussian precision and distance score404

are shown in Figure 8A. and B., respectively.405
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Figure 8: Relation between measures of neural specificity and task performance measured by distance

score. Measures of neural specificity stem from a decoder trained and tested on directional beta maps.

A: Relation between decoding accuracy and distance score. Younger adults shown by solid points and

lines. Colored and black lines show correlation within and across age group, respectively. Star indicates

a significant correlation independent of age group. B: Relation between Gaussian precision and distance

score. Coloring identical to figure panel A.
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4 Conclusions406

In this study we used fMRI to investigate age-related changes in the specificity of direction-407

selective neural signals. More specifically, we asked a set of three hierarchically structured408

questions: whether it is possible to decode angular walking direction during free movement,409

if the similarity of neural patterns associated with these directions declines gradually with410

larger angular differences, as predicted by directional tuning functions, and whether older411

adults show broadened directional representations.412

Our results revealed that directional information could be decoded from fMRI patterns in413

the RSC and V1, in line with previous investigations (Shine et al., 2016). Interestingly, age414

differences in decoding accuracy were found only in V1, but not RSC. Going beyond mere415

accuracy, we introduced a novel method that allowed us to characterize tuning function-like416

signals during decoder readout, while minimizing effects of autocorrelations. This analysis417

demonstrated that independent of overall classification accuracy decoder confusions in both418

ROIs were approximated best by a Gaussian tuning function – indicating a gradual decline419

of pattern similarity and following the predictions of a tuning-function like signal as found in420

animal research. Analyzing the width of the fMRI-level tuning function indicated broadened421

tuning of visual representations in V1 in older adults. In line with our predictions, this422

provides evidence for broader tuning functions in older adults as suggested by the neural423

broadening hypothesis (J. Park et al., 2012). Unexpectedly, no evidence for age differences424

in tuning width was found in RSC. Analyses for single trial events confirmed our results425

and showed that the Gaussian similarity structure persisted when directional signals were426

resolved at 10◦ instead of 60◦. We also quantified the impact of visual information on427

direction decoding by analyzing backwards walking events and found that RSC signals were428

less contingent on the visual scene present than V1, as expected. Additionally, younger and429

older adults differed in the influence the visual scene had on the signal measured in V1, but430

not RSC.431

To the best of our knowledge, this is the first study to investigate potential age-related432

changes in tuning functions defined over a continuous domain, rather than using discrete433

categories (J. Park et al., 2012; Koen et al., 2019). This is a notable distinction from previous434

research since mechanisms of age-related changes are likely different in these two cases:435
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dedifferentiated responses within local circuits, which code the same continuous quantity, are436

related to changes in local inhibitory control, such as GABAergic interneurons (Leventhal et437

al., 2003); cross-areal dedifferentiation conceivably reflects a range of different mechanisms,438

including changes in long range connectivity or task strategies (Reuter-Lorenz & Lustig, 2005;439

Reuter-Lorenz & Cappell, 2008). Moreover, investigating continuous encoding of direction440

allowed us to test the claims made by the neural broadening hypothesis more directly: does a441

tuning function defined over continuous space change with age? Our findings in V1 converge442

with previous findings, but the apparent lack of evidence for age related dedifferentiation in443

RSC represents a notable deviation from previous findings and warrants further investigation.444

While it is likely that the measured signal in the RSC or thalamus contains directional445

information influenced by head direction cells (Shine et al., 2016), effects in the V1 are most446

likely based on visual inputs drawn from a continuous visual scene. Our results suggesting447

neural broadening in the early visual system converge with findings in single cell recordings448

demonstrating wider tuning functions in senescent monkeys confronted with a visual stimulus449

of various orientations (Leventhal et al., 2003). While visual orientation signalling occurs450

earlier in the visual hierarchy than scene detection, it is possible that this process drives451

the present findings in V1 and suggests that the introduced method to investigate neural452

broadening might be sensitive to tuning curve related changes. Our results furthermore453

indicate that classifier confusions can pose as a tuning function proxy measure of a continuous454

variable, providing a novel measure for neural specificity beyond classification accuracy. To455

see if the findings are specific to the investigated domains, the method should also be applied456

to other continuous variables, e.g. the perception of motion and spatial frequency (Liang et457

al., 2010; Yang et al., 2008).458

The observed relationship between a less specific directional signal in the RSC and larger459

errors in the placement of objects to memorized locations suggests that neural dedifferenti-460

ation might play a role in spatial memory performance. Since there was no group difference461

in classification accuracy in the RSC, it remains unclear if this process is connected specif-462

ically to the aging brain or rather describes a process which is happening throughout the463

adult lifespan (Rugg, 2016). This idea was also supported by a study by Koen et al. (2018)464

where the connection between neural dedifferentiation and memory performance was also465
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age invariant.466

The reason why no evidence for neural broadening and/or age-differences in directional467

signal specificity could be found in areas associated with a less visually dominated signal468

remains unclear. One possible explanation could be that during the VR task in the fMRI469

scanner no matching vestibular information is provided to the participant. The vestibular470

system has been identified as a possible source of internal noise during the process of path471

integration (Stangl, Kanitscheider, Riemer, Fiete, & Wolbers, 2018), a skill heavily relying on472

HD signal (McNaughton et al., 2006) and heavily influenced by older age (Adamo, Briceño,473

Sindone, Alexander, & Moffat, 2012). As this error source is eliminated by lying motionless474

during the task, age-differences might diminish. Furthermore, the resulting finding could475

have been limited by the resolution of directional categories. Smaller bins of directions when476

training the decoder would increase the resolution and accuracy of the investigated confusion477

functions. In order to exclude the possibility of neural broadening of directional signals in the478

human brain a similar approach with a more specialized paradigm should be conducted. It479

should however also be mentioned that, to the best of our knowledge, currently no evidence480

exists that directionally tuned cells are subject to neural broadening.481

It is important to note that this paper presents a reanalysis of data collected during a482

task that was not specifically designed for the purpose of this study. It was therefore im-483

possible to unambiguously disentangle visual from non-visual direction signals and travelled484

directions were not experimentally controlled. In consequence, visual input partially con-485

founded directional signals, travelled directions were autocorrelated, some directional events486

occurred more frequently than others and some events that were unfit for directional anal-487

ysis altogether (e.g. being idle and micro movements). We note that all these aspects are488

characteristics of navigation as it occurs in daily life and our analytical approach has shown489

how autocorrelations can be reduced and the amount of visual influence on neural repre-490

sentations can be characterized. Yet, the introduced limitations would be less severe in a491

tailored experiment which could increase analytic sensitivity. Another limitation regarding492

the generalization of these results includes the solely male participants. While this avoided493

effects based on participant’s sex the findings should not be generalized to female populations494

without further validation.495
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One important open question relates to the relation between our confusion function-based496

measure for neural specificity over continuous variables and changes in neurotransmitter497

systems. Contemporary models have linked neural dedifferentiation to less reliable or reduced498

DA-related signalling in the aging brain (Li & Rieckmann, 2014), a dominant aspect of499

the aging brain that is known to influence learning (e.g., Eppinger, Schuck, Nystrom, &500

Cohen, 2013) and memory (e.g., Schuck et al., 2013). The effect of changing DA levels in501

younger and older adults on neural specificity measured over a continuous variable could502

provide more detailed insights towards the mechanisms behind neural dedifferentiation and503

the role of DA in the aging brain. Moreover, understanding the role of GABA in this504

process is important given its known influence on neural broadening (Leventhal et al., 2003;505

Lalwani et al., 2019). Future studies employing neurotransmitter imaging, pharmacological506

interventions and genetic or pharmacogenetic approaches therefore promise to shed more507

light on age-related changes in ’local’ tuning functions and cross domain dedifferentiation508

that characterize the human brain.509
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Brett, M., Hanke, M., Markiewicz, C., Côté, M.-A., McCarthy, P., Ghosh, S., . . .539

Basile (2018). nibabel: Access a cacophony of neuro-imaging file formats,540

version 2.3.0. doi: 10.5281/zenodo.1287921541
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