Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Force balance approach for advanced approximations in density functional theories

MPG-Autoren
/persons/resource/persons241951

Tchenkoue Djouom,  M.-L.
International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Penz,  M.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Theophilou,  I.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Ruggenthaler,  M.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Computational Quantum Physics, The Flatiron Institute;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1.5123608.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tchenkoue Djouom, M.-L., Penz, M., Theophilou, I., Ruggenthaler, M., & Rubio, A. (2019). Force balance approach for advanced approximations in density functional theories. The Journal of Chemical Physics, 151(15): 154107. doi:10.1063/1.5123608.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-DB9C-6
Zusammenfassung
We propose a systematic and constructive way to determine the exchange-correlation potentials of density-functional theories including vector potentials. The approach does not rely on energy or action functionals. Instead, it is based on equations of motion of current quantities (force balance equations) and is feasible both in the ground-state and the time-dependent settings. This avoids, besides differentiability and causality issues, the optimized-effective-potential procedure of orbital-dependent functionals. We provide straightforward exchange-type approximations for different density functional theories that for a homogeneous system and no external vector potential reduce to the exchange-only local-density and Slater Xα approximations.