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ABSTRACT

We review and explain an infinite-dimensional counterpart of the Hurwitz theory realization [1] of algebraic open-closed string

model a lá Moore and Lizaroiu, where the closed and open sectors are represented by conjugation classes of permutations and

the pairs of permutations, i.e. by the algebra of Young diagrams and bipartite graphes respectively. An intriguing feature of

this Hurwitz string model is coexistence of two different multiplications, reflecting the deep interrelation between the theory of

symmetric and linear groups S∞ and GL(∞).

It is an old idea (see [2],[3],[4],[5] for a nice presentation) to formulate the open-closed string theory in
purely algebraic terms (see sect.1 for details). This allows one to consider much simpler examples of the same
phenomenon and involve basic mathematical constructions into the string theory framework.

In this paper we analyze (in sect.2) from this perspective the theory of closed (ordinary) and open Hurwitz
numbers, which is actually the representation theory of symmetric (permutation) groups Sn (for initial steps in
this direction see [6, 1]). In the infinite-dimensional case (S∞) there appear two multiplications ∗ and ◦ induced
respectively by multiplication of permutations and differential operators, which is now well understood in the
”closed-string” sector [7, 8], but awaits similar understanding in the ”open-string” one. We discuss this issue
in sect.3.

1 Open-closed duality in terms of Cardy-Frobenius algebras [2, 3,
4, 5, 9]

In string theory, the multiplication in the algebra of fields is associated with the sewing operation and with
pant diagrams, Fig.1.
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Closed-string sector: algebra A Open-string sector: algebra B

Here Ψ’s are the fields in the closed sector and ψab are those in the open one, we denote their algebras A
and B correspondingly. The principal difference between the open and closed sectors is that in the former case
the fields carry a pair of additional indices from the set of ”boundary conditions” (or ”D-branes”). In result
B = ⊕Oab splits into a combination of spaces corresponding to different boundary conditions. The sewing in the
picture determines the algebra multiplication Oab ⊗Obc which belongs to Oac (no sum over b). Multiplications
of all other elements are zero (e.g. Oab ⊗ Occ → 0). Diagonal subspaces Oaa are subalgebras of B, naturally
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associated with particular D-branes. They can be labeled both by a pair of indices aa ar by single index a (very
much like Cartan elements of the Lie algebras SL).

Multiplication operations satisfy a number of obvious relations [5]:

• Closed-string sector (algebra A) : associativity, commutativity

• Open-string sector (algebra B) : associativity

In the closed string sector there are also an identity element 1A and a non-degenerate linear form
〈

. . .
〉

A
.

Similarly, in the open sector in each space Oaa there are an identity element 1a and a non-degenerate linear

form
〈

. . .
〉

a
, this latter providing at the same time the pairings of two elements ψab ∈ Oab and ψ′

ba ∈ Oba:
〈

ψab · ψ′
ba

〉

a
=
〈

ψ′
ba · ψab

〉

b
. Note that the identity element of the whole algebra B is given by the sum

1B =
∑

a 1a.
There is also the third crucial ingredient in the construction: the open-closed duality which comes from

the possibility to interpret the annulus diagram in two dual ways. To this end, one needs to somehow relate the
closed and open sectors. This is achieved by treating D-branes as states in the closed sector A via the diagram:

a

a
A B

a

a
AB

Algebraically, the requirement is that there are the homomorphisms

φa : A −→ Oaa, (1)

one per each D-brane, and the dual maps

φa : Oaa −→ A (2)

such that
〈

φa(ψaa)Ψ)
〉

A
=
〈

ψaaφa(Ψ)
〉

a
. The homomorphism φa preserves the identity: φa(1A) = 1a and is

central: φa(Ψ)ψab = ψabφb(Ψ).
In terms of this homomorphisms one can write the open-closed duality in the form of the Cardy condition:

∑

i

ψi
baψaaψ̄

i
ab = φb(φ

a(ψaa)) (3)

where ψi
ba is a basis in Oba and ψ̄i

ab is its conjugated under the pairing.
The l.h.s. of this equation produces from the element ψaa an element of Obb via the double twist diagram

a

a

b

b

which can be obtained in the closed string channel (the r.h.s. of (3)) as
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a b a b=

The pair of just described algebras A and B with a given homomorphism satisfying the Cardy condition is
called Cardy-Frobenius (CF) algebra.

The Cardy condition can be also rewritten in the ”converted form” (as an identity between combinations of
correlation functions). To do this, first of all, we adjust our notation for the needs of Hurwitz theory and denote
the elements of A and B through ∆ and Γ. We also extend in the evident way the action of homomorphism to the

whole diagonal part Bd =
∑

a Oaa of B: φ ≡
∑

a φa and similarly extend the linear form
〈

ψab

〉

B
= δab

〈

ψab

〉

a
which immediately allows one to define the pairing for any two elements of B.

Then the Cardy relation can be rewritten as follows

∑

Γ∈B

〈

Γaa · Γ · Γbb · Γ̄
〉

B
=
∑

∆∈A

〈

Γaa · φ(∆)
〉

A

〈

φ(∆̄) · Γbb

〉

A
(4)

The bars denote the duals:
〈

Γ · Γ̄
〉

B
= 1 and

〈

∆ · ∆̄
〉

A
= 1. Below we use the Cardy relation exactly in this

form, only we omit the indices A and B in the linear forms.

2 Hurwitz theory [6, 1]

In Hurwitz theory the closed-string algebra is that of the Young diagrams (conjugation classes of permutations).
This implies that the open-string fields will be labeled by pairs of Young diagrams with some additional data.
Following [4] we identify them with bipartite graphs, conjugation classes of pairs of permutations.

A special feature of Hurwitz theory is additional decompositions of algebras A = ⊕nAn and B = ⊕nBn.
Homomorphisms An −→ Bn and Cardy relations are straightforward only for particular values of n, while entire
algebra has a more sophisticated structure, which is only partly exposed in the present paper and deserves further
investigation.

2.1 Closed sector (algebra A)

Each permutation from the symmetric group Sn is a composition of cycles: for example, 6(34)(1527) ∈ S7 is
the permutation

1 2 3 4 5 6 7

↓ i j k l m n p

m p l k j n i

∈ [521] =

The lengths of cycles form an integer partition of n, and the ordered set of lengths is the Young diagram
∆ = {δ1 ≥ δ2 ≥ . . . ≥ δl(∆) > 0} of the size (number of boxes) |∆| = δ1 + δ2 + . . . + δl(∆) = n. The
above-mentioned permutation is associated in this way with the Young diagram [521].

Conversely, given a Young diagram ∆, one can associate with it a direct sum of all permutations of the type
∆ from the symmetric group S|∆|, e.g.

[521] = ⊕i(jk)(lmnpq)

where the sum goes over all i, . . . , q = 1, . . . , 7, which are all different, i 6= . . . 6= q. In other words, the Young
diagrams label the elements of the center of the group algebra of the symmetric group Sn. The multiplication
(composition) of permutations induce a multiplication of Young diagrams of the same size, which we denote
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through ∗. For example,

A∗
1 : [1] ∗ [1] = [1],

A∗
2 [11] [2]

[11] [11] [2]
[2] [2] [11]

A∗
3 [111] [21] [3]

[111] [111] [21] [3]
[21] [21] 3 · [111] + 3 · [3] 2 · [21]
[3] [3] 2 · [21] 2 · [111] + [3]

. . . (5)

This multiplication is associative and commutative, and all the structure constants are positive integers, reflect-
ing the combinatorial nature of this algebra A∗

n. It describes the closed sector of the Hurwitz model of string
theory. Actually, at the next stage ∆ plays the role of index a in the open sector.

One can also say that the Young diagrams label the conjugation classes of permutations: µ ∼ gµq−1.

2.2 Open sector (algebra B)

One can similarly consider the common conjugation classes of pairs of permutations of the same size:

[µ, ν] ∼ [gµg−1, gνg−1], µ, ν, g ∈ Sn

Note that conjugation g is the same for µ and ν. Such classes are labeled by the bipartite graphs. For example,
take two permutations from S6, say, i(jk)(lmn) ∈ [321] and i(jklmn) ∈ [51]. Represent the two Young
diagrams by two columns of vertices, each vertex corresponds to a cycle and has a valence, equal to the length
of the cycle:

r
r
r

r
r

✁
❆

✁
❆ ❆❍✟✁

r
r
r

r
r

r
r
r

r
r

r
r
r

r
r

[321] [51]

−→

Γ Γ′ Γ′′

O[321],[51]

After that a conjugation class gets associated with a graph obtained by connecting the vertices. Clearly, in our
example there are three different bipartite graphs, i.e. three different conjugation classes: Γ,Γ′,Γ′′ ∈ O[321],[51].

Note that the sizes of Young diagrams are equal to the numbers of edges in the graph: |Γ| = #(edges in Γ).
Bipartite graphs of the same size can be multiplied: the product Γ1 ∗ Γ2 is non-vanishing, when the right

Young diagram of Γ1 coincides with the left Young diagram of Γ2:

∆r(Γ1) = ∆l(Γ2)

The product is then a sum of graphs with

∆l(Γ1 ∗ Γ2) = ∆l(Γ1), ∆r(Γ1 ∗ Γ2) = ∆r(Γ2),

obtained by connecting the edges entering the same vertex in all possible ways. Formally,

[µ, ν] ∗ [µ′ν′] =
∑

g

[µ, gν′g−1] · δ(v, gµ′g−1) (6)

This multiplication is still associative, but no longer commutative.
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Technically one can label a bipartite graph by two cyclic representations with appropriately identified indices.
For example, the three graphs from O[321],[51] in the above example are:

Γ = [i(jk)(lmn), i(jklmn)], Γ′ = [i(jk)(lmn), j(iklmn)], Γ′′ = [i(jk)(lmn), l(ijkmn)]

To multiply the so represented graphs one simply needs to appropriately rename the indices. For example,
multiplying Γ′′ ∈ O[321],[51] with a graph from O[51],[2211], one does the following:

[i(jk)(lmn), l(ijkmn)] ∗ [i(jklmn), ij(kl)(mn)] = [i(jk)(lmn), l(ijkmn)] ∗ [l(ijkmn), lj(ik)(mn)] = [i(jk)(lmn), lj(ik)(mn)]

This algebra of bipartite graphs is the open-sector algebra B∗
n of the Hurwitz theory.

The simplest pieces of multiplication table are:

B∗
1 : r r ∗ r r = r r (7)

B∗
2

r r rr r r rr r rr r
r r r r rr r

0 0

rr r
0 0 r r rr r

r rr r rr r rr r
0 0

r rr r
0 0 r rr r rr r

or







eij ∗ ekl = δjkeil

where

{

eij

}

=
e11 e12
e21 e22

=

r r rr r

r rr r rr r

. . . (8)

and, a little more complicated:
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B∗
3

r r r rr rr r rr rr rr rr r rr rr r r rr rr r rr rr r rrr r rr r
r r r r 0 rr rr 0 0 rr r

0 0 0 0

r rr rr r
0 r rr rr r

0 rr rr
0 0 r rr rr

0 0 0

rr rr 0 rr rr 0 r r 0 0 rr r
0 0 0

rr rr rr rr
0 r rr rr r

0 0 r rr rr
0 0 0 0

r rr r rr
0 r rr rr 0 0 r rrr

+ r rr r
0 0 0 0

rr r
0 0 0 0 3 r r 0 0 3 rr rr rr r

2 rr r
r rr rr

0 0 0 0 3 rr rr
0 0 3 r rr rr r r rr rr

2 r rr rr
r rr rr 0 r rr rr 0 r rr

0 0 r rrr
+ r rr r

0 0 0

r rrr
0 0 0 0 r rr

0 0 r rr rr r rrr r rr r
r rr r

0 0 0 0 2 r rr
0 0 2 r rr rr r rr r

2 r rrr
+ r rr r

This table coincides with the combinatorial multiplication table 1 from [4] (with misprint corrected in the right
lowest corner). It can be also represented as the sum of the matrix algebras M3 ⊕M1:

eij ∗ ekl = δjkeil,

E ∗ eij = eij ∗ E = 0,
E ∗ E = E

where

E =

[21]

[21] 1
3

(

2V

[ r rrr ]

− V

[ r rr r])
{

eij

}

=

[3] [21] [111]

[3] r r 1√
3 rr r rr rr

[21] 1√
3 r rr

1
3

( r rrr
+ r rr r)

1√
3 r rr rr

[111] rr rr 1√
3 r rr rr r rr rr r

(9)

2.3 Relation between An and Bn

As we discussed in the first section, the ∗-homomorphism φ∗n : A∗
n −→ B∗

n converts the Young diagrams from
A∗

n into a certain linear combination of graphs from ⊕∆O∆,∆ (but not ∆ into O∆,∆ with the same ∆). The
identity element of A∗

n, i.e. [1n] = [1, . . . , 1
︸ ︷︷ ︸

n

] is mapped into the identity element of B∗
n which is given by the
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formal series:

∑

n=0

φ∗n([1
n]) tn =

(

1−
∑

k=1

. . .r r
k k t

k

)−1

=
1

1− r r t− r r t2 − r r t3 − . . .

=

= 1 + r r t+ ( r rr r
+ r r) t2 + ( r rr rr r

+ r rrr
+ r r) t3 + . . . (10)

More generally:

φ∗1([1]) =
r r

φ∗2([2]) = φ∗2([11]) = r rr r
+ r r







φ3([3]) = 2 r rr rr r
+ r rr r

+ 2 r r
φ3([21]) = 3 r rr rr r

+ r rrr
+ r rr r

+ 3 r r
φ3([111]) = r rr rr r

+ r rrr
+ r r

. . . (11)

Remarkably, the homomorphism φ∗n has a non-trivial kernel (coinciding with the non-trivial ideal in A∗
n). In

particular,

ker φ1 = ∅

ker φ2 = [2]− [11]

ker φ3 = [3]− [21] + [111]

. . . (12)

For each n the Cardy relation (4) is satisfied, provided all the sums are over elements from A∗
n and B∗

n with
the same n:

∑

∆,∆′

< Γ1 ∗ φ(∆) >B

(

< ∆ ∗∆′ >A

)−1

< φ(∆′) ∗ Γ2 >B=
∑

Γ,Γ′

< Γ1 ∗ Γ ∗ Γ2 ∗ Γ
′ >B

(

< Γ ∗ Γ′ >B

)−1

(13)

For example:

(〈 r r∗ φ1([1])〉
B

)2

〈[1], [1]〉A
=
< r r∗ r r∗ r r∗ r r>B

< r r∗ r r>B

or < r r>2
B= < [1] ∗ [1] >A= 1 (14)

2

〈

Γ1 ∗

( r rr r
+ r r)〉

B

〈( r rr r
+ r r) ∗ Γ2

〉

B

< [2] ∗ [2] >A= < [11] ∗ [11] >A

=
∑

Γ,Γ′

< Γ1 ∗ Γ ∗ Γ2 ∗ Γ
′ >B< Γ ∗ Γ′ >−1

B (15)

For Γ1 = Γ2 = r rr r
: 2

〈 r rr r〉2

B

= < [11] >A.

For Γ1 = r rr r
, Γ2 = r r : 2

〈 r rr r〉2

B〈

[11]

〉

A

=

〈 r rr r
∗ r rr

∗ r r ∗ rr r〉
B〈 r rr

∗ rr r〉
B

= 1

etc
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3 Unification of all An’s and Bn’s

3.1 ◦- versus ∗-multiplications and Universal CF Hurwitz algebra

For unification purpose one can consider the linear spaces A = ⊗nAn and B = ⊗nBn which can be considered
as semi-infinite sequences of Young diagrams and bipartite graphs respectively, containing exactly one element
(perhaps, vanishing) of each size. The ∗-multiplication is then done termwise:









∆1 ∈ A∗
1

∆2 ∈ A∗
2

∆3 ∈ A∗
3

∆4 ∈ A∗
4

. . .









∗









∆′
1

∆′
2

∆′
3

∆′
4

. . .









=









∆1 ∗∆′
1

∆2 ∗∆′
2

∆3 ∗∆′
3

∆4 ∗∆′
4

. . .









and









Γ1 ∈ B∗
1

Γ2 ∈ B∗
2

Γ3 ∈ B∗
3

Γ4 ∈ B∗
4

. . .









∗









Γ′
1

Γ′
2

Γ′
3

Γ′
4

. . .









=









Γ1 ∗ Γ′
1

Γ2 ∗ Γ′
2

Γ3 ∗ Γ′
3

Γ4 ∗ Γ′
4

. . .









(16)

thus providing the new infinite algebras A∗ and B∗. The ∗-homomorphism φ∗ : A∗ −→ B∗ is also defined
termwise, and the Cardy relation also holds termwise, i.e. in the operator form (3) rather than in the converted
one (4).

The original spaces of Young diagrams and graphs, A = ⊕nAn and B = ⊕nBn can be embedded into A∗

and B∗ with the maps

ρ : A = ⊕nAn −→ A = ⊗nAn

σ : B = ⊕nBn −→ B = ⊗nBn (17)

These embeddings have a triangular structure: ρ maps the element ∆ ∈ An to the column with zero first n− 1
entries and similarly does σ. However, the embeddings are not ∗-homomorphisms. Still, because of triangular
form of the mappings, the images ρ(A) ⊂ A and σ(B) ⊂ B are ∗-subalgebras, i.e. ρ(A) ∗ ρ(A) ⊂ ρ(A) and
σ(A) ∗ σ(A) ⊂ σ(A), so that one can define a new operation on A and B, which we call ◦-multiplication:

ρ(∆ ◦∆′) = ρ(∆) ∗ ρ(∆′) and σ(Γ ◦ Γ′) = σ(Γ) ∗ σ(Γ′) (18)

One can fix ρ and σ by giving their action on all the elements of An and Bn respectively and then continuing
their action onto the whole A and B. If one admits infinite sums of elements to belong to A and B respectively,
σ and ρ can be continued to the isomorphisms A∗ ∼= A◦, B∗ ∼= B◦, i.e. every such a pair of embeddings
determines a pair of algebras A◦ and B◦ with a homomorphism one to the other and with the Cardy relation
satisfied (yet in the operator form (3)).

However, an interesting embeddings are those giving rise to ◦-multiplication such that the products of finite
sums of elements in A◦ and B◦ are also finite sums. We call such a pair of CF algebras A◦ and B◦ Universal
CF Algebra (UCFA)1.

In fact, one such pair can be manifestly constructed in the following way inherited from the open Hurwitz
numbers (this is why we call this concrete UCFA Universal Hurwitz algebra).

The first embedding, ρ maps the element ∆ ∈ An to the column with the (n+ k)-th entry of the form

ρn+k[∆] =
(r∆+ k)!

k! r∆!
[∆, 1, . . . , 1
︸ ︷︷ ︸

k

] (19)

where r∆ is the number of lines of the unit length in ∆.
Similarly, the σ-embedding maps the element Γ ∈ Bn to the column whose entries σn(Γ) are

σn(Γ) =







∑

Γn∈En(Γ)

|Aut(Γn)

|Aut(Γn \ Γ)||Aut(Γ)|
· Γn n ≥ |Γ|

0 n < |Γ|
(20)

We call the graph with all connected components having two vertices as simple graph, and call the standard

extension of the graph the graph obtained by adding simple connected components. Then, En(Γ) in (20) denotes
the set of all degree n standard extensions of Γ.

1Note that originally the CF algebra was defined for finite-dimensional algebras. The subtlety of the infinite-dimensional case
is discussed in [11].
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3.2 Universal Hurwitz algebra: A
◦

In the simplest examples, these maps are

ρ([2]) =









0
[2]
[21]
[211]
. . .









and σ

( r r) =











0r r
r rrr
rrrrrr + 2 rr rr
. . .











(21)

and the ◦-products are [11]

ρ([1]) ∗ ρ([1]) =











[1]
2 [11]
3 [111]
4 [1111]

. . .











∗











[1]
2 [11]
3 [111]
4 [1111]

. . .











=











[1] ∗ [1]
4 [11] ∗ [11]

9 [111] ∗ [111]
16 [1111] ∗ [1111]

. . .











=











[1]
4 [11]
9 [111]

16 [1111]
. . .











=











[1]
2 [11]
3 [111]
4 [1111]

. . .











+ 2











0
[11]

3 [111]
6 [1111]

. . .











= ρ([1]) + 2ρ([11])

ρ([1]) ∗ ρ([2]) =











[1]
2 [11]
3 [111]
4 [1111]

. . .











∗











0
[2]
[21]
[211]
. . .











=











0
2 [11] ∗ [2]

3 [111] ∗ [21]
4 [1111] ∗ [211]

. . .











=











0
2 [2]
3 [21]
4 [211]
. . .











= 2











0
[2]
[21]
[211]
. . .











+











0
0

[21]
2 [211]
. . .











= 2ρ([2]) + ρ([21])

The ◦-multiplication is evidently defined for any pair of Young diagrams or of bipartite graphs, without requiring
them to have equal sizes:

A◦ [1] [11] [2] . . .

[1] [1] + 2 · [11] 2[11] + 3[111] 2[2] + [21]

[11] 2[11] + 3[111] [11] + 6 · [111] + 6 · [1111] [2] + 2 · [21] + [211]

[2] 2[2] + [21] [2] + 2 · [21] + [211] [11] + 3 · [3] + 2 · [22]

. . .

(22)

Note that even in ??? the unit element is an infinite sum. For instance, in A◦ given by (21) it is

∞∑

k=1

(−1)k+1[1k]

and similarly in B◦.
One more representation of the ◦-multiplication is in terms of the generating functions

J∆(u) =
∑

k≥0

(r∆ + k)!

k! r∆!
u|∆|+k [∆, 1, . . . , 1

︸ ︷︷ ︸

k

] (23)

In these terms

J∆1◦∆2
(v) =

∮

J∆1
(u) ∗ J∆2

( v

u

) du

u
=
∑

∆

C∆
∆1∆2

J∆(v) (24)

In [7, 8] the algebra A◦ was identified with the associative and commutative algebra of the cut-and-join
operators,

Ŵ (∆1)Ŵ (∆2) =
∑

∆

C∆
∆1∆2

Ŵ∆ (25)
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and for ∆ = [δ1 ≥ δ2 ≥ . . . ≥ δl(∆) > 0] = [. . . , k + 1, k, . . . , k
︸ ︷︷ ︸

mk

, k − 1, . . .]

Ŵ∆ =
1

∏

kmk! kmk

:
∏

i

Tr D̂δi : (26)

familiar also in the theory of matrix models. D̂µν is the generator of the regular representation of GL(∞), see
details in [7, 8]. This algebra is isomorphic also to the Ivanov-Kerov algebra [10].

3.3 Universal Hurwitz algebra: B
◦

An operator representation of the associative but non-commutative B◦ is an open question, to be discussed in
the forthcoming paper [11]. Here we just give a few examples of the ◦-product in this case.

Example 1. Let Γk,k denote a graph with two vertices and k lines between them. Let VR,R be an element of
B which is a collection of rk copies of Γk,k with various k, R is the corresponding Young diagram R = {krk}.

Then,

VR,R ∗ VR′,R′ = δR,R′VR,R (27)

(with coefficient 1). The homomorphism acts on these elements as

σn(VR,R) =
∑

∆: |∆|=n

∏

k

(rk + δk)!

rk!δk!
VR+∆,R+∆ (28)

(the sum of Young diagrams is simply R+∆ = {krk+δk}).
Then

σ(VR,R) ∗ σ(VR,R) =
∑

Y

CY
RRσ(VR+Y,R+Y ) (29)

induces the ◦-product

VR,R ◦ VR′,R′ =
∑

Y

CY
RRVR+Y,R+Y (30)

with the structure constants

C
[n]
RR = rn(rn + 1),

C
[1n]
RR =

(r1 + n)!

(n!)2(r1 − n)!
,

C
[21]
RR = r1(r1 + 1)r2(r2 + 1) = c[1]RRc[2]RR . . .

Important is appearance of factors r1, r1 − 1, r1 − 2 etc: they guarantee that the sum is finite.

Example 2. Similarly for k > l

σ(V1k ) ∗ σ(V1l ) =
k!

l!(k − l)!
σ(V1k) +

(k + 1)!

(l − 1)!(k + l − 1)!
σ(V1k+1 ) +

+
(k + 2)!

2(l− 2)!(k + 2− l)!
σ(V1k+2 ) +

(k + 3)!

3(l− 3)!(k + 3− l)!
σ(V1k+2) + . . . (31)

i.e.

V1k ◦ V1l =
l∑

i=0

(k + i)!

i!(l − i)!(k + i− l)!
V1k+i (32)

The sum is finite.
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Example 3. Another extension is to arbitrary pair of VR,R.
Take VR+P,R+P and VR+Q,R+Q, i.e. the two diagrams have a common part R. Then for any k either pk or

qk vanish, i.e. pkqk = 0 and

σ(VR+P,R+P ) ∗ σ(VR+Q,R+Q) =
∑

Y

CY
R+P.R+Qσ(VR+P+Q+Y,R+P+Q+Y ) (33)

Then

C∅
R+P,R+Q =

∏

k

(

rk + pk + qk)!
)2

(rk + pk)!(rk + qk)!pk!qk!
,

C [n] = C∅ (rn + pn + qn + 1)(rn − pnqn)

(pn + 1)(qn + 1)
= C∅ rn(rn + pn + 1)rn

pn + 1
(34)

where in the last formula we assumed that qn = 0, and pn is arbitrary (though for other n the situation can be
the opposite). Under the same assumption

C [n2] = C∅ (rn − 1)rn(rn + pn + 1)(rn + pn + 2)

2(pn + 1)(pn + 2)
,

C [m,n] = C∅ rmrn(rm + pm + qm + 1)(rn + pn + qn + 1))

(pm + 1)(qm + 1)(pn + 1)(qn + 1)
, m 6= n,

. . . (35)

In the last formula one can have either qm = qn = 0, or qm = pn = 0, or pm = qn = 0, or pm = pn = 0.
In all these examples, one can see that the products of VR are indeed finite sums, i.e. B◦ is a Universal

algebra.
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