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Summary

SourcePredict is a Python package distributed through Conda, to classify and predict the
origin of metagenomic samples, given a reference dataset of known origins, a problem also
known as source tracking.
DNA shotgun sequencing of human, animal, and environmental samples has opened up new
doors to explore the diversity of life in these different environments, a field known as metage-
nomics (Hugenholtz & Tyson, 2008). One aspect of metagenomics is investigating the com-
munity composition of organisms within a sequencing sample with tools known as taxonomic
classifiers, such as Kraken (Wood & Salzberg, 2014).
In cases where the origin of a metagenomic sample, its source, is unknown, it is often part of the
research question to predict and/or confirm the source. For example, in microbial archaelogy,
it is sometimes necessary to rely on metagenomics to validate the source of paleofaeces.
Using samples of known sources, a reference dataset can be established with the taxonomic
composition of the samples, i.e., the organisms identified in the samples as features, and the
sources of the samples as class labels.
With this reference dataset, a machine learning algorithm can be trained to predict the source
of unknown samples (sinks) from their taxonomic composition.
Other tools used to perform the prediction of a sample source already exist, such as Source-
Tracker (Knights et al., 2011), which employs Gibbs sampling.
However, the Sourcepredict results are more easily interpreted since the samples are embedded
in a human observable low-dimensional space. This embedding is performed by a dimension
reduction algorithm followed by K-Nearest-Neighbours (KNN) classification.

Method

Starting with a numerical organism count matrix (samples as columns, organisms as rows,
obtained by a taxonomic classifier) of merged references and sinks datasets, samples are first
normalized relative to each other, to correct for uneven sequencing depth using the geometric
mean of pairwise ratios (GMPR) method (default) (L. Chen et al., 2018).
After normalization, Sourcepredict performs a two-step prediction algorithm. First, it predicts
the proportion of unknown sources, i.e., which are not represented in the reference dataset.
Second, it predicts the proportion of each known source of the reference dataset in the sink
samples.
Organisms are represented by their taxonomic identifiers (TAXID).
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Prediction of the proportion of unknown sources

Let Si ∈ {S1, .., Sn} be a sample from the normalized sinks dataset Dsink, o i
j ∈ {o i

1 , .., o
i
n i
o
}

an organism in Si, and n i
o the total number of organisms in Si, with o i

j ∈ Z+. Let m be
the mean number of samples per source in the reference dataset, such that m = 1

O

∑O
i=1 Si.

For each Si sample, I define ||m|| derivative samples USi

k ∈ {USi
1 , .., USi

||m||} to add to the
reference dataset to account for the unknown source proportion in a test sample. Separately
for each Si, a proportion denoted α ∈ [0, 1] (default = 0.1) of each o i

j organism of Si

is added to each USi

k sample such that USi

k (o i
j ) = α · xi j , where xi j is sampled from

a Gaussian distribution N
(
Si(o

i
j ), 0.01). The ||m|| USi

k samples are then added to the
reference dataset Dref , and labeled as unknown, to create a new reference dataset denoted
unkDref . To predict the proportion of unknown sources, a Bray-Curtis (Bray & Curtis, 1957)
pairwise dissimilarity matrix of all Si and USi

k samples is computed using scikit-bio (Rideout
et al., 2018). This distance matrix is then embedded in two dimensions (default) with the
scikit-bio implementation of PCoA. This sample embedding is divided into three subsets:
unkDtrain (64%), unkDtest (20%), and unkDvalidation(16%). The scikit-learn (Pedregosa et
al., 2011) implementation of KNN algorithm is then trained on unkDtrain, and the training
accuracy is computed with unkDtest. This trained KNN model is then corrected for probability
estimation of the unknown proportion using the scikit-learn implementation of Platt’s scaling
method (Platt & others, 1999) with unkDvalidation. The proportion of unknown sources in
Si, pu ∈ [0, 1] is then estimated using this trained and corrected KNN model. Ultimately, this
process is repeated independently for each sink sample Si of Dsink.

Prediction of the proportion of known sources

First, only organism TAXIDs corresponding to the species taxonomic level are retained us-
ing the ETE toolkit (Huerta-Cepas, Serra, & Bork, 2016). A weighted Unifrac (default)
(Lozupone, Hamady, Kelley, & Knight, 2007) pairwise distance matrix is then computed on
the merged and normalized training dataset Dref and test dataset Dsink with scikit-bio, using
the NCBI taxonomy as a reference tree. This distance matrix is then embedded in two dimen-
sions (default) using the scikit-learn implementation of t-SNE (Maaten & Hinton, 2008). The
2-dimensional embedding is then split back to training tsneDref and testing dataset tsneDsink.
The KNN algorithm is then trained on the train subset, with a five (default) cross validation
to look for the optimum number of K-neighbors. The training dataset tsneDref is further
divided into three subsets: tsneDtrain (64%), tsneDtest (20%), and tsneDvalidation (16%).
The training accuracy is then computed with tsneDtest. Finally, this second trained KNN
model is also corrected for source proportion estimation using the scikit-learn implementation
of the Platt’s method with tsneDvalidation. The proportion pcs ∈ [0, 1] of each of the ns

sources cs ∈ {c1, .., cns} in each sample Si is then estimated using this second trained and
corrected KNN model.

Combining unknown and source proportions

For each sample Si of the test dataset Dsink, the predicted unknown proportion pu is then
combined with the predicted proportion pcs for each of the ns sources cs of the training
dataset such that

∑ns

cs=1 sc + pu = 1 where sc = pcs · pu.
Finally, a summary table gathering the estimated sources proportions is returned as a csv file,
as well as the t-SNE embedding sample coordinates.
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