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ABSTRACT
Dissociation of molecular oxygen is an important elementary process in heterogeneous catalysis. Here, we report on a real-space observa-
tion of oxygen photolysis on the Ag(110) surface at 78 K by far- and near-field excitation in the ultraviolet–near-infrared range using a
low-temperature scanning tunneling microscope (STM) combined with wavelength-tunable laser excitation. The photolysis of isolated oxy-
gen molecules on the surface occurs even by visible light with the cross section of ∼10−19 cm2. Time-dependent density functional theory
calculations reveal optical absorption of the hybridized O2–Ag(110) complex in the visible and the near-infrared range which is associated
with the oxygen photolysis. We suggest that the photolysis mechanism involves a direct charge transfer process. We also demonstrate that
the photolysis can be largely enhanced in plasmonic STM junctions, and the cross section is estimated to be ∼10−17 cm−2 in the visible and
the near-infrared range, which appears to be an interesting feature of plasmon-induced reactions from the perspective of photochemical
conversion with the aid of solar energy.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5112158., s

I. INTRODUCTION

Dissociation of molecular oxygen (O2) is a critical step in het-
erogeneous oxidation processes. Because of its large activation bar-
rier on noble metal catalysts, O2 dissociation often limits the rate
of partial oxidation reactions and requires a high operation temper-
ature which causes a number of problems in the energy efficiency
and the long-term stability of catalysts. Photochemistry has a poten-
tial to attain more selective and moderate material conversion than
a thermal process. However, it is a challenging task to induce pho-
tochemical reactions by visible–near-infrared light at a low intensity
in order to facilitate use of sunlight.

Photochemistry on solid surfaces is of particular importance
because a majority of chemical conversions in industry are per-
formed using heterogeneous catalysts. On metal surfaces, despite
possible rapid quenching of electronic excitation of adsorbed

molecules, it has been demonstrated that surface photochemistry
can readily occur.1–4 Photo-induced O2 dissociation has been inves-
tigated on several metal surfaces, but the reaction cross section
remains at ∼10−21 to 10−19 cm2 in the UV range.5–8 Recently, it has
been found that Au and Ag nanoparticles can achieve visible-light-
driven reactions under low-power irradiation,9–11 reigniting interest
in surface photochemistry. Such “plasmonic catalysts” potentially
lead to new chemical conversion pathways that cannot be accessed
neither by a thermal process nor by conventional surface photo-
chemistry. Elucidation of the underlying physical mechanisms is
necessary in order to precisely control the performance of plasmonic
catalysis.12

Photochemical reactions on metal substrates are rationalized
by excitation of charge carriers within an adsorbate–surface sys-
tem, which is conventionally classified into three possible micro-
scopic mechanisms, namely, direct intra-adsorbate excitation, direct
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charge transfer, and indirect process.1 The direct intra-adsorbate
excitation mechanism assumes the electron transition from occu-
pied to unoccupied states within an adsorbate. The direct charge
transfer mechanism assumes the electron transition between the
states in the metal substrate and the adsorbate. The indirect mecha-
nism assumes the following process: Hot carriers are first generated
within the metal substrate, yielding a nonthermal electron (hole) dis-
tribution. Subsequently, the hot carriers scatter through the states
(orbitals) centered in the adsorbate and eventually lead to reactions.
Similar mechanisms have been invoked to rationalize the micro-
scopic process in plasmonic catalysis and enhanced photocatalytic
effects are attributed to excitation of localized surface plasmon res-
onance (LSPR) of metallic nanoparticles, which can enhance the
above three processes.13–16 However, the elementary processes in
plasmonic catalysis are even more complex than those in conven-
tional surface photochemistry. The efficiency of plasmon-mediated
reactions is largely affected by the geometry of metallic nanostruc-
tures, and the process in nanoscale cavities plays a crucial role due
to the dramatic field enhancement. However, it is very difficult to
directly observe plasmon-induced reactions in such nanocavities.

Recently, a low-temperature scanning tunneling microscope
(STM) combined with laser excitation has been employed to directly
observe plasmon-induced reactions, providing microscopic insights
into the underlying mechanism at the single-molecule level.15,16

These studies offer a unique opportunity to study surface photo-
chemistry in real space. Here, we report on the direct observation
of far- and near-field induced photolysis of O2 on the Ag(110) sur-
face in the UV–near-infrared range. Silver catalysts are important
in the chemical industry such as ethylene epoxidation and methanol
oxidation.17,18 Among the low index surfaces, Ag(110) is of particu-
lar interest because of the most reactive nature toward O2 activation.
O2 photolysis on Ag(110) was investigated in 1990s, and the reaction
was explained by the indirect mechanism.8 However, visible-light
photolysis was not investigated in detail.

II. METHODS
All experiments were performed in an ultra-high vacuum

chamber, equipped with a low-temperature STM (Scienta Omicron).
All measurements were carried out at 78 K, and the STM images
were acquired in the constant current mode. The bias voltage was
applied to the sample (denoted as Vs). The Ag(110) surface was
cleaned by repeated cycles of argon ion sputtering and annealing to
700–800 K. O2 was dosed via a tube doser onto the surface held at
78 K, yielding chemisorbed molecules. Both Au and Ag STM tips
were made from polycrystalline wires with electrochemical etching.
The Au tip was further milled by focused ion beam (FIB) using a
FEI Helios NanoLab G3 FIB-SEM DualBeam system, as described
in Ref. 19. For illumination, we used a wavelength tunable laser
(NKT Photonics) with the spectral bandwidth of 6–8 nm in the near-
infrared range and 10 nm in the visible range. The maximum power
used was a few milliwatts. In order to avoid systematic errors caused
by misalignment of the relative position between the STM and the
beam spot, the lasers were shaped into a 2–3 mm top-hat square
before coupling them to the STM junction (see the supplementary
material in Ref. 20 for details).

To investigate the electronic structure of O2 adsorbed on
the Ag(110) surface, we first employed density functional theory

(DFT) calculations with the periodic boundary condition using the
PBE functional,21 as implemented in the Vienna ab initio simula-
tion package (VASP).22,23 We used the projector-augmented wave
(PAW)24 pseudopotential and the planewave basis set with a cutoff
of 500 eV. We set the force convergence for the geometry optimiza-
tion and the threshold for the self-consistent field tolerance to be
1 × 10−2 eV/Å and 10−5 eV, respectively. The Brillouin zone with
four and nine k points for geometry optimizations and calcula-
tions of density of states (DOS) was generated according to the
Monkhorst-Pack scheme.26 To make a slab model representation of
the Ag surface, we used a (3 × 4) supercell of six layers with 15 Å
vacuum along the z direction (see the supplementary material). The
lower two layers were kept fixed during geometry optimization.

To identify the optical absorption properties for the obtained
geometries in the slab model, we performed the time-dependent
DFT (TD-DFT) calculations with the resolution-of-identity approx-
imation26 and Tamm-Dancoff approximation27 using the PBE func-
tional as implicated in the TURBOMOLE program package.28 We
used the def2-SVP basis set29 for all atoms and effective core poten-
tial for Ag atoms. We considered a (3 × 4) supercell of three layers.
Graphics of all of the obtained structure using DFT and TD-DFT
were produced using VESTA.30 To analyze the electronic distri-
bution of the excited state, the electron density difference map is
visualized using the GaussSum 3.0 program.31

III. RESULTS AND DISCUSSION
We first discuss the far-field photolysis of O2 on the Ag(110)

surface. The adsorption of O2 at 60–180 K leads to the molecu-
larly chemisorbed states.32 Previous studies reveal that O2 adsorbs
on the hollow site with two different orientations: the molecular
axis along the [001] and [11̄0] direction.33,34 Both species appear
as an oval-shaped depression in the STM image with an apparent
depth of ∼40 pm [Fig. 1(a)]. However, it is hard to distinguish these
two species in a normal STM image unless a CO-modified tip is
used for the unambiguous identification.33 In addition, according
to the previous STM studies, when the Ag(110) surface is exposed
to an O2 gas at 78 K, the fractional population of the [001]- and
[11̄0]-O2 species is expected to be ∼0.40 and ∼0.54, respectively,
and a small fraction (<0.06) of O2 molecules are dissociatively
adsorbed.33

After taking an STM image at a relatively large terrace
(∼50 × 50 nm2), the surface was illuminated with the tip retracted
∼6 μm away from the surface to avoid any influence from the pres-
ence of the tip. Figure 1(b) shows the STM image obtained after illu-
mination at 520 nm [the same area with Fig. 1(a)] with an incident
laser intensity of 12 mW cm−2 on the sample, which equals ∼27%
of the sunlight intensity in the visible range. After illumination for
120 s, shallower depressions with an apparent depth of ∼23 pm were
observed, which are assigned to atomic O.33–35 In addition, a rod-
like feature with an apparent depth of ∼30 pm oriented in the [11̄0]
direction also appeared [indicated by the red circle in Fig. 1(b)],
which is assigned to next-nearest-neighboring O atoms.33 The STM-
induced single O2 dissociation experiment at ∼4 K revealed that the
dissociated oxygen atoms adsorb on the hollow (Oh) or short-bridge
site (Osb), whereas Osb is not generated by thermal dissociation at
∼170 K.33 Therefore, Oh is assigned to the thermodynamically sta-
ble species.33 At ∼78 K, only Oh was found after photolysis. The
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FIG. 1. Far-field O2 photolysis on the Ag(110) surface. [(a)
and (b)] STM images of O2 on Ag(110) observed at 78 K
(Vs = 100 mV and It = 20 pA), (a) before and (b) after
illumination with p-polarized light at 520 nm (1.6 × 1019

photons cm−2). The tip was retracted by ∼6 μm away from
the surface during illumination. Scan direction is horizontal.
(c) Fraction of unreacted O2 (NO2/Ni), atomic O (NO/Ni),

and total O (
2NO2 +NO

Ni
) as a function of photon fluence at 520

nm with a flux of 3.3 × 1016 photons cm−2 s−1. Solid curves
are the best fitted result of the data points to Eq. (1). (d)
Incident photon energy (wavelength) dependence of the far-
field photolysis cross section σdiss/FF with p-polarized light
(red circles) and a cross section with s-polarized light (blue
circle). The geometry of the incident beam and the surface
is illustrated in the lower right.

photo-dissociated O atoms diffuse along the [11̄0] direction [indi-
cated by the black circle in Fig. 1(b)].

In order to discuss the O2 photolysis in a quantitative manner,
we analyzed the reaction cross section. In Fig. 1(c), the fraction of
O2 (unreacted) and atomic oxygen (reacted) is plotted as a function
of photon fluence (nph). The fraction represents the number of O2
(NO2 ), O (NO), or total O atoms (Ntot) divided by initial O2 numbers
(N i) counted in a 50 × 50 nm2 scan area. The standard error result-
ing from the finite sampling number is given by

√
N according to a

Poisson distribution. Fluence (photons per cm2) equals illumination
time multiplied by a fixed flux at 3.3 × 1016 photons cm−2 s−1.

After illumination, 91% of O2 was dissociated. The fraction of
the total O atoms decreases by <5%. We found that the photoly-
sis follows a first-order rate law and the photolysis rate constant
shows a linear dependence on light intensity, indicating that the
reaction occurs via a single-photon process (Fig. S1 of the sup-
plementary material). Therefore, we use a cross section that is a
measure of the rate constant at a unit photon flux, in this paper
as a characterization for the O2 photolysis. The cross section is
determined by

NO2 = Ni exp(−σdiss/FFnph), (1)

where σdiss/FF is the photolysis cross section by far-field excita-
tion and nph is the photon fluence. The photolysis cross sec-
tion is obtained by fitting the data in Fig. 1(c) to Eq. (1):
σdiss/FF = (1.7 ± 0.2) × 10−19 cm2 at 520 nm. Provided the O2 des-
orption also follows Eq. (1), its cross section can also be estimated
by fitting the data of the total O atoms, yielding the upper limit to be
∼10−21 cm2.

The O2 photolysis was examined at different wavelengths rang-
ing from 355 to 1090 nm. Figure 1(d) shows the wavelength depen-
dence of σdiss/FF. In the near-infrared and the visible range, σdiss/FF
rapidly increases around 1.5 eV and once saturates at 2 × 10−19 cm2.
Then, σdiss/FF further increases in the UV range (∼3.5 eV), which
can be attributed to the photo-absorption by the d-band of the Ag
substrate, resulting in efficient hot-carrier generation that eventu-
ally leads to the O2 dissociation through the indirect mechanism.8

It should be noted that σdiss/FF in the visible range is much higher
than that reported previously.8 This discrepancy may be explained
by different coverage of O2. The coverage in the present case is
about 0.01 ML which is much smaller than the saturation cover-
age (0.25 ML) used in the previous study.8 At the saturation cov-
erage, dissociation of O2 must kick out another molecule to yield the
adsorption site for the generated O atoms. This would cause a much
lower reaction rate. In addition, the adsorption structure is differ-
ent at the saturation coverage at which the molecules align with an
azimuthal direction parallel to the [001] direction and are tilted away
from the surface,32 which might also affect the photolysis mecha-
nism. Figure 1(d) also shows the incident-light-polarization depen-
dence at 530 nm. The cross section with s-polarization is smaller
than that with p-polarization.

In order to gain insight into O2 photolysis in the visible and
near-infrared range, we simulated the adsorption structure and ana-
lyzed the optical absorption of the O2/Ag(110) complex using TD-
DFT calculations with a cluster model. Figures 2(a) and 2(b) show
the optimized structures of [11̄0]- and [001]-O2 superimposed with
the electron density differential map. We confirmed that the slab and
cluster model have the same electronic structure and the cluster size
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FIG. 2. Simulated structure and optical absorption. [(a) and (b)] Calculated structure of the [001]- and [11̄0]-O2 on the Ag(110) surface. Red, black, and gray balls indicate O,
Ag atoms at the top, and inner layer, respectively. Isosurfaces of the electron density difference maps [ρ(Slab + O2) − ρ(Slab) − ρ(O2), where ρ is the electron density] for the
adsorbed O2 moiety in the ground state is superimposed. Yellow (blue) indicates an increase (decrease) in the electron density. [(c) and (d)] The simulated absorption spectra
(colored curves) of the [001]- and [11̄0]-O2, respectively. The oscillator strength (black bars) is broadened by a Lorentzian function with the width (γ) of 50, 100, 150 nm.
[(e)–(j)] Changes in the electron density upon electronic transition. The yellow (blue) parts indicate an increase (decrease) in the electron density. The excitation wavelength
is indicated in the figure.

is determined to include the electronic interaction region between
the O2 molecule and Ag atoms provided from the calculated elec-
tron density differential map in Figs. 2(a) and 2(b) as well as all
relevant states that are influenced by O2 adsorption (see also Fig. S4
of the supplementary material). The simulation reveals a significant
electron transfer from the Ag surface to the O2 moiety of both ori-
entations (see also Fig. S5 of the supplementary material for the
projected DOS), which is consistent with previous calculations using
a slab36,37 and a cluster model.38,39 As a consequence, the π∗ orbital
of O2 is partially filled, resulting in a slight elongation of the O–O
bond (∼0.2 Å). Figures 2(c) and 2(d) show the simulated absorp-
tion spectrum (colored curves) of the O2/Ag(110) cluster using TD-
DFT calculations. Here, we adopt electronic transition between the
ground and excited states via the single-photon process as confirmed
in experiment. The simulated spectra reveal characteristic absorp-
tions in the visible and the near-infrared range. In order to obtain
the absorption spectra, the oscillator strength (black bars) is broad-
ened by a Lorentzian function. The broadening factor is an arbitrary
parameter, and we examine three different widths (full width at half
maximum) of 50, 100, and 150 nm. We deduced these values from

excited-state lifetimes of 10−15 to 10−14 s which are typically found
in adsorbates on metal surfaces,1 but further quantitative discussion
is inappropriate at the level of the current simulations. In the simu-
lated spectra, there are three absorption bands around 900, 700, and
480 nm.

The direct electron transition at these wavelengths is dis-
played in Figs. 2(e)–2(j) and listed in Table I. We found that for
[001]-O2, electron transfer occurs from the Ag substrate to the
hybridized π∗ orbitals of O2 at 708 nm [the yellow lobes around
O2 in Fig. 2(g)]. This electron transfer causes the elongation of
the O–O bond and could lead to dissociation. In the case for
[11̄0]-O2 at 690 nm, the electron transfer occurs from the occu-
pied to unoccupied states within the hybridized π∗ orbital of O2
[Fig. 2(h)]. Although the contribution of this electron transition
to the dissociation is unclear, photo-irradiation may also induce
rotation of O2 from the [11̄0]- and [001]-orientation through hot-
carrier generation,34 promoting the dissociation in the [001] ori-
entation at ∼700 nm. In the other cases at 480 and 900 nm, elec-
tron transfer takes place from the partially occupied π∗ orbitals
to the Ag substrate [Figs. 2(e), 2(f), 2(i), and 2(j); see also the

J. Chem. Phys. 151, 144705 (2019); doi: 10.1063/1.5112158 151, 144705-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5112158#suppl
https://doi.org/10.1063/1.5112158#suppl


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE I. Electron transition under several wavelengths from TD-DFT.

O2 species λabs (nm) Electron transition

[001]-O2 926 O2 π∗ orbitals→ Ag substrate
708 Ag substrate→ O2 π∗ orbitals
479 O2 π∗ orbitals→ Ag substrate

[11̄0]-O2 885 O2 π∗ orbitals→ Ag substrate
690 O2 π∗ orbitals→ O2 π∗ orbitals
476 O2 π∗ orbitals→ Ag substrate

supplementary material for details]. This transfer compresses the
O–O bond and then could excite the O–O stretching after relax-
ation, which could eventually promote dissociation in the ground
state. Thus, all the three absorption bands could induce photoly-
sis through the direct charge transfer process. However, the indirect
process cannot be ruled out because hot carriers are generated in Ag
through optical absorption in the visible range (5%–14%).

Regarding the incident-light-polarization dependence, in
the indirect process, p-polarization is more efficient than s-
polarization.20 On the other hand, in the direct process, the above

statement is also true considering the transition dipole moment
is perpendicular to the surface. Therefore, either mechanism
could explain the higher cross section for p-polarization than s-
polarization.

We now turn to the near-field O2 photolysis in plasmonic
STM junctions. Figures 3(a) and 3(b) display the STM image before
and after 530-nm illumination with an Ag tip kept in the tunnel-
ing regime at the yellow dot position in Fig. 3(a). The incident
beam was polarized along the tip axis (p-polarization). After illu-
mination with a relatively low fluence (2.3 × 1017 photons cm−2,
2 mW cm−2 for 44 s), some of the O2 molecules are already dis-
sociated near the tip position [Fig. 3(b)], indicating promotion
of the reaction through surface plasmon excitation in the junc-
tion.15,16 The dissociation cross section depends on the lateral dis-
tance from the tip position. Here, we analyze the cross section by
dividing the area into two regions as indicated by the dashed lines
in Fig. 3(a). The radius of the regions is determined arbitrarily
because our purpose is to show the rate difference in molecules
at different distances from the tip position. By applying the same
counting method as before, the fraction of unreacted O2 (NO2/Ni)
in both regions 1 and 2 is measured as a function of photon
fluence [Fig. 3(c)]. By applying Eq. (1), we obtained the near-
field cross section (σdiss/NF) of 1.1 × 10−17 cm2 in region 1 and

FIG. 3. Near-field photolysis of O2 on Ag(110). [(a) and (b)] STM images of O2 on Ag(110) observed at 78 K (Vs = 100 mV and It = 20 pA), (a) before and (b) after illumination
with p-polarized light at 530 nm (2.3 × 1017 photons cm−2). An Ag tip was kept in the tunneling range (Vs = 100 mV and It = 20 pA) at the bottom right edge of the image
frame during illumination. (c) Fraction of unreacted O2 (NO2/Ni) as a function of photon fluence at 530 nm in the two regions shown in (a). Orange curves are the best fitted
result of the data points to Eq. (1). (d) Incident photon energy (wavelength) dependence of the near-field photolysis cross section (orange markers) measured in region 1
shown in (a). The cross section by the Ag tip shown in (c) is also marked by diamond. (e) Photolysis enhancement factor (σdiss/NF/σdiss/FF) as a function of incident photon
energy (wavelength) (orange) and scanning tunneling luminescence spectrum (black dashed line) measured over the Ag(111) surface with Vs = 3 V and It = 9 nA. (f) Scanning
electron micrograph of an FIB-milled Au tip.
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2.2 × 10−18 cm2 in region 2, revealing 54- and 10-fold enhance-
ment with respect to the far-field cross section at 530 nm [red
curve in Fig. 3(c) and Fig. S2 of the supplementary material]. The
higher cross section in the region closer to the tip corroborates
that the photolysis is associated with local field enhancement in the
junction.15,16

Figures 3(d) and 3(e) show the wavelength-dependent cross
section of the near-field induced photolysis in region 1 [shown in
Fig. 3(a)] and the photolysis enhancement factor (σdiss/NF/σdiss/FF),
respectively.40 The data are obtained with an FIB-milled Au tip
which has a 50-μm-long “polished” shaft, as shown in Fig. 3(f). The
cross section is largely enhanced in the red and the near-infrared
range. The surface plasmon excitation in the junction promotes the
direct charge transfer in three absorption bands (Fig. 2 and Table I)
as well as the indirect process (in the latter, hot carriers are gen-
erated in the Ag substrate and tip via Landau damping of surface
plasmons). The decrease in the enhancement for the Au tip above
2.2 eV (λ < 560 nm) results from plasmon quenching due to the
interband transition.15 On the other hand, when we used an Ag tip,
54-fold enhancement is achieved at 530 nm [Figs. 3(c) and 3(d)],
which is significantly higher than that for the Au tip (8-fold). This
can be explained by the different cutoff of surface plasmon excitation
resulting from the interband transition. Since the d-band edge of Ag
(about 4 eV below the Fermi surface) is much deeper than that of
Au (about 2 eV),41 the cutoff of surface plasmon excitation for Ag is
significantly blue-shifted. In other words, an Ag tip can couple with
530-nm light much more efficiently than an Au tip. It should also
be noted that local field enhancement may be larger for Ag tips than
that for Au tips due to the significantly longer plasmon dephasing
time of Ag.

The wavelength-dependent cross section of the O2 photolysis
[near-field action spectrum, Fig. 3(d)] exhibits two characteristic
regimes: a continuous feature at 500–600 nm and strong fluctuation
at 600–1000 nm. A similar spectral fingerprint has been observed
for other near-field action spectra measured with FIB-milled tips.19

As discussed in our previous report, the continuous feature (500–
600 nm) can be attributed to the LSPR in the junction, which is
corroborated by the agreement of the spectral response between the
scanning tunneling luminescence (STL) and the enhancement fac-
tor in Fig. 3(e). On the other hand, the characteristic fluctuation is
explained by complex interference and propagation of surface plas-
mon polaritons (SPPs) generated on the unpolished tip shaft which
has submicrometer roughness [as seen in Fig. 3(f)], providing our
experimental setup where the whole tip is illuminated by a uniform
and spatially extended beam.19,42–45 We propose that the surface
roughness on the unpolished tip shaft acts as a coupler between the
incident light and the SPP (see Fig. S3 and the related calculation
in the supplementary material). The launched SPPs then propagate
along the smooth milled shaft and focus at the apex.46 The contribu-
tion of the SPPs becomes more pronounced at a longer wavelength
due to the larger propagation distance. The contribution from the
propagating SPP results in photolysis in the near-infrared range with
the cross section as high as that in the visible range; nevertheless, the
intensity of the directly excited LSPR in the junction decreases in the
near-infrared range [Fig. 3(e)]. This is a clear contrast to far-field
photolysis and is of great importance toward efficient use of sunlight
because near infrared makes up ∼50% of its total energy on the earth
surface.

IV. CONCLUSION
In summary, we demonstrated that the O2 photolysis on the

Ag(110) surface can be induced by visible light, and the process
is observed in real-space using a low-temperature STM. The pho-
tolysis mechanism was examined by TD-DFT calculations, reveal-
ing optical absorption of the O2/Ag(110) complex in the visible
and near-infrared range, which promotes photolysis. We propose
that the O2 photolysis involves the direct charge transfer process.
It was also shown that the photolysis cross section can be largely
enhanced in a plasmonic STM junction in both visible and near-
infrared ranges. Our approach paves the way to gain in-depth insight
into plasmon-induced photochemistry at the single-molecule level,
which will contribute an optical design of plasmonic catalysts and
visible- and near-infrared-light driven chemistry.

SUPPLEMENTARY MATERIAL

The supplementary material includes incident photon flux
dependence of the O2 photolysis rate on Ag(110), far-field photol-
ysis at 530 nm, coupling of incident light to SPPs on the tip shaft
by surface roughness, optimized structure for O2 on the Ag(110)
slab, projected density of states of O2/Ag(110), and analysis of orbital
contribution in the simulated absorption spectra.
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