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Abstract. A nonrelativistic (NR) theory of recoil corrections to the magnetic moments of bound particles
is revisited. A number of contributions can be described within an NR theory with the help of various
potentials. We study those potential-type contributions for two-body atomic systems. We have developed
an approach, that allows us to find the g factor for an electron or muon in a two-body bound system
for an arbitrary electrostatic interaction together with the m/M recoil corrections, as well as the binding
corrections to the g factor of the nucleus. We focus our attention on light muonic two-body atoms, where
the recoil effects are enhanced. Both mentioned kinds of contributions have been previously known only for
the pure Coulomb effects. We have applied the here-obtained master equations to a few particular cases
of perturbations of the Coulomb potential. In particular, the results on the recoil corrections to the finite-
nuclear-size (FNS) and Uehling-potential contributions to the g factor of the bound muon are obtained.
The Uehling-potential and FNS contributions to the g factor of the bound nucleus have been found as well
together with the related recoil corrections. We have generalized the results for the case of the g factor of
a bound muon in a three-body atomic system consisting of an electron, a muon, and a spinless nucleus.

1 Introduction

The actual values of the g factors of the bound particles
differ from their free values due to the binding effects.
The leading binding correction to the g factor of the light
orbiting particle in a hydrogen-like atom is a relativis-
tic one [1]. The leading binding correction to the nuclear
magnetic moment is recognized as the electron shielding
(screening) correction.

Magnetic properties of various atomic systems, includ-
ing the exotic ones, such as the magnetic moments or the
g factors of their constituents, were studied in a variety of
experiments. In particular, there are a number of exper-
imental results on the bound magnetic moment of the
[negative] muon available [2–7]. In many experiments the
muonic atoms contain a number of particles: a nucleus, a
muon at a low orbit, and a number of electrons. There are
two types of effects which affect the muon g factor. One
of them is due to a two-body system of a muon, sitting
at a low orbit close to the nucleus, and the nucleus itself.
The effects of binding a muon to a nucleus are of a clear
two-body nature. The other group of effects is due to the
electron(s) screening of the muon magnetic moment and
involves more particles.

a e-mail: savely.karshenboim@mpq.mpg.de

The compact muon–nucleus two-body system plays a
role of a compound nucleus for the electron(s), which
weakly penetrates it. The simplest muonic atom where
the electron screening takes place is a system of an elec-
tron, a muon, and a nucleus. The most simple of them
are the ones with a spinless nucleus. In such a case the
magnetic moment and spin of the compound nucleus is
the muon one and the screening of the magnetic moment
of the compound nucleus is a two-body problem of an
electron and a compound nucleus. Such a hierarchy tech-
nique for the study of neutral muonic helium has been
successfully applied to the hyperfine structure [8–12] and
the Lamb shift [13,14] of the electron energy levels.

In this paper we study both two-body and three-body
muonic atoms. The theory of the bound g factors has a
long history and involves many corrections to the g fac-
tors. The leading bound contributions are the Coulomb
ones. They can be found, considering particles bound by
the Coulomb potential in the presence of magnetic field.
We can modify the potential adding various corrections to
the Coulomb field. Here we study “potential-type” contri-
butions, i.e., the contributions induced by those additions
to the Coulomb potential. An interaction of two bound
particles can be described by a potential in two cases. One
of them is a relativistic case for a light particle within the
external field approximation, while the other is a potential
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at the nonrelativistic approximation for two particles,
which can be described by a one-body Schrödinger equa-
tion with the reduced mass.

We rely on a nonrelativistic expansion and consider the
latter case. In the case of a potential-type contribution it
may be possible to express the corrections to the g factor
in terms of the corrections to the energy. In particular,
relatively recently two relations between the contributions
to the g factor of a bound muon (electron) and the energy
were discovered for states of a two-body atom bound by
an arbitrary electrostatic central potential [15,16].

We are to generalize those expressions on the recoil
effects and consequently to obtain the results for two
classes of the contributions, which have not been stud-
ied. One is for recoil corrections to the g factor of a muon,
bound by an arbitrary potential, and the other is for the
contributions to the g factor of the nucleus, both non-
recoil and recoil, also bound with an arbitrary potential.
The results are obtained below in a closed analytic form.

2 The g factors in a two-body muonic atom

The theory of the g factor of the bound muon and bound
nucleus in a light two-body muonic atom is somewhat dif-
ferent from that for ordinary [electronic] atoms. One of
the differences is the importance of the recoil corrections
since mµ/mp ' 1/9. The effects of the electronic vac-
uum polarization and the nuclear finite size (FNS) are
enhanced, which makes another important difference.

The leading contributions in the first order for all these
three effects (namely, due to the recoil, FNS, and elec-
tronic vacuum polarization (aka Uehling potential)) have
been known for some time.

The leading recoil effects in the case of a pure Coulomb
potential have been studied in [17–20]. The result for the
g factor of a muon (or an electron) and a nucleus up to
the third order in a combination of three small parameters
(α,Zα,m/M) is

gµ(ns) = g(0)
µ

{
1− 1

3

[(
1− 3

2
m

M

)
− aµ

(
3
2
− 5

2
m

M

)]
(Zα)2

n2

}
, (1)

gN (ns) = g
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M

)
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M

]
α(Zα)
n2

}
, (2)

where we neglect the (m/M)2 terms (see [21–23] for
details). Note, g(0)

µ = 2(1 + aµ) and g
(0)
N = 2(1 + κN );

aµ, κN are the anomalous magnetic moments of the muon
and nucleus; m is the mass of the orbiting particle, which
is a muon in the muonic atoms, and M stands for the
nuclear mass.

The leading FNS correction to the g factor of a bound
muon (in a muonic atom) (or a bound electron in an ordi-
nary hydrogen-like atom) in the leading non-relativistic

approximation is known in a closed form [24]

∆gµ(ns) =
8

3n3
(Zα)4m2R2

N , (3)

where RN is the rms nuclear charge radius. The Uehling-
potential correction (i.e., the correction due to the elec-
tronic vacuum polarization) to the bound muon g factor
in two-body muonic atoms is known in closed analytic
form [25,26] as well (see below).

An important group of the corrections to the bound g
factors can be considered by using various potentials. That
is not a general situation. For example, the muon (elec-
tron) self-energy contribution cannot be described in this
way (see, e.g., [27]). The non-potential-type contributions
will be considered elsewhere [28].

Still, the FNS effects as well as the effects of the vac-
uum polarization, can be successfully considered as the
potential-type ones. We are to consider the recoil effects
especially for muonic atoms, where the contributions of
those types are of special importance, and so we take the
advantage of the “potential” approach to the description
of the corrections. Within such an approach some func-
tional relations are simplified. In particular, the results
above for the leading FNS and the leading Uehling contri-
butions (in the non-recoil limit) could be easily derived
using a relation [15] between the contributions to the
bound muon (electron) g factor and to the energy of a
hydrogen-like bound state of interest, which reads

∆gi(ns)
2

=
2
3
∂Ei(ns)
∂m

, (4)

where subscript i “marks” the effects of interest (FNS,
Uehling correction, etc.). The relation is valid for an elec-
tron or muon bound by an arbitrary local electrostatic
potential. We remind that here and throughout the paper
m is the mass of the orbiting particle and never a reduced
mass.

The relation is a relativistic one, but its use in a
non-relativistic approximation allows us to simplify the
required expressions for the energy. The Uehling correc-
tion to the energy in a muonic atom has been known in
the close analytic form both in the non-relativistic [29–35]
(see below) and relativistic case [34,35].

The mentioned relativistic relation (4) was obtained in
the external-field approximation [15], while here we study
the recoil corrections to the leading FNS and Uehling
terms for the bound muon. We also derive the related
corrections to the g factor of a bound nucleus in a two-
body muonic atom. For the derivation of the appropriate
nonrelativistic relations between the contributions to the
g factor and to the energy we note that very often the
leading correction due to a certain kind of effects can be
presented in terms of the average of a very few operators
over the wave functions. In particular, all the corrections
of interest (including the recoil effects) can be expressed
for the ns bound states in terms of one average, namely,
〈p2〉, as it has been achieved in [19,20].

The value of 〈p2〉 is an average over the wave function
of a state of interest, while the wave function is a solution
of a one-body equation with the reduced mass and an
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arbitrary central electrostatic potential, which is usually
the Coulomb one affected by corrections of various kinds.
The advantage of the nonrelativistic approximation for
the recoil corrections to the wave functions is that they
are covered by the introduction of the reduced mass mr.

The derivations of the pure Coulomb’s relations in (1)
and (2) are lengthy and cumbersome [17–20]. The essence
of the derivation is a disentanglement of a motion of the
center of mass of the two-body system and its relative
motion. A consideration of pure Coulomb field offers cer-
tain simplifications and a compatible derivation with an
arbitrary potential would be somewhat more complicated.
Two former derivations [19,20] dealt in part with arbitrary
potential, but the detailed description is not present there.
Nevertheless, the agreement of intermediate formulas in
[19,20], allows us to consider their intermediate results as
well established and utilize them as a starting point of
our derivation. Since the separation of two motions has
already been done [19,20], we consider in this paper only
relative motion of bound particles in the rest frame of the
two-body atom.

The related expressions for the bound g factors of the
orbiting particle (a muon) and the nucleus in an ns state
with the required accuracy are of the form [19] (cf. [20])

gµ(bound) = g(0)
µ

{
1− 1

3

[
1− 3aµ

2(1 + aµ)

+
1

2(1 + aµ)
m

M

]
〈p2〉
m2

}
, (5)

gN (bound) = g
(0)
N

{
1− 1

3Z

×
[
1 +

1
2(1 + κN )

m

M

]
〈p2〉
m2

}
. (6)

We emphasize that the equations have been applied in
[19] for Coulomb-bound systems, but derived there for a
more general case. They are valid for an arbitrary central
electrostatic interaction and we take advantage of that
to generalize the results previously obtained in the non-
recoil limit (see, e.g., (4)). The result is consistent with
an expression for the operators of the magnetic moment
found in [20].

To apply expressions (5) and (6) we intend to use the
non-relativistic relations discussed in [16] in the context
of the bound g factor problem, which, in particular, has
allowed us to find a non-relativistic version of (4). The
derivation in [16] is valid for an electron or a muon, bound
by an arbitrary local electrostatic potential V (r), i.e., in
the external-field approximation. However, it may be used
for an NR two-body system bound by an electrostatic
interaction. The required relation from [16] now takes the
form

〈p2〉 = −2m2
r

∂E

∂mr
' −2m2

(
1− 2m

M

)
∂E

∂mr
, (7)

where energy E is the eigenvalue of the nonrelativistic
Hamiltonian with reduced mass mr and we neglect here
the (m/M)2 terms. The potential V (r) is assumed to be
mass independent, which is valid for a number of actual

perturbations of the Coulomb potential. The relation is
somewhat similar to the one related to the virial theorem.
Combining (5), (6), and (7), we immediately arrive at
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}
.

(9)

Those two identities express the g factors of the bound
spin particles in the s state in terms of the energy of the
state of interest. They are valid for the effects related to
the potentials for the effective one-body non-relativistic
equation with the reduced mass and a central electro-
static potential. For the two-body atoms the leading bind-
ing potential is indeed the Coulomb one (for a point-like
nucleus), which is perturbed by various effects.

The equations above are the main result of this paper.
They are the master equations, which allow us to take
advantage of the current theoretical situation when the
theory of the energy levels is in general more advanced
than the theory of the bound g factor. In a number of cases
we know a contribution to the energy, while the related
contribution to the g factor is unknown. In particular, the
derived master equations cover two classes of new cor-
rections. The upper equation (8) produces the results for
the recoil corrections with an arbitrary effective poten-
tial, while the bottom one (9) delivers the results for an
arbitrary potential for the non-recoil limit as well as for
the recoil corrections. The original results for the specific
corrections are summarized below for the g factors of a
bound muon and bound nucleus in a two-body atoms and
generalized in Section 4 for the case of the g factor of a
muon in a three-body system (electron–muon–nucleus).

Prior to considering various specific contributions, let’s
mention that equation (8) reproduces two similar relations
for the g factor of a bound muon, namely, the nonrelativis-
tic limit of equation (4) previously obtained in [15] and
the result for the contribution of the anomalous magnetic
moment in the non-recoil limit for an arbitrary potential
derived in [16]. None of the recoil contributions have been
considered previously for an arbitrary potential. Neither
the relations to the energy were derived for the g factor of
a bound nucleus.

The master equation (8) for the arbitrary potential in
the leading non-relativistic approximation reproduces the
pure Coulomb result (see (1)) both for a particle with a
pure Dirac magnetic moment and for a particle with a
non-zero anomalous magnetic moment. Since the relation
in (8) reproduces the known relations [15,16] for the non-
recoil limit, it apparently reproduces the known external
field approximation results for the Uehling contribution
[25,26] (see below) and the leading FNS contribution [24]
(see (3)) in the leading non-relativistic approximation.
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However, the recoil corrections to them have not been
known and we consider them below.

3 Recoil corrections to the g factors
in a two-body muonic atom

Let’s start with the recoil correction to the FNS contri-
bution in a hydrogen-like muonic atom. The leading FNS
contribution to the energy is well known as

∆EFNS(ns) =
2

3n3
(Zα)4m3

rR
2
N , (10)

which immediately allows us to find the FNS-recoil cor-
rection to the g factors of the bound muon and the bound
nucleus in a two-body muonic atom

∆gµ(ns) = 4
[
1− 3m

2M

]
∆EFNS(ns)

mr
, (11)

where the non-recoil term in the theory of the g factor
of a muon (see (3)) has been previously known [24]. (We
neglect the radiative contributions to the FNS term in
gµ(ns) [16].) A part of the recoil correction is contained in
∆Efns(ns)/mr, since the recoil effects are already incor-
porated in the leading FNS contribution (10) by using
the reduced mass. The other recoil FNS corrections to the
energy are of higher order in Zα or in ZαmRN (see, e.g.,
[16]). (The recoil FNS contribution to the g factor of a
bound muon of order (Zα)4(mRN )2 was previously stud-
ied in [36]. Our result disagrees with that of [36].)

The results for the Uehling correction in muonic atoms
are more complicated. The correction to the energy is of
the form

∆EUeh(ns) =
α

π

(Zα)2mr

n2
× FUns

(
Zαmr

nme

)
, (12)

where in particular [29,30]

FU1s(y) = −1
3

[
2y4 − y2 − 4

y3

ln
(
y +

√
y2 − 1

)
√
y2 − 1

+ π
3y2 + 4

2y3
− 11y2 + 12

3y2

]
. (13)

The function FU for the other states can be found in [29,
30,32–34]. Similar to the case of the FNS contribution, the
leading recoil effects are already included in (12) as long
as we use the reduced mass appropriately.

Applying relation (8) we find for the Uehling-recoil cor-
rection to the g factors of the bound muon (cf. [25,26])

∆gµ(ns) =
4
3
α

π

(Zα)2

n2

[
1− 3m

2M

]
Gns(Zαmr/me), (14)

where

Gns(y) =
[
FUns(y) + y

∂

∂y
FUns(y)

]
,

and the radiative corrections to the Uehling term. The
explicit result for a muon in the ground state reads

G1s(y) = −1
3

[
2y6 − 3y4 + 12y2 − 8

y3(y2 − 1)

ln
(
y +

√
y2 − 1

)
√
y2 − 1

− 4π
y3
− 5y4 − 20y2 + 24

3y2(y2 − 1)

]
. (15)

Let’s now consider the contributions to the g factor of
a bound nucleus based on equation (9). The theory of the
g factor of a bound nucleus is less advanced than that of
a bound muon (electron). The master equation (9) allows
us to reproduce the known results for the Coulomb poten-
tial (see (1)). A number of corrections to the g factor of a
bound muon (electron) are known in the non-recoil limit,
however none of the related corrections are known for a
bound nucleus. In the above we have considered the lead-
ing FNS contribution and the Uehling contributions to
the g factor of the bound muon. Based on equation (9) we
generalize the results on the case for the nucleus g factor.

The leading FNS contribution for the g factor of a
bound nucleus is found to be (cf. (11))

∆gN (ns) =
2
Z
g
(0)
N

[
1−

(
2− 1

2(1 + κN )

)
m

M

]
× ∆Efns(ns)

mr
, (16)

where g
(0)
N is the value of the free nucleus g factor and

∆Efns(ns) is defined in (10). The result for the Uehling
correction, following (9), reads (cf. (14))

∆gN (ns) =
2
3
α

π

α(Zα)
n2

g
(0)
N

[
1−

(
2− 1

2(1 + κN )

)
m

M

]
×Gns(Zαmr/me) . (17)

4 Results for a three-body muonic atom

Often muonic atoms also contain some electrons and the
muonic magnetic moment is shielded by them. Actually,
the only existing results on the g factor of a bound muon
[2–7] are from the study of such atoms. In the muonic
atoms with electrons the muon is usually at its ground
state. The muon–nucleus bound system is a compact one
and weakly affected by the electrons. The results for two-
body muonic atoms, obtained above, could be used in cal-
culations for the compact muon–nucleus system, which
plays the role of a compound nucleus for the electrons. To
study the electron shielding correction we should know the
properties of that compound nucleus.

We discuss the simplest muonic atom where the effects
of electronic screening are presented. That is a three-body
atom consisting of an electron, a muon, and a spinless
nucleus. Such a simple exotic system (namely, the muonic
helium) was actually produced [37] and the related mag-
netic moments were measured [38], but with a rather low
accuracy. We investigate such systems because of their
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theoretical simplicity rather than because of the existing
experimental data. The theoretical result should give a
clear understanding of the order of magnitude of contri-
butions of different effects, which may help to develop a
theory for more complicated muonic atoms.

At the first stage we consider a two-body muonic ion
and deduce the magnetic moment of a bound muon, while
at the second stage we are to consider a hydrogen-like elec-
tronic atom with a compound nucleus in order to obtain
a value of its nuclear magnetic moment (cf. [11–13]). The
situation is greatly different from ordinary atoms with two
electrons, which being identical particles require a dif-
ferent approach. For the sake of simplicity we consider
the muon in the ground state (which is the most realistic
scenario for experimental observations) and therefore the
spin of the compound nucleus is 1/2. Collecting all the
corrections to the g factor of a bound muon at the ground
state up to the third order of magnitude in either combi-
nation of α, Zα, and m/M , discussed above, we find the
g factor of a muon in the two-body subsystem

g(2)
µ = g(0)

µ ×
{

1− (Zα)2

3

[
1− 3

2
mµ

M
+

3(Z + 1)
2

(mµ

M

)2

− 3
2
α

2π

(
1− 5

3
mµ

M

)
−2α
π

(
1− 3

2
mµ

M

)
×G1s

(
Zαmr

me

)]}
. (18)

The magnetic moment of the compound nucleus is
essentially the muon one and it differs considerably from
the related Dirac value for a “nuclear” particle with charge
+(Z−1)e and mass M +mµ. An important nuclear char-
acteristic for the calculation of various corrections is the
anomalous magnetic moment of such a compound nucleus
η, which is defined by the relation

(1 + η)
(Z − 1) e
M +mµ

= −(1 + aµ + bµ)
e

mµ
,

where bµ is the correction due to the muon–nucleus bind-
ing effects. Various effects, discussed above, contribute to
bµ. At low Z the bound term (bµ ' −(Zα)2/3) is much
smaller than the free one (aµ ' α/2π), but for higher Z
they may be comparable.

In contrast to a muon, with a small value of the anoma-
lous magnetic moment (∼10−3), and a proton, which has
a value comparable with unity (κp ' 2.9), the anoma-
lous magnetic moment of the compound nucleus has a
value which is parametrically enhanced (∼−M/(Zmµ)).
The equation for the g factor of the [compound] nucleus
(see, e.g., (2) and (9)) deals with the factor

1
1 + η

' − (Z − 1)mµ

M +mµ
(1− aµ − bµ), (19)

where we neglect the higher order effects since this factor
is involved only in the calculation of small corrections.

We consider a three-body system, electron–muon–
nucleus, with a muon in the ground state (1s) and an elec-
tron in the ns state. The electron shielding in a two body

with an orbiting electron and the nucleus with charge
Z − 1, mass M + mµ and anomalous magnetic moment
η (as found in (19)) is presented by the factor (cf. (2))

g
(3)
µ

g
(2)
µ

= 1− (Z − 1)α2

3n2

[
1− 2me

M +mµ
− Z − 1

2
memµ

M2

]
.

(20)
The presented corrections are up to the third order in all
the parameters (α,Zα,me/mµ,me/M), but mµ/M , for
which we give an additional term of the expansion. The
last term in the factor in (20) (with Z − 1) is the con-
tribution due to the anomalous magnetic moment of the
compound nucleus (cf. (19)). Expressions (18) and (20)
include only the potential-type contributions. For the non-
potential-type ones, see [28].

The bound electron g factor in such an atomic system is
covered in (1) by using the g factor of the orbiting particle
(which is a muon in (1), but is an electron now) and with
the nuclear charge Z − 1 instead of Z, etc.:

ge(ns)

g
(0)
e

= 1− 1
3

[
1− 3

2
me

M +mµ
− 3ae

2

]
((Z − 1)α)2

n2
·

The g factor of a bound electron is known in principle with
a higher accuracy than presented in (1) (see, e.g. [27]).
Such a universal theory for the g factor of a bound elec-
tron in a hydrogen-like atom presents the most important
generic contributions. The only additional enhanced con-
tribution to the bound electron g factor in the electron–
muon–nucleus bound system is due to the large nuclear
size of the compound nucleus (see, e.g., [13,39]). The
related contribution with the muon in the 1s state is (cf.
(3))

∆ge(ns) = −8(Z − 1)3α2

Z2n3

(
me

mµ

)2

, (21)

which is a correction of the fourth order. It is the electron
in the ns state, while the muon is at its 1s state. A similar
FNS correction exists also for the g factor of the muon

∆gµ(ns) = −8(Z − 1)2α2

Z2n3

(
me

mµ

)2

. (22)

Above we consider a system of the electron–muon–
nucleus as a hierarchy system. First we consider the muon–
nucleus system as a two-body one and next we consider
the electron bound by a compound nucleus. Such a hier-
archy approach was efficiently used for the description
of the eµ hyperfine structure in neutral muonic helium
(e−µ−helium nucleus) [8–12] and the Lamb shift of the
electronic levels [13,14]. If the muon is in a low state such
a consideration is as good as a standard consideration of,
say, the deuterium atom. The latter can be treated as a
hydrogenlike atom with a compound p−n nucleus or as a
three-body e−p−n system. The fact that the [compound]
nucleus is bound by the strong interactions in deuterium
and by the electromagnetic interactions in muonic systems
is irrelevant. It is important that in muonic low states the
muon is bound to the nucleus much stronger than the elec-
tron(s) because of the much shorter distances (by a factor

https://www.epjd.epj.org
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∼me/mµ = 1/207). All the essentially three-body effects
can be considered perturbatively (see, e.g., a discussion in
[13]).

The corrections to the bound g factors due to the finite
size of the compound nucleus in (21) and (22) are in fact
the leading corrections due to the three-body effects. The
electron “recognizes” that the compound nucleus consists
of a muon and a nucleus. The effects of this type should
also involve the polarizability of the compound nucleus,
but they are of a higher order in me/mµ than the FNS
effects (see, e.g., [13,14]).

5 Conclusions

Concluding, we have revisited the nonrelativistic theory of
the g factors of the two-body atomic systems with a muon.
A special attention has been paid to the recoil corrections
to the g factor of a bound muon, which are important
in the case of muonic atoms. We have found the recoil
corrections to the finite-nuclear-size contribution and to
the Uehling contribution to the g factor of a bound muon
in a hydrogen-like muonic atom.

The obtained recoil results are not relevant to ordinary
[electronic] atoms, where the recoil effects are two orders of
magnitude smaller than for muonic ones. For the not very
low Z, the numerical value of the correction is of relative
order 1 × 10−4 (comparing with the leading FNS term)
and can be neglected comparing with its uncertainty. In
the case of lighter nuclei, such as with the α particle, the
FNS contribution is smaller and the recoil correction to it
is even less important.

We have evaluated all the third-order potential-type
terms. Some fourth-order potential-type contributions
have also been considered both for two-body and three-
body atomic systems, namely those in which one of the
small parameters is mµ/M , which is the most important
parameter at low Z.

In the case of medium Z the largest value of the small
parameters belongs to Zα. The higher order Zα contri-
butions require a relativistic consideration. The largest
of those relativistic contributions is the (Zα)4 term for
gµ [1] and α(Zα)3 term for gN [40–43]. They are known
in the external-field approximation. The most important
two-body correction is of order (Zα)4mµ/M [42,44,45].
Those results, namely, the relativistic corrections to gµ [1]
and gN [40–43] in the external field approximation and
the mµ/M recoil term [45], are known exactly in Zα. The
Uehling correction (cf. (14) [25,26] and the FNS term (cf.
(11)), presented [15] in terms of the FNS energy [46] (the
leading order in FNS and exactly in Zα (see discussion in
[16])), are also known exactly.

The results for some contributions (such as for the self-
energy one) in the external-field approximation are of the
same form for gµ in a muonic hydrogen-like atom and ge
in an ordinary hydrogen-like atom. The state of the art
for ge is discussed in [27] (see also [28]).

In muonic atoms certain higher order corrections to the
energy are specific (in comparison with ordinary atoms)
(see, e.g., [47]). Those contributions to the energy could be
converted to contributions to gµ using our nonrelativistic

relation (8), with the inclusion of the recoil effects, or a
similar one (4) [15] for relativistic corrections.

The actual experiments have been performed on rather
neutral atoms with a muon and several electrons. The
experimental accuracy has reached the level of a few
parts in 105. For this reason we have considered the
simplest of the systems with electron screening of the
bound muon magnetic moment, namely, a three-body
muonic atom, which consists of an electron, a muon,
and a spinless nucleus. The experimental results for such
atoms [2–4] have reached accuracy at the level of a few
parts in 105 at medium and high values of Z. We will
consider practical numerical applications elsewhere [28]
together with the calculation of the non-potential-type
contributions.
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