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The past few years have witnessed the development of a comprehensive theory to describe inte-
grable systems out of equilibrium, in which the Bethe ansatz formalism has been tailored to address
specific problems arising in this context. While most of the work initially focused on the study of
prototypical models such as the well-known Heisenberg chain, many theoretical results have been re-
cently extended to a class of more complicated nested integrable systems, displaying different species
of quasiparticles. Still, in the simplest context of quantum quenches, the vast majority of theoretical
predictions have been numerically verified only in systems with an elementary Bethe ansatz descrip-
tion. In this work, we fill this gap and present a direct numerical test of some results presented in
the recent literature for nested systems, focusing in particular on the Lai-Sutherland model. Using
time-dependent density matrix renormalization group and exact diagonalization methods, we com-
pute the spreading of both correlation functions and entanglement entropy after a quench from a
simple class of product initial states. This allows us to test the validity of the nested version of a
conjectured formula, based on the quasiparticle picture, for the growth of the entanglement entropy,
and the Bethe ansatz predictions for the “light-cone” velocity of correlation functions.

I. INTRODUCTION

After more than a decade of intense investigations, the theory of many-body integrable systems out of equilibrium is
arguably entering a more mature stage, as several experimentally feasible protocols are now falling under the reach of
our theoretical understanding [1–6]. In this respect, the study of the quantum quench [7], in which a well-defined initial
state is left to evolve unitarily according to some known Hamiltonian, has played a major role for the development of
the theory. Indeed, besides offering a conceptually simple framework to investigate questions of fundamental interest,
the need to overcome the significant computational challenges of this problem led to the introduction of powerful
methods [8–10], which now represent significant milestones in the field.

One of the most important ones is arguably the Quench Action approach introduced in Ref. [11], and first applied
in Ref. [12] to a genuinely interacting model (see Ref. [9] for a review). This method provided an intuitive picture to
describe the local properties of the system at large times after a quench: according to the Quench Action approach, the
unitary dynamics brings the system to a stationary state whose local properties can be computed from the knowledge
of a single representative eigenstate of the Hamiltonian. Importantly, the latter can be characterized in terms of the
corresponding quasimomentum (or rapidity) distribution functions of the stable quasiparticles; in fact, it was later
realized [13–20] that this characterization is equivalent to that of the generalized Gibbs ensemble (GGE) [21–25], a
statistical ensemble which generalizes the Gibbs density matrix by taking into account all the local and quasilocal
conservation laws of the Hamiltonian [26–30].

The description of the post-quench steady state in terms of the quasiparticle rapidity distribution functions is
particularly convenient, as they are directly related to several aspects of the post-quench dynamics. For instance, the
“light-cone” velocity of correlation functions was argued to coincide with that of the fastest quasiparticle excitation
built on top of the stationary state [31], while exact formulas have been derived to compute the post-quench steady
value of local correlators as a function of these rapidity distributions [32–37]. Furthermore, as a notable result, it
was shown in Refs. [38, 39] that they also give us access to the exact evolution of the entanglement after the quench
(in the scaling limit of asymptotically large times and spin blocks), as the knowledge of the occupation numbers and
dispersion relations of the quasiparticles complements the standard picture of Ref. [40] introduced in the context of
conformal field theory.

Unfortunately, the actual computation of the rapidity distributions of the quasiparticles remains in general a difficult
task. Indeed, the prescriptions of Ref. [11] to compute them require, as an input, the overlaps between the initial
state and the eigenstates of the post-quench Hamiltonian, which have proven to be very hard to obtain [41–52]. In
order to get around this problem, two different approaches were later introduced: the first one is the “string-charge
duality” method [15, 16], based on the idea that the post-quench representative eigenstate could be uniquely fixed
from the expectation value of a complete set of quasi-local conserved operators on the initial state. While this method
allows us to study quenches from rather general initial states, it is limited to the models for which the latter are
known; in particular, so far it could be applied only to XXZ Heisenberg chains [16, 17, 20]. The second method is
the Quantum Transfer Matrix approach introduced in Refs. [53, 54] (see also [55]), which derives the post-quench
rapidity distribution functions based on some underlying mathematical structures of integrability. This approach is,
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by construction, limited to a special class of “integrable” initial states [54, 56], whose definition is inspired by classical
works in integrable quantum field theory [57] (see also Refs. [58, 59]); still it was immediately realized it could be
applied quite generally to different models, relying exclusively on defining properties of integrability [54].

Given the significant technical challenges, these important developments were initially restricted to classes of models
solvable through an elementary (as opposed to nested) Bethe ansatz (with a notable exception in the context of
relativistic quantum field theory [60]). Still, nested integrable systems are particularly interesting as they contain
different species of interacting particles [61], and include experimentally relevant examples such as, most prominently,
multi-component Fermi and Bose gases, as already realized in several pioneering cold atomic experiments [62–65].
As a recent development, a series of works was able to extend several of the aforementioned results to the case of
nested systems, focusing on the simplest example of the Lai-Sutherland chain [66, 67], a special case of the Perk-
Schultz model [68, 69]. In particular, the first application of the Quench Action method in this system appeared in
Ref. [70], where some of us analyzed the quench from a very special initial state, whose overlaps with the eigenstates
of the Hamiltonian were computed in Ref. [47]. Later, the Quantum Transfer Matrix approach was generalized in
Refs. [71, 72] to the nested models, finally allowing us to study the post-quench dynamics for an entire class of
integrable initial states. Note that the special state considered in Ref. [47] was also shown to be a particular example
in this class [54, 56].

The theory that has been developing with the introduction of the Quench Action approach relies on several as-
sumptions, although physically very sound, and extensive numerical tests have been necessary to establish its validity
beyond reasonable doubt. In particular, the predictions of the theory for the asymptotic values of local correlations
have been tested against tDMRG [73, 74] and iTEBD [75] computations [14, 20, 76], as well as by means of exact
diagonalization techniques and numerical-linked cluster expansions [13, 20]. Analogously, the evolution of the en-
tanglement has been tested extensively against tDMRG simulations in Refs. [38, 39], as well as other entanglement
measures [77, 78]. However, all of these works focused on the prototypical XXZ Heisenberg chain, while no direct
verification was ever performed for the case of nested systems (with the only exception of Fermi-Hubbard models
with infinite onsite repulsion [79–82], which is however simpler, since it can be mapped to a free model). Evidently,
it is very important to corroborate at least some of the recent results obtained in nested systems. This is the aim of
this work, where we focus on the Lai-Sutherland chain, and compute numerically different quantities after the quench
from the family of integrable initial states of Refs. [71, 72]. This allows us to test directly several analytic predictions
formulated in the recent literature for a truly interacting nested intergrable model, thus corroborating the existing
theoretical framework for the study of quantum quenches in nested models.

The paper is organized as follows. In Sec. II we introduce the Lai-Sutherland model, and discuss the class of initial
states which will be considered in this work. Our numerical results for the evolution of the entanglement are reported
in Sec. III, together with a comparison against analytic predictions available in the literature. Sec. IV is devoted
to the analysis of the correlation functions after the quench, while our conclusions are consigned to Sec. V. Finally,
technical details on our numerical computations are reported in Appendix A.

II. THE MODEL AND THE INITIAL STATES

We consider the Lai-Sutherland model [66, 67], which is described by the Hamiltonian

HL =

L−1∑
j=1

sj .sj+1 + (sj .sj+1)2 − 2L , (1)

where sj = (sxj , s
y
j , s

z
j ). The spin-1 operators saj act on the local Hilbert space hj ' C3, and are given by the standard

three-dimensional representation of the SU(2) generators; in particular, introducing the local basis |1〉 = (1, 0, 0),
|2〉 = (0, 1, 0), |3〉 = (0, 0, 1), they read

sx =
1√
2

0 1 0
1 0 1
0 1 0

 , sy =
1√
2

0 −i 0
i 0 −i
0 i 0

 sz =

1 0 0
0 0 0
0 0 −1

 . (2)

The calculations presented in this work will be exclusively numerical. However, since they will be compared to
analytic predictions, it is useful to recall a few basic aspects of the theoretical tools used to analyze the Hamiltonian (1),
which provides one of the simplest models which can be solved via the nested Bethe ansatz method [61, 83–85].
Specifically, by means of the latter it is possible to show that the eigenstates of (1) are parametrized by two distinct
sets of quasi-momenta (or rapidities) {kj}Nj=1, {λj}Mj=1, satisfying an appropriate set of quantization conditions (the
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nested Bethe equations) (
kj + i/2

kj − i/2

)L
=

N∏
p=1
p 6=j

kj − kp + i

kj − kp − i

M∏
`=1

λ` − kj + i/2

λ` − kj − i/2
, j = 1, . . . , N , (3)

1 =

N∏
j=1

kj − λ` − i/2
kj − λ` + i/2

M∏
m=1
m 6=`

λ` − λm − i
λ` − λm + i

, ` = 1, . . . ,M . (4)

The energy eigenvalues can then be written as

E = −
N∑
j=1

1/(k2
j + 1/4) . (5)

Physically, the sets {kj}Nj=1 and {λj}Mj=1 correspond to two distinct types, or species, of quasiparticles. This situation
is different from that of ordinary Bethe-ansatz solvable models (e.g. the well-know Heisenberg chain [86]), where the
eigenstates of the Hamiltonian are parametrized by a single set of rapidities. We note that the existence of more than
one species of quasiparticles is not just a mathematical fact, but have implications on observable quantities, even in
out-of-equilibrium protocols [87].

The thermodynamic description of the model, defined by L,N,M → ∞ keeping the ratios D1 = N/L and D2 =
M/L constant, is analogous to the case of ordinary Bethe ansatz [88]. In particular, in this limit the rapidities
arrange themselves in the complex plane according to specific patterns called strings, which correspond to bound-

states of the quasiparticles; in each string the rapidities are parametrized as kn,`α = knα + i [(n+ 1)/2− `] + δn,`1,α,

λn,`α = λnα + i [(n+ 1)/2− `] + δn,`2,α, where ` = 1, . . . n. Here the real numbers knα, λnα ∈ (−∞,+∞) are the string

centers, which can be interpreted as the quasimomenta of the bound-states, while δn,`r,α are negligibly small deviations;
finally, n is the length of the string (namely, the number of quasiparticles in the bound-state).

In the thermodynamic limit the string centers for the two species become continuous variables on the real line,

distributed according to rapidity distribution functions ρ
(1)
n (k) and ρ

(2)
n (λ). One also needs to introduce the functions

ρ
(1)
h,n(k) and ρ

(2)
h,n(λ) describing the distribution of “holes”, which are the available rapidities for which there is no

quasiparticle. These functions are related by the following thermodynamic version of the Bethe equations (see e.g.
Ref. [70])

ρ
(1)
t,n(λ) = an(λ)−

∞∑
m=1

(
an,m ∗ ρ(1)

m

)
(λ) +

∞∑
m=1

(
bn,m ∗ ρ(2)

m

)
(λ) , (6)

ρ
(2)
t,n(λ) = −

∞∑
m=1

(
an,m ∗ ρ(2)

m

)
(λ) +

∞∑
m=1

(
bn,m ∗ ρ(1)

m

)
(λ) . (7)

Here we employed the standard definition ρ
(r)
t,n(k) = ρ

(r)
n (k)+ρ

(r)
h,n(k), together with (f ∗ g) (λ) =

∫∞
−∞ dµf(λ−µ)g(µ),

and

an,m(λ) = (1− δnm)a|n−m|(λ) + 2a|n−m|+2(λ) + . . .+ 2an+m−2(λ) + an+m(λ) , (8)

bn,m(λ) = a|n−m|+1(λ) + a|n−m|+3(λ) + . . .+ an+m−1(λ) , (9)

where an(λ) = n/[2π(λ2 + n2/4)]. Finally, from the quasiparticle distribution functions several quantities can be
computed directly. Among these, the (dressed) velocities of the quasiparticles (which are once again parametrized by
the rapidities λ) are obtained through the system of integral equations

ρ
(2)
t,n(λ)v(2)

n (λ) =
∑
k

(
bn,k ∗ v(1)

k ρ
(1)
k

)
(λ)−

∑
k

(
an,k ∗ v(2)

k ρ
(2)
k

)
(λ) ,

ρ
(1)
t,n(λ)v(1)

n (λ) =
1

2π
ε′n(λ)−

∑
k

(
an,k ∗ v(1)

k ρ
(1)
k

)
(λ) +

∑
k

(
bn,k ∗ v(2)

k ρ
(2)
k

)
(λ) .

(10)

Here, v
(1)
n (λ) and v

(2)
n (λ) are the dressed velocities of the n-quasiparticle bound states of rapidity λ, for the first and

second species.



4

A. The initial states

As we have mentioned in Sec. I, until recently no initial state was known in nested systems for which an analytical
study of the quench dynamics could be carried out. As a first piece of progress, in Refs. [47, 51] a family of matrix
product states (MPSs) [89] with increasing bond dimension ξ was found, for which the exact overlaps with the
eigenstates of the Lai-Sutherland Hamiltonian could be worked out. While the quench dynamics from the simplest
case ξ = 2 could be analyzed in Ref. [70] by means of the Quench Action method, these states have large initial
entanglement, which makes them not convenient for numerical simulations. Subsequent studies clarified the status
of the special states found in Refs. [47, 51] as belonging to a broader class of “integrable” initial states [54, 56].
Furthermore, in Refs. [71, 72] additional initial product states in this class were found, for which the quasiparticle
rapidity distribution functions could be derived exactly. From the numerical point of view, these states are particularly
convenient: on the one hand, they display small entanglement at short times; on the other hand, they are parametrized
by continuous variables, which offer the possibility of a more complete analysis.

The class of integrable states found in Refs. [71, 72] read

|Ψ0〉 = |ψ0〉1,2 ⊗ |ψ0〉3,4 ⊗ ....⊗ |ψ0〉L−1,L , (11)

with the two-site block

|ψ0〉 = c11|1, 1〉+ c22|2, 2〉+ c33|3, 3〉+ c12(|1, 2〉+ |2, 1〉) + c13(|1, 3〉+ |3, 1〉) + c23(|2, 3〉+ |3, 2〉). (12)

Here cij are arbitrary complex numbers. Note that, as it was shown in Ref. [71], each state in this class can be rotated
via a global SU(3) transformation to a product state with a two-site block of the form

|ψ0〉 = c11|1, 1〉+ c22|2, 2〉+ c33|3, 3〉 , (13)

with the additional restriction |c11| ≥ |c22| ≥ |c33|. In the rest of this work, we will study the quench dynamics from
the initial states (11), with two-site blocks given in (13).

Before leaving this section, we recall an important property of these states: their overlaps with an eigenstate of the
Hamiltonian is non vanishing only if the latter is labeled by sets of rapidities {kj}, {λj} which are parity invariant,
namely 〈{kj}, {λj}|Ψ0〉 6= 0 implies {kj} = {−kj}, {λj} = {−λj}. This property has been chosen as the very
definition of integrability in Refs. [54, 56]: there, an initial MPS with finite bond dimension was called integrable if
this condition is fulfilled. As we will see in the next section, this property has also consequences on the description of
the post-quench entanglement dynamics.

III. THE ENTANGLEMENT DYNAMICS

We start our analysis with the entanglement dynamics after the quench from an integrable initial state. Specifically,
we consider a subsystem A of length l, and compute numerically the evolution of the entanglement between A and
the rest of the system B, as given by the Rènyi entropy

Sα(t) =
1

1− α
ln Tr ραA(t) , (14)

where α is an arbitrary positive real number. Here ρA(t) is the time-evolved reduced density matrix of the subsystem
A, i.e. ρA = TrB |Ψ(t)〉〈Ψ(t)|, where |Ψ(t)〉 = e−iHt|Ψ0〉. We will be particularly interested in the limit α→ 1, which
yields the well-known von Neumann entropy SV (t) = −tr [ρA(t) log ρA(t)].

As we have discussed in Sec. I, an important result in the recent literature has been the discovery in Refs. [38, 39] of
a formula to compute the evolution of the von Neumann entanglement entropy in the scaling limit t, l→∞, keeping
the ratio l/t fixed. Such formula was derived in Ref. [38] based on an intuitive quasiparticle picture, which goes along
the following lines. One interprets the quench as a process generating everywhere and homogeneously uncorrelated
pairs of entangled quasiparticles with opposite momenta. In this picture, two regions may be entangled only if they
share at least a pair of quasiparticles emitted from an arbitrary initial point. Accordingly, the total entanglement
entropy between a region A and its complement B is proportional to the number of pairs with one quasiparticle in A
and the other in B. Assuming there exists only one type of quasiparticles, this semiclassical description immediately
gives us the following expression for the von Neumann entanglement entropy [38]

Sl(t) ∝ 2t

∫
2|v|t<l

dλ|v(λ)|s(λ) + l

∫
2|v|t>l

dλs(λ), (15)
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where s(λ) is the contribution to the entanglement carried by the pair of quasiparticles with rapidity ±λ, while |v(λ)|
is the absolute value of their (opposite) velocities. In Ref. [38] it was argued that the first could be identified with the
Yang-Yang entropy density [90] while the second could be obtained from the dressed velocity of the quasiparticles as
computed from the post-quench rapidity distribution functions [31]. A straightforward generalization of this picture
to the case where the quasiparticles can form bound states was employed in Ref. [38] to obtain quantitative predictions
for the XXZ Heisenberg chain. The same ideas can be also extended to inhomogeneous situations [91–93] within the
generalized hydrodynamics approach [94, 95].

The analytic formula found in Ref. [38] is now widely believed to be exact for the class of integrable initial states: on
the one hand, based on their defining property, the application of the quasiparticle picture is particularly intuitive and
natural for these states; on the other hand, the formula for the entanglement growth was extensively tested against
tDMRG simulations in Refs. [38, 39] and very good agreement was always found for integrable quenches. Conversely,
it is expected that these results should be modified for initial states with a more complicated structure of the overlaps,
as it was found in Refs. [80, 96] for the case of free models. It is important to stress that a similar formula for the
time evolution of Rényi entropies after a quench to an interacting integrable models is not yet known [77].

In the case of nested systems, it is natural to assume that a similar picture holds for integrable initial states, and
that the quasiparticles of each species and their bound states carry an independent contribution to the entanglement.
In the case of the Lai-Sutherland model, this leads to the formula [70, 71]

lim
t,l→∞
l/t fixed

Sl(t)/l = (S
(1)
l + S

(2)
l )/l , (16)

where

S
(r)
l /l =

∞∑
n=1

∫
dλ s(r)

n (λ)

{
2
t

l
|v(r)
n (λ)| θH

(
l

t
− 2|v(r)

n (λ)|
)

+ θH

(
2|v(r)

n (λ)| − l

t

)}
, (17)

and where θH(x) is the Heaviside Theta function (θH(x) = 0 if x < 0, θH(x) = 1 otherwise). Here, r and n are the

indexes labeling the different species and bound states of the quasiparticles; s
(r)
n (λ) is the Yang-Yang entropy density

s(r)
n (λ) =

(
ρ(r)
n (λ) + ρ

(r)
h,n(λ)

)
ln
(
ρ(r)
n (λ) + ρ

(r)
h,n(λ)

)
− ρ(r)

n (λ) ln ρ(r)
n (λ)− ρ(r)

h,n(λ) ln ρ
(r)
h,n(λ) , (18)

while v
(r)
n (λ) are the quasiparticle velocities introduced in Eq. (10).

We stress that, even though the above conjecture is natural, it is very important to provide numerical tests of
its validity. For example, in nested systems it is known that only the first species of quasiparticles contribute to
the expectation value of local conserved quantities [70, 71]; this is apparent, for instance, for the energy eigenvalues
appearing in Eq. (5). Accordingly one could wonder whether the correct generalization of (15) to the Lai-Sutherland
model should only involve the first, and not both, species of the quasiparticles.

In order to test the validity of (16) we have computed numerically the evolution of the entanglement entropy
Sl(t) for different integrable initial states and increasing values of the subsystem size l. We have then performed a
fit to extrapolate the value of Sl(t)/l in the limit t, l → ∞, as explained in detail in Appendix A. The numerical
results are then compared against the Bethe ansatz prediction (16); importantly, this can be evaluated explicitly
for the integrable initial states using the analytic results of Ref. [71] for the corresponding post-quench quasiparticle
distribution functions. We report in Fig. 1 the final outcome of this analysis, from which we see that the numerical
results are in very good agreement with the analytic predictions.

Although the fitting procedure to extrapolate the infinite-time limit bears a numerical error, the method is accurate
enough to clearly resolve the entanglement evolution for different initial states, as shown in Fig. 2(a). We have also

tested our numerics against the contribution S
(1)
l (t) of the first quasiparticle species in Eq. (16): this is displayed in

Fig. 2(b), where we see that the numerical data are in agreement with the prediction (16), which takes into account

the contribution of both species, but not with the individual term S
(1)
l . This rules out the possibility of a picture

where only the first species of quasiparticles contributes to the entanglement dynamics. Overall, our analysis fully
corroborates the validity of Eq. (16) as the correct generalization of the results of Ref. [38, 39] to the case of nested
spin chains.

The knowledge of the post-quench rapidity distribution functions corresponding to the integrable initial states
also allows us to provide predictions for other quantities related to the entanglement entropy, such as the mutual
information between two subsystems A and B, which has been recently proposed as a simple measure of scrambling [97,
98]. We recall that the mutual information is defined as IA:B = SA + SB − SA∪B , where SA, SB , and SA∪B are the
von Neumann entanglement entropies of the subsystems A, B and of their union, A ∪B, respectively. By employing
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FIG. 1. Entanglement entropy after the quench from integrable initial states, in a chain of L = 48 sites, for increases
sizes l of the subsystem A. The time axes are rescaled with vM/l, where vM is the maximum velocity of the quasiparticles
obtained by Bethe ansatz. Subfigure (a): the parameters of the two-site block (13) are chosen as c11 = 0.95, c22 = 0.3, and
c33 ' 0.087. Dashed and solid lines correspond respectively to tDMRG results for l = 5, 7, 9, 11 and l = 14, 16, 18, 20 (from
top to bottom).The dashed-dotted line is the theoretical prediction (16), while red circles correspond to the numerical results
obtained after the extrapolation procedure. Subfigure (b): same as (a), for the initial parameters c11 = 0.9, c22 = 0.35, and
c33 ' 0.26. Subfigure (c): numerical extrapolations of the tDMRG results for finite odd values of l (symbols). The dashed lines
correspond to the quadratic curve Sl/l = s∞ + a/l + b/l2, where s∞, a, b are fitting parameters (cf. Appendix A).
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FIG. 2. Subfigure (a): extrapolated entanglement entropy after the quench from different integrable initial states (symbols).
For each state, the initial parameters cjj of Eq. (13) satisfy

∑3
j=1 c

2
jj = 1. Dashed-dotted lines correspond to the theoretical

prediction (16). The system size is L = 48. Subfigure (b): the extrapolated numerical data (red symbols) for the entanglement

entropy are compared against the contribution S
(1)
l of the first quasiparticle species (green dashed line). The latter is not in

agreement with the numerical results; these are instead consistent with the prediction (16) (solid line), which takes into account
both species of quasiparticles. The initial parameters chosen for this plot are c11 = c22 = 0.6, c33 ' 0.53, while the system size
is L = 48. Subfigure (c): rescaled mutual information IA:B/l against vM t/l for the initial state corresponding to c11 = 0.95,
c22 = 0.3, c33 ' 0.087. Inset: the same data are displayed without rescaling the axes. The system size is L = 16, while the
curves correspond (from bottom to top) to l = 4, 5, 6.

the very same quasiparticle picture discussed above, one can derive the following formula [70]

IA:B(t) =
∑
r=1,2

∞∑
n=1

∫
dλ
[(

2
∣∣∣v(r)
n (λ)

∣∣∣ t− d)χ[d,d+l]

(
2
∣∣∣v(r)
n (λ)

∣∣∣ t)
+
(
d+ 2l − 2

∣∣∣v(r)
n (λ)

∣∣∣ t)χ[d+l,d+2l]

(
2
∣∣∣v(r)
n (λ)

∣∣∣ t)]s(r)
n (λ) ,

(19)

where χ[a,b](x) is the characteristic function of [a, b], i.e. it is equal to 1 if x ∈ [a, b] and equal to 0 otherwise. Here we

assumed A and B to be of the same size l, and we denoted their distance by d, while s
(r)
n (λ) and v

(r)
n (λ) are defined

as in Eq. (17). We stress that Eq. (19) is conjectured to be exact in the limit l, d, t→∞, while keeping the ratios l/t
and d/t constant. The mutual information is interesting as its time dependence signals, at large times, the presence
of different species and bound states of quasiparticles, manifesting themselves as subsequent peaks of IA:B(t) [70, 71].
Unfortunately, the entanglement entropy of multiple disjoint intervals in tDMRG simulations is computationally more
demanding, when compared to the entropy of a single interval. Hence, we are able to provide reliable numerical data
only for small system and subsystem sizes. An example is shown in Fig. 2(c), where IA:B(t)/l is plotted as a function
of vM t/l for a given initial integrable state (here vM is the maximum velocity of the quasiparticles, as computed via
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FIG. 3. Subfigures (a) and (b): dynamics of local correlation functions 〈Sz
i S

z
i+1〉 and 〈Sx

i S
x
i+1〉 after an integrable quench,

with initial parameters c11 = 0.95, c22 = 0.3, and c33 ' 0.087. The tDMRG simulations have been carried out for a chain of
L = 60 sites, while we chose i = L/2− 1 for i odd, and i = L/2 for i even. Subfigure (c): evolution of the correlation function
〈Ox

i O
x
i+k〉, where Ox

i = Sx
i S

x
i+1, for the same quench.

Bethe ansatz). From the figure we see that IA:B(t) ' 0 up to a time t ' d/2vM , after which it increases linearly, as
expected from Eq. (19); however, the time scales and system sizes that we can reach are too small to be compared
with the theoretical prediction (19), and to detect the peaks associated with the different species and the bound states
of the quasiparticles [70, 71].

Finally, with the same numerical procedure we have also computed the evolution of the Rényi entropies (14) for
different values of α. Since there is not yet a Bethe ansatz prediction for their post-quench dynamics [77], the
corresponding numerical results are reported in Appendix A, to which we refer the interested reader.

IV. EVOLUTION OF CORRELATION FUNCTIONS

In this section, we study another important aspect of the post-quench dynamics, namely the evolution of local
correlation functions. It is useful to start by observing a few properties of the Hamiltonian (1) and of the integrable
initial states (11). Focusing on the site k = L/2, we notice that the Hamiltonian is invariant under the “bond-inversion
symmetry” PB around the “link” between k and k + 1, acting on local operators as Oj → OL+1−j , where Oj acts as
the identity on hn for n 6= j. The same transformation leaves invariant an integrable state |Ψ0〉 [with two-site block
(13)], namely PB |Ψ0〉 = |Ψ0〉. Finally, using that PBOL/2P

−1
B = OL/2+1, this implies

〈Ψ0|OL/2(t)|Ψ0〉 = 〈Ψ0|OL/2+1(t)|Ψ0〉 . (20)

In the case of periodic boundary conditions, one could repeat the same argument for each site in the chain, obtaining

〈Ψ0|Oj(t)|Ψ0〉 =
1

L

L∑
k=1

〈Ψ0|Ok(t)|Ψ0〉 . (21)

We stress that (21) holds despite |Ψ0〉 is not translationally invariant. As a result, due to the SU(3) symmetry of
the Hamiltonian (1), the expectation value of point-wise operators Oj is conserved after the quench from integrable
initial states, as it is easily shown using (21).

According to the discussion above, the simplest non-trivial correlation functions that we can consider are two-site
correlators. We start by studying 〈Szj (t)Szj+1(t)〉 and 〈Sxj (t)Sxj+1(t)〉, which we have computed numerically for a
quench from different initial states; an example is reported in Fig. 3. In each case, the correlators depend on the
parity of j, due to the two-site structure of the initial state (which breaks translational invariance). From Fig. 3 we
see that within the available time scales the two-site correlation functions exhibit large oscillations; furthermore, these
appear to be around the same value for even and odd j, suggesting the expected restoration of translational symmetry
at large times [76]. We have found that oscillations appear to be suppressed in the evolution of four-point functions,
as shown in Fig. 3(c). In any case, our numerical data do not allow us to extract the asymptotic value of the local
correlation functions. Furthermore, while exact result have been recently derived in the thermal case to compute
expectation values of local observables in the Lai-Sutherland model [99], such results have not yet been generalized to
the case of GGE-states, as in the case of XXZ Heisenberg chains [33, 36]. For these reasons, it appears problematic
to test the validity of the analytic results of Ref. [71, 72] for the post-quench rapidity distribution functions, based on
the asymptotics of local correlations.
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FIG. 4. Subfigures (a) and (b): correlation functions 〈Sx
i S

x
i+l〉 and 〈Sz

i S
z
i+l〉 for increasing l, after a quench from the integrable

state corresponding to c11 = 0.95, c22 = 0.3, and c33 ' 0.087. The tDMRG simulations have been carried out for a chain of
L = 60 sites, while we chose i = L/2. Subfigure (c): space-time plot for transverse spin correlation function 〈Sz

i S
z
i+l〉 and the

same initial state, exhibiting a clear light-cone structure. The dashed red line corresponds to the maximum velocity vM of the
quasiparticles, obtained from Bethe ansatz (for this state vM ' 2.10).

Luckily, one can perform another test, albeit more indirect, which can be carried out within the time scales accessible
to our numerical scheme. This is based on the computation of the “light-cone” velocity of correlations [3, 31], namely
the speed with which correlations spread after a quench. First, it is useful to recall that the Bethe ansatz provides
us with a prediction for the latter in the scaling limit of large distances and times, based on the knowledge of the
post-quench rapidity distribution functions. Let us consider 〈Oj(t)Oj+l(t)〉, where Ox is an observable localized at
site x. According to the quasiparticle picture, correlations between Oj and Oj+l are caused by pairs of quasiparticles
produced in the same spatial point and that arrive at positions j and j + l at the same time. From this picture, we
obtain that the time needed for these local operators to be correlated is at least t = l/(2vM ), where vM is the maximum

velocity of the quasiparticles. This can be computed by Eq. (10), once the functions ρ
(r)
n (λ) are known, so that the

numerical computation of time-evolved correlators provides a test for the validity of the results of Refs. [71, 72] for
the post-quench rapidity distribution functions.

In order to probe the light-cone velocity of the correlation functions, we compute 〈Sαj (t)Sαj+l(t)〉 for α = x, z and
increasing values of l. Examples of our results for a particular integrable initial state are reported in the plots of Fig. 4,
from which one can immediately see the emergence of a light-cone structure. Quantitative results for the corresponding
velocity can be obtained from these plots following the procedure employed in Ref. [31, 100]: in particular, for a given
correlator 〈Sαj (t)Sαj+l(t)〉 one can identify the first “inflection point” [i. e. the first maximum of the its time-derivative,

cf. Fig 5(c)] as the arrival time tl of the light-cone and plot the sequence tl as a function of l. Then, the velocity
of the light-cone can be extracted as the slope of the straight line fitting the set of points (tl, l) (which should be
independent of the particular correlation function which has been chosen, as we have explicitly verified).

A summary of our results is displayed in Fig. 5. First, in subfigure (a) we report the Bethe ansatz predictions
for the maximum quasiparticle velocity corresponding to different initial states. We see that the latter has a weak
dependence on the initial parameters cjj . Furthermore, states with large velocity have large entanglement and are
more difficult to simulate. Hence, the expected maximum velocity of the states that we can study numerically vary
in a rather restricted range. In Fig. 5 we display our results for the light-cone velocity for three different initial
states, from which the aforementioned weak dependence on the state parameters is apparent. The numerical data are
compared against the ansatz y(t) = 2vM t+ c, where we have performed a fit to determine the constant c. We see that
they are in good quantitative agreement with the analytic predictions, and that these are able to resolve the different
initial states, despite the weak dependence on the quench parameters. In conclusions, our results are always seen to
corroborate the validity of the Bethe ansatz predictions for the light-cone velocity of local correlations.

V. CONCLUSIONS

In this work we have presented numerical results for quantum quenches in the nested Lai-Sutherland model from a
family of integrable initial states, focusing on the spreading of both correlation functions and entanglement entropy.
By means of tDMRG simulations, we tested explicitly the validity of the nested version of the conjectured quasiparticle
formula for the growth of the entanglement entropy of Refs. [38, 39], and the Bethe ansatz predictions for the “light-
cone” velocity of correlation functions [31]. The present paper complements other studies in the literature, extending
to the case of nested models the body of numerical evidence corroborating the existing theory of integrable systems
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FIG. 5. Subfigure (a): maximum velocity of the quasiparticles, for different initial states parameterized by the two-site block
(13). For each state, we choose the normalization c211 + c222 + c233 = 1. The three lines correspond to different choices of c22,
while the inset shows the variation of c33, as c11 increases. Subfigure (b): numerical results for the first inflection points of
〈Sz

j S
z
j+l〉 for increasing values of l (symbols). Solid lines correspond to the curves 2vM t + c, where c are a fitting constants.

Subfigure (c): time derivative of 〈Sz
j S

z
j+l〉 for increasing l, after the quench from the integrable state with parameters c11 = 0.9,

c22 = 0.35 and c33 ' 0.26. The set of the first maxima (i.e. the first inflection points of 〈Sz
j S

z
j+l〉) are identified as the arrival

times of the light-cone.

out of equilibrium [1].
The theoretical predictions tested in this work are based on the analytic results of Ref. [71, 72], where the post-

quench rapidity distribution functions for the integrable states were computed. While the small initial entanglement
of these states allowed us to simulate their dynamics by means of the tDMRG algorithm, we have seen that the
correlation functions exhibit large relaxation times, so that it is not possible to extract their asymptotic behavior
based on short and intermediate-time simulations. In this respect, it would be highly desirable to generalize the string-
charge duality method [16] to nested systems: the latter would allow us to enlarge the class of initial states for which
analytic predictions can be made, hopefully including states with faster local relaxation. Another open problem with
strong connections to our work is the derivation of analytic formulas to compute GGE correlation functions in nested
models, analogously to what has been done in the case of Heisenberg chains [33]. These would make it possible to give
predictions for the asymptotics of local observables based on the knowledge of the post-quench rapidity distribution
functions and allow for a direct comparison with numerical results. We hope that our work will serve as a motivation
for future investigations in these directions.
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Appendix A: Details on the numerical computations

In this appendix we provide details on the numerical methods that we have employed for the computation of the
von Neumann and Rényi entanglement entropies, and present additional plots for the latter.

All the data displayed in the main text are obtained using the tDMRG algorithm, as implemented in the iTensor
library [101], where open boundary conditions have always been chosen. The data in Figs. 1 and 2 are obtained by
considering a chain of L = 48 sites, and the subsystem is always chosen at one of its edges. Due to open boundary
conditions, the numerical data are compared with the Bethe ansatz formula in Eq. (16) with the substitution t→ t/2,
which corresponds to the fact that the quasiparticles can only enter from one of the two borders of the subsystem
under consideration [38]. We choose the maximum bond dimension ξ = 1500 and a time step ∆t = 0.02 for all
simulations. We have checked the robustness of our results by performing simulations for different values of ∆t, ξ and
L. All the entanglement entropy data reported in the manuscript are for L = 48, which is the maximum system size
we could reach with our computational resources. Furthermore, all of our results have been checked against exact
diagonalization calculations for small times.

For the initial states in Fig. 1, the entanglement entropy Sl(t = 0) is different, depending on whether the subsystem
considered contains an odd or an even number of sites. More precisely, it is a non-zero constant for l odd, while it is
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FIG. 6. Rènyi entropy density S
(1/2)
l /l after the quench from integrable initial states, in a chain of L = 48 sites. Subfigures

(a), (b): same conventions as in Fig. 1, for the initial states corresponding to the choices c11 = 0.95, c22 = 0.3, c33 ' 0.087
and c11 = 0.9, c22 = 0.35, c33 ' 0.26. Subfigure (c): numerical extrapolations of the tDMRG results for finite odd values of l

(symbols). The dashed lines correspond to the quadratic curve S
(1/2)
l /l = s∞ +a/l+b/l2, where s∞, a, b are fitting parameters.

vanishing for l even. Of course, in both cases one has liml→∞ Sl(t = 0)/l = 0. In order to extrapolate the value of
Sl/l to the thermodynamic limit, we have performed a fit of the data (at fixed vM t/l) using the function

Sl
l

= s∞ +
a

l
+
b

l2
, (A1)

where s∞, a and b are fitting parameters. Given the even/odd effect in the finite-size data, we have performed the

fit independently for the even and odd sequences, obtaining different numerical results s
(e/o)
∞ . The (small) differences

between the fits for even and odd values of l are attributed to finite size effects; hence, as the best estimate for s∞ we

chose the average (s
(e)
∞ + s

(o)
∞ )/2. We note that the numerical difference between s

(e)
∞ and s

(o)
∞ was found to decrease

as t/l increased for our set of finite-size data, consistently with the expected restoration of translational symmetry at
large times.

As we have mentioned in Sec. III, we used the same extrapolation procedure to compute the dynamics of the Rényi
entropy of order α in the scaling limit t, l →∞. An example of our result, corresponding to α = 1/2, is displayed in
Fig. 6. From the figure, we see that, as expected, the qualitative features of the Rényi and von Neumann entropies
are similar, at least at the time scales available to our numerical procedure. We chose to report the Rényi entropy of
order 1/2 because it is related to the time evolution of the entanglement negativity [98, 102], a relevant entanglement
measure for tripartite systems.
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