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Methods & Measures

On the use of growth models to study
normal cognitive aging

Paolo Ghisletta,1,2,3 Fabio Mason,1 Timo von Oertzen,4

Christopher Hertzog,5 Lars-Göran Nilsson,6

and Ulman Lindenberger7,8,9

Abstract
Growth models (GM) of the mixed-effects and latent curve varieties have become popular methodological tools in lifespan research. One
of the major advantages of GM is their flexibility in studying individual differences in change. We scrutinized the change functions of GM
used in five years of publications on cognitive aging. Of the 162 publications that we identified, 88% test linear or quadratic polynomials, and
fewer than 5% apply functions that are nonlinear in their parameters, such as exponential decline. This apparent bias in favor of polynomial
decomposition calls for exploring what conclusions about individual differences in change are likely to be drawn if one applies linear or
quadratic GMs to data simulated under a conceptually and empirically plausible model of exponential cognitive decline from adulthood to
old age. Hence, we set up a simulation that manipulated the rate of exponential decline, measurement reliability, number of occasions,
interval width, and sample size. True rate of decline and interval width influenced results strongly, number of occasions and measurement
reliability exerted a moderate effect, and the effects of sample size appeared relatively minor. Critically, our results show that fit statistics
generally do not differentiate misspecified linear or quadratic models from the true exponential model. Moreover, power to detect
variance in change for the linear and quadratic GMs is low, and estimates of individual differences in level and change can be highly biased by
model misspecification. We encourage researchers to also consider plausible nonlinear change functions when studying behavioral
development across the lifespan.
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The last 25 years have seen major advances in statistical models for

characterizing developmental change (e.g., Hertzog & Nesselroade,

2003; Little, 2013; Singer & Willett, 2003). One popular method is

the growth model (GM), implemented as a linear mixed-effects

model (LMEM; Bryk & Raudenbush, 1987; Laird & Ware, 1982)

or a latent curve model (McArdle, 1988; Meredith & Tisak, 1990).

The critical feature of the GM is that it models change by specifying

an intercept and a slope component describing the overall level and

change across time, respectively. For both components, one can

estimate the mean parameter and variance parameter reflecting

individual deviations around the mean. Given individual differ-

ences in level and/or in change, the GM can be readily expanded

to test antecedents and/or correlates of such individual differences.

The Growth Model

The linear GM specifies a variable Yij for an individual j at time i

(i¼0,1, . . . ,T-1) in terms of a level p0j and a linear rate of growth p1j

multiplied by age aij (often centered around its mean) at time i for

each individual j, plus a residual Eij:

Yij ¼ p0j þ p1jaij þ Eij

p0j ¼ b0 þ U0j

p1j ¼ b1 þ U1j

ð1Þ

The linear GM predicts all individual growth trajectories to be

straight lines. The level corresponds to the intercept (prediction

when aij¼0) and the rate of growth to the linear slope (predicted

change in Y for one unit change in a). Both level and change have a

mean value of b0 and b1 and a subject-specific deviation from the

mean of U0j and U1j, respectively (Bryk & Raudenbush, 1987;

Laird & Ware, 1982). b0 and b1 are fixed effects and U0j and U1j

are random effects, assumed to be normally distributed around zero

(with variances s2
L and s2

C) and to possibly covary (sLC). The
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errors Eij are typically assumed independently and normally

distributed with time-invariant error variance s2
E.

Another popular specification of the GM is the quadratic GM of

Equation (2) that allows the predicted trajectories to have a single

change in direction. This model augments the linear GM by adding

a second (quadratic) change component that linearly relates age

squared to Yij:

Yij ¼ p0j þ p1jaij þ b2a2
ij þ Eij

p0j ¼ b0 þ U0j

p1j ¼ b1 þ U1j

ð2Þ

Compared to the linear model, the quadratic additionally esti-

mates one additional parameter, b2, which allows the predicted

trajectories to follow a quadratic polynomial. Although the quad-

ratic change component could also be specified with random

effects, their estimation is typically not included in extant applica-

tions (in our literature review, of the 40 records that tested a quad-

ratic model, only nine declared having tested random effects of the

quadratic slope, and of those only three found positive evidence).

Linear and quadratic GMs are often contrasted with a simpler no

growth or level model that postulates no change whatsoever, with

individuals maintaining the same level score over time (Equation

(3); Widaman & Thompson, 2003):

Yij ¼ p0j þ Eij

p0j ¼ b0 þ U0j;
ð3Þ

to test the hypothesis that Yij changes over time.

The Growth Model as a nonlinear Mixed-effects Model

So far, the specified GMs represent change as a linear combination

of level, change(s), and errors, and are thus linear in their para-

meters (Davidian & Giltinan, 1995). The linearity of the parameters

is not to be confused with the linearity of the shape of specified

change (Cudeck & Harring, 2007). In particular, the quadratic GM

specifies a nonlinear trajectory of change, despite being a LMEM.

LMEMs can be generalized to allow for nonlinear relations

between Yij and the parameters of the growth components (Davi-

dian & Giltinan, 1995), generating nonlinear mixed-effects models

(NLMEMs). These models have been successfully applied in var-

ious disciplines (e.g., pharmacokinetics, biology, demography,

finance), to capture underlying change processes that are inherently

nonlinear (e.g., drug effects and population growth often follow a

logistic function, accumulation of financial interests is often expo-

nential). One can argue that many psychological constructs change

nonlinearly over time. For instance, effects of accumulating

age-related insults to an adult’s central nervous system could be

modeled by exponential decline. Indeed, nonlinear GM have

occasionally been applied to study adult cognitive change, both

normal (e.g., Grimm, McArdle, & Hamagami, 2007; McArdle,

Ferrer-Caja, Hamagami, & Woodcock, 2002;) and pathological

(e.g., Driscoll et al., 2006).

One variant of the (nonlinear) exponential model, as

employed by several authors (e.g., McArdle et al., 2002; Grimm

et al., 2007) is:

Yij ¼ p0j þ p1je
gaij þ Eij

p0j ¼ b0 þ U0j

p1j ¼ b1 þ U1j

ð4Þ

This nonlinear mixed-effects GM specifies an exponential func-

tional form of change, so that as age increases successive gains or

losses are not constant but proportional to the current value. Com-

pared to the linear GM, this model estimates one additional para-

meter, the exponential rate of change g. Typically, random effects

for g are not estimated in extant applications. However, because

of random effects of p1j, which are estimated as the variance of

change s2
C, individuals are allowed to differ in the amount of

exponential decline, rather than in its rate.

The Present Study

We start by reviewing five years of scientific literature on applica-

tions of the GM to study normal cognitive aging. This review

established that the linear and quadratic GMs are very often applied

by substantive researchers in this field, whereas nonlinear mixed-

effects GMs, on the other hand, are very rarely used.

Justified by this pattern, we evaluated what happens if long-

itudinal data, created by an underlying exponential model, are

analyzed with a linear or quadratic GM. We investigate how well

the linear and quadratic GMs preserve or distort individual differ-

ences in level and change in such instances. If the individual

differences specified by the underlying generating model are

largely concordant with those estimated by the misspecified GMs,

one would be justified to claim that LMEM GMs are practically

useful despite their misspecification. That is, the models would be

of the “wrong but useful” kind (cf. Box & Draper, 1987). If,

however, the two sets of results lead to discordant inferences

about individual differences in change, we would conclude that

the misspecified GMs are misleading.

Method

Literature Review

We computed a detailed literature search to study how longitudinal

data are commonly analyzed within GMs to study normal cognitive

aging. By covering five years of literature we initially obtained

1253 records, which reduced to 162 relevant records for full anal-

ysis. The detailed search and screening procedure are described in

supplementary material (Appendices 1–2, Table 1, and Figure 1).

Simulation Design

Population model. The exponential population model of Equation

(4) was used to generate the data for the Monte Carlo simulation

(McArdle et al., 2002). We specified the existence of individual

differences in both level and change, but not in decline rate, g. This

choice was guided by the facts that (a) in our empirical illustration

(see below) estimating random effects for the exponential rate

failed, (b) extant applications of the exponential model usually

exclude random effects for g, and, more importantly, (c) estimating

multiple random effects in both linear and especially NLMEMs

requires data denser than those of standard longitudinal panels.

Simulation factors. We based our simulation study on parameter

estimates from an exponential model fitted to data from the Betula

Project (Nilsson et al., 1997), a well-known study of aging, mem-

ory, and dementia. We analyzed the episodic recall scores of 1000

Betula participants assessed four times, at five-year intervals, as a

function of age (final range: 35–95 years). We tested the level,
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linear, quadratic, and exponential GMs and found that the exponen-

tial best described the data. We used the estimated population para-

meters as the basis for the simulation experiment (for full results,

see supplementary Table 2 and supplementary Figure 2).

The constant factors were the level mean (b0¼ 20.603), change

mean (b1 ¼ -4.007), level variance (s2
L ¼ 30.980), change var-

iance (s2
C ¼ 5.041), and level-change covariance (sLC ¼ -3.163,

corresponding to a correlation of -.253). The varying factors were

the rate of exponential decline (g ¼ 0.066, corresponding to the

illustration, and g ¼ 0.033, for a gentler decline) and the Growth

Curve Reliability (GCR ¼ .500, .681 (cf. illustration), or .900,

corresponding to s2
E ¼ 30.980, 14.541 (cf. illustration), and

3.442, respectively), defined as the proportion of level variance

over total variance at time¼0 (age 65; GCR¼s2
L / (s2

L þ s2
E);

McArdle, 1988).

We generated data under six conditions, 2 (g) by 3 (GCR), to

obtain continuous trajectories spanning over a maximum of 71 time

points (i.e., from 35 to 105 years). Figure 1 presents 50 random

individual trajectories simulated under the six different conditions.

Design factors. In practice, longitudinal studies of long-term

change processes often adopt a longitudinal sequence design, which

begins with a cross-sectional age-heterogeneous sample of persons

and then follows them longitudinally over time. This sampling

design generates multiple parallel subsamples differing in initial

age, each providing longitudinal data on different segments of the

targeted overall age range, with coverage increasing as the number

of measurement occasions increases or as the measurement interval

widens (Baltes, Reese, & Nesselroade, 1988). We included 10 long-

itudinal subsamples with 50, 100, or 200 units each, yielding a total

sample size of N ¼ 500, 1000, or 2000. Each subsample contained

observations representing individuals of initial age 35, 40, 45, etc.

to 80 years, observed repeatedly either T ¼ 3 or T ¼ 6 times.

Furthermore, we varied D, the interval width between adjacent

occasions of measurement, going from D ¼ 1 to D ¼ 5 years in

steps of 1 year.

This designs mimics a study where the youngest subsample

observed the least (T ¼ 3) at the shortest interval (D ¼ 1) would

be assessed at ages 35, 36, and 37 years, the next subsample at ages

40, 41, and 42, etc. and the oldest subsample at ages 80, 81, and 82

years. The youngest subsample observed the most (T ¼ 6) at the

shortest interval (D ¼ 1) would be assessed at ages 35, 36, 37, 38,

39, and 40 years, thus overlapping with the next subsample (ages

40, 41, 42, 43, 44, and 45). The oldest subsample observed the most

(T ¼ 6) at the shortest interval (D ¼ 1) would have ages 80, 81, 82,

83, 84, and 85, while if D increases to 5, the ages would be 80, 85,

90, 95, 100, and 105 years, ultimately covering the entire adult life

span. Crossing low numbers of repeated observations (T ¼ 3 or 6)

with very short to relatively long intervals within repeated observa-

tions (D¼ 1 to 5) more closely mimics existing longitudinal studies

than assuming that all units have been observed during the full

length of the study and at all occasions (e.g., Schaie & Hofer,

2001). Our illustration from the Betula study counts 10 subsamples,

each of 100 individuals (hence N ¼ 1000), of initial age 35, 40, 45,

50, 55, 60, 65, 70, 75, or 80 years, assessed on four occasions (T ¼
4), with an interval between adjacent occasions of D ¼ 5 years.

Figure 1. Simulated trajectories generated under the exponential decline model (N ¼ 50).

Note. Row 1: g ¼ 0.033, row 2: g ¼ 0.066; Column 1: GCR ¼ .500, column 2: GCR ¼ .681, column 3: GCR ¼ .900; Thick continuous line is sample average

without residuals, thick dashed lines are 1 SD above/below the mean; Thin continuous lines are 50 simulated individual trajectories.
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Summary. In total, we fully crossed the varying simulation factors

and design features to obtain 180 conditions: 2 (g) by 3 (GCR) by 2

(T) by 5 (D) by 3 (N) (see Supplementary Table 3 for a full descrip-

tion of the simulation design). For each condition we generated 100

data sets, for a total of 18,000 data sets.

Procedure

Growth model analyses. For each generated data set we estimated a

series of GMs. We first applied the exponential decline GM. By

doing so we tested whether the estimation procedure recovered the

Figure 2. (a) Concordance in levels by interval width and model, for g ¼ 0.033 (averaged over N ¼ 500, 1000, 2000). (b) Concordance in levels by interval

width and model, for g ¼ 0.066 (averaged over N ¼ 500, 1000, 2000).

Note. Rows 1 and 3: T ¼ 3, rows 2 and 4: T ¼ 6; Column 1: GCR ¼ .500, column 2: GCR ¼ .681, column 3: GCR ¼ .900.
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values of the generating function despite sampling limitations on a

number of occasions and varying interval lengths, and also pro-

vided a basis for comparing results obtained from the alternative

GMs. We subsequently implemented the level, linear, and quadratic

GMs. For the level GM we estimated three parameters (b0, s2
L, and

s2
E; cf. Equation (3)); for the linear GM, 6 parameters (b0, b1, s2

L,

s2
C, sLC, and s2

E; cf. Equation (1)); and for the quadratic GM, 7

parameters (b0, b1, b2, s2
L, s2

C, sLC, and s2
E; cf. Equation (2));

finally, for the exponential decline GM, we estimated seven para-

meters (b0, b1, g, s2
L, s2

C, sLC, and s2
E; cf. Equation (4)).

In all GM analyses we centered the time predictor aij (age)

around its grand (sample) mean, to reduce estimation bias in the

level-change covariance (sLC), and in the level variance (s2
L;

Mehta & West, 2000; Rovine & Molenaar, 1998; Wainer, 2000).

The level, linear, and quadratic GMs are LMEMs, for which the

marginal likelihood can be expressed and estimated without

approximation. However, because the exponential model is a

NLMEM, we had to apply an approximation method (Davidian &

Giltinan, 1995). To rule out that the estimation procedure acted as a

generator of divergent results we applied the same estimation pro-

cedure to all models. We used PROC NLMIXED in SAS (v. 9.3) to

estimate all GMs with the adaptive Gaussian quadrature approxi-

mation, which produces the same estimates as maximum likelihood

in linear models (Littell, Milliken, Stroup, & Wolfinger, 1996).

Acceptable solutions. We deemed a solution acceptable only if (a)

the estimation converged to a solution and (b) the solution con-

tained parameter estimates that were statistically viable. In partic-

ular, the estimated variance of change (s2
C) had to be non-negative.

Goodness of fit. From each analysis we saved the Schwarz Baye-

sian Information Criterion (BIC), defined as

BIC ¼ 2 � f ðq̂Þ þ p � lnðNÞ;

where f is the negative of the marginal log-likelihood function, q̂ is

the vector of parameter estimates, p is the number of estimated

parameters, ln is the natural logarithm, and N is the number of

subjects (Schwarz, 1978). This index is not normed, but allows

comparing alternative models tested on the same data. A difference

in BIC values of more than 10 between competing models can be

interpreted as strong evidence in favor of the model with the lower

BIC value (Kass & Raftery, 1995).

Power to detect individual differences in change. We estimated the

power to detect interindividual differences in change by comparing

each GM to a nested GM where the variance in change (s2
C) and

the level-change covariance (sLC) were fixed at zero. We then

compared each fully specified GM to its nested counterpart, and

computed a likelihood ratio test (a ¼ 5%).

Concordance in individual differences. We evaluated the validity of

individual difference estimates from each model by inspecting the

concordance of individual differences in growth components

between the generated data and the results obtained from the GM

analyses. To generate the data according to the exponential decline

model of Equation (4) we first generated random effects in level

and change scores (i.e., U0j and U1j of Equation (4)) in accordance

to the constant simulation factors (cf. Supplementary Table 3). We

then combined these random growth scores according to Equation

(4) and added the randomly generated time-specific error compo-

nent (Eij), to obtain the individual repeated observations (Yij).

We analyzed each simulated data set of individual repeated

observations with the four GMs and each time saved the empirical

Bayes estimates of the random effects of the level and the change

component. To inspect the concordance of the individual differ-

ences in growth components, we correlated the random level and

change scores used to generate the data with the empirical Bayes

estimates of the random effects in level and change obtained from

the GM analyses.

Results

Literature Review

The literature search produced 1253 records, and after exclusion of

duplicate and irrelevant records, we fully analyzed 162 records (see

Supplementary Table 1). Of the 162, 102 records (63%) tested only a

linear function of change, whereas 40 (25%) tested also a quadratic

function, and one a cubic function. Thirteen (8%) records tested a

broken-stick function (aka single-node spline; ten of which compared

it to a linear or quadratic function). Of the remaining records, five

(3%) tested an exponential function, two (1%) estimated the change

function from the data (within a latent curve model), one used a

multiple-node spline approach, and one did not specify the change

function (see Supplementary Appendix 3 for detailed results).

Overall, then, 142 (88%) of the 162 records either used the

linear or the quadratic function, whereas eight (less than 5%) used

a function that is nonlinear in its parameters.

Simulation Results

Number of acceptable solutions. Generally, the greater the sample,

the number of repeated measurements, the interval of measure-

ments, the variable’s reliability, and the rate of exponential decline,

the higher the number of acceptable solutions (AS). The percen-

tages of AS across models were: 100, 93.53, 85.57, and 97.74 for

the level (which does not estimate s2
C), linear, quadratic and expo-

nential model, respectively. Supplementary Figure 3 displays the

average number of AS as a function of the design features.

To aid understanding of these effects, we used logistic regres-

sion to predict the probability of obtaining an AS as a function of

the simulation factors. Model type most strongly influenced the

probability of an AS (*R2 ¼ 13%-25%), GCR, T, and D have low

effects (*R2 ¼ 3%-8%), and sample size was the least influential

factor (*R2 < 1%) (see supplementary Appendix 4 for detailed

results).

Goodness of fit. We differenced BIC values of the level, linear, and

quadratic GMs against the exponential GM’s BIC and compared

this index of evidence favoring the exponential as a function of

simulation condition and design features. The rejection rates based

on BIC differences for the level, linear, and quadratic GMs were,

respectively, 100%, 99.955%, and 96.295% for g ¼ 0.066 and

99.884%, 69.625%, and 47.191% for g ¼ 0.033. Thus, for a shallow

declining process, the quadratic model would be judged to fit the

data as well as the exponential more than half the time. Supplemen-

tary Figure 4 displays this information in detail.

We computed a logistic regression predicting the odds that the

linear and quadratic GMs be rejected in favor of the exponential

model as a function of GCR, T, D, and N, for g ¼ 0.033 (and not for
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g ¼ 0.066 or the level GM, because of the extremely high rejection

rates). The number of occasions (T), and interval width (D) were the

most influential factors (*R2 ¼ 13%–25%), GCR had a low effect

(*R2 ¼ 8%–16%), and N was rather unimportant (*R2 ¼ 3%–

12%) (see supplementary Appendix 5 for detailed results).

Power to detect individual differences in change. Supplementary

Figure 5 shows the average proportions of times the nested analo-

gous model with s2
C ¼ sLC ¼ 0 was rejected compared to the fully

specified linear, quadratic, and exponential model, only for g ¼
0.033. For g ¼ 0.066 these rejection curves are virtually at 1 across

Figure 3. (a) Concordance in changes by interval width and model, for g ¼ 0.033 (averaged over N ¼ 500, 1000, 2000). (b) Concordance in changes by

interval width and model, for g ¼ 0.066 (averaged over N ¼ 500, 1000, 2000).

Note. Rows 1 and 3: T ¼ 3, rows 2 and 4: T ¼ 6; Column 1: GCR ¼ .500, column 2: GCR ¼ .681, column 3: GCR ¼ .900.
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all other conditions. Generally, the rejection curve of each model

(hence estimated power) increased monotonically as D increases,

with greater values at GCR ¼ .900, T ¼ 6, and D greater than 3. As

GCR decreased, the rejection curves needed wider D to achieve

high values, especially when T ¼ 3. With the lowest GCR, the

quadratic model had the least power to detect variance in change,

especially when T¼ 3 and with small D. The most flagrant disparity

between the quadratic model and the others was visible when T¼ 3,

N ¼ 2000, GCR ¼ .500, and D ¼ 1: the power estimated for the

quadratic GM in that cell is .105, while for the linear and exponen-

tial models it was .625 and .612, respectively.

To understand further the effects influencing detection of

change variance we computed a logistic regression for each GM

predicting the probability of a significant likelihood ratio test as a

function of GCR, T, D, and N, for g ¼ 0.033. For all models the

strongest factor was again D (*R2¼ 10%–20%), followed by T for

the linear and quadratic models (*R2¼ 7%–14%), and by N for the

exponential (*R2 ¼ 8%–13%). In the linear and exponential mod-

els, GCR influenced power the least (*R2 ¼ 2%–8%), while in the

quadratic it was N (*R2 ¼ 3%–5%) (see supplementary Appendix

6 for detailed results).

Concordance in individual differences in level. We computed anal-

yses of variance (ANOVAs) predicting correlations between the

level scores used to generate the data and the Bayes estimates of

levels from each GM (in all ANOVAs the residuals were normally

distributed, centered on zero, and homoscedastic). A first ANOVA

testing only main effects obtained that they were significant,

although their sizes were moderate to strong for type of model

(partial eta squared h2
p ¼ .536), g (h2

p ¼.464), D (h2
p ¼ .112), GCR

(h2
p ¼ .159), but virtually nil for T and N (both h2

p < .001). All two-

way interactions about N were irrelevant (all h2
p ¼ .0001). However,

some two-way interactions about T were associated to small, yet

nonzero, effect sizes. In the end, we display the results graphically

with respect to all effects but N.

Figure 2a displays the average level correlations for g ¼ 0.033,

by D (abscissa), T (rows), and GCR (columns). In general, all

indices are around .8. There appeared to be little effect of the model

and of D when GCR ¼ .500 and T ¼ 3, but when both T and GCR

increased, the level model produces lower concordance rates, espe-

cially as D increased. The correlations of the linear and quadratic

models were hardly distinguishable, and they both diminished as D
increased (especially when T ¼ 6). For the exponential model the

concordance rates remain stable or even rise as D increased. An

ANOVA for the g ¼ 0.033 condition obtained the following effect

size estimates (h2
p): .308, .097, and .333 for type of model, D, and

GCR, and less than .002 for T and N.

The disparities in concordance rates across the models increased

dramatically when g ¼ 0.066 (cf. Figure 2b). Already when T ¼ 3

and GCR ¼ .500, the exponential model produced the highest level

correlations. As D increases, the correlations diminished for all

models except for the exponential, for which they remained stable

or grow even further, approaching 1.0, whereas for the level, linear,

and quadratic they dropped at, respectively, .2, .6, and .6–.7. An

ANOVA for the g ¼ 0.066 condition obtained the following effect

size estimates (h2
p): .821, .273, and .244 for type of GM, D, and

GCR, and less than .001 for T and N.

Concordance in individual differences in change. We repeated the

same ANOVAs with respect to individual differences in change

information. An ANOVA with main effects only obtained moderate

to strong effects for all factors but sample size (for type of GM, g,

D, GCR, and T, the h2
p estimates were .195, .568, .527, .281, and

.472, respectively; for N, h2
p ¼ .002). N was also irrelevant with

respect to all two-way interactions (all h2
p < .001). We again gra-

phically display all effects but sample size, in Figure 3a for g ¼
0.033 and 3b for g ¼ 0.066, respectively.

With g ¼ 0.033, concordance indices started very low (around

.2) also for the exponential model, and only increased considerably

as a function of wider D when GCR increased. The three models

obtain similar correlations, except with GCR ¼ .900 and T ¼ 6,

where the linear model performed slight worse than the quadratic

and exponential models. An ANOVA for the condition g ¼ 0.033

obtained the following effect size estimates (h2
p): .014, .599, .389,

and .569 for type of GM, D, GCR, and T and less than .005 for N.

When g ¼ 0.066, in general the lowest correlations started

around .4 and increased with wider D. When T ¼ 3, the quadratic

and exponential models are again hardly discernable, while the

linear model obtains lower correlations. With T ¼ 6, however,

starting at D ¼ 5, 4, and 3, for GCR ¼ .500, .681, and .900, respec-

tively, the exponential model clearly obtained stronger concor-

dance indices about change than the quadratic model (reaching .9

vs. .6). An ANOVA for the condition g ¼ 0.066 obtained the

following effect size estimates (h2
p): .509, .570, .275, and .487 for

type of GM, D, GCR, and T and less than .002 for N.

Prediction Quality in the Betula Project

To evaluate one possible implication of the application of the var-

ious GMs considered here, we assessed the quality of the linear,

quadratic, and exponential GMs applied to analyze the Betula Proj-

ect data used in the illustration and that informed our simulation

study. For each participant we combined, according to Equations

(1), (2), and (4) the estimated level and change scores and their age

of assessment to predict their episodic recall scores. We then cal-

culated the mean squared errors (MSE) between the observed and

predicted scores under each GM for each participant.

We obtained MSE of 11.40, 10.25, and 9.94, respectively, for

the linear, quadratic, and exponential GM. Thus, the exponential

GM, which adjusted best to the data in terms of BIC (cf. supple-

mentary Table 2), also produced predictions that were closest to the

data, thereby showing the highest internal validity.

Survival Prediction in the Betula Project

In terms of predictive validity, we compared the three GMs in terms

of the terminal decline hypothesis in the Betula Project data. This

hypothesis states that many individuals during the final phase of life

manifest accelerated decrements in functional capacities (Gerstorf

& Ram, 2013). We used Bayesian factor score estimates of each

person’s level and change scores on the basis of the linear, quad-

ratic, and exponential GMs to predict survival in the 1000 Betula

participants considered here, 529 of whom were deceased by the

study’s most recent mortality update.

The Cox proportional hazard model predicted survival and the

age of either death (for the deceased) or the last assessment (for

the right-censored participants). The exponential level and change

estimated scores predicted best survival, with a BIC of 5681,

whereas the quadratic and linear obtained worse adjustments (BIC
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values of 5685 and 5691, respectively). The estimated level and

change scores from the exponential GM lowered the fit of the

survival the most (drop in w2 statistic of 32.33 for two degrees

of freedom, compared to 28.69 and 22.29 for the quadratic and

linear, respectively – all p’s < .01).

Discussion

As expected, our literature review found that the vast majority

(86%) of GMs applied to study normal cognitive aging implemen-

ted a linear or a quadratic function of change, whereas very few

(less than 5%) considered a truly nonlinear function of change.

Hypothesized Consequences for Data Analysts

We explored what conclusions are likely to be reached when data

generated under an exponential GM are analyzed with a linear or

quadratic GM.

First, the exponential model can be implemented without great

difficulty, despite its complexity. Exponential models using adap-

tive Gaussian quadrature failed to converge in less than 3% of the

18,000 data sets we generated. In contrast, the quadratic model

failed to converge 14.43% of the cases. Thus, within the constraints

present in our simulation study, the exponential model is a practic-

able alternative model to the linear and quadratic GMs.

Second, we found that in many conditions of our simulation

study, it is not possible to tease apart the quadratic and the expo-

nential model based on the commonly used BIC goodness of fit

index. Thus, the chances of retaining the quadratic over the expo-

nential model are high. Most analysts typically testing linear and

quadratic models will not consider other functions; nevertheless,

those scientists evaluating an exponential model using comparative

fit may end up discarding it for the more familiar and equally well-

fitting quadratic model.

Third, we evaluated possible consequences of retaining the mis-

specified quadratic model in our simulation study. Would doing so

necessarily lead to inaccurate substantive conclusions about the

change process analyzed? We addressed this question by consider-

ing two aspects: the power to detect individual differences in

change, and the concordance between the level and change scores

used to generate the data and the analogous scores predicted from

the growth models. With respect to power, the quadratic GM clearly

performed worst (across all conditions at 72.22%), whereas the

linear and exponential fared similarly and in a range deemed by

many to be satisfactory (82.21% and 81.26%, respectively). This

gap increases in many conditions commonly encountered in empiri-

cal research. Thus, based on the quadratic model, we would often

conclude that the individuals in the sample cannot be discriminated

with respect to amount of change, whereas the exponential model

may detect that important source of heterogeneity.

In contrast, the characterization of individual differences in

growth components is often seriously compromised in quality if

we rely on too simple a GM, especially when the decline rate is

substantial. Concordance rates were generally higher for the level

than for the change component. This was expected, as level infor-

mation is more easily estimated than change information.

Whereas the level correlations either remain stable or increase

as testing intervals widen for the exponential model, for the level,

linear, and quadratic models the concordance rates decrease

monotonically. This effect is influenced by measurement

reliability (the higher the GCR, the stronger the discordance; this

effect would become even more pernicious with multiple indicator

latent curve models), but not by number of occasions or by sample

size. For change, concordance rates increase with more occasions

of measurement and wider intervals, but not considerably with

greater sample sizes. The exponential model clearly outperforms

both the linear and the quadratic model, and is the only model

obtaining high concordance rates.

In sum then, under the empirically based simulation conditions

studied here, if a change process is exponential in nature but is

analyzed with a quadratic model, we may not pick up that individ-

uals differ in amount of change. If we do detect variance in change,

then we are very likely to obtain biased estimates of individuals’

change scores. Hence, not only is the detection of change compro-

mised; even when change is detected, it is not well characterized by

derived individual indices of change.

Finally, in terms of the empirical illustration on the Betula

Project data, we found that the exponential model (a) fit the data

best, (b), implied the expected individual cognitive scores that

were closest to the observed scores, and (c) predicted mortality

better than the linear and quadratic models. We deduce that in this

sample the exponential GM likely provides the representation that

best captures cognitive aging processes relative to its two com-

petitors. We further hypothesize that the advantage of the expo-

nential over both the linear and the quadratic models would

increase with greater intervals of testing (D > 5 years), more

reliable variables (GCR >.681), more occasions (T > 4), and a

greater sample size (N > 1000).

Recommendations for Data Analysts

In light of these results, what should one do when analyzing real

long-term change data? First, rather than continuing the common

practice of solely testing the linear and the quadratic GMs, one

might consider alternative, possibly nonlinear functions, which

allow for substantive interpretations of their parameters. The expo-

nential model is one such function that has proven useful in many

disciplines, but other functions deserve to be considered as well

(e.g., Grimm et al., 2007). Omitting nonlinear functions may cloud

our understanding of the phenomena under investigation.

Second, when planning a longitudinal study, one should try to

use reliable instruments (e.g., Little, Lindenberger, & Nesselroade,

1999) and assess the instruments repeatedly at carefully planned

intervals (Hertzog & Nesselroade, 2003; Willett, 1989). What our

results show is that even under ideal conditions, such as those of

our simulation experiment (e.g., no unwanted retest effects, no

longitudinal dropout, and group homogeneity), the discovery of

change-related information often requires many widely spaced

assessments. One practical implication is the need for patience

in longitudinal sampling. A lack of change-related evidence at

the second or third wave of a longitudinal study of long-term

change does not preclude the sought-after effect manifesting itself

after additional data collection (especially when waves are

separated by wide time intervals).

Third, we found that overall the effect of sample size was rather

minor, compared to the other effects of our simulation experiment.

Although psychologists have become extremely conscious of the

overall importance of sample size, the design features related to

density and span of change assessments appear to be more impor-

tant in enabling accurate characterization of individual differences
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in change (Brandmaier, von Oertzen, Ghisletta, Lindenberger, &

Hertzog, 2018).

In conclusion, much progress has been made in estimating non-

linear growth models and in showing their relevance in lifespan

developmental psychology. We argue that the time is right for

ending exclusive reliance on linear GMs for describing change.

Embracing conceptual, statistical, and computational advances

embedded in nonlinear GMs may deepen our understanding of

psychological change phenomena.
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