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Abstract

Background. Aberrant sensitivity to social reward may be an important contributor to
abnormal social behavior that is a core feature of schizophrenia. The neuropeptide oxytocin
impacts the salience of social information across species, but its effect on social reward in
schizophrenia is unknown.
Methods. We used a competitive economic game and computational modeling to examine
behavioral dynamics and oxytocin effects on sensitivity to social reward among 39 men
with schizophrenia and 54 matched healthy controls. In a randomized, double-blind study,
participants received one dose of oxytocin (40 IU) or placebo and completed a 35-trial
Auction Game that quantifies preferences for monetary v. social reward. We analyzed bidding
behavior using multilevel linear mixed models and reinforcement learning models.
Results. Bidding was motivated by preferences for both monetary and social reward in both
groups, but bidding dynamics differed: patients initially overbid less compared to controls,
and across trials, controls decreased their bids while patients did not. Oxytocin administration
was associated with sustained overbidding across trials, particularly in patients. This drug
effect was driven by a stronger preference for winning the auction, regardless of monetary
consequences. Learning rate and response variability did not differ between groups or drug
condition, suggesting that differences in bidding derive primarily from differences in the sub-
jective value of social rewards.
Conclusions. Our findings suggest that schizophrenia is associated with diminished motiv-
ation for social reward that may be increased by oxytocin administration.

Introduction

Abnormal social behavior is a core feature of schizophrenia that leads to marked functional
impairment (Couture et al., 2006). Multiple deficits – in social cognition, motivation, decision-
making, and learning – are thought to interfere with patients’ ability to navigate a wide range
of socially relevant tasks, from maintaining basic hygiene to negotiating a raise at work.
Disentangling the processes driving abnormal social behavior in order to uncover treatment
targets has proven difficult, unfortunately, largely due to the complexity of studying dynamic
interpersonal interactions. Multiplayer economic games and computational modeling are
increasingly leveraged to address this challenge (Lee, 2013), as these approaches allow quan-
tification of specific aberrancies in cognitive and social processes that are relevant to real-world
behavior yet difficult to measure.

The value of a reward, for example, must be estimated from observed actions rather than
measured directly (Schultz, 2016). Rewards are critical for motivating actions that are neces-
sary for survival, and the rewarding properties of social interaction, in particular, shape the
relationships and social organizations that are essential for healthy functioning among mam-
mals (Krach et al., 2010; Trezza et al., 2011). Dysregulation of the mechanisms underlying
social reward are hypothesized to contribute to the abnormal social behavior observed in mul-
tiple neuropsychiatric disorders, including schizophrenia (Bora et al., 2009). People with
schizophrenia demonstrate reduced neural sensitivity to social v. nonsocial reward
(Lee et al., 2018) as well as impaired motivation for social interaction that is thought to reflect
dysregulated reward processing (Fulford et al., 2018). Though the mechanisms underlying
reward processing in social contexts are not fully understood (Noritake et al., 2018), dysregu-
lated dopamine signaling in schizophrenia (Carlsson, 2006) is hypothesized to underlie deficits
in the ability to form mental representations of reward (Gold et al., 2008) and to assign sali-
ence to social information (Palaniyappan et al., 2013), both of which may contribute to aber-
rant sensitivity to social reward. Importantly, how this aberrancy impacts social behavior in
schizophrenia and whether it represents a viable treatment target is unclear.
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Recent advances in the experimental study of competitive
behavior open the door to answering these questions.
Competition is a fundamental part of social life, facilitating com-
parisons that help people make sense of their place in a social
hierarchy (Festinger, 1954; Liu et al., 2018). Competitive interac-
tions can reflect not only the drive to maximize payoff (in money
or other tangible rewards) relative to others (Messick and
McClintock, 1968), but also the desire to attain social status by
winning, an end in itself (Huberman et al., 2016). Thus, competi-
tive interactions provide an opportunity to examine sensitivity to
social reward in a dynamic context. The Auction Game is an eco-
nomic paradigm that creates a tension between monetary and
social reward to allow investigation of people’s preferences in a
competitive environment. The game leverages the phenomenon,
observed both in real-world (Ashenfelter and Genesove, 1992;
Capen et al., 2013) and experimental settings (Bazerman and
Samuelson, 1983; Kagel and Levin, 2009), that people tend to
overbid at auctions. While overbidding increases the chance of
winning an auction, it also leads to monetary losses. Several expla-
nations for overbidding have been proposed (Sheremeta, 2013),
but evidence that it persists even after people are told how to
avoid it (van den Bos et al., 2013a), increases when competi-
tion is highlighted (van den Bos et al., 2013a), and virtually
disappears when people believe they are competing against
computers instead of other humans (van den Bos et al.,
2008), all suggest that motivation for the social reward of win-
ning is a primary driver. In economic terms, people derive util-
ity not only from obtaining an item at auction, but also from
beating their competitors.

The salience of social reward is thought to be regulated by the
hypothalamic neuropeptide oxytocin (Shamay-Tsoory and
Young, 2016), a potent modulator of social behavior across spe-
cies. Evidence from animal models that oxytocin-containing pro-
jections innervate multiple structures in the mesocorticolimbic
dopaminergic pathway (Boccia et al., 2013; Dumais et al., 2013)
suggests that oxytocin may exert some of its behavioral effects
via influence on reward circuitry (Groppe et al., 2013).
Oxytocin receptors in the nucleus accumbens (NAc), for example,
are critical for pair bonding in voles (Young and Wang, 2004) and
oxytocin activity in the NAc is necessary for social interactions to
be rewarding in mice (Dölen et al., 2013). In the ventral tegmental
area (VTA), another key node in reward circuitry, oxytocin activ-
ity enhances NAc dopamine levels in rats (Shahrokh et al., 2010)
and regulates social reward salience in hamsters and mice (Song
et al., 2016; Hung et al., 2017). In humans, oxytocin administra-
tion has been shown modulate processing of social cues in the
VTA (Groppe et al., 2013), and neural responses to social reward
correlate with plasma oxytocin levels (Strathearn et al., 2009).
Recent evidence also suggests that oxytocin system dysfunction
may play a role in the pathophysiology of neuropsychiatric disor-
ders that involve core social impairments, such as schizophrenia
(Peñagarikano et al., 2015; Kohli et al., 2018) and autism
(Gordon et al., 2016), generating interest in oxytocin’s potential
as a treatment. Though oxytocin may ameliorate aspects of abnor-
mal social behavior in schizophrenia (Burkner et al., 2017), a lack
of sensitive, objective measures designed to illuminate its mechan-
isms of action has limited our ability to determine whether oxy-
tocin has clinical utility (Bradley and Woolley, 2017).

Given that motivation for social reward is a driver of competi-
tive behavior and oxytocin impacts the salience of social reward,
we investigated oxytocin’s effects on competitive interactions
with the goal of determining whether modulation of social reward

may be a mechanism by which oxytocin impacts social behavior
in schizophrenia. We used the Auction Game and computational
modeling to test whether a single dose of oxytocin could enhance
sensitivity to social reward among men with schizophrenia and
healthy controls in a randomized, placebo-controlled study. We
expected that the social reward associated with winning the auc-
tion would be less salient for patients compared to controls, and
therefore hypothesized that patients would overbid less than con-
trols in the placebo condition. We also hypothesized that oxytocin
would increase the salience of the social reward associated with
winning, increasing overbidding in both patients and controls.

Methods and materials

Participants

We recruited 39 male outpatients with schizophrenia and 54
matched healthy controls; see Table 1. Patients met diagnostic cri-
teria for schizophrenia according to the Structured Clinical
Interview for DSM-IV-TR (First et al., 2002), were clinically
stable, and had no medication changes in the past month.
Exclusion criteria for all participants included: (1) substance use
disorder in the past month; (2) conditions affecting the nasal pas-
sages that would interfere with intranasal administration; (3) his-
tory of a neurological or significant medical disorder; and (4)
positive urine toxicology test. All participants gave informed con-
sent according to the guidelines of the University of California,
San Francisco Committee on Human Research.

Experimental design

Following baseline assessments, we randomized participants to
receive either 40 IU of oxytocin or a placebo nasal spray
(Wellspring Pharmacy, Berkeley, CA) administered using a stan-
dardized procedure (Guastella et al., 2013). Experimental tasks
began 30 min after, and ended approximately 70 min after, oxyto-
cin administration.

Measures and procedures

Auction Game
Participants completed a computer-based Auction Game adapted
from van den Bos et al. (2008), bidding against five other virtual
players over 35 trials to win virtual items each with a true com-
mon value (X0); see Fig. 1. We told participants that the other
five players were situated at different locations, but in fact they
were not bidding against anyone in real time. After explaining
the task but before bidding began, we instructed participants in
the optimal strategy to maximize their profit from the game:
choosing the Risk Neutral Nash Equilibrium (RNNE) bid, the
lower bound of the given estimated value range (e.g. if the
range is $25–35, the RNNE bid is $25). The RNNE strategy
assumes that participants are ‘risk neutral’ in that they are inter-
ested in maximizing their profits from the auction. By bidding the
lowest estimated value of the item, a participant avoids the possi-
bility of overbidding and thus losing money. This strategy repre-
sents a Nash Equilibrium, as there is no other strategy that would
yield a higher payoff for a given participant. All participants com-
pleted written tests to confirm that they understood the RNNE
strategy and could easily compute RNNE bids.
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Devil’s task
The Auction Game is inherently risky in the sense that any bid is
only probabilistically associated with a variable range of monetary
outcomes. Behavior during the game should therefore depend on
the subjective value of winning and losing relative to a partici-
pant’s risk preferences. To obtain an independent estimate of
risk preferences, we had participants complete the Devil’s task
(Slovic, 1966), which involves making selections that are probabil-
istically associated with reward, but has no social context. In this
task, participants select a number of cards to win money but must
avoid a ‘disaster card’ that results in zero earnings.

See online Supplementary Information for details of experi-
mental design and procedures.

Data analysis

Auction Game
The Auction Game had subjects bid for items with an unknown
true value in the range of xL to xH (see Fig. 1). We analyzed bids
by transforming to a bid factor κ (van den Bos et al., 2008) that is
insensitive to xL to xH. For each of the 35 auction trials, the bid
factor is defined as:

k = 2
bi − xL
xH − xL

where bi is the bid placed by participant on trial i. For this study,
the range of possible values (xL–xH) was always $10. Note that

Table 1. Demographics and clinical information.

Schizophrenia (n = 37) Controls (n = 51)
Controls v.

schizophrenia

Mean (S.D.)
PL v. OT

Mean (S.D.)
PL v. OT PL OT

PL (N = 22) OT (N = 15) PL (N = 26) OT (N = 25)

Age 46.23 (13.6) 40.47 (12.23) p = 0.21 43.16 (13.69) 44.88 (12.21) p = 0.65 p = 0.46 p = 0.29

Education years 14.45 (2.35) 13.4 (2.55) p = 0.22 16.48 (2.23) 15.56 (1.54) p = 0.10 p = 0.01 p = 0.01

PANSS score

Positive 12.5 (5.61) 12.07 (7.17) p = 0.84 – – – – –

Negative 13.6 (5.64) 13.6 (7.5) p = 0.99 – – – – –

General 24.27 (8.78) 24.47 (11.72) p = 0.95 – – – – –

CPZ equivalents 185.59 (211.54) 166.72 (147.92) p = 0.77 – – – – –

Shown by group and by placebo (PL) and oxytocin (OT) conditions.

Fig. 1. The Auction Game. Task interface (panel a): The participant’s name and photo were displayed in the upper right of the monitor throughout the task. For each trial, a
photo of a virtual item, a different closed suitcase, was displayed on the monitor. The participant viewed an estimate of the true value of the suitcase, X0, within a range of 10
dollars. X0 was always within this range. Task schematic (panel b): After viewing the item and value range, the participant entered a bid, bi, followed by a randomized 2–11-s
waiting period to simulate gathering the other players’ bids. If the participant did not have the highest bid, the picture of the highest bidder and the text ‘(name) won this
auction.’ was shown for 3 s. In this case, the participant’s endowment did not change. If the participant had the highest bid, there were two possible outcomes. (1) If the
participant bid higher than the true value of the suitcase, their picture was shown along with the text ‘You won this auction. But you lost $X.’ (2) If the participant bid
lower than the true value of the suitcase, their picture was shown along with the text ‘You won this auction. You won $X.’ The outcome was shown for 3 s, and x0− bh
was allocated to the participant’s endowment at the end of each trial, where bh is the winning bid.
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κ = 0 corresponds to the optimal RNNE bidding strategy, and κ =
2 corresponds to bidding xH.

We used a multilevel linear model to account for interdepend-
ence of within-subject data (ICC > 0.37) using R (R Core Team,
2016), package ‘nlme’ (Pinheiro et al., 2016) with the following
structure:

Yij =p0j + p1j(Groupi)+ p2j(Drugi)+ p3j(Triali)

+ p4j(Groupi
∗Drugi)+ p5j(Groupi

∗Triali)
+ p6j(Drugi

∗Triali)+ p7j(Groupi
∗Drugi

∗Triali)+ rij

with π0j = π0 + u0j and π3j = π3 + u3j.
The best fit model by log-likelihood tests allowed random

intercepts by participant and random slopes for trial and
accounted for heteroscedasticity and autocorrelation. We calcu-
lated simple effects for significant interactions using simplified
models, described in the Results section.

A computational reinforcement learning (RL) model, de-
scribed in van den Bos et al. (2013b), accounts for how partici-
pants change their bids over time based on money won and
lost. The model assumes that participants maintain estimates of
the expected amount of money that would be gained or lost for
bidding each bid factor κ. In addition, the model to individual
data incorporates parameters that estimate the social value of win-
ning (ρwin) and disutility of losing (ρloss) beyond the monetary
outcome. It is these parameters, (ρwin and ρloss), that we hypothe-
sized to differ with schizophrenia and oxytocin. Learning across
trials is governed by an individual-specific learning rate (α), and
choices are subject to a noise parameter (θ). We examined α
and θ to test and rule out whether differences in bidding behavior
were due to nonsocial factors. We compared individual parameter
estimates between controls and patients for oxytocin and placebo
using the Kruskal–Wallis test for a difference between the four
groups, followed by Mann–Whitney tests.

Devil’s task
We compared risk-taking preferences by conducting a 2 (drug:
oxytocin v. placebo) × 2 (group: controls v. patients) analysis of
variance.

We used Matlab for RL modeling; all other analyses presented
were conducted using R (R Core Team, 2016). See online
Supplementary Information for details of models and fitting
procedures.

Results

We excluded three controls and one patient from analysis because
they did not believe that they were playing against other human
players. We excluded another patient who did not appear to
attend to the task given that he entered the same bid, regardless
of item value, for every trial. The final sample included 51 con-
trols and 37 patients. We did not match groups on education
given that decreased educational attainment is a consequence of
schizophrenia, and matching may therefore obscure group differ-
ences and generate misleading results (Resnick, 1992).

Auction Game

Multilevel linear model
In the Auction Game, participants generally begin bidding near
the upper range of possible values for the item under auction

(xH). However, bidding this amount results in monetary losses,
and with experience, participants reduce bidding until they
reach a stable equilibrium. This equilibrium is generally signifi-
cantly above the money maximizing strategy (RNNE; κ = 0). We
examined whether these patterns exist in our sample and whether
they differ by group or by drug condition.

The 3-way interaction drug × group × trial was not significant
( p = 0.95), nor was the 2-way interaction drug × group ( p = 0.87),
so we removed these terms from the model. The 2-way group ×
trial (b = 0.0053, t = 2.18, p = 0.029) and drug × trial (b = 0.0049,
t = 2.01, p = 0.044) interactions were significant. To explore
these, we first tested the simple effect of group × trial, controlling
for drug. Controls reduced their bids over time (b = −0.0075,
t =−4.58, p = 4.7 × 10−06), while patients did not (b = −0.0026,
t =−1.35, p = 0.18). We then tested the simple effect of drug ×
trial, controlling for group. Participants who received placebo
decreased their bids over time (b = −0.0074, t =−4.40, p = 1.1 ×
10−05), while those who received oxytocin did not (b =−0.003,
t =−1.62, p = 0.1); see Fig. 2.

To better understand changes in bidding over time, we calcu-
lated average bid factors per participant for the first five and the
last five trials. We compared these using a mixed model with the
terms drug, group, trial (first five or last five), group × trial, and
drug × trial. The 2-way interactions were significant: group ×
trial (b = 0.23, t = 2.66, p = 0.0094), and drug × trial (b = 0.18,
t = 2.07, p = 0.041). To explore these, we first tested the simple
effect of group × trial, controlling for drug. Controls decreased
their bids from the first five to the last five trials (b = −0.21,
t =−3.64, p = 0.00047), while patients did not (b = 0.0054,
t = 0.082, p = 0.93). We then tested the simple effect of drug ×
trial, controlling for group. Participants on placebo decreased
their bids from the first five to the last five trials (b = −0.19,
t =−3.16, p = 0.0022) while participants on oxytocin did not
(b = −0.03, t =−0.46, p = 0.65). Participants on oxytocin bid
higher than those on placebo at the trend level in the last five
trials (b = 0.16, t = 1.7, p = 0.093) but not in the first five trials
(b = 0.0041, t = 0.044, p = 0.97); see Fig. 3. We conducted identical
analyses using the first 10 v. last 10 trials and first v. second half of
trials. All analyses yielded similar results, so these are not
reported.

Reinforcement learning model
Visual investigation of bidding across trials shows that bids start
high but then temporarily increase before decreasing toward the
optimal strategy; see Fig. 2. This pattern of behavior is expected
(van den Bos et al., 2013b) and results from the social rewards
inherent in the task. Namely, losing an auction causes disutility
(ρloss). Chances of winning on any given trial are small due to
the number of other bidders, so loss disutility tends to increase
bidding in early trials. Additionally, bids are inflated from the
additional utility of winning (ρwin) that derives from submitting
the high bid.

These subtleties in bidding behavior may be disentangled by
fitting the RL model designed to capture the idiosyncratic effects
of trial outcomes from individual differences in preferences for
social reward (see the section ‘Auction Game’). Model compari-
sons showed that a full RL model, including two separate para-
meters for social preferences, ρwin and ρloss, fit the data better
(Bayesian information criterion, BIC = 18 269) than an RL
model that included only learning rate (α) and response variabil-
ity (θ) parameters (BIC = 21 238), RL including ρloss (BIC = 21
367), or RL including ρwin (BIC = 18 924). This suggests that, as
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we have found previously (van den Bos et al., 2013b), bidding is
motivated not only by monetary gains, but also by social motiv-
ation to win (ρwin) and to avoid losing (ρloss).

The Kruskal–Wallis test showed that ρwin differed significantly
between groups and drug conditions, H(3) = 19.49, p < 0.001.
Post-hoc, pair-wise Mann–Whitney tests showed that ρwin was
not significantly different between controls and patients on pla-
cebo (U = 218.00, p = 0.24), but that oxytocin was associated
with higher ρwin in schizophrenia (U = 30.00, p < 0.001) and at a
trend level in controls (U = 227.00, p = 0.10); see Fig. 4. We
found no significant differences between groups or drug condi-
tions for the other parameters (ρloss, H(3) = 0.62, p = 0.891; α,

H(3) = 2.89, p = 0.442; θ, H(3) = 0.51, p = 0.918), suggesting that
differences in bidding behavior between the groups and drug con-
ditions are mainly attributable to changes in the value of being the
winner.

Devil’s task

We found no significant group, drug, or group × drug effects,
indicating that differences in bidding behavior between groups
and drug condition are unlikely to stem from differences in risk-
taking preferences.

Predictors of bidding behavior in schizophrenia

Given that antidopaminergic medication and symptom severity
may influence response to oxytocin (Bradley and Woolley,
2017), we explored both as possible predictors of bidding behav-
ior. We examined the effects of antidopaminergic medication dos-
age quantified as chlorpromazine (CPZ) equivalents (Andreasen
et al., 2010) and symptom severity using the Positive and
Negative Symptom Scale (PANSS; Kay et al., 1987) on bid factor
by trial and drug. The three-way PANSS × drug × trial interaction
was not significant ( p = 0.14). Given the relationship between
reward valuation and negative symptoms in schizophrenia
(Gold et al., 2013; Kring and Barch, 2014), we also tested the
negative symptom subscale of the PANSS and bidding behavior.
The PANSS negative subscale × drug × trial was also not signifi-
cant ( p = 0.45). The three-way CPZ × drug × trial interaction
was significant (b = 6.2 × 10−05 , t = 2.52, p = 0.012), such that
patients taking the mean dosage in our sample (CPZ = 75.08)
did not change their bids over time on oxytocin (b = −0.0021,
t =−0.59, p = 0.55) v. placebo (b = −0.0019, t =−0.69, p = 0.49).
However, patients on high dosages (CPZ mean + 1 standard
deviation = 223.35) decreased their bids over time on placebo
(b = −0.0053, t =−2.08, p = 0.038) but not on oxytocin
(b = 0.0037, t = 1.13, p = 0.26).

See online Supplementary Information for details of analyses.

Discussion

We found that both men with schizophrenia and healthy controls
were willing to lose money in order to win auctions, in line with
evidence that the desire for social status is a driver of competitive
bidding behavior. Consistent with our first hypothesis, patients
overbid less than controls, suggesting impairment in their motiv-
ation to pursue the social reward of winning. Consistent with our
second hypothesis, oxytocin administration was associated with
increased overbidding, particularly in patients. Importantly, the
driving force behind this effect was an increased motivation to
win the auction, regardless of monetary reward or loss. These
findings provide further evidence that oxytocin modulates behav-
ior by increasing the salience of social stimuli and suggest that
oxytocin administration may enhance sensitivity to social reward
in people with schizophrenia.

Previous work in healthy people shows that overbidding is
maximal early in the Auction Game and decreases over time
(van den Bos et al., 2013a), as monetary losses prompt partici-
pants to reduce bids. We found that patients did not follow this
pattern, overbidding less compared to controls at the outset of
the game. This is consistent with the reduced anticipatory pleas-
ure observed in schizophrenia (Gard et al., 2007), and may reflect
dysregulated salience processing that leads to under-valuation of

Fig. 2. Auction Game bidding over time. Raw bid factor values for healthy controls
(HC) and patients with schizophrenia (SZ) under the placebo (PL) and oxytocin
(OT) conditions.
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the social reward of winning and thus lower bids. It could also
reflect impairment in mentalizing, the ability to infer beliefs
and intentions of other people, a core deficit in schizophrenia
(Green et al., 2015). Mentalizing may play a role in competitive
behavior specifically by enhancing the ability to monitor gain
and loss of rewards by others. Winning auctions has been asso-
ciated with increased activity in the right temporoparietal junc-
tion (rTPJ; van den Bos et al., 2013b), part of a neural network
that underlies mentalizing ability (Hampton et al., 2008). In

schizophrenia, rTPJ hypoactivation (Lee et al., 2011; Das et al.,
2012; Fett et al., 2015) and abnormal functional connectivity
between the rTPJ and temporal lobe regions (Bitsch et al.,
2018) has been observed during mentalizing tasks. Thus, menta-
lizing deficits among patients may have led to reduced social com-
parison during the game, resulting in lower bids. It is also possible
that patients’ bidding patterns reflect a general impairment in
adaptive decision-making. People with schizophrenia tend to
make more predictable decisions (Paulus et al., 1999) and have
trouble incorporating feedback to inform future decisions (Fett
et al., 2012). During iterative decision-making games, for
example, they may rely excessively on the most recent outcome
rather than integrating the consequences of their decisions over
time. These abnormalities amount to a ‘strategic stiffness’
(Kim et al., 2007) – the tendency to default to a choice based
on a recent stimulus – that may have limited patients’ ability to
discover an optimal decision-making strategy over the course of
the game.

Our finding that oxytocin enhanced the motivation to pursue
social reward is consistent with previous studies in healthy people
showing that oxytocin heightens attention to social preferences
during decision-making (Aydogan et al., 2017; Lambert et al.,
2017). Interactions between oxytocin and the dopamine system
have been implicated in these salience-moderating effects (Love,
2014), which is in line with studies showing that oxytocin admin-
istration modulates brain reward circuitry in humans (Groppe
et al., 2013; Scheele et al., 2013). Thus, oxytocin may have exacer-
bated overbidding by shifting attention toward the social reward
of winning and away from monetary reward via modulation of
dopaminergic signaling. The fact that antidopaminergic medica-
tion dosage predicted oxytocin effects on bidding behavior
among patients may also reflect oxytocin’s interaction with the
dopamine system. In animal models of psychosis, oxytocin
administration has been shown to reduce dopaminergic signaling
in the NAc and striatum (Qi et al., 2008), and administration of
certain antidopaminergic medications is associated with an

Fig. 3. Auction Game bidding during the first five v. last five trials, shown for healthy controls (HC) and patients with schizophrenia (SZ) under the placebo (PL) and oxytocin
(OT) conditions.

Fig. 4. Motivation to win the auction (ρwin), shown for healthy controls (HC) and
patients with schizophrenia (SZ) under the placebo (PL) and oxytocin (OT) condi-
tions. Note that three participants with ρwin values >40 are not shown in this plot:
one healthy control on placebo, one healthy control on oxytocin, and one patient
with schizophrenia on oxytocin.
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increase in plasma oxytocin levels (Uvnäs-Moberg et al., 1992).
However, the relationship between antidopaminergic medication
dosage and response to intranasal oxytocin is unclear (see
Bradley and Woolley, 2017). Undoubtedly, endogenous and
exogenous oxytocin–dopamine interactions are complex, and fur-
ther work is needed to understand their implications for admin-
istering oxytocin to patients with schizophrenia.

Oxytocin administration has also been shown to enhance sen-
sitivity to social reward in the absence of dopaminergic signaling
modulation (Striepens et al., 2014), highlighting the possibility
that other mechanisms of action underlie our findings.
Oxytocin may have exacerbated overbidding by boosting menta-
lizing ability, for example. Oxytocin administration improves
mentalizing ability in schizophrenia (Burkner et al., 2017), and
in macaques, it has been shown to increase sensitivity to rewards
received by others (Chang et al., 2012). Another possibility is that
oxytocin influenced bidding behavior by altering the adaptive
process of reinforcement learning that normally drives down bid-
ding as the Auction Game progresses. Studies in rhesus monkeys
(Parr, 2014) and in healthy people (Hu et al., 2015) suggest that
oxytocin influences reinforcement learning in social contexts,
potentially via increased attention to social cues and feedback.
Though we found that oxytocin did not impact participants’
learning rate during the Auction Game, it appeared to influence
decision-making by shifting their underlying preferences for
monetary v. social reward.

This study has several limitations. First, despite the interactive
nature of the Auction Game and steps we took to maximize the
feeling of being in a real social context, it does not reflect the
true complexity of real-world interaction. Second, we did not
include a condition in which participants played against a com-
puter to control for impairments in nonsocial reinforcement
learning. Third, we did not assess cognition, which is relevant
given that cognitive limitations are a potential cause of overbid-
ding in healthy people (Fudenberg, 2006) and cognitive impair-
ment has been linked to deficits in reinforcement learning in
schizophrenia (Premkumar et al., 2008; Collins et al., 2014).
However, by explicitly instructing participants on the optimal bid-
ding strategy, we hoped to minimize the cognitive burden of the
task. Fourth, we enrolled only men in this study, and results are
not generalizable to women given oxytocin’s sexually dimorphic
effects (Dumais et al., 2017). Fifth, the pharmacodynamics of
intranasal oxytocin are poorly understood (Quintana and
Woolley, 2016). Human studies have generally included a
30-min delay after administration before beginning assessments,
citing evidence of behavioral and physiological responses using
this timing in healthy people (Macdonald and Macdonald,
2010). Elevated cerebrospinal fluid oxytocin levels have been
observed 75 min after intranasal administration (Striepens et al.,
2013), and oxytocin-induced changes in regional cerebral blood
flow are detectable between 25 and 78 min after administration
(Paloyelis et al., 2016). Though these findings offer some support
for the standard timing used here, the peak and duration of intra-
nasal oxytocin’s central nervous system effects remain unclear.
Thus, our finding that oxytocin increased overbidding during
later trials of the game could reflect suboptimal timing of the
task relative to oxytocin administration, resulting in a delayed
peak of oxytocin effects. Finally, our sample size is modest; repli-
cation and extension of our findings by others is critical.

The robust link between decreased social engagement and
poor health outcomes (Holt-Lunstad et al., 2015) underscores
the importance of developing targeted interventions for abnormal

social behavior among people with schizophrenia. Objective mea-
sures of behavior are essential for tackling this challenge (Kapur
et al., 2012), given that insensitivity to social reward and other
contributors to abnormal social behavior are not well captured
by the interview-based symptom rating scales typically used in
clinical trials (Freedman et al., 2013). Indeed, we found no correl-
ation between symptom ratings and motivation for social reward
in this study, and prior studies have found a similar lack of asso-
ciation between symptom ratings and impaired reward processing
in schizophrenia (Waltz et al., 2007; Barch et al., 2017; Lee et al.,
2018). Future work is necessary both to explain these incongru-
ities as well as to elucidate the neural mechanisms that underlie
oxytocin’s effects on social reward. Most critically, we must deter-
mine whether oxytocin-induced increases in the perceived value
of social reward facilitate social engagement among people with
schizophrenia. Enhancing the rewarding value of social interac-
tions may be a mechanism by which we can specifically target
impaired social motivation, one of the most robust deficits asso-
ciated with the disorder. Ultimately, clinical trials that evaluate
behavioral changes in large samples will be essential to determine
whether pharmacological enhancement of social reward sensitiv-
ity improves real-world social behavior and functional outcomes
among people with schizophrenia. Given the impact of schizo-
phrenia on patients, caregivers, and society as a whole, further
examination of oxytocin’s potential as a treatment is a worthwhile
undertaking.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291719000552.
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