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The ecological rationality of heuristics has been extensively investigated in the domain of individual
decision making. In strategic decision making, however, the focus has been on repeated games, and there
is a lack of research on 1-shot games, where opponents and the game itself can vary from one interaction
to another. Mapping the performance of simple versus more complex decision policies (or strategies)
from the experimental game theory literature is an important first step in this direction. We investigate
how 10 policies fare conditional on strategic properties of the games and 2 classes of uncertainty. The
strategic properties are the complexity (number of actions) and the degree of harmony (competitiveness)
of the games. The first class of uncertainty is environmental (or payoff) uncertainty, arising from missing
payoff values. The second class is strategic uncertainty about the type of opponent a player is facing.
Policies’ performance was measured by 3 criteria: a mean criterion averaging over the whole set of
opponent policies, a maxmin criterion capturing the worst-case scenario and another criterion measuring
robustness to different distributions of opponent policies. Heuristics performed well and were more
robust than complex policies such as pure-strategy Nash equilibria, while simultaneously requiring
significantly less information and fewer computational resources. Our ranking of the decision policies’
performance was closely aligned to their prevalence in experimental studies of games. In particular, the
Level-1 policy, which completely ignores an opponent’s payoffs and uses equal weighting to determine

the expected payoffs of different actions, exhibited a robust beauty.
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In 1974, Tversky and Kahneman wrote a foundational article in
which they argued that “people rely on a limited number of
heuristic principles which reduce the complex task of assessing
probabilities and predicting values to simpler judgmental opera-
tions. In general, these heuristics are quite useful, but sometimes
they lead to severe and systematic errors” (Tversky & Kahneman,
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1974, p. 1124). A series of innovative experiments that Kahneman
and Tversky published in the 1970s and 1980s drew psychology’s
attention to the importance of cognitive heuristics in human rea-
soning and helped to create new fields such as behavioral econom-
ics and behavioral law. Their programmatic work focused research
attention for years to come on the existence of severe and system-
atic errors in people’s judgments under uncertainty; at the same
time, however, the positive side of the equation, the efficacy of
heuristics, received little to no attention. Bolstered by the discov-
ery of ever more biases as well as sweeping conclusions such as
“mental illusions should be considered the rule rather than the
exception” (Thaler, 1991, p. 4), the predominant view in psychol-
ogy and behavioral economics has been that heuristics are fallible
shortcuts that people, burdened by cognitive limitations, fall back
on in situations where they would be better off using more sophis-
ticated reasoning and decision-making strategies. Against the
background of this emphasis on the fallibility of heuristics, sur-
prising results began to emerge from another research program on
heuristics. In the 1990s, the research program on ecologically
rational heuristics (sometimes also called fast and frugal heuristics;
Gigerenzer, Todd, & the ABC Research Group, 1999) began to
demonstrate, often on the basis of systematic model competitions
(e.g., Gigerenzer & Brighton, 2009; Gigerenzer & Goldstein,
1996; Katsikopoulos, Schooler, & Hertwig, 2010), that inferential
heuristics that use less information and computation than more com-
putationally complex strategies (e.g., logistic regression, CART, and
nearest neighbor classifier) can actually offer good and sometimes
even superior inferential accuracy. In addition, this research em-
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phasized the ecological rationality of heuristics, asserting that
heuristics are not good or bad per se; instead, the key question is:
Given a specific heuristic, in what environments does it succeed or
fail, and given an environment, what heuristics will succeed or fail
in it (Gigerenzer, Hertwig, & Pachur, 2011; Hertwig, Hoffrage, &
the ABC Research Group, 2013; Todd, Gigerenzer, & ABC Re-
search Group, 2012)?

One important objection to these findings has been that all or
most model competitions involved heuristics that concern individ-
ual decision making; thus, leaving open the question of whether
their success would generalize to strategic situations in the social
world. There are certainly grounds for doubt. The philosopher
Sterelny (2003), for instance, argued that simple heuristics—de-
spite reaching surprisingly high levels of accuracy in nonsocial
worlds—will fail in interactions with other intelligent (and espe-
cially competitive) agents. “For it is precisely in such situations
that simple rules of thumb will go wrong. . . . Catching a ball is one
problem; catching a liar is another” (p. 53, emphasis added). More
generally, his point was that the inferential paradigms in which
heuristics’ good performance was observed “rarely involve com-
petitive, interacting, responsive aspects of the environment” (p.
208). Those paradigms fail to represent the complex need to
strategize in the social world. Other scholars shared Sterelny’s
portrayal of social environments as especially complex and chal-
lenging (e.g., Byrne & Whiten, 1988; Humphrey, 1988; Whiten &
Byrne, 1988; Whiten & Byrne, 1997, see Hertwig et al., 2013).
Indeed, trying to catch a liar invokes very different cognitive
faculties (that may be unique to humans) than catching a ball, and
competitive social environments may very well be more complex
than nonsocial environments—but does this mean that simple
heuristics are doomed to fail? Empirical investigations of behavior
in strategic interaction have regularly concluded that many people
rely on strategies that are significantly less complex than the Nash
equilibrium strategy—evidence comes from not only choice data
but also process data (Crawford, Costa-Gomes, & Iriberri, 2013).
What does this mean for how well people fare in strategic inter-
actions? As we argue later in this section, in the context of
one-shot games little is actually known about the cost of using
simple decision policies. Furthermore, bounded cognitive and
computational capacities are not the only possible reason people
use heuristics so frequently in strategic interactions; it could be
that heuristics promise success and robustness under conditions of
profound uncertainty about others’ strategic intent and incomplete
knowledge. Investigating this possibility is our goal in this article.

In what follows, we examine decision making in strategic en-
vironments where the outcomes are determined by the interaction
of at least two players, that is, we are in the realm of game theory.
Games introduce a new type of uncertainty regarding how an
opponent is likely to behave: strategic uncertainty. We are inter-
ested in systematically mapping how different decision policies
perform in the presence of both strategic and payoff uncertainty,
with the latter implemented as missing payoff information. Both
types of uncertainty arise in the set of games referred to as games
of incomplete information in the game theory literature. The in-
teraction of strategic uncertainty and incomplete information
makes for a particularly unpredictable game, especially if there is
no relevant historical prior incident to refer to. In repeated games,
there are various ways to reduce the degree of strategic uncer-
tainty: Repeated behavioral observations allow for establishing a

reputation (Mailath & Samuelson, 2006), learning about the be-
havioral tendencies of other players (Cheung & Friedman, 1997;
Erev & Roth, 1998; Spiliopoulos, 2012b, 2013a, 2013b), imitating
other players (Duersch, Oechssler, & Schipper, 2012; Rendell et
al., 2010), and strategically using historical decisions to teach the
opponent to play differently in the future (Camerer, Ho, & Chong,
2002), to name but a few. The work in the iterated prisoner’s
dilemma game is of particular interest, because simple decision
policies such as tit-for-tat in early work (Axelrod, 1984; Axelrod
& Hamilton, 1981) and the win—stay, lose—shift heuristic in later
work (Imhof, Fudenberg, & Nowak, 2007; Nowak & Sigmund,
1993) performed remarkably well (but see Rapoport, Seale, &
Colman, 2015, for a more nuanced examination) However, one-
shot games render it impossible to reduce strategic uncertainty.
Players have no recourse but to face extreme uncertainty in a
situation fitting of Savage’s (1954) “large world.” An intriguing
but until now relatively underexplored (at least, systematically)
question is whether the finding that simple strategies can be
effective in repeated games carries over to one-shot games. Many
important real-world decisions are either one-shot games or stra-
tegic situations that are so rare that very little prior information
exists to reduce uncertainty. For example, important life decisions
around one’s career choices and workplace behavior, education,
real estate investments, or personal relationships are made rela-
tively rarely and carry large consequences. Communication, espe-
cially because of the shift toward online, shorter interactions with
relatively unknown participants of different backgrounds and
knowledge, carries a greater deal of uncertainty than in the past.
One-shot games may have a disproportionately high degree of
importance because of the ecological, negative correlation between
probabilities and the magnitude of payoffs (Pleskac & Hertwig,
2014). Therefore, not infrequently very important decisions tend to
be the ones with maximal strategic and payoff uncertainty because
of the decision maker’s lack of prior experience. These are the
types of strategic interactions that we are interested in.

Why the Normative Solution Is Beyond Mere Mortals:
The Unrelenting Complexity of the Nash Equilibrium

How can players resolve, reduce, or otherwise handle the vari-
ous kinds of uncertainty involved in strategic one-shot interactions,
which do not afford the opportunity for learning? Homo eco-
nomicus resolves this strategic (and payoff) uncertainty by deduc-
tively, rather than inductively, solving for the Nash equilibrium—
but this requires numerous strong epistemic assumptions, which in
many cases are unlikely to be met even in games of complete
information." A set of strategies constitutes a Nash equilibrium if
no player can gain by unilaterally changing their strategy (see
Appendix A). These assumptions allow the Nash equilibrium to
circumvent the problem of strategic uncertainty, but at the cost of
not specifying a process by which the equilibrium is reached. The
strong epistemic assumptions and reliance on deductive reasoning

! These assumptions include that each player’s beliefs about their op-
ponent’s action are correct, that players are fully rational, (i.e., they
best-respond to their beliefs), and that each player is aware of the other
players’ strategies (common knowledge assumption)—but see Aumann
and Brandenburger (1995) for a loosening of these requirements for certain
games.
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on the part of players constitute the first limitation of the Nash
equilibrium as a descriptive, rather than normative, model of
behavior.? Our use of the term “normative” refers to the implica-
tions of both rational beliefs about players’ behavior and optimi-
zation given those beliefs as applied to all players in a game. The
second is the computational complexity of calculating a Nash
equilibrium (Daskalakis, Goldberg, & Papadimitriou, 2009), par-
ticularly in mixed strategies (Savani & Von Stengel, 2006). The
third is that multiple Nash equilibria often exist in a game (McLen-
nan, 2005; McLennan & Berg, 2005) and, therefore, strategic
uncertainty is not resolved in these cases. Players would still need
consistent beliefs of how the opponent will choose to play from the
set of equilibria (i.e., a theory of equilibrium selection). While
many equilibrium selection refinements have been proposed (e.g.,
Harsanyi & Selten, 1988; Selten, 1975), they require ever more
complex rationalizations and beliefs about the equilibrium selec-
tion behavior of their opponent. Therefore, they are unlikely to be
good descriptive models of human behavior. While other less
demanding and less strict normative criteria exist, they also suffer
from the problem that the set of admissible actions is often even
larger than the set of Nash equilibria.®> One exception is the theory
of focal points and how players can use them to coordinate on a
specific equilibrium out of a large set of equilibria (Schelling,
1960). While simple in execution, focal points and social norms
still require a shared culture or knowledge, and are relevant for
games of coordination but not generally applicable to any type of
strategic interaction.

Dealing with games of incomplete information requires even
stronger assumptions about knowledge of the unknown informa-
tion and computational requirements—the normative solution in
this case is the Perfect Bayesian equilibrium (Harsanyi, 1967). Its
existence is predicated on the common prior assumption, which
states that players must hold common beliefs about all the unob-
servable information in the game.* Furthermore, in equilibrium all
beliefs must have been updated using Bayes rule to ensure their
consistency with the players’ strategies. The indiscriminate appli-
cation of Bayesian foundations to strategic decision making under
uncertainty is not without its critics, even among prominent game
theorists (e.g., Binmore, 2007).

Can Homo heuristicus navigate such difficult environments
more effectively than Homo economicus? Using computer simu-
lations, we compared the performance of random behavior (a
baseline), eight heuristics, and the Nash equilibrium across environ-
ments with different levels of strategic and payoff uncertainty—we
refer to these collectively as decision policies.

Why Heuristics?

The economics literature on bounded rationality in game theory
in one-shot simultaneous move games has primarily been con-
cerned with inferring the decision policies players use. The find-
ings of the literature clearly support the conclusion that the ma-
jority of participants do not play according to the Nash equilibrium
in one-shot games.® Instead, they use a variety of what are com-
monly referred to as boundedly rational decision policies, or heu-
ristics—we return to these shortly. These experimental studies
used games with strategic uncertainty but no payoff uncertainty.®
In the face of both types of uncertainty, it is reasonable to expect
that heuristic use would be even more prevalent, as any benefits
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accruing from sophisticated reasoning are dependent on the avail-
able information. We propose an explicit and systematic explora-
tion of whether using these heuristics leads to a significant per-
formance loss compared with normative solutions for a broad
range of environments. A few studies have touched upon related
issues, albeit in a narrower, yet still instructive, scope—we present
these below.

It is well documented that the Nash equilibrium often does not
perform well either as a descriptive model or as a strategy against
the empirically observed behavior in experiments (for a review,
see Camerer, 2003). For example, Stahl and Wilson (1995) con-
sidered different Level-k policies’ performance based only on a
single experimental study with 12 different games. They con-
cluded that the average performance of the policies over the set of
games did not vary much, despite the existence of more variability

2 While the Nash equilibrium may be an adequate predictor of the
limiting behavior in the long run for certain types of repeated games, this
is typically the consequence of simpler inductive learning rules that con-
verge to the Nash equilibrium. In one-shot games, such inductive tech-
niques are not possible; therefore, the Nash equilibrium—even as a pre-
dictive model of behavior—must be implemented by players using
deduction.

3 For example, an alternative normative solution, rationalizability weak-
ens the requirement that beliefs are correct, and only requires that players
best-respond to some belief (Bernheim, 1984; Pearce, 1984). As a gener-
alization of the Nash equilibrium, the rationalizable set of actions is
necessarily larger than the set of Nash equilibria of a game. Consequently,
in many games the Nash equilibrium (and other weaker solutions, e.g., the
correlated equilibrium) suffers from the problem of multiple equilibria;
therefore, players must still find a way to coordinate on the same equilib-
rium.

4 Thus, strategic uncertainty arising from not knowing an opponent’s
type or preferences is essentially treated as a form of uncertainty about an
opponent’s subjective payoffs. Players must then hold beliefs about the
probability distribution of their opponent’s type. Similarly, the Perfect
Bayesian equilibrium can also deal with payoff uncertainty, but it requires
consistent beliefs about the distribution of the payoffs. Note that in general,
beliefs are typically modeled as point estimates, that is, the uncertainty
about the incomplete information is assumed to be reducible to risk.
Unfortunately, extending the Bayesian Nash equilibrium concept to uncer-
tainty (or ambiguity) results in increasingly complex characterizations of
the equilibrium, leading to intractable solutions.

5 In repeated games of pure conflict, where participants accumulate
experience with the same game (and against the same partner), it is possible
that players inductively learn and converge to the Nash equilibrium (Bin-
more, Swierzbinski, & Proulx, 2001; Erev & Roth, 1998; Ochs, 1995; Roth
& Erev, 1995). This hinges on the type of game played and the character-
istics of the learning algorithm involved.

6 There is another important limitation in the game theory literature
concerning payoff uncertainty. While many theoretical proposals based on
normative axioms exist, only a few experimental studies manipulate stra-
tegic uncertainty or examine behavior in the laboratory for games with
payoff uncertainty. Because experimental studies are practically con-
strained, our knowledge of behavior is restricted to a set of games that can
be implemented in the lab, typically with a small number of available
actions and little payoff uncertainty. An interesting anecdote on the im-
portance of strategic uncertainty is found in the aptly named manuscript
“Granny versus Game Theorist: Ambiguity in Experimental Games” (Eich-
berger et al., 2008). Participants in this experiment knew that their oppo-
nent was a granny, a game theorist, or another participant. Players reported
greater uncertainty (often referred to as ambiguity in economics) against
the granny than the theorist, and stated beliefs about the opponent’s likely
behavior that were coarser (and less certain) against a granny than a
theorist. These beliefs affected participants’ behavior: They were more
likely to choose an ambiguity-averse action when playing against a granny
than against a theorist.



n or one of its allied publishers.

0

B
2
2
8
=}

°

S
S
%

[aW)
8
3

<
Q
>

e}

=
2

o

This document is copyri

is not to be disseminated broadly.

This article is intended solely for the personal use of the individual user

248 SPILIOPOULOS AND HERTWIG

within games.” Consequently, significant incentives for players to
use more sophisticated reasoning did not exist. Relatedly, Cam-
erer, Ho, and Chong (2004) assessed how well the Nash policy and
Level-k policies performed against the actual distribution of
choices (and implicitly, policies) used by participants in experi-
ments. Their measure of “economic value” of decision policies
quantified how much more players would have earned had they
used a study’s proposed theory to predict their opponent’s behav-
ior (and best-responded to this prediction). The Nash equilibrium
generally added less value than a Cognitive Hierarchy model,
which assumes a mixture of levels of boundedly rational players,
and in some cases even exhibited negative economic value. How-
ever, the arguments put forth in these studies justify deviations
from Nash behavior conditional on the existence of other non-
Nash players. As such, they are related to, but do not exactly
answer the question that we are more interested in: Why are
players collectively engaged in behavior that is incompatible with
the normative solution?® Closer to our perspective, Camerer and
Fehr (2006) related the theoretical payoff incentives for more
sophisticated reasoning to the strategic structure of games. Games
with strategic substitutes reward higher-level thinking (i.e., out-
smarting an opponent), whereas games with strategic complements
lead to higher payoffs when players cooperate or coordinate (i.e.,
reason similarly to an opponent).®

These findings are certainly supportive of the notion that more
sophisticated reasoning—as exemplified in the limit by the infi-
nitely recursive Nash equilibrium solution—is not necessarily ben-
eficial. However, the studies involving bimatrix games were gen-
erally restricted to comparing the performances of a small set of
heuristics or a limited number of highly stylized games (but see
Camerer, Ho, & Chong, 2015, for a summary of heuristic use in a
diverse range of other game classes). For example, the games
typically had very few actions and none of these studies explored,
simultaneously to strategic uncertainty, the impact of payoff un-
certainty on performance. Consequently, little is known about the
wider environmental conditions under which heuristics in one-shot
games perform well or are likely to fail—that is, about their
ecological rationality. Apart from exploring the robustness of these
findings for a wide range of psychologically realistic environ-
ments, we are also concerned with why we find a preponderance of
heuristic use in experimental studies. While the literature has not
explicitly investigated why heuristics are often used in place of the
Nash equilibrium, three arguments have been invoked implicitly.

The first is that players are not sophisticated enough to compute
a normative solution. Because it is psychologically implausible to
compute the Nash equilibrium, they turn to simpler decision pol-
icies. They are boundedly rational: They should use the Nash
equilibrium but are not equipped to do so. The use of the term
“boundedly rational” here is different from that espoused by Si-
mon (1955, 1956), where bounded rationality is not viewed as a
detrimental quality per se, but rather may be advantageous condi-
tional on the decision environment. The second argument is that
calculating the Nash equilibrium is associated with high decision
costs and, therefore, a perfectly rational player should take these
into account and optimize subject to constraints (“constrained
optimization”; see, e.g., Arrow, 2004; Sargent, 1993). If the deci-
sion costs are high enough, then it may be rational to use a simpler
decision policy; however, this ignores the additional computational
cost associated with selecting the optimal simplicity of a policy. A

third explanation is based on the beliefs of players and violations
of common knowledge about the rationality of all players. The
Nash equilibrium is a rational response only if one believes that the
opponent is also rational. However, rational players may have an
incentive to deviate from the Nash equilibrium if they believe that
their opponent is also likely to do so. Clearly, this conundrum is
driven by the strategic uncertainty of the interaction.

We are explicitly interested in yet another explanation, which is not
necessarily incompatible with the three mentioned above. This is that
simple heuristics can be as accurate as, and sometimes even more
accurate than, decision policies that take all the available information
into account, including optimization models (see Gigerenzer et al.,
2011). Our objective is to challenge the view that strategic complexity
thwarts the success of simple heuristics by answering the following
related questions. Are heuristics ecologically rational? Do heuristics
fail in the face of strategic uncertainty and incomplete information or
can a reduction in decision complexity lead to better and/or more
robust behavior? In which environments can heuristics outperform
optimizing policies, and in which will they lag behind?

We argue that the widespread use of heuristics relative to more
complex policies (i.e., the Nash equilibrium strategy but also other
relatively sophisticated policies such the L3 policy) may be a result
of heuristics often performing on par with more complex policies
and exhibiting greater robustness to both strategic uncertainty and
payoff uncertainty. This provides an ecologically rational founda-
tion (Smith, 2003) for the well-documented descriptive prevalence
of heuristics in one-shot games, significantly extending the scope
of similar arguments made for a limited set of games and/or
heuristics (e.g., Camerer et al., 2004; Stahl & Wilson, 1995). We
first address what we view as an important missing component
of the literature concerned with strategic one-shot interactions,
namely the lack of rigorous investigation—especially for games
with incomplete information—into whether the use of boundedly
rational heuristics leads to significant performance losses (in terms
of payoffs) vis—a—vis the proposed normative solutions. Our work
parallels investigations into cue-based inference, which often find
that simpler heuristics perform better than normative approaches
such as linear regression. Taking a cue from Hogarth and Karelaia
(2006), we propose a first map of ecological rationality in games:

7 For related arguments, consider the criticism of experimental studies
purporting to show deviations from rational behavior based on the “flat
maximum” critique (Harrison, 1989; Rapoport, 1975; von Winterfeldt &
Edwards, 1973). The argument is that if the payoff function is relatively
flat relative to different behaviors, then the experimental study has not
provided adequate incentives to test for rationality. Note, however, that this
critique is aimed at the specific games used in a study, not at whether this
holds in general over a large number of games drawn from different
environments. If this were the case, then simple heuristics would not entail
a large payoff loss and, therefore, could not be said to be irrational.

8 An example of an ecologically rational analysis, that is in a different
domain (continuous double auctions) from our investigation is presented in
Gode and Sunder (1993). They found that markets with agents using simple
rules could achieve near-perfect allocative efficiency and arrive at the
rational or equilibrium outcome. They concluded that this arose from the
interaction between the simple rules of the agents and the specific market
structure.

9 Intuitively, for games with strategic substitutes (complements), an
opponent’s action induces a player to choose the opposite (same) action
based on the incentives of the game. Coordination games are examples of
strategic complements whereas games with incentives to free-ride are
examples of strategic substitutes.
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We assign the performance of simple decision policies to environ-
mental niches, such as the properties of the games being played
and the degree of payoff and strategic uncertainty.

The Setup

In the spirit of Simon’s (1990) scissors analogy, a map of
ecological rationality requires both a characterization of the envi-
ronment (external to the agent) and the decision policies (internal
to the agent). Simon (1955, 1956) saw bounded rationality in terms
of two interlocking components: the limitations of the human mind
and the structure of the environment. The implications of this
conceptualization are twofold. First, models of simple heuristics
need to reflect the mind’s actual capacities rather than unbounded
resources and capacities. Second, the structure of the environment
may be the key to a heuristic’s performance to the extent that the
heuristic’s architecture successfully maps onto it (or parts of it).
For this reason, we now describe our computer simulations in
terms of the game environment and the competing heuristics.

The Strategic Games

The games were all one-shot normal-form games with simultane-
ous moves, meaning that players made their decisions at the same
time, without first being able to observe the opponent’s choice. Table
1 gives an example of a normal-form game with two players: Player
1 can choose one of the strategies in the rows (Up, Middle, or Down);
Player 2 can choose one of the strategies in the columns (Left, Center,
or Right). The number of possible actions for each player is denoted
by n—we assume that it is the same for both players and refer to this
as the size of the game. The game in Table 1 is, therefore, a 3 X 3
game, with each player having three strategies (or actions) at their
disposal. The numbers in the table represent the payoffs that each
player will receive for every possible combination of strategies. The
first number represents Player 1’s payoff; the second, Player 2’s
payoff. For example, if Player 1 chooses Up and Player 2 chooses
Center, they receive 32 and 89 units, respectively.

We distinguish between the true game, which is the one that nature
has drawn, and the inferred game, which is the game a player believes
to be playing. Individual payoffs of the true game can be categorized
as observed (revealed to the player) or missing (not revealed to the
player). Therefore, the true game differs from the inferred game only
if there are missing payoffs. In inferred games, the player infers what
the missing payoffs are to construct the game they believe they are
playing around the observed payoffs. The actual payoffs of a decision
policy are equal to the payoffs of the true game, not the inferred game.

Next, we describe how the true games were generated. The
payoffs were generated by randomly sampling each payoff from
the joint bivariate normal distribution:

Table 1
An Example of a 3 X 3 Normal-Form Game

Player 2
Player 1 Left Center Right
Up 58, 57 32, 89 94, 41
Middle 34, 46 23, 31 37, 16
Down 70, 74 41, 12 23,53

[mm']~Nw32) p=[0,0] 3= 02{; ’;] GH)

We chose the normal distribution rather than a uniform distribution
to capture the typically negative correlation between magnitudes in
payoft (whether negative or positive) and the probability of their
occurrence in the real world (Pleskac & Hertwig, 2014). However,
because the decision policies are all invariant to positive monotone
transformations of the game payoffs, the qualitative findings or ordi-
nal ranking of the performance of the decision policies will be
identical for payoffs drawn from the uniform distribution. For the
same reason, the exact values of . and o are irrelevant, as they simply
scale the payoffs without affecting the actual choices of the decision
policies. We fixed these to . = [0, 0] and o = 100 for simplicity. The
value of p, however, plays an important role: It mediates the degree of
correlation between the payoffs of the two players referred to as the
game harmony (Zizzo & Tan, 2007, 2011). The more positive the
degree of harmony, the more the players’ interests are aligned in an
environment, resulting in less conflict of interest. At the extreme
where p = 1, there is no conflict and a self-interested player will
choose the action that also allows a self-interested opponent to
achieve their preferred outcome. The more negative the degree of
harmony, the more the players’ interests are opposed or in conflict. At
the extreme where p = —1, players’ interests are diametrically op-
posed and one player’s gain necessarily comes at the other’s expense;
they are engaged in a constant-sum game. At the interior values
of —1 < p < 1, the degree of harmony varies smoothly with a value
of p = 0 implying an environment with no tendency for either conflict
or harmony. Also, note that p is the expected degree of game harmony
in an environment, but the realized game harmony of a single game is
stochastic (Equation 1). For example, there will still be some games
with significant conflicts of interest between players even in environ-
ments with p > 0, although the likelihood of these games arising will
be lower than in environments with p < 0.

In environments with payoff uncertainty (more on this in the
next subsection), the true and inferred games diverge. The payoffs
of the inferred game consist of the observed payoffs of the true
game and the inferred payoffs, which are imputed using the fol-
lowing mechanism. Relying on the principle of vicarious function-
ing (Brunswik, 1952; Dhami, Hertwig, & Hoffrage, 2004), players
can use available cues (here, the observed payoffs) to infer unre-
liable or unavailable cues (the missing payoffs). For games with
payoff uncertainty, we assumed that players impute the missing
payoffs based on their estimates of the set of the parameters
{{i, &, p} from the observed payoffs of the current game.'® That is,
they use these estimates to generate imputed values for the payoffs
using Equation 1. For normal distributions, E[p] = p — p(1 —
p?)/2s, where s is the number of samples the estimate is based on,
which is equal to n” in our application. Consequently, for a small
number of samples s, the value of the correlation coefficient is
underestimated on average (Fisher, 1915). Despite this, the prob-

19 The calculation of the exact statistical definitions of the variance and
correlation are quite complex. There is, however, significant evidence that
decision makers are aware of and relatively well calibrated to the statistical
properties of an environment—that is, that they act as intuitive statisticians
(Peterson & Beach, 1967). Because the exact modeling of these estimates
is beyond the scope of our manuscript, we use the statistical definitions as
a proxy, although in practice the actual processes used to compute these
estimates may differ from their statistical definition.
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ability of overestimating the correlation coefficient is higher than
the probability of underestimating it because of the skew in the
sample correlation coefficient, with important implications for the
ability to detect correlations (Kareev, 1995, 2000; Kareev, Lieber-
man, & Lev, 1997).

Our random payoff-generating mechanism implies that every
possible true game has a nonzero probability of being generated.
Therefore, we did not restrict our investigation to widely re-
searched 2 X 2 games such as the prisoner’s dilemma game, the
chicken game, and the stag hunt game. In fact, our analysis
included all 78 types of 2 X 2 (ordinal) games taxonomized by
Rapoport, Guyer, and Gordon (1976). Similarly, for n X n games
where the size of the game is greater than 2 (and the possible types
of games too many to enumerate), we did not restrict our attention
to a particular type of game. To the best of our knowledge, this is
the most comprehensive analysis of bounded heuristics in games.

The Environments

An environment e is defined by the properties of the games that
nature randomly (exogenously) determines are to be played. Each
environment e is defined by three properties: (a) the size of the
action space of the generated games, n, (b) the probability that
each payoff in the game is missing or unknown to a player, m
(presented as a %), and (c) the degree of harmony p.

Size of the games. This is perhaps the most straightforward
property of the environment. It is simply the number of actions
available to each player in a game. Larger games can be considered
to be more complex, or cognitively demanding, as they offer
players a larger number of possible contingent outcomes to con-
sider.

Degree of payoff uncertainty. In an environment with m%
missing observations, each payoff of the game is randomly chosen
with probability m to be missing, that is, unobservable to a player.
The missing information induces payoff uncertainty about the true
values of the missing payoffs. We take this opportunity to empha-
size that a Bayesian Nash equilibrium would require that players
impute the whole probability distribution of possible values for the
missing payoffs. In other words, they would need to calculate a
decision policy repeatedly (a very large number of times) to
approximate the distribution of each possible realization of the
missing payoffs.

Degree of harmony. This third environmental property cap-
tures the extent to which players’ interests are aligned or mis-
aligned. To summarize, the set of environments E we investigated
varied across the action space size, the likelihood of missing
payoff information, and the degree of correlation between own and
opponent payoffs: {n, m, p}. This set consists of all possible
combinations of the following values: n € N = {2, 3,..., 19, 20},
meM={0,5,10,...,75,80%} and p € P = {—0.5, 0, 0.5}.
For example, a single environment e(n, m, p) consists of a set of
n X n games, sampled using the procedures noted in the previous
subsection, where the probability that payoff values are missing is
m and the correlation (degree of harmony) is p. For the sake of
exposition, we refer to environments where p = 0.5, 0, —0.5 as
harmonious, neutral, and discordant environments, respectively.
Examining the performance of the decision policies across envi-
ronments defined by these three dimensions (n, m, p) will produce
maps of the ecological rationality of each decision policy.

The above constitute the environments and assumptions regard-
ing the core simulation S reported in the main text. We also ran a
number of additional simulations, varying other key parameters to
test the robustness of our findings.'' These simulations implement
the following changes to the environments:

1. S'": Each player knows their own payoffs perfectly, but
does not know m% of their opponent’s payoffs. This
assumption is better suited to the possibility of an asym-
metry in payoff information.

2. 8" Each action’s quality can vary in expectation in terms
of the average performance across an opponent’s actions.
A game is constructed by drawing payoffs for each action
from a distribution with an action-specific mean; in the
core simulation, the mean is the same (zero) for all
actions. The mean associated with each action is drawn
from a normal distribution with mean zero and variance
equal to 100—we refer to the latter as between-action
variance. This introduces within-action positive correla-
tion in payoffs, that is, it models the possibility that some
actions are inherently better than others on average (over
possible opponent moves). Finally, within-action vari-
ance across payoffs is still equal to 100 as in the core
simulation and for correlated environments payoffs are
drawn from the same joint bivariate normal distribution,
albeit with different means for each combination of play-
ers’ actions.

3. §”: A simpler mechanism is used for inferring missing
payoffs. Only L is imputed in each game, that is, players
do not use information about the variance or correlation
of payoffs, as in the core simulation. Missing values are

replaced by [L plus a very small random error € ~ N
(0, 107%) for each payoff to avoid complications with
ties.

Where relevant we refer to the results of these additional sim-
ulations or point the reader to the online supplemental materials
where more details can be found.

The Competing Decision Policies

Our analysis compared 10 decision policies (playing against
each other): the Nash equilibrium, a baseline random policy, and a
set of eight heuristics that have been identified as commonly used
by actual players in real-life situations (Costa-Gomes, Crawford,
& Broseta, 2001; Costa-Gomes & Weizsicker, 2008; Devetag, Di
Guida, & Polonio, 2016; Polonio, Di Guida, & Coricelli, 2015;
Spiliopoulos, Ortmann, & Zhang, 2018; Stahl & Wilson, 1994,
1995; Sutter, Czermak, & Feri, 2013). The decision policies are
defined in Table 2; more detailed examples of how to compute
them can be found in Appendix B.

The policies range from the very complex Nash equilibrium to
moderately complex boundedly rational solutions (Level-k poli-
cies) to relatively simple and naive solutions such as choosing the

"' We thank Colin Camerer and an anonymous referee for suggesting
these robustness checks.
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action that contains the maximum own payoff. We address the
evaluation of complexity shortly. Level-k reasoning (and the re-
lated cognitive hierarchy theory) has been particularly successful
in modeling players’ behavior in one-shot games (Camerer et al.,
2004; Costa-Gomes et al., 2001; Stahl & Wilson, 1995). The levels
of reasoning are anchored on the least strategic player, who uses
the Random policy (often referred to as Level-0). A Level-1 (L1)
player best-responds to the belief that their opponent is Level-0. In
general, a Level-k player expects an opponent to be a Level-(k-1)
player, and best-responds to this belief. Thus, the Level-k (Lk)
reasoning model loosens the assumptions of the Nash equilibrium
(NE), namely that all players are fully rational and aware of their
rationality (common knowledge). Beyond L1, L2, L3, and NE, the
set of policies includes maxmax (MaxMax), maxmin (MaxMin),
social maximum (SocMax), equality (Eq), and dominance-1 (D1).

In terms of benchmark strategies, we focused only on the
pure-strategy NE for two reasons. First, as discussed earlier, the
calculation of a mixed strategy NE is computationally demand-
ing.'? Therefore, we consider only the subset of NE that could
plausibly also be implemented as a descriptive model of behav-
ior in one-shot games, as there is some evidence of pure-
strategy NE use in simple games (Rey-Biel, 2009; Spiliopoulos
et al.,, 2018; Stahl & Wilson, 1995). Second, the epistemic
interpretation of a mixed strategy, particularly in a one-shot
game, is controversial:'* “We are reluctant to believe that our
decisions are made at random. We prefer to be able to point to
a reason for each action we take. Outside of Las Vegas we do
not spin roulettes” (Rubinstein, 1991, p. 913). Consequently,
we regard the NE not only as a normative strategy, which also
serves as a benchmark in our simulation, but also as a candidate
for a descriptive policy.

Table 3 lists experimental studies comparing the observed,
descriptive prevalence of decision policies. Our selection of
implemented decision policies was guided by these empirical
studies suggesting that they are, to varying degrees, actually
used by players. The L1 heuristic is the most prevalent policy
in six cases and ranks second in another three. D1 is also very
common, ranking first in two cases and second in another three.
L2 ranks first in three cases and third in another three. The NE
is never the most common policy in any study. While it is
ranked second in two studies and third in a further two, in six
other cases it does not figure into the three most prevalent
policies at all. Fudenberg and Liang (2017) found that L1 is the
modal action in 72% of previously investigated one-shot games
in the laboratory and in 87% of randomly generated games
(similar to ours, but without payoff uncertainty). Finally,
Spiliopoulos et al. (2018) concluded that under time pressure
there is a shift to less complex decision policies such as L1 and L2,
but also to SocMax, which was ranked in the top three for only
another two cases without time pressure.

Each of the policies studied, with the exception of the (pure-
strategy) NE, always suggest a unique action for any normal-form
game (with unique payoffs). To resolve the coordination problem
in the case of multiple NE, we assumed that players choose the
equilibrium maximizing the joint payoffs to both players. This
assumption is the most favorable to NE as any other equilibrium
choice would necessarily lead to poorer performance. However,
some games may not have a pure-strategy NE; in such cases we
assumed that the NE strategy chooses an action randomly. The

frequency of games without pure-strategy NE in some environ-
ments will be nonnegligible—we address the impact of this in the
results section.

Classification of Decision Policies

The decision policies can be classified according to at least two
dimensions: the (quantifiable) level of complexity and the chosen
path toward simplification.

Level of complexity. Spiliopoulos et al. (2018) calculated the
complexity of this set of decision policies in terms of the number
of elementary information-processing units (Payne, Bettman, &
Johnson, 1993) required to execute them. According to a ranking
based on elementary information-processing units, the NE is the
most computationally complex policy—a rank ordering of the
policies can be found in Table 2, denoted by (). The heuristics L3,
L2, D1, SocMax, and Eq are of intermediate complexity. Finally,
the L1, MaxMax, and MaxMin heuristics are the least complex
policies, requiring significantly fewer computational resources
than the rest. The appropriateness of measuring complexity along
these lines is corroborated by process-tracing studies using eye-
tracking or Mouselab, which find a strong relationship between the
order of comparison and fixation of game payoffs and the types of
decision policies participants used. For example, the complexity of
Level-k policies increases in k as a larger number of fixations and
comparisons must be performed. Representative studies using
process-tracing in strategic games include Brocas, Carrillo, Wang,
and Camerer (2014); Camerer, Cachon, and Johnson (2004); Cam-
erer, Johnson, Rymon, and Sen (1993); Chen, Huang, and Wang
(2018); Devetag et al. (2016); Johnson, Camerer, Sen, and Rymon
(2002); Knoepfle, Wang, and Camerer (2009); Polonio et al.
(2015); Wang, Spezio, and Camerer (2010).

Path to simplification. The heuristics can be also be catego-
rized qualitatively by the paths to reduce computational complex-
ity they embody. These include reducing the amount of informa-
tion required, rendering the process of integrating information less
complex, or simplifying the assumptions made about an opponent
or their beliefs. The paths taken to reduce complexity can be
broadly categorized as payoff-based or probability-based simpli-
fication. Here we identify four paths: using only own payoff

12 To enumerate all equilibria (pure and mixed) in a 20 X 20 game using
the algorithm in Avis (2000) requires approximately 8.36 hr per game
(calculated using the implementation in the Game Theory Explorer http://
gte.csc.liv.ac.uk/index/). For 15 X 15 games, it is approximately 2 min per
game.

'3 One interpretation of a mixed strategy Nash equilibrium, is to specify
it over a population of players individually choosing a pure strategy. This
is consistent with our assumption that players use a decision policy rec-
ommending a pure strategy; therefore, if players use different decision
policies then at the population level aggregate behavior will appear to be
mixed. Another alternative, which is applicable at the individual level,
is the purification interpretation (R. J. Aumann, Katznelson, Radner,
Rosenthal, & Weiss, 1983; Harsanyi, 1973). A player chooses determin-
istically based on a random variable that only he or she is privy to—an
external observer would view this player’s behavior as stochastic.
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Table 3
Empirical Prevalence of Decision Policies

Prevalence (ranking)

Studies First Second Third
No time pressure
Stahl and Wilson (1994) L2 NE L1
Stahl and Wilson (1995) L1 Random NE
Costa-Gomes, Crawford, and Broseta (2001) L2 L1 D1
Costa-Gomes et al. (2001)* D1 L1 L2
Costa-Gomes and Weizsicker (2008) L1 D1 L2
Rey-Biel (2009) D1 NE L2/L3
Sutter, Czermak, and Feri (2013) L1 D1 SocMax
Polonio and Coricelli (2019)* L2 L1 Comp.
Polonio, Di Guida, and Coricelli (2015)* L1/SocMax L2
Spiliopoulos et al. (2018)* L1 D1 NE
Time pressure
Spiliopoulos et al. (2018)* L1 SocMax L2

Note. NE = Nash equilibrium; L1 = Level-1; L2 = Level-2; L3 = Level-3; SocMax = social maximum;
D1 = dominance-1. Comp. is a competitive policy maximizing the difference between own and opponent

payoffs.

# Marks analyses including information search (process-tracing).

information, which is payoff-based; and equal weighting, no
weighting, and using a single reason, which are probability-based.

Payoff-based simplification.

Path 1: Ignore the strategic element of games by using only
own payoff information and ignoring the opponent’s payoffs
(OwnP). In terms of information search, players may choose to
search for both own and opponent payoffs, or reduce the game to
a nonstrategic decision task by completely ignoring an opponent’s
payoffs. The set of decision policies that require only information
about own payoffs are MaxMax, MaxMin, and L1. The remaining
decision policies require information about both own and opponent
payoffs.

Probability-based simplification. In contrast to individual
decision making involving risky gambles (decisions from de-
scription; Hertwig & Erev, 2009), no explicit probabilities of
outcomes are provided to players in the games. A common
approach in the game theory literature is for a player to form
beliefs about an opponent’s behavior. Based on these beliefs an
expected payoff calculation can be made for each action, and
the player can choose the action affording the highest expected
payoff. At the NE, beliefs about the opponent’s behavior must
be consistent. Abolishing this requirement opens the door to
nonequilibrium beliefs: Players are free to form beliefs as they
see fit; thereby, allowing for at least the following three
probability-based simplification strategies.

Path 2: Do not estimate the probability of each action but apply
the principle of indifference (equal weighting; EQW). One sim-
ple assumption is that the probabilities of each action of the
opponent are equal, resulting in an equal weighting of the
player’s own payoffs when inferring the expected payoffs to an
action. This can be viewed as a strategic variant of the equal-
weighting principle proposed for prediction (Dawes, 1979) and
of Laplace’s principle of indifference (Stigler, 1986). The heu-
ristics that make this assumption are L1 and DI1. D1 first
removes the opponent’s dominated actions, and only then as-
signs equal weights to the remaining actions. L1 is of particular

interest because it is the most frequently recruited by real
players in strategic games.

Path 3: Do not form beliefs about an opponent’s behavior (no
weighting; NW).  This path to simplification does away with the
notion of beliefs completely so that payoffs are not weighted at all
by the likelihood of an opponent choosing a particular action.
SocMax and Eq take this path; they do not weight payoffs accord-
ing to the likelihood of the relevant outcomes being obtained.
Instead they require either the addition or subtraction of own and
opponent payoffs for every possible outcome, and then perform
only ordinal comparisons on the results.

Path 4: Base the decision on a single reason only (SR). An
even more spartan path to simplification is to not integrate any
payoffs at all, but instead make a choice based only on a single
reason (or payoff, in games). This approach avoids both weighting
and addition (completely forgoing any belief formation), and is the
most computationally simple class of decision policies.

Combining payoff- and probability-based simplification. The
decision policies that combine both a payoff- and probability-
based path to simplification are L1, MaxMax, and MaxMin. L1
combines Paths 1 and 2 as it both ignores the opponent’s payoffs
and uses equal weighting. MaxMax and MaxMin combine Paths 1
and 4. MaxMax is predicated on choosing the action with the
highest own payoff, MaxMin on choosing the action that guaran-
tees the highest own payoff assuming the worst-case scenario.
Neither MaxMax nor MaxMin require weighting or addition, only
ordinal comparisons among own payoffs based on maximum and
minimum operations.

Other more nuanced paths to simplification also exist. For
example, we have already hinted at the fact that some decision
policies make only ordinal comparisons—that is, they ignore the
cardinal information given in the absolute magnitude of the game’s
payoffs. L1, for instance, requires cardinal payoff information,
whereas MaxMax and MaxMin use ordinal information only.

Strategic dominance. Decision policies can also be classified
along yet another dimension, namely, whether they obey the
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principle of strategic dominance, and their assumptions about
whether or not the opponent adheres to this principle. If one of a
player’s (pure) strategies is better than another strategy—indepen-
dent of the strategy chosen by the opponent—then that strategy
dominates the other strategy (the latter is the dominated strat-
egy).'* If a strategy dominates all other strategies in a game, it is
referred to as a dominant strategy. We classify a policy as obeying
self-dominance if it never chooses a dominated strategy. MaxMax,
MaxMin, all Level-k policies (including D1) and NE obey self-
dominance. We classify a policy as obeying opponent-dominance
if it assumes that the opponent policy obeys its own self-
dominance. Accordingly, D1, L2, L3, and NE also obey opponent-
dominance.

The advantage of obeying dominance principles in a particular
environment depends on the probability that dominated actions
exist in each of the environment’s games. The proportion of games
that have at least one dominated action falls quickly as the size of
the game increases (as n — o, this probability approaches zero).'”
Therefore, it is reasonable to expect that the influence of domi-
nance plays an increasing role in environments with small games;
thus, creating an ecological niche for policies that uphold strategic
dominance. Recall that L1 and D1 differ only in the first step: D1
removes the opponent’s dominated strategies. Consequently, L1
and D1 will converge in their recommended actions as the number
of actions increases.'® However, in terms of processes and infor-
mation needs, D1 would still require more steps than would L1 to
arrive at the same recommendation.

The Performance Metrics

For a given environment, we performed simulations using
25,000 randomly drawn games where each target policy played
against all other policies, including itself. Because of the symmet-
rical nature of the games, by averaging over both row and column
players, our findings are based on 50,000 strategic interactions per
target policy-competitor pair. Imagine each player choosing in
advance which decision policy to use across all games in a specific
environment. Now consider how strategic uncertainty affects the
choice of policy. If a player knows the opponent’s policy, they can
easily figure out the policy offering the best response. If they do
not know the opponent’s policy, they may form beliefs about the
distribution of decision policies in the population and, at least in
theory, calculate the expected payoffs for each policy conditional
on those beliefs. This is a probabilistic quantity; it requires weight-
ing the expected payoff against each decision policy by the prob-
ability of being matched with a player using that particular policy.
However, it is very difficult to learn the distribution of policies in
these environments. Consequently, players face profound strategic
uncertainty and are most likely unable to assign probabilities to the
distribution of policies in the population. Luce and Raiffa (1957)
argued that decisions in such large worlds (Savage, 1954) may be
enabled by one of two principles: the principle of indifference
(also known as the principle of insufficient reasoning) or the
maxmin principle. These two principles—which both assume that
players are interested only in their own payoffs, not those of their
opponents—inform our performance criteria. While this is a lim-
itation of our analyses, it is not an unreasonable first-order approx-
imation given the environments that we are examining for two
reasons. First, some kinds of other-regarding preferences (such as

reciprocity and social image concerns) are typically more impor-
tant in repeated rather than one-shot interactions with random
rematching. Also, as-if prosocial behavior is more likely to be
found by selfish individuals engaged in repeated interactions be-
cause of concerns about future play, for example, fear of punish-
ment or reputational concerns. Second, because our environments
include significant payoff uncertainty, players with social prefer-
ences would be obliged to use noisy inferred payoffs and, there-
fore, would not be able to reliably make decisions that are also in
the interest of their opponents.

According to the principle of indifference, each decision policy
is equally likely to be used by the opponent. A player’s expected
payoff over the whole set of games in an environment is then
simply an average of the expected payoffs against each decision
policy. We define this as the Indifference criterion (see Appendix
C for the mathematical definition). It is the expected payoff a
decision policy will achieve under two conditions: first, if the
policy plays against a population of policies that are uniformly
distributed in the player population or, second, if it plays against a
single decision policy but does not know which, and believes that
the policy is drawn with equal probability from the set of decision
policies.'” Under the assumption that players’ utility functions are
linear in the payoffs (i.e., risk neutral), then this criterion is what
a player with uniform beliefs would attempt to maximize.

To avoid confusing the maxmin principle with the MaxMin
heuristic, we refer to it here as the Wald criterion (Wald, 1945).'®
According to the Wald criterion, in contrast, the performance of a
policy is measured in terms of the worst-case scenario with respect
to its opponent’s decision policy. In other words, in the face of
strategic uncertainty about an opponent’s policy, the player as-
sumes the worst: That given their chosen policy the opponent will
be using the policy that imposes the worst possible average payoff
for that environment. Consequently, the player chooses the policy
that maximizes the expected payoff from this worst-case scenario.
Policies that are robust to severe strategic uncertainty should

!4 Our concept of strategic dominance is restricted only to pure strate-
gies, not mixed strategies, to match our decision to consider only pure-
strategy Nash equilibria.

'3 Indicatively, for a true game of size n = 2, 3, 4, 5, 10, 20 it is 0.5, 0.58,
0.55, 0.48, 0.08, 0.0004, respectively.

16 Considering the existence of dominated or dominant strategies in a
game can reveal further relationships between the decision policies. As
observed by Costa-Gomes et al. (2001), a Level-k heuristic’s proposed
action is identical to that of the Nash equilibrium for games that are
solvable by k rounds of iterated dominance (in pure or mixed strategies).
Level-k heuristics (that first removed dominated strategies of their oppo-
nent from the consideration set, e.g., D1) are identical to the Nash equi-
librium in games that can be solved by k + 1 rounds of pure-strategy
dominance. Consequently, in many 2 X 2 games with complete informa-
tion there is significant overlap between decision policies, leading many
simpler heuristics to emulate the Nash equilibrium.

7 Recall that L1 and D1 converge in their prescribed actions, especially
for n > 10, and that L2 is by definition a best response to L1. Therefore,
to avoid giving L2 an advantage over other policies (that are at best, a best
response only to one other policy) we have halved the weighting of L1 and
D1 in this criterion. Without this adjustment, qualitative results are similar
but L2 does receive a small boost as expected. See Appendix C for more
details.

'® The MaxMin heuristic operates over the possible actions chosen in a
single game, whereas the Wald criterion operates over the policy chosen by
an opponent in an environment, that is, a set of games.
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perform well on the Wald criterion. This criterion could also be
interpreted as one associated more closely with a satisficing rather
than optimizing player, as maximizing the worst-case scenario
guarantees a particular level of payoffs, which can be interpreted
as the minimum aspiration level.

In a nutshell, the Indifference criterion, 7, captures policies’
average performance against the whole set of possible opponent
policies, assuming each is equally likely. If players choose the best
policy according to the Indifference criterion, this would imply
uncertainty neutrality. In contrast, the Wald criterion, ,,, captures
the minimum performance that can be guaranteed regardless of the
opponent’s policy. If players choose the best decision policy
according to the Wald criterion, as suggested by Gilboa and
Schmeidler (1989), this would imply (extreme) uncertainty aver-
sion.

Last but not least, we propose a third alternative measure of
performance, the Composition-Robustness criterion. In contrast to
the Indifference criterion, where opponents are implicitly assumed
to be encountered in the population with equal probability, the
Composition-Robustness criterion allows for every possible mix-
ture (composition) of opponent policies in the population. There-
fore, this measures the robustness of a decision policy with respect
to strategic uncertainty for a given environment—that is, whether
it performs well regardless of the composition of opponent policies
in the population. The criterion is calculated using the percentile
ranking of a decision policy’s performance in an environment,
averaged across all possible population compositions. A ranking of
1 (0) indicates that a policy was always the best (worst) performing
policy in an environment, regardless of the composition of the
opponent population. A detailed definition of this criterion and a
discussion of the findings can be found in Appendix D. Finally, in
Appendix E (Tables E1-E3) we also examine pairwise compari-
sons of the policies, thereby breaking down policies’ performance
according to the Indifference criterion into its constituent compo-
nents conditional on each possible opponent policy.

Having defined these performance criteria, we now turn to the
results of the competition to examine how well the heuristics fared
when facing both strategic and payoff uncertainty. Note that the
online supplemental materials contains reproductions of the same
analyses as below for the additional simulations—we will report
the most importance differences between the core and additional
simulations at relevant places in the main text. Furthermore, we
will also assess policy performance over two different subsets of
the core simulation:

1. In contrast to the results in the main text, which explore
the whole space of environments n = 20 and m = 80%,
we also examine a subset of environments that are more
in line with the those explored in the experimental liter-
ature, where game sizes are typically smaller and missing
payoffs are less likely. This subset consists of the envi-
ronments where n = 10 and m = 50%.

2. As pointed out, the NE decision policy chooses the
pure-strategy NE when at least one exists, but otherwise
chooses randomly. To explore the degree to which this
policy is affected by a lack of pure-strategy NE, we
restrict the performance criteria to only those inferred

games (in each environment) for which at least one
pure-strategy NE exists.

Performance on the Indifference Criterion,

Figures 1, 2, and 3 show the performance of the competing
policies across the neutral, discordant, and harmonious environ-
ments, respectively, measured in terms of the Indifference crite-
rion. Each figure consists of 10 subgraphs (heatmaps) showing the
performance of each decision policy conditional on the size of the
game (n) along the y-axis and payoff uncertainty (m, the percent-
age of missing information) along the x-axis for a given value of
p. As a benchmark, the top-left and top—center panels show the
performance of random choice and the NE. The darker the shad-
ing, the better the performance. For each environment, we will
refer to the best-performing policy and all other policies within 5%
of its performance as the “set of top-performing” policies; these
policies can be considered as not being significantly economically
different.'® Alternatively, these could be considered as the set of
satisficing policies: Heuristics need not necessarily outperform
more complex policies to be considered useful, as this ignores the
tradeoff in terms of computational complexity and performance.
This set of policies is marked by a white dot overlaid on the
heatmaps. The robustness of a policy for given p is a function of
how large the area of dark shading is—the larger the area, the more
robust the policy’s performance over a range of game sizes and
degree of payoff uncertainty. A precursor to parts of the analysis
in this section has appeared as a book chapter (Spiliopoulos &
Hertwig, 2019).

Neutral Environment (p = 0)

We begin with the neutral environment, in which the player’s
and opponent’s interests are neither in harmony nor in conflict.
The following comparisons discussed here can be observed in
Figure 1.

The top-performing policies obey the self-dominance prin-
ciple and use equal weighting. L1 and D1 are the two best
performing heuristics across the map. They perform well across all
game sizes, and exhibit considerable robustness to high payoff
uncertainty. The next best policies, L2 and L3, are similarly robust,
but perform on average significantly worse than L1 and D1. Note
that L1 obeys the self-dominance principle; D1, L2, and L3 are
consistent with both the opponent- and self-dominance principles.

Assuming higher levels of rationality leads to poorer
performance. Increasing the level of rationality attributed to the
opponent beyond those assumed by L1 and D1 does not offer any
advantage. L2 and L3 not only perform significantly worse, but
also impose a significant increase in the computational complexity
and informational requirements. Similarly, the NE, which makes
the strongest assumptions about the opponent’s rationality, is not
as robust as L1 and D1. The NE achieves relatively high payoffs

' The notion of statistically (rather than economically) significant dif-
ferences between decision policies is not informative in these simulations,
because for a large enough set of games an arbitrarily small difference will
always be significantly different in the statistical sense. The findings are
very similar if the criterion for economic significance is a difference
greater than 10% of mean payoffs to all decision policies in an environ-
ment.
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Figure 1. Decision policy performance according to the Indifference criterion (7) for neutral environments
(p = 0). The set of top-performing policies for each environment is marked by an overlaid white dot. NE = Nash
equilibrium; L1 = Level-1; L2 = Level-2; L3 = Level-3; SocMax = social maximum; D1 = dominance-1;

Eq = equality.
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Figure 2. Decision policy performance according to the Indifference criterion () for discordant environments
(p = —0.5). The set of top-performing policies for each environment is marked by an overlaid white dot. NE =
Nash equilibrium; L1 = Level-1; L2 = Level-2; L3 = Level-3; SocMax = social maximum; D1 = domi-
nance-1; Eq = equality.
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only in very small games and is in the set of best performers only
for games of size 2 and moderate to high payoff uncertainty.

Policies using a single reason oversimplify. Two of the com-
putationally simplest heuristics, MaxMax and MaxMin, achieve mod-
erate performance in just a small subset of environments involving
low payoff uncertainty. The extreme simplification embodied in
these heuristics seems to overshoot the mark, leading to poor
performance. However, SocMax, which is computationally simple
but requires information about both own and opponent payoffs, is
in the set of top performers for two niches: in large games if there
is no missing information and in games where n = 7 combined
with very high uncertainty. Overall, SocMax is the fifth highest
performing policy (averaged over all n and m).

Discordant Environment (p = —0.5)

To what extent do the aforementioned findings generalize to an
environment in which a player’s and an opponent’s interests di-
verge? The answer can be found in Figure 2. For the sake of
conciseness, we spell out the main differences in the results com-
pared with the neutral environment. The best performing heuristics
overall and in terms of robustness to game size and payoff uncer-
tainty are still L1 and D1. However, their closest competitors in
neutral environments, NE, L2, L3, and SocMax, perform signifi-
cantly worse and are less robust in discordant environments. The
demise of the NE is particularly striking as its performance in
medium to large games collapses across all degrees of payoff
uncertainty. This is primarily because of the fact these environ-
ments include many games without a pure-strategy NE—we return
to this point later. With the exception of a small niche of large
games with high payoff uncertainty where L3 is the best per-
former, no policies other than the top performers in the neutral
environment belong to the set of top performers in the discordant
environment.

Harmonious Environment (p = 0.5)

Finally, what happens in an environment in which interests are
aligned? Results in Figure 3 suggest substantial differences. Av-
eraging over the whole map, SocMax is the best performing
policy, followed closely by the NE; the latter lags behind SocMax
if payoff uncertainty is high (m = 40%). Computational complex-
ity is also in favor of SocMax, which is significantly less complex
than the NE. Furthermore, the NE implementation assumes that the
equilibrium with the highest joint payoffs is chosen; therefore, the
NE policy would perform worse for an alternative equilibrium
selection assumption. L1 and D1 are the next best policies and they
belong to the set of top performers for approximately half of the
environments (low to moderate payoff uncertainty, largely inde-
pendent of the game size). They are followed by L2 and L3, which
belong to the set of top performers only for small games. Very
simple strategies such as MaxMax and MaxMin never belong to
the set of top performers.

Performance on the Wald Criterion, ,,

The second performance criterion focuses on the robustness of
a policy under the assumption that the player is matched with an
opponent who chooses the policy with the worst possible outcome

for the player. Figures 4, 5, and 6 plot the competing policies’
performance, using the same logic as the previous figures. A high
proportion of dark shading implies robustness to both strategic and
payoff uncertainty for the majority of game sizes. The key results
are summarized below.

Neutral Environment (p = 0)

Using equal weighting and obeying the self-dominance prin-
ciple pays off. The top-performing heuristics across all environ-
ments are L1 and D1; no other policy belongs to the set of top
performers in any of the environments. Their performance is
particularly high relative to the other policies in games of all sizes
with low to moderate payoff uncertainty. Both top-performing
heuristics implement equal weighting: They assume that the op-
ponent is equally likely to play any of their actions (for D1, this
holds for nondominated actions). Thus, L1 and D1 do not make
specific bets about the behavior of their opponent. Furthermore,
they both adhere to the principle of self-dominance and, therefore,
never choose a clearly inferior action.

Single reason simplification pays off. MaxMax and MaxMin,
which use only a single reason, are the next-best policies and are
fairly robust to environmental properties. While their performance
lags significantly compared with L1 and D1, they are significantly
simpler than, yet still outperform, more complex strategies such as
L2, L3, and NE.

Assuming higher levels of rationality leads to poorer
performance. The payoffs for NE, L2, and L3 are very low
across the majority of environments; their performance is only
moderately better for small games with low payoff uncertainty.
This is a consequence of the implicit assumptions of these policies
that other players also exhibit relatively high levels of rationality.
Therefore, if matched with simple policies that are not based upon
strategic principles, such as MaxMax, this mismatch will lead to
underperformance.

SocMax is not robust to the worst-case scenario. Despite its
strong performance according to the Indifference criterion—par-
ticularly in harmonious environments—SocMax proves extremely
fragile in terms of the Wald criterion for all game sizes and degrees
of payoff uncertainty. It is outperformed by single-reason policies,
which also dominate it in terms of computational simplicity.

Discordant Environment (p = —0.5)

Discordant environments change the map of ecological rational-
ity significantly for the Wald criterion. The most robust policy is
MaxMin, which is the best performer for all environments except
for games with size 2, where NE dominates. Averaging over the
whole map, the best performing policies after MaxMin are L3 and
MaxMax, although the performance difference with respect to
MaxMin is greater than 5%. The L1, D1, and L2 heuristics perform
relatively well (but do not belong to the set of top performers) for
small games of five actions or less across the whole range of
payoff uncertainty, but are no longer robust in larger games.
Random behavior and other simple heuristics such as MaxMax and
SocMax outperform these heuristics in large games.
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Figure 4. Decision policy performance according to the Wald criterion (1r,,) for neutral environments (p = 0).
The set of top-performing policies for each environment is marked by an overlaid white dot. NE = Nash
equilibrium; L1 = Level-1; L2 = Level-2; L3 = Level-3; SocMax = social maximum; D1 = dominance-1;
Eq = equality.



ied publishers.

yrighted by the American Psychological Association or one of its

This document is cop
This article is intended solely for th

ersonal use of the individual user and is not to be disseminated broadly.

ep

Random

B e e
SO P AN E DR — D00 TN B LN

Size of action space

REQERPRE PP RO OERDO
% of missing payoffs

MaxMin

Size of action space

RHEQERPRE PP RO OERND
% of missing payoffs

L1

2/
3
4
5
6
7
8
9
0
1
2
3
4

Size of action space

ROERERERLRPRDOENDSD
% of missing payoffs

L3

Size of action space

AIRCENECIEN

PEDLRERDPSENOS
% of missing payoffs

HEURISTICS AND STRATEGIC UNCERTAINTY

Size of action space

Size of action space

Size of action space

DO QERPE P D PP QER D

% of missing payoffs

SocMax

D ORERPE PO R PERSSENOR®
% of missing payoffs

R RS
% of missing payoffs

20

261

Size of action space

VDOQOEPRPERLERPERDLQERDED
% of missing payoffs

E

Size of action space

DOPERPP R DR L RPRENED
% of missing payoffs

L2

Size of action space

DOQERPE RO PR HE DD QEDED
% of missing payoffs

Figure 5. Decision policy performance according to the Wald criterion (,,) for discordant environments
(p = —0.5). The set of top-performing policies for each environment is marked by an overlaid white dot. NE =
Nash equilibrium; L1 = Level-1; L2 = Level-2; L3 = Level-3; SocMax = social maximum; D1 = domi-

nance-1; Eq = equality.



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

Random

Size of action space

DEJLOEREDERHRDQERNO R
% of missing payoffs

MaxMin

Size of action space

D OQERER O R P RO ERD DD
% of missing payoffs

Size of action space

POEPVRPIHLRPRDOENDOS
% of missing payoffs

L3

Size of action space

VDOEQERPRSLSRPDNDLQRENDSD
% of missing payoffs

SPILIOPOULOS AND HERTWIG

Size of action space

ORI PPR PR HERHOEDLP
% of missing payoffs

SocMax
=

Size of action space

DOJOLRPR SV HRDLQEDNO R
% of missing payoffs

D1

Size of action space

PEDIRORPREDOP
% of missing payoffs

EREE

Size of action space

Size of action space

of action space

D OQEPPE RO PP RERERSP
% of missing payoffs

Eq

VOO ER O R P RDSERE D
% of missing payoffs

L2
|

VOQERPPE RO RO QEDED
% of missing payoffs

Figure 6. Decision policy performance according to the Wald criterion (1,,) for harmonious environments (p =
0.5). The set of top-performing policies for each environment is marked by an overlaid white dot. NE = Nash
equilibrium; L1 = Level-1; L2 = Level-2; L3 = Level-3; SocMax = social maximum; D1 = dominance-1;

Eq = equality.



publishers.

and is not to be disseminated broadly.

gical Association or one of its allied

This document is copyrighted by the American Psycholo,
This article is intended solely for the personal use of the individual user

HEURISTICS AND STRATEGIC UNCERTAINTY 263

Harmonious Environment (p = 0.5)

As can be witnessed by comparing Figures 4 and 6, the perfor-
mance of the decision policies is virtually identical to the neutral
environment.

A Summary of Performance on the Composition-
Robustness Criterion

We briefly summarize the findings according to this third cri-
terion; details can be found in Appendix D. For neutral environ-
ments, L1 and D1 perform best, followed by the other Level-k
policies. In harmonious environments, SocMax, L1 and D1 are the
top performers, although SocMax dominates the niche associated
with high payoff uncertainty (m = 50%). While NE is in the set of
top-performing policies only for n = 2, it still maintains a consis-
tently high level of performance across the entire map. Finally,
discordant environments significantly alter the performance land-
scape: D1 and L1 are the clear winners (with the former exhibiting
greater robustness to game size), whereas NE performs very
poorly. MaxMin and higher Level-k policies perform moderately
well across the map, but exhibit different levels of robustness to
strategic uncertainty conditional on the environmental niches.

General Discussion

Our analyses have shown that the surprising performance of
heuristics observed in individual decision making does generalize
to strategic choice as well. The conclusion, however, is not that
heuristics are invariably good (or bad, for that matter); rather,
judging the success of a heuristic necessitates asking under what
environmental conditions they work and fail. We now consider
implications of these results and outline extensions for further
work.

Matching Heuristics and Environments

In the previous section we presented detailed maps outlining the
ecological rationality of the 10 decision policies according to the
performance criteria. What are the key findings from the simula-
tions? Table 4 shows the performance, according to all three
criteria, for every decision policy conditional on the degree of

harmony of the environments, but averaged over all possible
combinations of payoff uncertainty and game size. The columns
marked “All p” present the performance averaged over all three
environmental properties: n, m, p. According to the Indifference
criterion, L1 and D1 are the top-performing policies except in
harmonious environments, where they are clearly outperformed by
SocMax and the NE; in the case of the latter, however, this is
conditional on equilibrium selection based on the maximum joint
payoffs. According to the Wald criterion, L1 and D1 are again the
top-performing policies, except for discordant environments,
where MaxMin is the best policy. The results for the Composition-
Robustness criterion are very similar to those of the Indifference
criterion. D1 is the best policy (followed by L1) in all environ-
ments with the exception of harmonious environments, where
SocMax performs best. More detailed maps of ecological rational-
ity across n and m for the Composition-Robustness criterion can be
found in Appendix D. These findings are robust to the following
three alternatives.

First, restricting the space of possible environments to a subset
that consists of smaller games (n = 10) with less missing infor-
mation (m = 50%) yields similar conclusions—see Table 1 in the
online Supplemental Material. If anything, for these environments
L1 and D1 expand their dominance; the latter, in particular, be-
longs to the set of top performing rules for environments of all
degrees of harmony and performance criteria, with the exception
only of p = —0.5 for the Wald criterion.

Second, the general performance of L1 and DI is further en-
hanced in simulation S" where players have perfect information
about their own payoffs, but missing (incomplete) information
about opponent payoffs—see Table 3 and Figures 1-9 in the online
Supplemental Material. For the Indifference criterion, the NE
policy belongs to the set of top performing rules only for p = 0.5
and for virtually zero missing opponent payoffs. For the Wald
criterion, this occurs only for p = —0.5, n = 2 and very low
missing information (m = 15%). L1 and D1 are top-performers for
almost all environments and performance criteria, with the excep-
tion of p = —0.5 and the Wald criterion. The intuition behind the
improvement in L1 performance is that because it relies only on
own payoffs, the heuristic is never led astray because it does not
have to infer any missing payoffs in these environments. By

Table 4
Summary of Decision Policies’ Performance According to the Performance Criteria
Indifference Wald Comp.-Robustness
p= 0 5 -5 All p 0 5 -5 All p 0 5 -5 All p

Random 9 7.3 —43 1.3 —.6 -3 —153 —54 5 8 5 6
NE 18.7 43.1 1.9 21.2 6.0 9.4 —8.7 2.2 54 74 33 54
MaxMax 14.2 322 54 17.3 9.2 10.8 —8.6 3.8 33 43 48 41
MaxMin 16.5 23.7 12.5 17.5 14.5 16.2 3.8 11.5 40 26 68 45
SocMax 20.4 44.8 34 22.8 7.1 10.7 —9.8 2.7 59 80 36 59
Eq 1.4 7.4 —-3.6 1.7 -4 -3 —13.1 —4.6 13 10 15 12
L1 25.7 40.6 16.0 27.4 22.2 25.0 —23.5 7.9 79 71 79 76
D1 26.1 40.8 16.4 27.7 21.8 24.5 —-21.6 8.2 86 71 86 81
L2 23.3 38.5 12.4 24.7 7.6 8.2 —39.1 -7.8 69 62 66 65
L3 21.6 37.3 12.1 23.6 8.0 13.9 —2.1 6.6 62 56 65 61

Note. NE = Nash equilibrium; L1 = Level-1; L2 = Level-2; L3 = Level-3; SocMax = social maximum; D1 = dominance-1; Eq = equality. The set

of top-performing policies are in bold.
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contrast, more sophisticated policies such as higher Level-k and
NE will be more susceptible to the uncertainty in their opponent’s
payoffs.

Third, in simulation S” where missing payoffs are inferred only
by imputing the mean of the observed payoffs and not their
variance or correlation, the qualitative results are virtually identical
to those of the core simulation. Details are reported in the online
supplemental materials, Table 5 and Figures 19-27.

Generally, the most complex decision policy, the NE, performed
anywhere ranging from poorly to modestly with respect to all
performance criteria, with the main exception occurring for the
Indifference criterion in harmonious environments. In the few
other cases where it was relatively competitive, this was typically
for small games with minimal payoff uncertainty. This implies that
it is not particularly robust to payoff uncertainty, strategic uncer-
tainty, or the size of the games. We mentioned earlier that not all
games have at least one pure-strategy NE and, therefore, the NE
policy we have implemented reverts to random choice for these
cases. That is, NE is not directly applicable for some games, given
that we have ruled out mixed-strategy NE (in one-shot games) on
the basis of their complexity, especially as the size of the game
increases. How detrimental is this for the performance of NE? This
depends on the proportion of games in an environment that will not
have any pure-strategy NE. These statistics can be found in Table
F1; the following numbers correspond to no payoff uncertainty,
but the qualitative results are similar for varying payoff uncer-
tainty. For neutral environments, this ranges from 0.125 (n = 2) to
0.35 (n = 20), for harmonious environments from 0.05 (n = 2)
to 0.01 (n = 20), and for discordant environments 0.21 (n = 2) to
0.93 (n = 20).%° For the latter, the probability of no pure-strategy
NE rises quickly with the game size; it is already 0.55 for n = 4.
This reveals another weakness of the NE policy, namely, that it
cannot propose a specific course of action for a large proportion of
the games in discordant environments and a moderate proportion
of large games in the neutral environment. Therefore, the only
alternative to random choice for these cases would be to resort to
another—necessarily less complex—policy, constituting further
evidence and an explanation for the frequent use of heuristics.?’
Consequently, part (but not all) of NE’s poor performance can be
attributed to this problem. For example, even in harmonious en-
vironments where this is not an issue, NE performs well according
to the Indifference criterion but exhibits subpar performance ac-
cording to the Wald criterion. In the online supplemental materials
(see Table 2), we present the analogue of Table 4 for games with
at least one pure-strategy NE, where our implementation of NE
does not resort to random choice. Averaging over n and m, the NE
policy still lags significantly behind L1 and D1 for the Wald
criterion, but now belongs to the set of top performing decision
rules for all degrees of harmony for the Indifference criterion.
However, it is never the sole policy in the set of top performers.
For p = 0 and —0.5, it shares this accolade with L1 and D1 and for
p = 0.5 with SocMax. Consequently, it is always possible to
achieve approximately the same level of performance as NE with
significantly less complex heuristics. We note also that the games
where the NE policy resorts to random choice provide a boost to
the L1 and D1 policies because they perform well against random
behavior. However, the above results based on games with pure-
strategy NE confirm that the high performance of L1 and D1 is not
crucially dependent on this—see also the high pairwise perfor-

mance of L1 and D1 against other policies independent of NE
documented in Appendix E.

This brings us to two other disadvantages of NE related to its
complexity that render it less desirable even in cases where its
performance matches that of other heuristics in our simulations.
The first is that if we account for the cognitive cost of implement-
ing the NE, it would be at an even greater disadvantage compared
with heuristics such as L1 and D1. It also has greater informational
requirements than does L1, which requires only information about
own payoffs (and not opponent payoffs). The second is that the
complexity in implementing it will likely lead to more errors in
applying this decision policy compared with simpler heuristics. In
our simulations we have assumed that each of the 10 decision
policies are implemented perfectly without error. Alternatively, the
inclusion of the Random policy in our simulation can also be
interpreted as a 10% likelihood that each of the other nine oppo-
nent policies are implemented with error resulting in a random
choice. However, if implementation errors are more likely the
more complex the decision policy is, this would put L3 and the NE
at an even greater disadvantage compared with simple heuristics
than our results suggest.

Ecological Rationality in the Environmental Niche of
Laboratory Studies

The experimental literature from which we drew the decision
policies predominantly used small games (n = 5) with no payoff
uncertainty (m = 0) and nonnegative degrees of harmony (p =
0).?? This corresponds to the upper-left edge in the heatmaps of
Figures 1, 3, 4, and 6. If, as we propose, heuristic use in laboratory
studies is at least partly driven by the ecological rationality of these
heuristics, then there should be a correspondence between the
simulated performance and the empirical prevalence of these pol-
icies in this niche. Recall from Table 3 that the most common
policies were L1, D1, L2, and the NE. According to the Indiffer-
ence criterion, there is a significant correspondence with the em-
pirical prevalence, as L1, D1, and L2 exhibit similar high perfor-
mance, followed by the NE. The latter’s performance is typically
at its highest in environments of small games with no to little
uncertainty (i.e., the niche occupied by most experimental studies).

20 The probability that no pure-strategy Nash equilibria exist in a ran-
2

domly drawn game where p = 0 is given by >, _ (1) - (Z) - k!-(k)E,
where k = n? (Goldberg, Goldman, & Newman, 1968). Consequently, the
probability of zero pure-strategy Nash equilibria for n = 2, 3, 5, 10, 20 is
0.125, 0.21, 0.28, 0.33, and 0.35, respectively. This tends to 1 — (1 —
e!) = 0368 as n—o (Dresher, 1970; Goldberg et al., 1968). The
expected number of pure-strategy Nash equilibria is 1, regardless of the
size of the game (Powers, 1990).

2! At least without resorting to mixed-strategy Nash equilibria, which as
we have argued previously, are far too computationally complex to be
descriptive models of one-shot behavior. The existence of a pure-strategy
Nash equilibrium is less likely in neutral and discordant environments with
large games. That is, the mixed-strategy Nash equilibrium’s computational
complexity is at a maximum exactly for the types of games where it would
have to substitute for the lack of a pure-strategy Nash equilibrium; there-
fore, it is not a realistic alternative for these cases.

22 Discordant environments are more likely to yield games with no
pure-strategy Nash equilibria. Experiments using such games typically use
repeated rather than one-shot interactions, which are outside of our domain
of investigation as learning plays an important role.
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Note also that many of the experimental studies use coordination
games to examine equilibrium selection. These games are more
likely to arise in harmonious environments, where the NE policy
belongs to the set of top-performers. Our findings predict that the
empirical prevalence of NE behavior should fall significantly if
experiments draw games outside of this niche. According to the
Wald criterion, L1 and D1 are the best performers for neutral and
harmonious environments, consistent with the empirical preva-
lence of these heuristics.

Ultimately, which of the two criteria are more relevant for
participants’ policy choice depends on the player’s degree of
uncertainty aversion. The Wald criterion is an extreme case of
uncertainty aversion, whereas the Indifference criterion would
correspond to uncertainty neutrality. Empirical evidence points to
players exhibiting uncertainty aversion (Camerer & Karjalainen,
1994; Eichberger, Kelsey, & Schipper, 2008; Ellsberg, 1961; Pul-
ford & Colman, 2007), albeit not as extreme as that implied by the
Wald criterion. Therefore, a convex combination of the Indiffer-
ence and Wald criteria is a reasonable solution—a policy must
perform relatively well according to both criteria. This rules out
MaxMin, which performs well on the Wald criterion but is overly
pessimistic with respect to the Indifference criterion. As expected,
the most prevalent policies, L1 and D1, perform well according to
both criteria. Similarly, the least prevalent policies, such as Eq and
MaxMax, do not perform consistently well. From this one can
cautiously conclude that a notable correspondence between policy
performance and empirical prevalence exists, consistent with our
argument that ecological—rather than constructivist—rationality
(V. L. Smith, 2003) plays a role in policy selection. In the future,
it would be desirable for more experimental work to be directed
toward broadening the scope of empirical findings to other regions
of the environmental map, particularly with respect to payoff
uncertainty. Our findings make clear predictions about how prev-
alent policies should be in a broader range of environments based
on our mapping of their ecological rationality.

Sources of Heuristics’ Robustness

Next, let us briefly discuss what properties of heuristics foster
their robustness across payoff and strategic uncertainty. In partic-
ular, we consider two properties: adherence to dominance princi-
ples and resilience (consistency) against payoff uncertainty.

Adherence to dominance principles. Adherence to domi-
nance principles plays an important role in a policy’s robustness to
strategic uncertainty. Dominance principles do not in any way depend
on the behavior of the opponent or a player’s beliefs thereof. It is
always beneficial to avoid a self-dominated strategy because such a
strategy is by definition inferior to the dominating strategy for all
possible actions available to the opponent. Therefore, this property is
completely independent and robust to strategic uncertainty. Of the
decision policies under investigation, L1 adheres to the principle of
self-dominance but not opponent-dominance. D1, L2, L3, and NE
adhere to both self- and opponent-dominance principles. Whether the
assumption of opponent-dominance is appropriate depends on the
policy used by the opponent. It is, for instance, inappropriate for
opponent decision policies that do not obey self-dominance, such as
SocMax or Eq.

Consistency. One source of a policy’s robustness to payoff
uncertainty is the effect of the latter on the action chosen. That is,

given the same game, is the choice prescribed by a policy the same
when uncertainty is introduced and missing payoffs are imputed?
We define consistency of a policy as the percentage of choices
made across games that are identical to the choices that would
have been made had there been no payoff uncertainty (m = 0).

Consistency is fostered by two paths of simplification. First,
heuristics using Path 1 (ignoring the opponent’s payoffs) benefit
from their independence with respect to opponent payoffs; incon-
sistency arises only from own payoff uncertainty. Thus, L1,
MaxMin, and MaxMax stand to benefit from this simplification
path. Second, heuristics using Path 2 (equal weighting) exhibit
high consistency as decisions are based on comparisons of aver-
ages of payoffs per action, which are less susceptible to the noise
introduced by each individual imputed payoff. Consequently, we
expected L1 to benefit more than heuristics that are based on a
single reason (e.g., MaxMax). Similarly, the best-response profiles
associated with the NE are also fragile with respect to even a
single, significantly different, imputed payoff, whether that be an
own or opponent payoff.

These considerations are borne out by simulation results, presented
in full in Table F2. Figure 7 reviews the consistency of selected
policies of interest (based on their performance: L1, MaxMin, Soc-
Max, and NE) averaged over all possible game sizes, but for each
level of missing payoffs. The NE’s consistency is presented separately
for harmonious, neutral, and discordant environments; the other pol-
icies’ consistency does not significantly change with p, because they
use only own payoffs. L1 (and by association D1) exhibits high
consistency across different levels of payoff uncertainty, as does
MaxMin, for all degrees of harmony (p = 0, 0.5, —0.5). By contrast,
NE exhibits lower consistency over all levels of payoff uncertainty
and degrees of harmony than L1 and MaxMin. NE has particularly
low consistency for discordant environments, as it falls below 20%
with only 20% missing payoffs. In general, as the game size increases,
the NE exhibits significantly lower consistency than the majority of
other decision policies.

The importance of consistency becomes even more evident in
simulation S” that allows for differences in expectation of the average
quality of actions. Recall, that in this case the payoffs for each action
are drawn from an action-specific distribution, whose mean is deter-
mined by a random draw; therefore, payoffs exhibit greater relative
variability across actions than in the core simulation. L1 and D1
perform even better in relative terms compared with other heuristics
and NE because of the introduction of positive correlation within each
action’s payoffs; see Table 4 and Figures 10—18 in the online sup-
plemental materials. This renders specific beliefs about an opponent’s
behavior significantly less useful, because it is more likely that re-
gardless of the opponent’s choice, the payoff will be high anyway.
Consequently, policies that ignore opponent payoffs and assume
equal-weighting are losing very little information, and the probability
that L1 (and D1) will make the same choices as NE increases.
Another way of thinking about this is that in these new environments,
the probability of a dominant and dominated actions increase signif-
icantly compared with the core simulation where actions’ payofts
have the same expectation. Therefore, L1 and D1, which obey own-
dominance, can exploit this even more efficiently than in the core
simulation. Should we then expect L1, D1, and NE (and higher
Level-k heuristics) to converge in performance across the whole map
of environments? This is only the case for environments without
payoft uncertainty. As missing information increases, then the more
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sophisticated policies NE, L2, and L3 will still fall prey to their
relatively lower consistency compared with L1, leading them to
choose less desirable actions with greater likelihood. Hence, their
performance should degrade significantly more quickly with increases
in m. This predicted divergence in performance is exactly what is
found in simulation S"—details can be found in the online supple-
mental materials.

The Robust Beauty of the L.1 Heuristic

The L1 heuristic deserves special mention, as it not only uses a
probability-based simplification, equal weighting, but also a payoft-
based simplification (i.e., completely ignoring the opponent’s payoff
information). Despite this, it still obeys self-dominance and exhibits
high consistency. Because of these characteristics, L1 performed very
well according to both the Indifference criterion and the Wald
criterion over a large range of environments, with the exception of
the Wald criterion in a discordant environment. It also outper-
formed other decision policies in harmonious and neutral environ-
ments according to the Composition-Robustness criterion, thereby
exhibiting notable robustness to strategic uncertainty (see Appen-
dix D). There is, indeed, a robust beauty (Dawes, 1979, p. 571) to
this improper unit-weight decision policy not just in predictive
inference but also in strategic choice. Finally, the closely related
D1 also performed very well, sacrificing the payoft-based path to
simplification to satisfy opponent-dominance. Opponent-
dominance can improve the performance of D1 over the simpler
L1 in environments of small games if there are enough opponents
who do not play dominated strategies. As we showed above,
increases in the variance of the expected quality of actions, render
L1 and D1 even more robust because of their high consistency in
the face of payoff uncertainty and adherence to self-dominance.

Learning and Dynamics

Our analysis has emphasized the one-shot nature of many in-
teractions where players are randomly matched with opponents,

which ruled out repeated game strategies such as those in the
Axelrod (1984) tournaments, and where the degree of strategic and
environmental uncertainty made learning extremely difficult. Our
belief is that this is a relatively underresearched class of environ-
ments. However, the existence of environments where enough
experience may be accumulated to put decision policies under
some form of selection pressure should not be ruled out. Would
our findings carry over to a setting where decision policies are
subject to some form of selection based on their historic perfor-
mance? Dynamics are typically predicated on the simple assump-
tion that better performing policies should become more prevalent
over time either through an evolutionary (J. M. Smith, 1982) or
learning process (Fudenberg & Levine, 1998). While the general
principle of better performing policies becoming more prevalent
transcends the different types of dynamics, the exact specification
of these dynamics, the information that influences them, and
auxiliary assumptions (such as the initial distribution of decision
policies) can affect the outcomes. To precisely map this is a
difficult and complex endeavor requiring significantly more space
than we can devote to it here. However, below we lay out some
broad intuition about the important questions and general princi-
ples regarding the dynamic behavior of the decision policies and
implications of various dependencies. We conjecture that L1 and
D1 will continue to play an important role in many, though not all,
environments, even when dynamics are accounted for.

Consider a general case where policies compete over many
rounds against a population of players in the set of games belong-
ing to an environment—this is commensurate both with the repli-
cator dynamics often used in the evolutionary game theory liter-
ature and also with reinforcement learning. Given the high
performance of L1 and D1 according to the Indifference criterion—
and more importantly, the Composition-Robustness criterion—we
expect that these policies will be more likely to replicate in neutral
and discordant environments for the majority of the possible
trajectories of the composition of opponents over the rounds. There
will still be some combinations of initial population distributions
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that may push the dynamics into regions where these policies may
be outperformed. However, policies that are highly robust to
strategic uncertainty, especially with respect to the Composition-
Robustness criterion (and to a lesser degree the Wald criterion),
will be more likely to replicate strongly under the majority of
circumstances.

Is there a possibility for policies that are less robust to strategic
uncertainty to dominate the population? Yes, if the dynamics lead
to a state where a policy is matched often enough with its ideal (or
near ideal) opponent(s). In our analyses SocMax and NE are
examples of policies whose dynamic behavior will be more
strongly dependent on the evolution of the population. Recall that
SocMax performs considerably well according to the Indifference
criterion but not the Wald criterion in p = 0 and p = 0.5
environments (as does NE in the p = 0.5 environment). Examining
this further reveals that SocMax performs extremely well when
playing against itself—in fact, in most cases it is a best response to
itself, as is also the case for NE—see Tables E1-E3 in Appendix
E. Therefore, if at any stage of the dynamics (including the initial
population) the prevalence of SocMax or NE reaches a critical
mass, then it will lead to a self-sustaining takeover of the whole
population.

Given that dynamics favor better performing policies, a crucial
question is whether complex heuristics capable of higher levels of
rationality or sophistication are more likely to thrive. Stahl (1993)
is an instructive study on the evolution of players with different
levels of sophistication based on their beliefs about opponents and
degree of rationalizability. Players who were rational in the nor-
mative sense did not necessarily survive in the long run, especially
if costs were associated with more sophisticated reasoning. Under
many conditions, minimally sophisticated players were not driven
out of the population entirely. Ultimately, this depends both on the
population composition and on the type of game being played, as
more sophisticated policies do not necessarily perform better
against naive heuristics; recall the difference between games of
strategic substitutes and strategic complements (Camerer & Fehr,
2006). Although Level-k policies by definition best-respond to
Level-(k-1) policies, it is not self-evident that a player will receive
higher payoffs than if they adopted a lower level of sophistication.
On the one hand, in environments with a large proportion of games
with strategic substitutes players would have an incentive to switch
to higher-level reasoning; therefore, L2 will be more likely to
emerge because of the fact that it is a best response to L1.
Similarly, once the L2 population becomes significant this may
encourage L3 and so on, ultimately encouraging even the NE
policy in the long run; over time, one would expect to see succes-
sively higher levels of rationality in the population. However, this
analysis ignores the computational complexity of the decision
policies; the final outcome will depend on the strength of the effect
of the strategic substitutes versus the degree that the computational
complexity of a policy penalizes its performance. On the other
hand, in games with strategic complements, an emergence of L1 is
more likely to be self-sustaining; higher-level policies will not
replace it because there are no payoff incentives for higher-order
reasoning.

An alternative approach to modeling the dynamics of policy use
is based on learning rather than evolution. One learning approach
that has the advantage of not requiring the prior specification of
players’ policies models them as tabula rasa neural networks,

whose connection weights are adjusted in line with the myopic
ex-post best response after each game (i.e., the best response to an
opponent’s realized play in the immediately prior round). Spilio-
poulos (2011, 2012a, 2015) investigated the learning dynamics of
such neural network populations in environments of size 2 and 3,
with no missing payoffs and zero degree of harmony. This analysis
concluded that despite not being prespecified, emergent behavior
strongly approximating Level-k heuristics emerged over time, with
the dynamics we predicted above. These findings match our anal-
ysis for small games. Another approach uses reinforcement learn-
ing over decision policies, or rule-based learning (Stahl, 1999,
2000). That is, estimates of the value of the decision policies arise
from their use and resulting payoffs; the higher the valuation of a
policy the greater the likelihood of its future use. Because players
must explicitly use decision policies to gain information about
their performance, there is an exploration—exploitation tradeoff.
This would favor simple, robust policies that perform well against
many different types of opponents in the exploration phase, such as
L1 and D1.

In conclusion, based on these considerations we predict that L1
and D1 will retain their importance in many of the environments
that we have studied even when dynamics are introduced, with the
possibility that SocMax and NE will dominate some environments
under specific conditions. However, detailed maps of rationality
incorporating dynamics will be dependent on various conditions
that we have touched upon briefly above. One of these is the
inclusion of penalties for decision policies’ complexity, which
would be a significant advantage for D1 and, in particular L1,
which uses only own payoff information and relatively simple
computational processes. A thorough exploration of the dynamical
evolution of our set of policies deserves to be high on the agenda.

Conclusion

Experimental studies of strategic interactions have found signif-
icant evidence for the frequent use of heuristics (see Table 3). Our
results cast new light on this finding. The established narrative
attributes heuristic use to humans’ inability to reason according to
the complex NE. Alternately, it has been argued that people still
optimize their choice of policy, but subject to a constraint based on
the decision costs, which leads to the use of simpler policies. This
argument is based on the accuracy-effort (speed) trade-off, often
seen as a general law of cognition: Those who invest less mental
effort will pay a price in terms of lower accuracy (performance).
From this perspective, heuristics are, by definition, always second-
best; given unlimited resources, more computation and more time
would always be better.

We conducted a systematic investigation of how well decision
policies perform by varying the degree of payoff uncertainty, the
strategic uncertainty, the complexity of a game (in terms of the
number of actions available to each player), and the degree of
common (or antithetical) player interests in environments’ games.
Our findings challenge arguments that simple rules will falter in
competitive interactions (e.g., Sterelny, 2003). In parallel to work
in inference or individual decision making (Gigerenzer et al.,
2011), we found that less complex decision policies— heuristics—
were more robust to strategic and payoff uncertainty than complex
decision policies. Moreover, the heuristics that are more com-
monly used by participants in experimental studies of games (such
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as L1 and D1) were also found to be ecologically rational policies
for the environments typically implemented in these experiments.

Crucially, we have shown that in large-world strategic environ-
ments, abandoning normative axioms and Bayesian principles does
not necessarily imply irrational behavior. In this respect, our
findings are congruent with the beliefs of many prominent game
theorists who are, perhaps surprisingly, partial to heuristics. Rein-
hard Selten had a keen sense of the differences between normative
game theoretic models and descriptive models of behavior and was
a strong advocate for heuristics (Gigerenzer & Selten, 2001, see
also a discussion of his work in Nagel, Bayona, Kheirandish, &
Mousavi, 2016). Similarly, R. Aumann (1997) wrote, “ordinary
people do not behave in a consciously rational way in their
day-to-day activities. Rather, they evolve ‘rules of thumb’ that
work in general, by an evolutionary process like that discussed
above (Section la), or a learning process with similar properties”
(pp. 7-8). Hart (2005) made similar arguments for repeated
games: “From a more general viewpoint, the results show how
simple and far-from-rational behavior [adaptive heuristics based
on the avoidance of regret] in the short run may well lead to fully
rational outcomes in the long run” (p. 1415). Simon (1957) shared
similar views: “He [Administrative man] makes his choices using
a simple picture of the situation that takes into account just a few
of the factors that he regards as most relevant and crucial” (p. xxv).

Two paths of simplification were particularly successfully: equal
weighting and, surprisingly, ignoring an opponent’s payoff (that con-
stitutes the strategic component of the game). Equal weighting en-
sures that a heuristic will not choose a dominated strategy, which
would be suboptimal regardless of the type of opponent. Ignoring an
opponent’s payoffs constrained a policy from forming overly specific
beliefs regarding an opponent’s likely behavior. Such beliefs would
be detrimental insofar as their formation does not acknowledge the
inherent strategic uncertainty—in short, less can be more. Simple
heuristics such as L1, which adopts both paths of simplification, do
not necessarily sacrifice performance compared with the NE. Fur-
thermore, we showed that simple heuristics are more consistent
than complex policies in the face of environmental uncertainty
such as missing payoff information. That is, they are more likely
to recommend the same course of action as they would have done
if the game payoffs were perfectly known.

Map of Ecological Rationality

Undertaking a systematic investigation of the performance of de-
cision policies for different environments has revealed a map of
ecologically rational behavior, as defined by Gigerenzer et al. (1999)
and V. L. Smith (2003). The equal-weighting heuristics L1 and D1,
which attach the same likelihood to each of an opponent’s possible
actions (the latter after removing the opponent’s dominated actions),
showed consistently high performance across performance criteria
and robustness to payoff uncertainty. In terms of the Indifference
criterion, L1 and D1 were the top performers in neutral and discordant
environments. By contrast, the (pure-strategy) NE policy was solely
relatively competitive for harmonious environments, according to the
Indifference criterion only. However, in these environments the NE
policy suffers from the problem of multiple pure-strategy equilibria,
whereas the set of heuristics all prescribe a single course of action. For
neutral and discordant environments, the NE policy performed well
only for the kind of games typically used in experimental investiga-

tions of strategic behavior: complete knowledge of payoft information
and game sizes of roughly two to five actions. The subpar perfor-
mance of the NE policy, particularly for these two environments is
partially driven by the fact that a high proportion of games in these
environments admits no pure-strategy NE. Focusing only on
the subset of games exhibiting at least one pure-strategy NE, the NE
policy often performed on par with L1 and D1 according to the
Indifference, but not the Wald, criterion. However, this is achieved at
the cost of significantly more complexity than the L1 and D1 heuris-
tics. Furthermore, its inapplicability to games without pure-strategy
NE implies that players would have to resort to heuristics or mixed-
strategy NE—the latter are very unlikely in one-shot games given
their high computational complexity. The relatively simple SocMax
heuristic was the best performer in harmonious environments (fol-
lowed by NE), but its relatively precise assumption that an opponent
will also seek to maximize the joint payoffs to both players leaves it
vulnerable to exploitation by certain policies. In terms of the Wald
criterion, which measures a policy’s robustness to extreme strategic
uncertainty, L1 and D1 clearly dominated all others by a wide margin
in neutral and harmonious environments, while the even simpler
MaxMin heuristic dominated in discordant environments.

Processing Errors and the Risk of Oversimplification

In many respects, our analysis may have actually underestimated
the performance and applicability of simple decision policies versus
more complex policies. First, we have assumed perfect execution of
each decision policy; in practice, however, this would be dependent
on the complexity of executing a decision policy. Therefore, the NE
and Level-k policies where k = 2 would be more susceptible to
processing errors. Second, a complex decision policy would require
more time to execute: A decision maker using a heuristic would suffer
a smaller opportunity cost of time and would handle time pressure
more gracefully than one using a complex or normative policy.
However, let us also emphasize the limits of oversimplification.
Decision policies that base decisions on a single piece of information
without any weighting, such as MaxMax, typically performed worse
than other heuristics, with the exception of MaxMin in terms of the
Wald criterion. Decision policies that implicitly bet on an opponent
choosing a specific action with certainty typically assumed too little
strategic uncertainty, and often paid a high price. The NE, which
assumes both the rationality of the opponent and common knowledge
of this rationality, is a case in point.

Our results challenge the common wisdom that social complexity
necessitates cognitive complexity (e.g., Humphrey, 1976, 1988;
Whiten & Byrne, 1988; but see Hertwig & Herzog, 2009) because of
the additional uncertainty introduced by strategic intentions. We ex-
tended similar findings from the repeated games literature, where
simple strategies such as tit-for-tat or win—stay, lose—shift perform
remarkably well, to the one-shot game literature. Simpler decision
policies such as Level-k heuristics—in particular, L1 and D1—do not
inevitably sacrifice performance relative to a policy choosing a pure-
strategy NE. In fact, they can achieve high performance and robust-
ness in the face of substantial environmental and strategic uncertainty.
However, as we have pointed out, this does not imply that there are no
limits to the benefits of simplicity. Effective paths to simplification
must match the environmental properties to be ecologically rational.
We argue that the heuristics that people predominantly use—instead
of (pure-strategy) NE—in one-shot games are indeed ecologically
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rational for realistic environments, where significant environmental
and strategic uncertainty coexist.
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Appendix A

Definitions

Strategic Dominance

If a (pure) strategy a; is better than another strategy a; regardless of the
strategy chosen by an opponent, then ¢, is said to dominate a; and the
latter is referred to as a dominated strategy. If a strategy a;, dominated all
other strategies in a game, then it is referred to as a dominant strategy.

Incomplete Information

In a game of incomplete information, some information about
the players’ payoffs, preferences, or available actions is not com-
monly known to all players.

Nash Equilibrium

A set of strategies constitute a Nash equilibrium if no player
can gain (increase their payoffs) by a unilateral change of
strategy.

Appendix B

Policy Calculations

The following calculations are from the perspective of the row
player in the game presented in Table 1.

MaxMin

Find the lowest payoff in each row—these are 32, 23, and 23 in
the first, second, and third rows, respectively. Find the maximum
of these (32). Therefore, choose action Middle, thereby guarantee-
ing a payoff of at least 32.

MaxMax

Find the highest own payoff in the whole game matrix (94).
Therefore, choose action Up.

SocMax

For each cell, find the collective sum of payoffs to both players
(e.g., 58 + 57 = 115 for the upper—left outcome). Find the
maximum of these total payoffs (lower—left outcome, 144) and
choose action Down.

L1

Sum the own payoffs in each row—these are 184, 94, and 134
for the first, second, and third rows, respectively. Therefore,
choose the row with the largest sum, action Up.

D1

Examine whether the opponent has any dominated strategies.
Player 2’s Left action dominates the Right action, since regardless

of Player 1’s actions, the former always leads to a higher payoff
than the latter. Eliminate the dominated strategy Right from con-
sideration and perform an L1 calculation over the remaining strat-
egies, Left and Center. The payoffs from playing Up are 58 +
32 = 90, for Middle are 34 + 23 = 57, and for Down are 70 +
41 = 111. Consequently, the row player chooses Down, which
yields the highest mean payoff over the opponent’s nondominated
strategies.

L2

Sum the opponent’s payoffs for each (column) action—these are
177, 132, and 110 for the first, second, and third columns, respec-
tively. Assume that Player 2 uses L1 and will choose the action
with the highest sum, Left. Find the highest own payoff in the
column corresponding to Left (70). Play the corresponding action
Down.

L3

Assume the opponent is an L2 player. By definition, an L2 player
assumes that the opponent is L1. Find the solution to L1 for your own
payoffs—from above this is Up. As an L2 player, the opponent
(Player 2) will best-respond to Up by searching for their highest own
payoff in the row corresponding to Up, and will play Center. Finally,
choose the best response to this action by searching for the maximum
own payoft within the column associated with Center. The corre-
sponding action is Down with a payoff of 41.

(Appendices continue)



publishers.

gical Association or one of its allied

This document is copyrighted by the American Psycholo

ted broadly.

1al user

This article is intended solely for the personal use of the

HEURISTICS AND STRATEGIC UNCERTAINTY 273

Nash Equilibrium

Find the maximum payoffs in each row (i.e., a best response
to the assumption that the opponent has played each column
action). These are 70, 41, and 94 for actions Left, Center, and
Right, respectively. The corresponding best-response actions
are Down, Down, and Up, respectively. Perform the same

operations for the opponent (Player 2) payoffs for each row
action of Player 1. The corresponding best responses are Center,
Left, and Left for Player 2’s actions Up, Middle, and Down,
respectively. Determine for which actions these two best re-
sponses coincide. In this case, this occurs for the combination
Down, Left; therefore, Player 1 would choose Down and Player
2 Left.

Appendix C

Definitions of the Performance Criteria

Let the action space A(A’) of a player (opponent) denote the set
of actions a,(a,) available. The number of actions for each player
(or size of the action space) is denoted by N and N'. We assume
that this is the same for both players and, therefore, refer to the
common value N as the size of a game. A normal-form game g is
defined by a mapping from the action spaces of both players to
payoff functions m(a,, a,) and mg(a,., a,). That is, the combination
of actions (a,, a,) determines the payoffs of both players. Let the
decision policy space of a player (opponent) D (D’) denote the set
of policies d (d') available.

The first payoff in each cell of a normal form game, as presented
in Table 1, corresponds to the Row player and the second to the
Column player. For example, if the Row player chooses a, and the
Column player chooses a; then the former receives a payoff of 32
and the latter 89.

The Indifference Criterion 7

According to the Indifference criterion, the performance of a
decision rule d in an environment e consisting of a set of games G,
is given by:

Tdle) = 177 e Eo [ da(d). a@ ).

As we argued earlier, the L1 and D1 policies converge in their
recommendations as the size of the games increases. Because L2
is by definition a best response to these policies, including them
separately with equal weighting in the population would bias the
criterion in favor of L2. We decided to include L1 and D1 as a
single “policy,” by attributing half the weight to each and com-
bining them, that is, taking the mean of the individual perfor-
mance of the two and then weighting it as if it were a single

policy (L1/D1). Consequently, | D' | = 9 since D' = {Random,
MaxMax, MaxMin, Eq, SocMax, L1/D1, L2, L3, NE}. However,
we still calculate the performance 7 (d|e) of L1 and D1 sepa-
rately, that is, |[D| = 10.

The Wald Criterion

According to the Wald criterion, the performance of a decision
rule d in an environment e consisting of a set of games G, is given
by:

m(dle) = min Eg [ma(d).a'(d))].

The Composition-Robustness Criterion g,

Denote the proportion of a decision rule d’ in the population by
po and the set of proportions by 8. Assume that the set of possible
proportions of decision rules is distributed uniformly over the unit
simplex A" = X epps =1 and py = 0 for all py}. Let
(d 13, e) be the expected payoffs for a decision rule d playing the
set of games G, against a population of opponent decision rules
comprised of & proportions. This is essentially a weighted average
of the performance of d against every other decision rule d'. Let
I(d 3, e) be the percentile ranking (normalized between 0 and 1)
for a decision rule d’s expected payoffs m(d | d, e) compared with
the expected payoffs of all other decision rules. According to the
Composition-Robustness criterion, the performance of a decision
rule d in an environment e consisting of a set of games G, is given
by the integration of the percentile ranking over all possible values
of 9, that is, proportions of the decision rules in the population:

ma(dle) = [ _ oI5, edb.

EAIO
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Appendix D

Results: Composition-Robustness Criterion, 1,

In this section, we investigate the decision policies’ performance
with respect to the Composition-Robustness criterion, g, which is
the percentile ranking of a decision policy’s performance averaged
across all possible population mixtures. The performance of the de-
cision policies are presented in Figures D1, D2, and D3 below.

Neutral Environment (p = 0)

The most interesting cases are L1, D1, and L2. D1 signifi-
cantly outperforms L1 in small games, because the likelihood of
a dominated action existing in these games is higher. L1 and D1
are quite robust across the whole map. The Nash equilibrium,
while performing better than random across the map, is only
competitive with L1 and D1 for a game size of 2. Very simple
heuristics such as MaxMin, MaxMax, and Eq generally perform
poorly. Finally, SocMax is a very poor choice for small games
but performs adequately in larger games, especially for high
payoff uncertainty.

Harmonious Environment (p = 0.5)

The Nash equilibrium is robust across the whole map, but is
surpassed by SocMax for high payoff uncertainty. However, Soc-

Max performs poorly in very small games with little payoff un-
certainty. L1 and D1 are moderately robust, with D1 performing
better than L1 in small games where satisfying opponent domi-
nance is advantageous (more so because of the positive degree of
harmony).

Discordant Environment (p = —0.5)

Environments with conflict significantly alter the perfor-
mance landscape in terms of the Composition-Robustness cri-
terion. SocMax, which derives its prowess from cooperative
behavior, fails to be among the top-performing policies in such
an environment. The Nash equilibrium also performs poorly
and is not robust to game size or payoff uncertainty beyond
games of size 2. Predictably, MaxMin is a better choice in
discordant environments, but is dominated by L1 and D1. D1 is
the best performer on average throughout the whole map,
outperforming L1 primarily in small games where the likeli-
hood of an opponent having a dominated strategy is still rela-
tively high. L2 and L3 perform moderately well across the
whole map.

(Appendices continue)
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Appendix E

Pairwise Comparisons of Decision Policies

In this section, we present pairwise comparisons of how decision
policies perform when playing with each other. Because an exhaus-
tive comparison of all possible pairs of decision policies for each
environment is prohibitive, we present the performance averaged over
all m and n for environments where games are generated with p = 0,
0.5, and —0.5. Tables E1-E3 present the average payoffs to a player
using a decision policy (by rows) against an opponent using the policy
designated in the columns. If there were no strategic uncertainty about
the opponent, then a player could determine the expected best re-
sponse to the opponent’s decision policy by looking up this table.
Payoffs in bold highlight these best-response policies for each of the
opponent policies, including policies whose payoffs are within 5% of
the best-response; we refer to these policies as the set of best-
responses. For example, for p = 0 and an opponent using MaxMax,
the best response would be to use the D1 policy with average payoffs
of 25.3 (L1 is also in the set of best-response policies, with payoffs of
24.5).

The Nash equilibrium policy is only ever a best-responding
policy to itself for p = 0 and 0.5, while it is not a best-response
to itself for p = —0.5. However, the latter finding is because of
the high incidence of games with no pure-strategy Nash equi-
librium where the implementation of the Nash equilibrium
policy chooses randomly—if one were to look only at games
with pure-strategy Nash equilibrium, then the Nash equilibrium

Table E1

policy is a best-response to itself even in discordant environ-
ments. Note, that while L1 may receive a boost from Nash
equilibrium opponents for games without pure-strategy Nash
equilibrium—because L1 is a best response to LO or random
choice—it is clear that L1 still exhibits high performance even
against the remaining policies, completely excluding Nash
equilibrium opponents.

The documented strength of the L1 policy (and D1) according to
the Indifference criterion can be broken down into its source
components, that is, which opponent policies it performs best
against. L1 belongs to the set of best-response policies against four
opponent policies in p = 0, two policies for p = 0.5 and five
policies for p = —0.5. Furthermore, when L1 does not belong to
the set of best-response policies, it is very often the next best
policy. This is the case, for example, for p = 0.5, against MaxMin,
L1/D1, L2, and L3.

SocMax is always a best-response to itself and against MaxMax
for p = 0.5. This highlights the fragility of the SocMax policy to
strategic uncertainty, particularly in terms of the Wald criterion,
which we discussed in the manuscript. Equality, MaxMax and
MaxMin are never best-responding policies for any degree of p. As
expected, sophisticated Level-k policies, L2 and L3, are typically
best-responses to other Level-k policies, where k is one level
lower.

Pairwise Comparisons of Average Decision Policy Performance for Neutral Environments (p = 0), Averaged Across n and m

Opponent policies

Player Random MaxMax MaxMin SocMax Eq L1 Dl L2 L3 NE
Random .0 .0 .0 7.3 0 .0 .0 —.1 3 1.1
NE 6.2 14.1 8.1 37.1 6.3 12.7 12.9 14.8 18.4 50.7
MaxMax 10.4 11.6 9.9 383 9.5 10.6 10.6 10.5 11.4 16.0
MaxMin 15.7 15.9 15.5 227 14.7 15.7 15.7 15.5 15.7 16.8
SocMax 7.3 16.1 8.9 73.9 73 13.4 13.5 11.8 13.7 30.8
Eq .0 3 9 7.3 0 1.2 1.2 S .8 1.8
L1 24.1 24.5 23.8 37.6 22.9 24.0 24.0 23.4 24.1 26.7
D1 23.5 25.3 24.5 37.8 22.4 24.7 247 24.2 24.9 27.2
L2 8.2 21.7 27.0 24.7 7.7 74.5 72.6 15.5 15.9 15.8
L3 8.5 15.0 11.0 23.0 8.2 16.0 16.2 74.3 20.4 17.8

Note. NE = Nash equilibrium; L1 = Level-1; L2 = Level-2; L3 = Level-3; SocMax = social maximum; DI = dominance-1; Eq = equality. Each cell
presents the expected payoffs to the policy (in a specific row) against an opponent playing the policy in a specific column. Numbers in bold indicate the

best-response policies for each possible opponent policy.
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Table E2
Pairwise Comparisons of Average Decision Policy Performance for Harmonious Environments (p = .5), Averaged Across n and m

Opponent policies

Player Random MaxMax MaxMin SocMax Eq L1 Dl L2 L3 NE
Random .0 75 9.9 11.0 .0 15.2 14.9 5.2 8.8 79
MaxMax 11.6 322 224 66.7 10.9 33.7 33.9 29.4 30.5 52.0
MaxMin 16.7 23.8 21.5 28.0 16.3 27.4 27.3 31.3 23.6 24.4
SocMax 11.0 55.7 22.1 114.3 10.9 38.9 39.0 30.2 352 84.9
Eq .0 73 10.2 10.9 —.1 15.7 15.4 5.3 9.1 8.2
L1 25.7 37.8 32.8 49.1 251 41.0 40.9 74.1 379 41.9
D1 25.1 38.5 333 49.4 24.5 41.5 414 73.6 38.5 42.7
L2 8.7 322 37.4 353 8.4 94.8 93.0 24.5 75.4 30.6
L3 14.3 33.6 24.4 41.1 14.0 36.6 36.7 93.8 385 39.0

Note. NE = Nash equilibrium; L1 = Level-1; L2 = Level-2; L3 = Level-3; SocMax = social maximum; D1 = dominance-1; Eq = equality. Each cell
presents the expected payoffs to the policy (in a specific row) against an opponent playing the policy in a specific column. Numbers in bold indicate the
best-response policies for each possible opponent policy.

Table E3
Pairwise Comparisons of Average Decision Policy Performance for Discordant Environments (p = —.5), Averaged Across n and m
Opponent policies

Player Random MaxMax MaxMin SocMax Eq L1 D1 L2 L3 NE
Random .0 =75 -99 4.0 -1 —15.3 —15.0 —-53 =3.1 —-2.0
NE 3.5 —14 —4.8 11.3 3.4 —-8.7 —8.5 1.0 4.2 8.9
MaxMax 11.6 3.8 —4.5 25.7 10.2 —8.4 —8.5 —4.4 6.2 8.2
MaxMin 16.7 14.4 8.0 199 14.9 6.6 6.7 3.8 13.2 15.0
SocMax 4.1 —6.6 —4.2 39.0 4.0 —-9.7 -9.5 -29 1.3 5.1
Eq .0 —-6.5 —8.3 4.1 .0 —13.1 —12.8 —4.3 =27 —1.4
L1 25.7 21.5 12.7 324 23.6 104 10.6 —23.5 18.2 23.3
D1 25.2 22.1 13.1 32.3 23.1 10.9 11.0 —-21.6 19.0 23.5
L2 8.9 17.1 17.7 18.8 7.9 66.1 63.9 7.2 —39.1 8.7
L3 5.4 1.8 —1.1 124 5.2 —-1.7 -1.9 73.8 7.7 5.4

Note. NE = Nash equilibrium; L1 = Level-1; L2 = Level-2; L3 = Level-3; SocMax = social maximum; D1 = dominance-1; Eq = equality. Each cell
presents the expected payoffs to the policy (in a specific row) against an opponent playing the policy in a specific column. Numbers in bold indicate the
best-response policies for each possible opponent policy.
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Appendix F

Other Results

Table F1
The Probability of a Randomly Drawn Game With No Pure-
Strategy Nash Equilibria

Table F2
Policies’ Consistency Averaged Across (n, m) for Environments
With p = {0, 0.5, —0.5} and m > 0 (%)

p P

n 0 5 -5 Policies 0 5 —=.5
2 13 .05 21 Random 14 14 14
3 22 .07 41 NE 28 22 17
4 26 .07 55 MaxMax 31 30 31
5 28 .06 64 MaxMin 33 32 33
6 30 .05 70 SocMax 31 27 26
7 31 .05 75 Eq 39 39 39
8 32 .04 78 L1 37 35 37
9 32 .03 81 D1 36 34 36
10 33 .03 84 L2 27 26 27
11 33 .03 86 L3 27 24 23
12 34 .02 87 .

13 33 02 38 Note. NE = Nash equilibrium; L1 = Level-1; L2 = Level-2; L3 =
14 34 02 89 Level-3; SocMax = social maximum; D1 = dominance-1; Eq = equality.
15 34 .02 90

16 34 .01 91

17 35 .01 92

18 35 .01 93

19 35 .01 93

20 34 .01 93
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