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Ancestral Population Genomics

Julien Y. Dutheil and Asger Hobolth

Abstract

Borrowing both from population genetics and phylogenetics, the field of population genomics emerged as
full genomes of several closely related species were available. Providing we can properly model sequence
evolution within populations undergoing speciation events, this resource enables us to estimate key
population genetics parameters such as ancestral population sizes and split times. Furthermore we can
enhance our understanding of the recombination process and investigate various selective forces. With the
advent of resequencing technologies, genome-wide patterns of diversity in extant populations have now
come to complement this picture, offering an increasing power to study more recent genetic history.
We discuss the basic models of genomes in populations, including speciation models for closely related

species. A major point in our discussion is that only a few complete genomes contain much information
about the whole population. The reason being that recombination unlinks genomic regions, and therefore a
few genomes contain many segments with distinct histories. The challenge of population genomics is to
decode this mosaic of histories in order to infer scenarios of demography and selection. We survey modeling
strategies for understanding genetic variation in ancestral populations and species. The underlying models
build on the coalescent with recombination process and introduce further assumptions to scale the analyses
to genomic data sets.

Key words Ancestral population, Coalescence, Demography, Divergence, Markov model, Migration,
Recombination, Selection, Speciation

1 Introduction

We are in the population genomics era where data sets from the
1000 human genomes project [1], the great apes project [2], and
the 1001 arabidopsis genomes project [3] are available. The under-
lying data sets contain genotypic information for thousands of
individuals in one or several species, in the form of de novo
sequenced genomes or variation compared to an available “refer-
ence” genome (a.k.a. resequencing). By comparing genomes from
several individuals of the same species or closely related species, we
can obtain information about split times, population sizes, recom-
bination events, and selection in contemporary and ancestral
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species (see Fig. 1). In this chapter we discuss various models for
obtaining this information.

Comparing homologous sequences available for a given locus
to infer their degree of relatedness enables the discovery of the
parental relationships of the sequences, depicted as a tree thereby
named genealogy. When one sequence sampled from one individual
of one species is compared with sequences from other species, the
resulting genealogy contains information about the history of spe-
cies, the so-called phylogeny. The phylogeny summarizes the rela-
tionship and the divergence times between the species.

Conversely, when sequences from several individuals within a
species are sampled, we have access to the genetic variation in
contemporary populations. The evolutionary forces that shape
genetic variation within a species are genetic drift, mutation,
recombination, and selection and are the subject of population
genetics. The key modeling tool in population genetics is coales-
cent theory. Classical coalescent theory describes the genetic ances-
try of a sample of homologous DNA sequences from the same
species. This genealogical description includes times to common
ancestry, which is measured back into the past.

Molecular phylogenetics and population genetics have accu-
mulated 50 years of methodological developments. The conver-
gence of these two fields and their key mathematical and statistical
tools is needed in order to fully understand genomic sequence
alignments, because comparing genealogies and phylogenies is at
the heart of the study of the speciation process [4].

We describe the interplay between population genetics and
phylogenetics by reviewing the methods and models that have
been developed to understand evolutionary history from genomic
data (see Table 1 for a comparative summary of all methods).

Species 1 Species 2

Ancestor

Speciation

Position along genome

Divergence time

Recombination event

Fig. 1 Left: Isolation model of two species. Right: The coalescent process along the genomes of the two
species. By comparing the two genomes we obtain information about the split time of the species and the
ancestral population size. Furthermore the breakpoints along the genomes correspond to recombination
events, so we also have information about the recombination process
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2 Coalescent Theory and Speciation

We start by describing the standard coalescent model within one
population. The coalescent model describes the shape of the gene-
alogy of several sequences sampled from a single population. For
more information on the coalescent, we refer to [21, 22] and
[23]. This section describes the coalescent process as a chronologi-
cal process. In the next section, we will see how it can be modeled as
a spatial process along the genome. In subsequent sections we
extend the standard model to include two or more populations.
In the cases where multiple populations are present we describe
both the isolation model and the isolation-with-migration model.

2.1 The Standard

Coalescent Model

The standard coalescent model is a continuous-time approximation
of the neutral Wright–Fisher model. In the Wright–Fisher model
the number of chromosomes 2N (we consider diploid organisms) is
fixed in each non-overlapping generation. Each chromosome in a
new generation chooses its ancestor uniformly at random from the
previous generation.

Consider two chromosomes. The probability of the two chro-
mosomes choosing the same ancestor is 1/(2N) and the probabil-
ity of the two chromosomes not finding a common ancestor is
1 � 1/(2N). Let R2 denote the number of generations back in
time when the two individuals find a most recent common ancestor
(MRCA). By repeating the argument above, the probability of the
two chromosomes not finding a common ancestor r generations
back in time is

PðR2 > rÞ ¼ ð1� 1

2N
Þr :

If we scale time t in units of 2N, i.e., set r ¼ 2Nt, we get

PðR2 > rÞ ¼ ð1� 1

2N
Þr ¼ ð1� 1

2N
Þ2Nt

� e�t ,

where the approximation is valid for large N. In coalescent time
units the waiting time T2 ¼ R2/(2N) before coalescence of two
individuals is therefore exponentially distributed with mean one.

These considerations can be extended to multiple individuals.
In general the time Tn before two of n individuals coalesce is
exponentially distributed with rate n

2

� �
.

The waiting time Wn for a sample of n individuals to find the
most recent common ancestor (MRCA) is given by

Wn ¼ T n þ T n�1 þ � � � þ T 2,

where Tk are independent exponential random variables with
parameter k

2

� �
; see Fig. 2 for an illustration. It follows that the

mean of Wn is
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E½Wn� ¼
Xn

k¼2

E½T k� ¼
Xn

k¼2

2

kðk � 1Þ ¼ 2
Xn

k¼2

ð 1

k � 1
� 1

k
Þ

¼ 2ð1� 1

n
Þ:

Note that limn!1E[Wn] ¼ 2.
The variance of Wn is

Var½Wn� ¼
Xn

k¼2

Var½T k� ¼
Xn

k¼2

k

2

� ��2

¼ 8
Xn�1

k¼1

1

k2
� 4 1� 1

n

� �
3þ 1

n

� �
:

Note that limn!1Var½Wn� ¼ ð8π26 � 12Þ ¼ 1:16.
The consequences of these calculations are that when we only

sample within a population we are limited to relatively recent
events. The expected time for a large sample to find their MRCA
is approximately 2 � (2N) ¼ 4N generations with standard devia-
tion

ffiffiffiffiffiffiffiffiffiffi
1:16

p � ð2N Þ ¼ 2:15N generations. As a consequence, a
neutral sample within a population contains little information
beyond 6N generations.

Humans have a generation time of approximately 20 years and
an effective population size of approximatelyN ¼ 10, 000 (see [21,
p. 251]), and therefore 6N generations correspond to approxi-
mately 1.2 million years (My) for humans. Therefore human

T5

T4

T3

T2

W5

Fig. 2 Illustration of the coalescent process. The waiting time before two out of n individuals coalesce is Tn and
the time before a sample of n individuals find common ancestry is Wn
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diversity at neutral loci contains little demographic information
beyond 1.2 My.

2.2 Adding

Mutations to the

Standard Coalescent

Model

Now suppose mutations occur at a rate u per locus per generation.
In a lineage of r generations, we then expect rumutations or in the
coalescent time units with r ¼ 2Nt we expect 2Ntu mutations. We
let θ ¼ 4Nu be the mutation rate parameter. Since u is small we can
make a Poisson approximation of the binomial number of muta-
tions in a lineage of r generations

Binðr,uÞ ¼ Bin 2Nt ,θ=ð2 � 2N Þð Þ � Poisðtθ=2Þ:
We have thus arrived at the following two-step process for

simulating samples under the coalescent: (a) simulate the genealogy
by merging lineages uniformly at random and with waiting times
exponentially distributed with rate n

2

� �
when n lineages are present;

(b) on each lineage in the tree addmutations according to a Poisson
process with rate θ/2.

Another possibility is to scale the coalescent process such that
one mutation is expected in one time unit. In this case the expo-
nentially distributed waiting times in (a) have rate n

2

� �ð2=θÞ, and in
(b) the mutations are added with unit rate. We use the latter version
of the coalescent-with-mutations process below.

2.3 Taking

Recombination into

Account

For species where recombination occurs, different parts of the
genome come from distinct ancestors, and therefore have a distinct
history. Figure 3 exemplifies this phenomenon for two species. It
displays the genealogical relationships for two sequences which
underwent a single recombination event. In the presence of recom-
bination, each position of a genome alignment therefore has a
specific genealogy, and close positions are more likely to share the
same one (recall Fig. 1). The genome alignment can therefore be
described as an ordered series of genealogies, spanning a variable
amount of sites, and then changing because of a recombination
event [4]. The genealogy is therefore depicted as a complex graph
with nodes representing both coalescence and recombination
events, the ancestral recombination graph (ARG, Fig. 3c). A single
genome thus contains different samples from the distribution of the
age of the MRCA, and the distribution contains information about
the ancestral population size and speciation time. The coalescent
with recombination serves as a basis for modeling genome-wide
genealogy, a point that we will further develop in Subheading 4.

3 Adding Genetic Barriers and Gene Flow to the Picture: The Structured Coalescent

In this section we extend the standard coalescent model. We con-
sider coalescent models with multiple species and introduce popu-
lation splits or speciation events. The models that we describe are
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shown in Fig. 4 (see also Table 1) and include: (a) The two species
isolation model; (b) The two species isolation-with-migration
models; (c) The three species isolation model (and incomplete
lineage sorting); and (d) The three species isolation-with-migration
model. We also discuss the general multiple species isolation-with-
migration model. The two species isolation model was introduced
in [24] and the isolation-with-migration model was introduced
in [25].

3.1 Isolation Model

with Two Species

If the sequences are sampled from two distinct species that have
diverged a time T ago (see Fig. 4a), then the distribution of the age
of the MRCA is shifted to the right with the amount T, resulting in
the distribution

1 2 3

ARGLeft tree Right treeC)

B)A)

4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Fig. 3 Ancestral recombination graph for two species. (a) Genealogy of four sampled sequences from two
species. The bold line shows the divergence of two sequences of interest. (b) A single recombination event
happened between the lineages of sequences 3 and 4 (horizontal line), so that in a part of the sequences, the
genealogy is as depicted by the bold line and therefore displays an older divergence. (c) The corresponding
ancestral recombination graph (in black) with the trees of each side of the recombination break point
superimposed (red: left tree; blue: right tree). When going backward in time, a split corresponds to a
recombination event and a merger to a coalescence event
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f T 2
ðtÞ ¼

0 if t < T

2

θA
e�2ðt�T Þ=θA if t > T

8<
: ,

where θA ¼ 4NA � u is the ancestral mutation rate. The mean time
to coalescent is E[T2] ¼ T + θA/2 and the average divergence time
between two sequences is twice this quantity, that is, 2T + θA. Since
θA ¼ 4NAu it follows that the larger the size of the ancestral

T

NA

a)

T N1 N2

NA

m2→1

m1→2

b)

T1

T2 NA1

NA2

c)

T1

T2

N1 N2

N3

NA1

NA2

m2→1

m1→2

m3→2

m2→3

m3→1

m1→3

m3→A1

mA1→3

d)

Fig. 4 Speciation models and associated parameters. In all exemplified models effective population size is
constant between speciation events, represented by dash lines. The timing of the speciation events, noted
T are parameters of the models, together with ancestral effective population sizes, noted NA. In some cases,
contemporary population sizes can also be estimated, and are noted Ni, where i is the index of the population.
Models with post-divergence genetic exchanges have additional migration parameters labeled mfrom!to. The
number of putative migration rates increases with the number of contemporary populations under study, and
some models might consider some of them to be equal or eventually null to reduce complexity. (a) Isolation
model with two species. (b) Isolation-migration model with two species. (c) Isolation model with three species.
(d) Isolation-Migration model with three species
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population, the bigger the difference between the speciation time
and the divergence time.

The variance of the divergence time is Var½T 2� ¼ θ2A=4. With
access to the distribution of divergence times, we could estimate the
speciation time and population size from the mean and variance of
the distribution. Unfortunately we do not know the complete
distribution of divergence times and it is not immediately available
to us, because long regions are needed for precise divergence
estimation but have experienced one or more recombination
events.

3.2 Isolation Model

with Three or More

Species and

Incomplete Lineage

Sorting

Now consider the isolation model with three species depicted in
Fig. 4c. Such a model is often used for the human–chimpanzee–-
gorilla (HCG) triplet (e.g., [10–12]).

The density function for the time to coalescence between
sample 1 and sample 2 is given by

f T 2
ðtÞ ¼

0 if t < T 1

2

θA1
e�2ðt�T 1Þ=θA1 if T 1 < t < T 12

P12
2

θA2
e�2ðt�T 12Þ=θA2 if t > T 12,

8>>>>>>><
>>>>>>>:

ð1Þ

where

T 12 ¼ T 1 þ T 2 and P12 ¼ e�2ðT 12�T 1Þ=θA1

is the probability of the two samples not coalescing in the ancestral
population of sample 1 and sample 2. In the upper right corner of
Fig. 5 we plot the density (Eq. 1) with parameters that resemble the
HCG triplet.

If sample 1 and sample 2 do not coalesce in the ancestral
population of sample 1 and sample 2, then the three trees
((1,2),3), ((1,3),2), and ((2,3),1) are equally likely. The probability
of the gene tree being different from the species tree is thus

PrðincongruenceÞ ¼ 2

3
P12 ¼ 2

3
e�2ðT 12�T 1Þ=θA1 : ð2Þ

The event that the gene tree is different from the species tree is
called incomplete lineage sorting (ILS). ILS is important because
species tree incongruence often manifests itself as a relatively clear
signal in a sequence alignment and thereby allows for accurate
estimation of population parameters. In Fig. 6 we show the (in)
congruence probability Eq. 2. We also refer to Exercise 1 (see
Subheading 8.1) and Exercise 2 (see Subheading 8.2) for more
discussion of ILS.
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In the three species isolation model the mean coalescent time
for a sample from population 1 and a sample from population 2 is
given by

E½T 2� ¼ T 1 þ ð1� P12Þ θA1

2
þ P12

θA2

2
: ð3Þ
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Fig. 5 Illustration of the density for coalescent in various models and data layout. The curves are the
probability density functions. In the most simple case with two species, a constant ancestral population
size and a punctual speciation (top left panel), more genomic regions find a common ancestor close to the
species split (the vertical line), while a few regions have a more ancient common ancestor, distributed in an
exponential manner (see Eq. 1). If speciation is not punctual and migration occurred after isolation of the
species, then some sequences have a common ancestor which is more recent than the species split and the
distribution in the ancestor becomes more complex (bottom left panel, see Eqs. 4 and 6). When a third species
is added (right panel), then another discontinuity appears and all distributions depend on additional para-
meters, particularly when migration is allowed. We use θA1 ¼ 0.0062, θA2 ¼ 0.0033 and τ1 ¼ 0.0038 (the
first vertical line), τ2 ¼ 0.0062 (the second vertical line) corresponding to the HCG triplet. Ancestral population
sizes are taken from the simulation study in Table 6 in Wang and Hey [8]: θ1 ¼ 0.005 and θ2 ¼ 0.003.
Migration parameters are all set to 50
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Burgess and Yang [9] describe the speciation process for
human, chimpanzee, gorilla, orangutan (O), and macaques
(M) using an isolation model with five species. The HCGOM
model contains four ancestral parameters θHC, θHCG, θHCGO, and
θHCGOM. In this case (Eq. 3) extends to

E½T 2� ¼ THC þ ð1� PHCÞ θHC

2
PHCð1� PHCGÞ θHCG

2

þPHCPHCGð1� PHCGOÞ θHCGO

2

þPHCPHCGPHCGOð1� PHCGOMÞ θHCGOM

2
:

3.3 Isolation-with-

Migration Model with

Two Species and Two

Samples

The isolation-with-migration (IM) model with two species is
shown in Fig. 4b. The IM-model has six parameters: The mutation
rates θ1, θ2, and θA, the migration rates m1 and m2, and the
speciation time T. We let Θ ¼ (θ1, θ2, θA, m1, m2, T) be the vector
of parameters.

Wang and Hey [8] consider a situation with two genes. Before
time T the system is in one of the following five states:

S11 : Both genes are in population 1.
S22 : Both genes are in population 2.
S12 : One gene is in population 1 and the other is in population 2.
S1 : The genes have coalesced and the single gene is in population 1.
S2 : The genes have coalesced and the single gene is in population 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Incomplete Lineage Sorting

(τ123−τ12)θ12

P
ro

ba
bi

lit
y

congruence
incongruence

((human,chimpanzee),gorilla)

Fig. 6 Probability (Eq. 2) of gene tree and species tree being incongruent. In case
of the HCG triplet we obtain (T12 � T1)/θA1 ¼ (0.0062 � 0.0038)/
0.0062 ¼ 0.39 which corresponds to an incongruence probability of 30%
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The instantaneous rate matrix Q is given by

S11 S12 S22 S1 S2

S11 · 2m2 0 2/q1 0

S12 m1 · m2 0 0

S22 0 2m1 · 0 2/q2

S1 0 · m2

S2

0 0

0 0 0 m1 ·

Starting in state a, the density for coalescent in population 1 at time
t < T is given by [26]

f 1ðtÞ ¼ ðeQ tÞaS11ð2=θ1Þ, ð4Þ
the density for coalescent in population 2 at time t < T is

f 2ðtÞ ¼ ðeQ tÞaS22ð2=θ2Þ, ð5Þ
and the total density for a coalescent at time t < T is

f ðtÞ ¼ f 1ðtÞ þ f 2ðtÞ: ð6Þ
Here eA ¼ P1

i¼0 A
i=ði!Þ is the matrix exponential of the matrix

A and (eA)ij is entry (i, j) in the matrix exponential.
After time T the system only has two states: SAA corresponding

to two genes in the ancestral population and SA corresponding to
one single gene in the ancestral population. The rate of going from
state SAA to state SA is 2/θA. The density for coalescent in the
ancestral population at time t > T is therefore

f ðtÞ ¼ ½ðeQ T ÞaS11 þ ðeQT ÞaS12 þ ðeQT ÞaS22� 2

θA
e�ð2=θAÞðt�T Þ:

ð7Þ
In Fig. 5 we illustrate the coalescent density in the two species
isolation-with-migration model.

The likelihood for a pair of homologous sequences X is given
by

PðX jΘÞ ¼ LðΘjX Þ ¼
ð1
0

PðX jtÞf ðt jΘÞdt ð8Þ

where f (t) ¼ f (t|Θ) given by Eqs. 6 and 7 is the density of the two
sequences finding a MRCA at time t and P(X|t) is the probability of
the two sequences given that they find aMRCA at time t. The latter
term is calculated using a distance-based method. One possibility is
to use the infinite sites model where it is assumed that substitutions
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happen at unique sites, i.e., there are no recurrent substitutions. In
this case the number of differences between the two sequences
follows a Poisson distribution with rate 1.

For an application of the isolation-with-migration model with
two sequences, we refer to [8]; a discussion of their approach can be
found in [27].

3.4 Isolation-with-

Migration Model with

Three or More Species

and Three or More

Samples

Hey [28] considered the multipopulation isolation-with-migration
(IM)model. Recall from Fig. 4b that the two-population IMmodel
has six parameters: two present population sizes, one ancestral
population size, one speciation time, and two migration rates.
The three-population IM model in Fig. 4d has fifteen parameters:
three present population sizes, two ancestral population sizes, two
speciation times, and eight migration rates. In general a k-popula-
tion IM model has 3k � 2 + 2(k � 1)2 parameters:

l k present population sizes,

l (k � 1) ancestral population sizes,

l (k � 1) speciation times, and

l 2(k � 1)2 migration rates.

See Fig. 5 for an example of divergence distribution with three
species and migration and Exercise 3 (see Subheading 8.3) for a
derivation of the number of migration rates in the general k-popu-
lation model. For k ¼ 5, 6, and 7 we obtain 45, 66, and 91 para-
meters. Because the number of parameters becomes very large even
for small k, Hey [28] suggests adding constraints to the migration
rates, e.g., setting some rates to zero or introducing symmetry
conditions where rates between populations are the same.

4 Approximating the Coalescent with Recombination Along Genomes

Before the genomic era, multilocus population genetics models
were addressing a small fraction of the complete ancestral recombi-
nation graph (ARG) by considering independent loci. As sequenc-
ing technologies evolved and allowed access to larger samples of
genomic diversity, this independence assumption had to be relaxed
and more explicit modeling of the ARG was required. Yet the
complexity of the coalescent with recombination process makes its
application to genome-scale data sets very challenging. Two direc-
tions of analysis methods have emerged: simulation-based or spatial
approximations along the genome. In this chapter we focus on the
latter and refer to Kelleher et al. [29] and Staab et al. [30] for the
former. Simonsen and Churchill [31] described the first model of
the joint distribution of genealogies at two loci for two genomes.
Wiuf and Hein [32] extended this approach and described the
coalescent as a spatial process along the genome. McVean and
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Cardin [33] further approximated the description with a Markov
process. In this section we describe and discuss these types of
approximations.

4.1 The Independent

Loci Approach: Free

Recombination

Between, No

Recombination Within

The simplest way to handle issues relating to the ancestral recom-
bination graph is to divide the data into presumably independent
loci. Such analyses are therefore restricted to candidate regions that
are not too large (to avoid including a recombination point) and
not too close (to ensure several recombination events happened
between loci). Each region can then be described by a single
underlying tree, reducing the analytical and computational load.

Using 15,000 loci distant from 10 kb totaling 7.4 Mb and the
isolation model introduced above, Burgess and Yang [9] (Table 2,
model (b) sequencing errors) find the following ancestral popula-
tion sizes and speciation times estimates for human (H), chimpan-
zee (C), gorilla (G), orangutan (O), and macaque (M) ancestors:
θHC ¼ 0.0062, θHCG ¼ 0.0033, θHCGO ¼ 0.0061, θHCGOM

¼ 0.0118 and THC ¼ 0.0038, THCG ¼ 0.0062, THCGO

¼ 0.0137, THCGOM ¼ 0.0260. Converting these estimates into
time units requires an estimate of the substitution rate, either
absolute or deduced from a scaling point. Using u ¼ 10�9 as an
estimate for substitutions per year, this leads to an estimate of 3.8
My for the human–chimpanzee speciation, a very recent estimate.
Using the same data, Yang [10] showed that the isolation-with-
migration model was preferred. Yang finds a more ancient specia-
tion time THC ¼ 0.0053 (5.3 My with u ¼ 10�9) when migration
is accounted for.

4.2 State-Space

Model:

Simonsen–Churchill

Framework

The coalescent with recombination for two loci and two sequences
is originally described in Simonsen and Churchill [31] as a
continuous-time Markov chain backward in time with eight states
as shown in Fig. 7. This Markov chain is given a careful treatment in
the textbooks by Durrett [34, Section 3.1.1] and Wakeley [21,
Section 7.2.4], and we therefore only briefly explain the basic
properties of the model here.

A single sequence is either linked ( , , , or
meaning that it contains material ancestral to the sample at both
loci, or it is unlinked ( , , , or ) when it contains material
ancestral to the sample at only one locus. The coalescent rate is one
for any two sequences, and the recombination rate is ρ/2 for any
linked sequence. The chain begins at time zero in state 1 with two
linked sequences. After an exponential waiting time with rate 1 + ρ
the chain enters state 8 with probability 1/(1 + ρ) or state 2 with
probability ρ/(1 + ρ). The transition from state 1 to state 8 is a
coalescent event, and the left and right tree heights are identical.
The transition from state 1 to state 2 is a recombination event that
breaks apart one of the two sequences. All other transitions have
similar interpretations. Common ancestry for a locus is marked
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with a�, so the transition from, e.g., state 1 to state 8 is a transition
to the state .

The height S of the left tree is the first time at which the process
enters one of the states 5, 7, or 8 (states with a left �), and the
height T of the right tree is the first time at which one of the states
4, 6, or 8 is entered (states with a right �). When state 8 is entered
from state 1 the two tree heights are identical. State 8 is absorbing
because only the tree heights are of interest.

The two key ingredients for the state-space model are the
conditional probability for staying in a state P(T ¼ s|S ¼ s) and
the conditional density q(t|s) of a new tree height t conditional on
a change and a previous tree height s. Hobolth and Jensen [35]
show that the conditional probability of no change from the left to
the right tree is

PðT ¼ s jS ¼ sÞ ¼ es ½eΛs �11, ð9Þ
and the conditional density q(t|s) of T given S ¼ s and given
T 6¼ S is
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Fig. 7 State transition diagram for two loci and two sequences described as a continuous-time Markov chain
backward in time. The figure is adapted from Figure 7.7 in Wakeley [21]. A line with a bullet or a cross at both
ends is a linked sequence (ancestral material to the sample at both loci), whereas a line with a bullet or a cross
at one end only is a sequence with ancestral material at one locus only. A cross denotes common ancestry.
s and t denote the heights of the left and right trees, respectively
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qðt jsÞ ¼
e�ðs�tÞ ½eΛt �12 þ ½eΛt �13

e�s � ½eΛs �11
t < s,

e�ðt�sÞ ½eΛs �12 þ ½eΛs �13
e�s � ½eΛs �11

t > s,

8>>>><
>>>>:

ð10Þ

where Λ denotes the 8 � 8 rate matrix from Fig. 7.
Wakeley [21, Section 7.2.4] noted that the transitions between

state 4 and 6 and the transitions between state 5 and 7 can be
removed from the chain if we are only interested in the tree heights.
Actually, even more transitions can be removed from the chain.
Note from Eqs. 9 and 10 that we only need the entries (1, 1), (1, 2),
and (1, 3) in eΛt for calculating the probability of the same tree
height in the next position and the transition density conditional on
a change. These entries can be found from a reduced rate matrix
where states 4, 5, 6, and 7 are removed and the rate from states
2 and 3 to a new absorbing state equals 2. In other words, define
the reduced rate matrix

~Λ ¼
�ð1þ ρÞ ρ 0 1

1 �ð3þ ρ=2Þ ρ=2 2
0 4 �6 2
0 0 0 0

0
BB@

1
CCA,

where states are numbered 1, 2, 3, and 4. The holding time and
transition density for the model are now given by Eqs. 9 and 10
with Λ substituted by ~Λ.

In the left plot in Fig. 8 we illustrate the probability (Eq. 9) of
the same tree height in the left and right loci conditional on the
tree height in the left locus and different recombination rates.
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As expected the probability for identical tree heights decreases with
the height of the left tree and with the recombination rate.

In the right plot in Fig. 8 we illustrate the density (Eq. 10) of
the right tree height conditional on the left tree height and a
change in tree height. When the recombination rate increases, the
density for the right tree height moves toward smaller tree heights.
The reason is that at least one recombination is needed for having a
change in tree height. We also observe that the density is continu-
ous but not differentiable in the position of the left tree height.

4.3 Time

Discretization: Setting

Up the Finite State

HMM

Li and Durbin [14] and Mailund et al. [13] analyze pairs of
sequences using a hidden Markov model (HMM). The hidden
states are tree heights (times to the most recent common ancestor),
and the tree height is discretized to obtain a finite hidden state
space. The observed states of the HMM are alignment columns,
with probabilities corresponding to a substitution process on the
tree (see Fig. 9). In the Li and Durbin model, an infinite site model
is assumed and observed states are converted to binary data, telling
whether the site is heterozygous (one mutation) or homozygous
(no mutation).

We now describe how we discretize time for the case of two
sequences considered in the previous section. The discrete version
of the Markov process is used to build a finite Markov chain along
the two sequences. When the finite Markov chain is combined with
a substitution process, we obtain an HMM as in Li and
Durbin [14].

Let the discrete time points (backward in time) of the Markov
chain be d0 ¼ 0 < d1 < d2 < � � � < dM�1 < dM ¼ 1 and denote
the corresponding states by 1, 2, . . ., M. State m (m ∈{1, . . ., M})
then corresponds to a tree height in the interval between dm�1 and
dm. The continuous stationary distribution is πðtÞ ¼ expð�tÞ, and
therefore the discrete times are chosen such that
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Fig. 9 (a) Graphical structure of the hidden Markov Model. (b) Simulation from the hidden Markov model
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1� expð�dmÞ ¼ m=M , ordm ¼ �logð1�m=M Þ, where we define
logð0Þ ¼ �1.

We now get for 1 � ℓ, r � M the joint density

PðL ¼ ℓ,R ¼ rÞ

¼

X
k∈f5,7g

X
j∈f5,7g

X
i∈f1,2,3g½e

Λdℓ�1 �1i

½eΛðdℓ�dℓ�1Þ�i j ½eΛðdr�1�dℓÞ�jk½eΛðdr�dr�1Þ�k8 if ℓ < rX
i∈f1,2,3g½e

Λdℓ�1 �0i½eΛðdℓ�dℓ�1Þ�i8 if ℓ ¼ r

PðL ¼ r,R ¼ ℓÞ if ℓ > r:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð11Þ
The reason for the first case is that in order for the left tree height to
be in state ℓ < r, it must be in state 1, 2, or 3 at time dℓ�1 and in
state 5 or 7 at time dℓ (i.e., there have been no coalescent events
before time dℓ�1 and a left coalescent event between time dℓ�1 and
dℓ), and similarly it must still be in state 5 or 7 at time dr�1 and in
state 8 at time dr (i.e., there have been no coalescent events between
time dℓ and time dr�1 and a right coalescent event between time
dr�1 and time dr). The next case corresponds to no coalescent
events before time dℓ�1 and both a left and a right coalescent
event between time dℓ�1 and dℓ. The last case is due to symmetry
of the chain.

From the joint tree states (ℓ, r) we easily get the conditional
tree states

P ðℓ,rÞ ¼ PðrjℓÞ ¼ PðR ¼ rjL ¼ ℓÞ ¼ PðL ¼ ℓ,R ¼ rÞ
PðL ¼ ℓÞ ,

where P(L ¼ ℓ) ¼∑rP(R ¼ r, L ¼ ℓ). These probabilities are used
in the HMM.

4.4 Careful

Treatment of Mutation

Process

A careful treatment of the mutation process allows for a more
coarse binning procedure and is needed to avoid biasing the results.
In continuous time the probability for a mutation given a tree
height t is given by μðtÞ ¼ 1� expð�θtÞ, and the stationary tree
height distribution is πðtÞ ¼ expð�tÞ. The probability of a muta-
tion conditionally on the hidden state m becomes
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μm ¼ pðyi ¼ 1jxi ¼ mÞ

¼ pðyi ¼ 1jt∈ðdm�1, dmÞÞ ¼ pðyi ¼ 1jt∈ðdm�1, dmÞÞ
pðt∈ðdm�1, dmÞÞ

¼

ðdm

dm�1

pðyi ¼ 1jtÞπðtÞdt
ðdm

dm�1

πðtÞdt
¼

ðdm

dm�1

ð1� e�θt Þe�tdt

ðdm

dm�1

e�tdt

¼ 1� e�θdm�1
ð1� e�ð1þθÞðdm�dm�1ÞÞ
ð1þ θÞð1� e�ðdm�dm�1ÞÞ :

ð12Þ

Note that with a fine discretization we have that the interval dm �
dm�1 is small and the first-order Taylor expansion
expð�azÞ � 1� az for z small gives

pðyi ¼ 1jxi ¼ mÞ � 1� e�θdm�1 ,

as perhaps expected. We are, however, discretizing the interval [0,
1[, so it is not possible to avoid one or more large bins. Generally
we have found that a careful treatment of the mutation process is
crucial for accurate inference [36].

4.5 Statistical

Inference of

Population Parameters

from Sequences

Here we choose to focus on three inference methods for estimating
the recombination rate. The first method is based on the full
likelihood obtained from the classical forward (or backward) algo-
rithm for HMMs. The second is based on the distribution of the
distance between segregating sites. This summary statistics was
used in Harris and Nielsen [37] for demographic inference. It is
sometimes also described as the distribution of the distance
between heterozygote sites, runs of homozygosity, or the nearest-
neighbor distribution. The third summary statistics is the probabil-
ity that two sites at certain distance apart are both heterozygote
sites. This probability is closely related to the pair correlation func-
tion from spatial statistics [36] and to the zygosity correlation
introduced in [38].

4.5.1 Summary

Statistics: Runs of

Homozygosity and Pair

Correlation

Recall that in continuous time the probability for a mutation given
a tree height t is given by μðtÞ ¼ 1� expð�θtÞ, and the stationary
tree height distribution isπðtÞ ¼ expð�tÞ. The marginal probability
for a mutation is therefore given byð1

0

μðtÞπðtÞdt ¼ θ=ð1þ θÞ: ð13Þ
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We also get the stationary distribution

ϕðtÞ ¼ μðtÞπðtÞð1
0

μðtÞπðtÞdt
¼ 1þ θ

θ
e�tð1� e�θtÞ

for a tree height t conditional on a mutation. Figure 10a shows ϕ(t)
for different values of θ. Note that small mutation rates imply a
higher tree height when we condition on a mutation. In discrete
time the probability for a mutation given a tree height m was given
by Eq. 12. Let μ ¼ (μ1, . . ., μM) be the vector of mutation
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probabilities. The stationary distribution ϕ ¼ (ϕ1, . . ., ϕM) for a
state m conditional on a mutation is given by

ϕℓ ¼
μℓπℓXM

m¼1

μmπm

,

where πm ¼ 1/M because this is how the time discretization was
chosen.

The probability for a mutation at a distance r from a typical
mutation is then given by

κðrÞ ¼ ϕ0Prμ,

where 0 denotes vector transpose. In Fig. 10b we show κ(r) as a
function of ρ and θ. Note that the curves converge to θ/(1 + θ) and
that the behavior for small r is determined by the
recombination rate.

The distribution of runs of homozygosity is given by

νðrÞ ¼ ϕ0½Pdiagðe � μÞ�r�1Pμ:

Here e ¼ (1, . . ., 1) is the vector of length M with 1 in every entry
and diag(e � μ) is the diagonal matrix with e � μ on the diagonal.
In Fig. 10c we show ν(r) as a function of ρ and θ.

4.5.2 Parameter

Estimation

We estimate the mutation rate using an estimating equation based
on the marginal probability for a mutation (Eq. 13). If the observed
frequency of a mutation is p̂, then the mutation rate is

θ̂ ¼ p̂=ð1� p̂Þ (see left plot in Fig. 11). The recombination rate is
estimated using maximum likelihood for the HMM and goodness
of fit for the pair correlation (see middle plot in Fig. 11) and runs of
homozygosity (see right plot in Fig. 11).

We simulated 50 sequences of length 20,000 base pairs and
with mutation rate θ ¼ 0.1 and recombination rate ρ ¼ 0.1. We
estimated the mutation rate using the estimating equation and the
recombination rate using maximum likelihood and the HMM, and
goodness of fit for the pair correlation and nearest neighbor
(Fig. 12) [35]. As expected the HMM procedure shows the best
results because here we are using all the available information. It
seems, however, that we are not losing too much power when
applying the pair correlation function. This is in contrast to the
nearest-neighbor summary statistics that perform much worse than
the other two methods.

We have provided a detailed treatment of the main components
involved in an analysis of pair of DNA sequences based on anHMM
derived from coalescent theory. Pairwise sequentially Markov coa-
lescent (PSMC) models have been extensively applied to various
organisms, see, for instance [39–43].
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5 Extending the Pairwise Sequentially Markov Coalescent

Extending the SMC to more than two genomes has proved to be
challenging. The number of hidden states becomes prohibitive, as
several divergence times have to be modeled and combined with
distinct possible topologies. Further simplifications are therefore
needed to account for an increasing number of genomes.
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Fig. 11 Parameter estimation for summary statistics. (a) The mutation rate θ is estimated from the observed
number of mutations and length of the region. (b) The recombination rate ρ is estimated using the empirical
distribution of a mutation at various distances from a mutation. (c) The recombination rate is estimated using
the empirical distribution of the first mutation from a mutation
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5.1 From 2 to n

Genomes

5.1.1 The Multiple

Sequentially Markov

Coalescent (MSMC)

Schiffels and Durbin [15] proposed to extend the PSMC model
[14] to more than two haploid genomes by modeling the most
recent coalescence event in the sample. In this framework, the
hidden states of the model are a combination of divergence times,
taken from a discretized distribution, and identity of the
corresponding haplotypes involved. The rationale for such simplifi-
cation was that the PSMC showed poor resolution in the recent
past [14], and considering more genomes would bring additional
signal. The drawback of this implementation is that the more
genomes are considered, the more “shifted” toward the present is
the timeframe where population parameters can be inferred. As a
result, the authors reported that with more than 8 diploid indivi-
duals (16 haploid genomes), parameters can virtually not be esti-
mated (see also [44] for an illustration of this effect with
simulations). Another consequence of this approach is that the
recombination rate parameter cannot be reliably estimated
[15]. The MSMC was used to infer the recent history of human
population. In particular, the authors introduced the possibility to
label individuals and look at cross-coalescence rate between groups,
a way to get a fine-tuned view of population divergence [15, 45].
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well compared to the full HMM data analysis. Nearest neighbor is a poor summary statistics
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5.1.2 The Demographic

Inference with Composite

Approximate Likelihood

(diCal)

An alternative approach was introduced by Song and colleagues
[16–18]. The demographic inference with composite approximate
likelihood (diCal) approach is based on the conditional sampling
distribution, which computes the likelihood of one genome
conditioned on the observation of others. Using the so-called
composite likelihood formula, it is therefore possible to compute
the likelihood of the data for n genomes as the product of the
likelihood of one genome given the n � 1 other ones and the
likelihood the remaining n � 1 genomes:

PðD1...njΘÞ ¼ PrðD1jD2...n,ΘÞ � PðD2...njΘÞ,
where Θ is the set of model parameters and D1. . .n denotes the data
set with n genomes. By further noting that

PðD2...njΘÞ ¼ PðD2jD3...n,ΘÞ � PðD3...n�1jΘÞ
the likelihood of the full data set can be computed by recursion.
The terms P(Di|Di+1. . .n) form the conditional sampling distribu-
tion (CSD). Paul et al. [16] proposed a way to compute the CSD at
the cost of introducing several additional hypotheses: (a) the hap-
lotypes upon which the sample is conditioned are considered inde-
pendent, that is, no coalescence events involving these haplotypes
are allowed and (b) mutations can only occur once in any lineage
(infinite site hypothesis). The likelihood resulting from this
approximated CSD is therefore not exact. This approach was intro-
duced by Li and Stephens [46] and is referred to as the product of
approximate conditionals (PAC) model. Under the PAC model,
the likelihood depends on the order by which the data is
conditioned, which can be circumvented with permutation proce-
dures. While the CSD-based SMC does not have the same draw-
backs as the MSMC of Schiffels and Durbin [15], its computational
efficiency decreases as the number of haplotypes considered
increases and becomes impractical for more than 10 genomes
[19]. An elegant feature of the diCal approach is that it can be
extended to more complex demographic models, including popu-
lation structure and gene flow [18, 45]. Such extension is of
interest as the SMC approximation has been shown to be sensitive
to strong population structure [47].

5.1.3 Extending the SMC

with Conditional Site

Frequency Spectra (CSFS)

In order to use the large amount of data available in “1000 gen-
omes” projects, Terhorst et al. [19] extended the PSMC in a
different direction. Instead of modeling the genealogy of the com-
plete sample, the authors proposed to model the divergence of two
haplotypes (the PSMC model) as hidden states, yet considering the
full set of genomes as observed states. In this approach, the transition
probabilities of the coalescent HMMare similar to the PSMC (or to
be more precise, similar to the MSMC with two haplotypes, as the
original PSMC uses the SMC of McVean and Cardin [33] and not
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the SMC’ of Marjoram and Wall [48]), but the emission probabil-
ities are extended to account for the full site frequency spectrum of
hundreds of genomes. This conditional site frequency spectrum
(CSFS) is computed using coalescence theory, offering a generali-
zation of the Poisson random field (PRF) model introduced by
Sawyer and Hartl [49]. Just like the original PRF, however, the
CSFS ignores linkage of observed states, only linkage between the
two conditioned haplotypes is modeled via the SMC. Additional
data reduction steps are therefore required to ensure that the
independence condition of sampled sites is met.

5.1.4 Explicit

Reconstruction of the

Ancestral Recombination

Graph

While the ARG contains all historical information about a sample of
genomes, genomes themselves contain very little information
regarding the underlying ARG. As a result, in most statistical
inference methods is the ARG treated as a variable accounted for,
but not directly inferred. In the SMC models presented above, this
is taken care of by the hidden Markov methodology, which com-
putes a likelihood for a given sample by summing over all possible
ARG (via the so-called forward algorithm). The Viterbi algorithm
and the posterior decoding procedure are HMM algorithms that
allow to reconstruct a posteriori the most likely ARG for a sample,
such procedures are notably used for the inference of patterns of
incomplete lineage sorting along genomes [11, 12, 50, 51]. Yet the
variance in such estimation is typically very large [12].

Rasmussen et al. [20] proposed a different approach: they
developed a Bayesian sampler of ARGs conditioned on a set of
genome sequences. Similar in principle to the PAC and CSD
approaches, the authors proposed to generate the ARG of
n genomes conditioned on the ARG of n � 1 genomes, a proce-
dure they refer to as threading. The generated ARGs can then be
used to infer evolutionary processes of interest. Palacios et al. [52]
developed a non-parametric method that allows to estimate the
variation in time of the effective population size based on such
reconstructed ARG. Rasmussen et al. further showed that while
the model used for inference is purely neutral, the a posteriori
inferred ARG contains signature of selection, visible for instance
as a decrease of the time of the most common ancestor of two
samples in the data close to coding sequences. Such approaches
offer promising avenues for the development of new statistical
methods to detect genomic regions with unusual history.

5.2 The Case of

Multiple Species

Hobolth et al. [11] developed a hidden Markov model (HMM) to
infer the ancestral recombination graph between three closely
related species. Because this model only contains one haploid
genome per species, it only allows to infer population parameters
in the ancestral species. Dutheil et al. [12] reparametrized this
model in the context of the sequentially Markov coalescent. In
contrast to the previous approaches, only four hidden states were
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considered, corresponding to four alternative scenarios of lineage
segregation (Fig. 13). In states 1 and 2, the genealogy is consistent
with the phylogeny and lineages segregate in the same order as the
species. In states 2, 3, and 4, allele divergence predates the first
speciation event and ancestral polymorphism persists between the
two speciation events, leading to incomplete lineage sorting. The
scenarios depicted by states 2, 3 and 4 are equally likely, and in the
case of states 3 and 4, the resulting topology is inconsistent with the
phylogenetic tree. This model therefore does not rely directly on
divergence variation along the genome alignment but uses patterns
of topology variation instead to compute the speciation times and
ancestral population sizes.

Using this approach, Hobolth et al. estimated a speciation time
between human and chimpanzee around 4.1 My and a large

a

b

Fig. 13 The coalescent process along genomes of three closely related species. (a) Four archetypes of
coalescence scenarios with three species, exemplified with human, chimpanzee, and gorilla. In the first
scenario, human and chimpanzee coalesce within the human–chimpanzee common ancestor. In the three
other scenarios, all sequences coalesce within the common ancestor of all species, with probability 1/3
depending on which two sequences coalesce first. (b) Example of genealogical changes along a piece of an
alignment. The alignment was simulated using the true coalescent process and parameters corresponding to
the human–chimpanzee–orangutan history. The blue line depicts the variation along the genome of the
human–chimpanzee divergence. The background colors depict the change in topology, red and yellow
corresponding to incomplete lineage sorting. Each change in color or break of the blue line is the result of
a recombination event
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ancestral effective population size of 60,000 for the human–chim-
panzee ancestor. Dutheil et al. [12] found similar estimates with the
same data set while accounting for substitution rate variation across
sites and estimated an average recombination rate of 1.7
cM/Mb. With sequencing of more great ape genomes, this
approach allowed to estimate population size in several ape ances-
tors ( [27, 50, 53], reviewed in [54]). As ILS is a proxy for ancestral
effective population size, a major result of these studies is that the
distribution of ILS is not uniform along the genome. For instance,
it is reduced in proximity of genes, a pattern that can be explained
by background selection [27, 50]. Large regions of the X chromo-
some were also found to be devoid of ILS, a pattern resulting from
recurrent selective sweeps along the chromosomes [55].

6 Specific Issues Faced When Dealing with Genomic Data

In previous sections we discussed population genetic models and
methods for parameter estimation. We now describe several chal-
lenges encountered when analyzing whole-genome data sets, at the
intra- and interspecific levels.

6.1 Sequencing

Errors and Rate

Variation

Sequencing errors are a well-described source of bias in population
genetics analyses, resulting in an excess of singletons [56]. At both
the intra- and interspecific/populational level, such error therefore
leads to incorrect estimates of local divergence, in particular for
recent times. When more divergent sequences are compared, for
instance, from distinct species, the issue becomes more complex as
the error rate differs between and within sequences due to coverage
variation, but also properties of the genome (base composition,
repeated elements, etc.). Such errors result in a departure from the
molecular clock hypothesis, thus potentially leading to biases in
parameter estimates, such as asymmetries in genealogy frequencies
[57, 58]. In this respect, data preprocessing becomes a crucial step
in any genomic analysis. Methods would also benefit in many cases
of inclusion of a proper modeling of such errors. Burgess and Yang
noticed that sequencing errors can be seen as a contemporary
acceleration in external branches, resulting in an extra branch
length [9]. Such an extra length can be easily accommodated in
many models. It has to be noted that only a differential in error
rates between lineages results in a departure from molecular clock,
and in such approaches, one still has to consider that at least one
sequence is error-free. In addition, as noted by the authors, assum-
ing a constant error rate over all genomic positions may also turn
out to be inappropriate, and better models should allow this rate to
vary across the sequence. Such approaches still have to be explored.
Moreover, sequencing errors are not distinguishable from lineage-
specific acceleration (or deceleration in another species). In that
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respect, sequence quality scores can be a valuable source of infor-
mation. They are currently used to preprocess the data by removing
doubtful regions, but can ultimately be used in the modeling
framework.

The substitution rate also varies along the genome, which
potentially affects the reconstruction of sequence genealogy, a phe-
nomenon well known by phylogeneticists. In such case the tools
developed for phylogenetic analysis can be applied with a reason-
able cost. This generally consists in assuming a prior distribution of
the site-specific rate and integrating the likelihood over all possible
rates [8, 9, 12]. Alternatively, one can also use one or more out-
group sequences to calibrate the rate, as in [6, 7].

6.2 Diploid Data and

Phasing

While sequencing of diploid individuals allows to infer the two
alleles present at heterozygous positions, establishing how these
alleles are combined on each homologous chromosome requires an
additional, error-prone step calling phasing. Analyses based on the
comparison of individuals from distinct species do not require such
information, as the coalescence time of two alleles from the same
species is expected to have happened much after the speciation time
of the compared species. In such case alleles at each heterozygous
position can be sampled randomly [13] in order to build a com-
posite haploid genome. The same rationale applies with respect to
the use of the human reference genome, a composite genome
obtained from multiple individuals. Conversely, inferences at the
population level typically rely on the modeling of haploid genomes
and therefore require phased data. A notable exception is the
PSMC [14], as well as its extension SMC++ [19], which, when
applied to one diploid individual, only requires the knowledge of
the position of heterozygous positions.

6.3 Structural

Variation and Genome

Alignment

Genome data are intrinsically fragmented, firstly because of chro-
mosomal organization, but also because of rearrangements that
prevent molecule-to-molecule alignment from one species to
another. A genome data set is therefore a set of distinct alignments,
one per synteny block. Synteny information can only be extracted
when individual genomes are available, which is typically not the
case for most “re-sequencing” data sets. At the population level,
however, such large-scale variation is considered negligible (but
see, for instance, [59] for an exception), while it becomes more
prominent when genomes from distinct species are compared. In
such cases, a genome alignment is constructed with potential errors
ultimately leading to the comparison of nonhomologous regions.
So far, the only way to deal with such errors is to restrict the analysis
on regions where orthology can be unambiguous resolved, mostly
by removing short synteny blocks and regions that contain a high
proportion of repeated elements, gaps, and duplications.
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7 Discussion

Studying the speciation process with genome data implies new
modeling challenges, as the basic configuration of a population
genetics data set is drastically changed: instead of having a few
loci sequenced in several individuals, we have an (almost) exhaus-
tive set of loci sequenced in several individuals for multiple closely
related species. The change involves the spatial dimension, but also
time, as the process under study occurred much further back in
time than the ones that are commonly studied with a “standard”
population genetics data set. The use of the spatial signal has a
major consequence, namely, that recombination has to be taken
into account, even if it is not directly modeled.

Apart from these considerations, ancestral population geno-
mics, as population genetics, heavily relies on the study of sequence
genealogy, its shape, but also its variation. The underlying models
build on existing intraspecies population modeling, as they only
need to add the species divergence process, that is, a moment in
time where two populations stop exchanging genetic material and
evolve fully independently. The simplest isolation model assumes
that the speciation is instantaneous, while the isolation-with-migra-
tion model assumes that the two neo-species can still exchange
some material, at least for a certain time after the split. Such a
model is not different from a pure isolation model where the
ancestral population is structured into two subpopulations: in the
first case the speciation time is defined as the time of the split, while
in the second case it is the time of the last genetic exchange. Recent
work on primates [10] suggests that the speciation of human and
chimpanzee was not instantaneous. If the average divergence of the
human and chimpanzee is a bit more than 6 My (using widely
accepted mutation rate), then the split of the two species initiated
around 5.5 My ago, and the last genetic exchange can be dated
around 4 My.

The fact that we sample a large number of positions in the
genome thus appears to have the power to counterbalance the
reduced sampling of individuals within population, allowing
the estimation of demographic parameters in the ancestor. None-
theless, complexity limits are rapidly reached, when considering, for
example, three closely related species that can exchange migrants.
More complex demographic scenarios, incorporating, for instance,
variation in population sizes, will also add additional parameters
that might not all be identifiable.

If the ancient speciation processes have left signatures in the
contemporary genomes, we do not know yet how far back in time
this is true. Intuitively, the signal is maximal when the variation in
divergence due to polymorphism is large enough compared to the
total divergence. The divergence due to polymorphism is
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proportional to the ancestral population size, while the divergence
of species is only dependent on the time when it happened. So the
further back in time we are looking at, the bigger the population
sizes need to be so that the ancient polymorphism leaves a signature
in the total divergence time. In addition to this, one has to take into
consideration sequence saturation due to the too large number of
substitutions that accumulated since ancient splits, and the fact that
demographic scenarios complexity increases with time. For
instance, when considering the evolution of a species over several
millions of generations, the probability that a bottleneck, resetting
the signal from past events, occurred once is not negligible.

We are in the population genomics era. Data sets are available
that allow us to understand the evolutionary processes that are
associated with the formation and evolution of species. Analyzing
such data sets with the current methodologies however offers major
challenges: (1) developing the appropriate computational tools able
to handle such data sets with current machines (both in terms of
processor speed and memory usage) and (2) design realistic models
with enough complexity to capture the most important historical
events while remaining computationally tractable.

8 Exercises

8.1 ILS in Primates Assuming that there are 5 My between the speciation times of
human with the gorilla and the orangutan, that the HG ancestral
effective population size was 50,000, what is the expected amount
of ILS between human, gorilla, and orangutan? Assuming that
another 2.5 My separates the speciations of human with chimpan-
zee and gorilla, with an HC effective ancestral population size of
50,000, what is the expected amount of ILS between human,
chimpanzee, and orangutan? We assume a generation time of
20 years for all extent and ancestral primates.

8.2 Estimating

Ancestral Population

Size from the Observed

Amount of ILS

Given that 30% of incomplete lineage sorting is observed between
human, chimpanzee, and gorilla and assuming a generation time of
20 years and a that 2.5 My separate the splits between human/
chimpanzee and human—chimpanzee/gorilla, what is the effective
ancestral population size compatible with this observed amount?
Using Burgess and Yang’s method [9], a researcher finds a higher
estimate of Ne than expected. What could explain this discrepancy?

8.3 Number of

Migration Rates in the

General k-Population

IM Model

In this exercise we show that a k-population IM model has
2(k � 1)2 migration rates.

1. Starting at the bottom of the k-population IM model argue
that the number of migration rates at the level of k populations
is k(k � 1).
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2. Moving up to the next level where (k � 1) populations are
present (one of them being an ancestral population, we assume
that there two speciation events are never simultaneous) argue
that the new ancestral population introduces 2(k � 1) new
migration rates.

3. Moving up yet another level where (k � 2) populations are
present argue that the new ancestral population introduces 2
(k � 2) new migration rates.

4. Show that the total number of migration rates is 2(k � 1)2.
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