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A B S T R A C T

The most recent efforts to provide remote sensing (RS) estimates of plant function rely on the combination of
Radiative Transfer Models (RTM) and Soil-Vegetation-Atmosphere Transfer (SVAT) models, such as the Soil-
Canopy Observation Photosynthesis and Energy fluxes (SCOPE) model. In this work we used ground spectro-
radiometric and chamber-based CO2 flux measurements in a nutrient manipulated Mediterranean grassland in
order to: 1) develop a multiple-constraint inversion approach of SCOPE able to retrieve vegetation biochemical,
structural as well as key functional traits, such as chlorophyll concentration (Cab), leaf area index (LAI), max-
imum carboxylation rate (Vcmax) and the Ball-Berry sensitivity parameter (m); and 2) compare the potential of
the of gross primary production (GPP) and sun-induced fluorescence (SIF), together with up-welling Thermal
Infrared (TIR) radiance and optical reflectance factors (RF), to estimate such parameters. The performance of the
proposed inversion method as well as of the different sets of constraints was assessed with contemporary
measurements of water and heat fluxes and leaf nitrogen content, using pattern-oriented model evaluation.

The multiple-constraint inversion approach proposed together with the combination of optical RF and diel
GPP and TIR data provided reliable estimates of parameters, and improved predicted water and heat fluxes. The
addition of SIF to this scheme slightly improved the estimation of m. Parameter estimates were coherent with the
variability imposed by the fertilization and the seasonality of the grassland. Results revealed that fertilization
had an impact on Vcmax, while no significant differences were found for m. The combination of RF, SIF and diel
TIR data weakly constrained functional traits. Approaches not including GPP failed to estimate LAI; however
GPP overestimated Cab in the dry period. These problems might be related to the presence of high fractions of
senescent leaves in the grassland. The proposed inversion approach together with pattern-oriented model eva-
luation open new perspectives for the retrieval of plant functional traits relevant for land surface models, and can
be utilized at various research sites where hyperspectral remote sensing imagery and eddy covariance flux
measurements are simultaneously taken.
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1. Introduction

Modeling and prediction of photosynthetic CO2 uptake fluxes from
regional to global scales is relevant for several areas involving policy,
management and science; as it is the major flux in the global carbon
cycle (Beer et al., 2010; Pfeifer et al., 2012). Land Surface Models (LSM)
combine climatic and surface variables to predict biosphere-atmosphere
exchanges in space and time. Accurate simulation of these fluxes re-
quires certain knowledge on Earth surface properties at sufficient spa-
tial and temporal resolutions. Currently, LSM predictions include large
uncertainties originated in terrestrial carbon cycle modeling due to
inadequate process understanding and/or parameterization
(Friedlingstein et al., 2014; Knutti and Sedláček, 2012); but also due to
unrealistic spatial and temporal representation of key plant functional
traits controlling CO2 uptake (Rogers, 2014; Rogers et al., 2016;
Schaefer et al., 2012). Many of these parameters, −in particular max-
imum carboxylation rate (Vcmax) and the Ball-Berry sensitivity para-
meter (m)-, are known to have a certain dynamic in space and time;
however LSM typically use fixed values assigned to different plant
functional types (PFT) (Bonan et al., 2011; Rogers, 2014; Walker et al.,
2017; Wullschleger et al., 2014).

Other parameters also relevant for LSM describe vegetation struc-
ture and foliar constituents such as leaf area index (LAI), chlorophyll
concentration (Cab) and other pigments. These parameters are relevant
to describe both light absorption and the photosynthetic active biomass,
and therefore control photosynthesis (Croft et al., 2015; Liu et al., 2017;
Zhang et al., 2014a). The remote estimation of these parameters is
possible because they directly influence radiation-canopy interaction;
and therefore Radiative Transfer Models (RTM) can be inverted against
spectrodirectional observations to characterize vegetation state
(Jacquemoud et al., 2009). Nonetheless, the inversion or RTM is ill-
posed and can be quite uncertain as extensively discussed in the lit-
erature (Combal et al., 2003; Homolová et al., 2013; Kimes et al., 2000;
Pfeifer et al., 2012; Ustin et al., 2009; Zurita-Milla et al., 2015).

Contrarily, functional traits related to photosynthetic processes and
stomatal conductance (e.g., Vcmax, m, as well as fluorescence quantum
efficiency (fqe), maximum rate of electron transport (Jmax), etc.) only
have an indirect and reduced effect on the radiation leaving the top of
the canopy (TOC). They modify optical signals mainly via sun-induced
chlorophyll fluorescence (SIF) emission (Verrelst et al., 2015) and/or
reflectance variations related to non-photochemical quenching reac-
tions involving xanthophyll cycle (Gamon et al., 1992). In addition,
photosynthesis and stomatal conductance are intimately related
(Farquhar and Sharkey, 1982) and therefore a relationship between
photosynthesis and the Thermal Infrared (TIR) domain is expected, in
particular under stress conditions (Sellers et al., 1997). Variations in the
optical up-welling radiance induced by these processes can be only
sensed from narrow or very narrow spectral bands, and ideally from
hyperspectral sensors. This fact, combined with the weak and indirect
connection between traits and TOC optical radiance explains the lack of
RS-based spatiotemporal information on these photosynthetic vari-
ables. Recently, Vcmax was retrieved from hyperspectral data at leaf and
canopy scales using partial least squares regression techniques thanks to
spectral bands related to protein absorption features (Dechant et al.,
2017; Serbin et al., 2015; Silva-Perez et al., 2018). These works in-
directly linked reflected radiation and Vcmax via nitrogen (N) - Vcmax

covariation. More mechanistic approaches used the Cab - Jmax - Vcmax

relationship (Alton, 2017); or inverted the Boreal Ecosystem Pro-
ductivity Simulator model (Xie et al., 2018) to retrieve Vcmax from RS
data in combination with eddy covariance (EC) fluxes. Empirical
models have related spectral indices and canopy temperature to sto-
matal conductance (Damm et al., 2018; Jarolmasjed et al., 2018; Vaz
et al., 2016; Zarco-Tejada et al., 2012; Zarco-Tejada et al., 2013), but to
the best to our knowledge, not to the underlying parameter m. Only
recently, m has been retrieved from RS data thanks to the combination
of RTM and Soil-Vegetation-Atmosphere Transfer (SVAT) models

(Bayat et al., 2018). An alternative to obtain information about pho-
tosynthetic parameters is the retrieval and analysis of SIF, the re-
emission of the absorbed photosynthetically active radiation (APAR) at
larger wavelengths. SIF is linked to the electron transport rate in pho-
tosystem II (Porcar-Castell et al., 2014), and mechanistically related
with Vcmax: The latter imposes the ceiling on the rate of APAR that can
be used in photochemistry, thus affecting charge dissipation and SIF
(Frankenberg and Berry, 2018; Vilfan et al., 2019).

As described, various signals in the optical and the thermal domains
can be related to plant photosynthesis through different mechanisms,
and therefore could jointly be used to estimate functional parameters of
vegetation. Currently, the state-of-the-art model that describes all these
processes and the related spectroradiometric signals is SCOPE (van der
Tol et al., 2009). This model combines Visible, TIR and SIF radiative
transfer with energy balance and photosynthesis models. Using SCOPE,
Zhang et al. (2014b) used RS-based SIF and vegetation indices to re-
trieve Vcmax in crops. Zhang et al. (2018) inverted SCOPE against op-
tical RS data and EC fluxes to retrieve Vcmax; then they fit models to
predict GPP from SIF in crops at regional scale. Also recently, Bayat
et al. (2018) inverted SCOPE combining Landsat optical and TIR ima-
gery to retrieve Vcmax and m parameters in a grassland. Dutta et al.
(2019) used a modified version of SCOPE to constrain LAI, Vcmax and m
against carbon and energy fluxes together with multiband optical RS
data. In addition, Hu et al. (2018) estimated Vcmax and fqe by inverting
SCOPE against a combination of proximal sensing data (i.e. SIF) and
GPP. These works represent the state-of-the-art in the estimation of
functional traits such as Vcmax and/or m parameter from RS observa-
tions. Despite the fact that different works provided estimates of Vcmax

and other functional traits using GPP (Dutta et al., 2019; Xie et al.,
2018; Zhang et al., 2018) as well as SIF (Zhang et al., 2014b), it is not
clear whether both variables can provide comparable estimates; and
therefore, whether they can be used indistinctly or not. A robust eva-
luation is needed to understand the potential of SIF and GPP to retrieve
Vcmax and other functional parameters, as well as and to identify the
most suitable methodologies for this task.

One of the most critical aspects of the retrieval of functional traits is
the validation or evaluation of the results. The evaluation of functional
trait estimates at canopy/ecosystem scale requires leaf level measure-
ments that are not feasible at large spatial scales, or in ecosystems
featuring numerous species. So far, the inversion of SCOPE model has
rarely been evaluated against either field observations or proxies of the
functional parameters. Most commonly, SCOPE inversion has been in-
directly assessed by comparing predicted and observed EC fluxes that
were not included in the optimization process, as for example, water
and heat fluxes (Bayat et al., 2018; Zhang et al., 2014b). However, this
comparison can result largely uncertain due to the spatial mismatch
existing between the spectral and the EC footprints under comparison
(Cescatti et al., 2012; Chen et al., 2009; Gamon, 2015; Gelybó et al.,
2013; Migliavacca et al., 2015). Nonetheless, pattern-oriented model
evaluation (Carvalhais et al., 2014; Grimm and Railsback, 2012; Luo
et al., 2012; Migliavacca et al., 2013; Reichstein et al., 2011) is a viable
alternative strategy to diagnose model performances when traditional
model evaluation is problematic for several reasons, including lack of
robust ground data, as in the case of canopy scale plant functional
traits. The pattern-oriented model evaluation - as intended here - is a
strategy to evaluate the physical consistency of model inversion or of
the estimated parameters. This is conducted in two ways:

1) By comparing the relationship between estimated parameters and
proxies that are i) known to be related with the parameter under
evaluation and ii) more easily measureable and scalable at plot
level. For example, retrieved Vcmax (and Cab) are known to be related
with nitrogen concentration (Nmass) (Quebbeman and Ramirez,
2016; Walker et al., 2014), and relationships for different plant
types can be found in published meta-analyses (e.g., Feng and Dietze
(2013) for grasslands) or in global databases such as TRY (Kattge
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et al., 2011). Such information can be used to evaluate indirectly
whether the inversion of the models produces patterns that are
physically and biologically plausible, even in absence of direct ob-
servation of the target variable.

2) By comparing a combination of variables predicted by the model
and not included in the cost function to verify whether the under-
lying processes represented by the model structure are coherent
with the observations. For example, the comparison of predicted
and observed evaporative fraction (EF, i.e. the ration between latent
heat fluxes and available energy – the sum of latent and sensible
heat fluxes) informs on the consistency of energy partition, and
therefore of the plausibility of m estimates. This method is meant to
be more robust to biases that might exist in the latent and sensible
heat fluxes induced by footprint mismatch.

In this work, we test the inversion of SCOPE model in a two-steps
multiple-constraint approach combining simultaneously observations
of hyperspectral optical data and TIR radiation, together with GPP and/
or SIF. We aim to 1) develop the best scheme to retrieve biochemical
and structural (e.g. Cab, LAI) as well as functional traits (Vcmax, m) in a
Mediterranean grassland manipulated with N and phosphorus (P) fer-
tilization; 2) evaluate the performance GPP and SIF to constrain these
traits in a multiple-constraint inversion approach; and 3) assess the
performance and the sensitivity to uncertainties of the method pro-
posed as well as of the different constraints using a pattern-oriented
model evaluation approach by comparing Vcmax (and Cab) estimates
from their relationship with measured leaf Nmass, and by assessing m
estimates from the evaluation of energy partition with EF.

2. Methods

2.1. Study site and experimental design

The current study is located in a Mediterranean tree-grass ecosystem
in the research facility of Majadas de Tiétar, Cáceres, Spain (39° 56′
24.68″N, 5° 45′50.27″W). This is a managed savannah combining
sparse trees and an annual grassland under low intensity grazing
(< 0.3 cows/Ha). Trees (mainly Quercus ilex L. subsp. ballota [Desf.]
Samp.) present a fractional cover ~20% and average tree distance
~18.8m (σ=5.0m) (Pacheco-Labrador et al., 2016). The herbaceous
layer is spatially and temporally diverse, comprehending species of the
three main functional plant forms: grasses, forbs and legumes such as
Tolpis barbata, Anthoxanthum aristatum, Ornithopus compressus, Trifolum
striatum, Lotus parviflorus and Plantago lagopus (Migliavacca et al.,
2017).

The climate is continental Mediterranean and therefore seasonality
and inter-annual variability are strong. Mean annual temperature is
16.7 °C and mean annual precipitation ~650mm. Rain concentrates
between October and April, whereas summers are hot and dry. The
herbaceous layer strongly responds to radiation and water availability:
Biomass peaks in spring, completely dries in summer, re-greens in au-
tumn and goes dormant in winter (Luo et al., 2018; Mendiguren et al.,
2015). Senescent material accumulates within the canopy already
during the growing period, and can represent up to 30% of LAI before
the dry season starts.

The current work focuses on the herbaceous layer, in the context of
the Small-scale MANIpulation Experiment (SMANIE). This is a full
factorial fertilization experiment assessing the responses of the her-
baceous layer N, P and N plus P fertilization (Migliavacca et al., 2017;
Perez-Priego et al., 2015a). The experiment consists of four replicates of
20×20m blocks containing four 9×9m plots with a different treat-
ment each: control -not fertilized- (C), fertilized with nitrogen (N), with
phosphorous (P) or both (NP). Plots are separated by a 2m buffer to
prevent boundary effects and are located in an open area to minimize
the influence of trees. Some of the ancillary data and meteorological
measurements used in this work come from the nearby EC site, and are

acquired both at ecosystem scale (ECeco) and over the herbaceous layer
(ECsub) (El-Madany et al., 2018; Perez-Priego et al., 2017).

2.2. Spectral, flux and ancillary measurements

Between spring 2014 and 2016, 9 field campaigns monitored the
experimental blocks with the different treatments. In each campaign,
daily cycles of net ecosystem CO2 exchange (NEE) and ecosystem re-
spiration (Reco) were measured respectively with transparent and
opaque cubic chambers of 60 cm length. Chamber measurements were
performed on one collar in each of the 16 plots of the experiment (see
Migliavacca et al. (2017)). In total, 1089 chamber measurements were
carried out, with a median of 6 measurements per plot and campaign.
The chambers were equipped with an infrared gas analyzer (LI-840, Li-
Cor, Lincoln, NE, USA) to measure CO2 molar fractions; a quantum
sensor (LI-190, Li-Cor, Lincoln, NE, USA) to measure photosynthetically
active radiation (PAR); two temperature probes (type 107, Campbell
Scientific, Logan, Utah, USA) to monitor soil (Ts) and air temperature
(Ta); a soil moisture (SMp) probe (Theta Probe ML2x, Delta-T Devices,
Cambridge, UK); an infrared thermometer (IRTS-P, Apogee, UT, USA)
to target canopy surface temperature (Tc); and an atmospheric pressure
(P) sensor (CS100, Campbell Scientific, Logan, Utah, USA). NEE was
computed as a function of the time rate of change of the measured CO2

dry molar fraction using a flux-calculation algorithm implemented in
the R Package ‘respchamberproc’ (Perez-Priego et al., 2015b). GPP was
then computed by subtracting consecutive Reco and NEE measurements.
Further details on the chambers design, acquisition and processing can
be found in Perez-Priego et al. (2015a).

Measurements of sensible heat (H, W/m2), latent heat (λE, W/m2),
CO2 fluxes (μmol/m2/s), and friction velocity (u⁎, m/s), as well as
meteorological and soil properties were conducted at two near-by EC
towers located in a non-fertilized area (Perez-Priego et al., 2017). The
two EC systems are identical and consist of a three-dimensional sonic
anemometer (R3-50, Gill LTD UK) and an infrared gas analyzer to
measure dry mixing ratios of CO2 and H2O (LI-7200, Licor Bioscience,
Lincoln, USA). ECeco measurement height was 15m which corresponds
to roughly 7m above the mean tree canopy height (El-Madany et al.,
2018). ECsub measured the fluxes of the herbaceous layer at a height of
1.6 m (Perez-Priego et al., 2017); only EC fluxes of this tower are of
interest in this work. At ECeco, shortwave incoming radiation (Rg) was
measured with a net radiometer (CNR4, Kipp and Zonen, Delft, Neth-
erlands) at ~15m. Also, Ta and relative humidity (rH) were measured
with a combined Pt-100 temperature and capacitive humidity sensor
(CPK1-5, MELA Sensortechnik, Germany) at 15 and 2m, respectively.
SMp (%) was measured at 4–5 cm below ground with 8 probes (ML2x,
Delat-T Devices Ltd., Cambridge, UK).

Down-welling and up-welling TOC spectral radiances were recorded
in each of the chamber collars at noon (± 2 h), under clear sky con-
ditions and right before the flux measurements. In total, 164 (noon)
data were available: one per plot and campaign; some campaigns lasted
more than one day, and some plots were repeated. The spectro-
radiometric system combined two field spectroradiometers (HR4000;
OceanOptics, Dunedin, FL, USA). The first was a Visible and Near
Infrared (VNIR, 400–1000 nm) sensor with Full Width at Half
Maximum (FWHM) ~1.5 nm. The second was a high spectral resolution
spectroradiometer dedicated to SIF retrieval. In 2014 the SIF spectro-
radiometer featured FWHM ~0.1 nm and spectral range 700–800 nm,
allowing the retrieval of SIF radiance in the observation direction in the
O2-A band (F↑760). In 2015 this sensor was replaced by a similar SIF
spectroradiometer (HR4000; OceanOptics, Dunedin, FL, USA) with a
wider spectral range 650–840 nm (FWHM ~0.1 nm), allowing also the
retrieval of SIF radiance in the observation direction in the O2-B band
(F↑687). Spectroradiometers were placed in a Peltier box, keeping the
internal temperature at 25 °C to prevent dark current drift and changes
in their spectral features. The system was controlled by the ad hoc
software S3 (Meroni and Colombo, 2009). Five measurements per collar
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were taken with 25° field of view optical fibers at nadir, ~110 cm above
the ground. This ensured high spatial match between flux and spectral
footprints. Down-welling radiances were measured sequentially to TOC
up-welling radiances using a 99% reflective Spectralon® panel (Lab-
Sphere, North Sutton, NH, USA). From the measured down and up-
welling radiances, we computed Hemispherical-Conical Reflectance
Factors (HCRF); also, F↑760 and F↑687 were retrieved using spectral fitting
methods and a dedicated IDL code (ITTVIS IDL 7.1.1) (Meroni and
Colombo, 2009). Further details can be found in Perez-Priego et al.
(2015a) and Migliavacca et al. (2017).

Destructive sampling was carried out within the plot of each collar
in quadrants (sample size n=4), wherever vegetation presented si-
milar conditions than the chamber collar. Samples were never acquired
inside the collars in order to preserve them intact and to ensure the
consistency of the spectral and chamber data time series. Therefore,
some uncertainty related to the small-scale spatial heterogeneity of the
herbaceous layer is still expected (Melendo-Vega et al., 2018; Vilar
et al., 2016). These samples led to the estimation of LAI, leaf mass per
area (Cm), plant form abundances (grass, forbs and legumes), green
fractions as well as carbon (Cmass), phosphorus (Pmass) and Nmass con-
centrations per mass (in %) using laboratory methods described in
Perez-Priego et al., (2015a).

2.3. SCOPE model description and parameterization

SCOPE presents a modular architecture allowing the selection of
different sub-models. In this work we inverted SCOPE v1.7, including
the leaf RTM Fluspect (Fluspect-CX) (Vilfan et al., 2018), capable of
reproducing xanthophyll cycle effects in leaf absorptance between 500
and 570 nm. These changes are propagated to TOC outgoing radiance.
In the model, we selected fluorescence emission spectra from FluoWat
leaf clip measurements (calc_PSI= 0) (Vilfan et al., 2016); and a
fluorescence model including sustained quenching (van der Tol et al.,
2014) (Fluorescence_model= 0). We also applied temperature correc-
tion to Vcmax (apply_T_corr= 1) and defined soil heat flux (G) as a
constant fraction of soil net radiation (soil_heat_method=2).

SCOPE requires several input variables or drivers representing in-
stantaneous meteorological conditions (e.g. air temperature, atmo-
spheric pressure, wind speed, etc.), as well as spectral down-welling
irradiance in the Visible-TIR domain. SCOPE also requires parameters
describing vegetation biochemistry, structure and function such as
pigment contents, leaf angle distribution (LAD), LAI, Vcmax, m, etc. We
aim to retrieve these parameters from the inversion of the model.

2.3.1. Characterization of direct and diffuse illumination
SCOPE requires spectral diffuse and direct down-welling irradiances

(E↓dif and E↓dir, respectively, W/m2/μm), whereas field spectro-
radiometers only measure total bottom of the atmosphere down-welling
spectral irradiance (E↓tot, W/m2/μm). In order to prescribe these quan-
tities, we inverted the RTM 6S v2.1 (Vermote et al., 1997) against E↓tot
between 350 and 980 nm using a model emulator. First we generated a
look-up table (LUT) with 1500 samples using the Python Py6S helper
(Wilson, 2013) and Latin Hypercube Sampling (LHS). Next a neural
network (NN) model was trained to predict E↓tot from the atmospheric
parameters using a modified version of SimpleR (Camps-Valls et al.,
2012). 1000 samples were selected for training and 500 for validating
the emulator. Then we retrieved atmospheric parameters minimizing
the cost function in Eq. (1) using the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) algorithm (Hansen, 2006). Observed ir-
radiances (E↓λ,obs) were resampled to meet center bands and bandwidth
(2.5 nm) of the 6S predicted irradiances (E↓λ,pred) using spectral con-
volution (Damm et al., 2011). For each of the spectral observations, we

used site coordinates and time stamps to compute solar angles using the
algorithm described in (Reda and Andreas, 2004). Water vapor (H2O,
g/m2), ozone (O3, cm·atm) and the aerosol optical thickness at 550 nm
(AOT) were constrained for each of the following aerosol profiles
(continental, maritime, urban, desert and biomass). The profile with the
lowest error according to Eq. (1) was selected. From the retrieved
parameters, E↓dir and diffuse E↓dif down-welling irradiances were com-
puted with Py6S and the fraction of each component was used to derive
more accurate direct and diffuse irradiances from E↓λ,obs as the product
of the fractions interpolated to the spectroradiometer bands and E↓λ,obs.

=
=

E E( )2
350

980
,obs ,pred

2
(1)

where λ stands for the wavelength in nm.

2.3.2. Soil optical properties parameterization
Soil properties were determined inverting the brightness-shape-

moisture (BSM) SCOPE sub-model model - described in Verhoef et al.
(2018) - against bare soil HCRF measurements (HCRFλ,obs) acquired
with an ASD Fieldspec® 3 (Analytical Spectral Devices, Boulder, CO,
USA) in the range 400–2500 nm. The least square nonlinear curve-fit-
ting optimization implemented in the Matlab™ function LSQNONLIN
(MathWorks, Natick, MA, USA) minimized the cost function in Eq. (2).
Spectral weights (wλ) improved the fit in the region covered by the
sensor: wλ=1.00 for λ≤1000 nm, wλ=0.15 for λ > 1000 nm and
wλ=0.0 within the atmospheric water absorption bands. We con-
strained soil brightness (B, −), spectral shape “latitude” (Lat, deg) and
“longitude” (Lon, deg); soil moisture capacity (SMC, %), SMp (%) and
the single water film optical thickness (film, −). Then for SCOPE in-
version we combined SMp observations with the parametrized values of
the B, Lat, Lon, SMC and film. This way SMp was the only parameter
controlling the soil reflectance (ρλ).

=
=

w
HCRF

HC F

2
400

2500 ,obs ,pred

R

2

(2)

where ρλ, pred is the predicted soil reflectance and σHCRFλ is the spectral
uncertainty of HCRFλ,obs.

2.3.3. Soil resistances characterization
Soil boundary layer resistance (rbs, s/m) was computed directly

from the u⁎ values internally calculated by SCOPE according to
Monteith and Unsworth (2013) as rbs= 6.2u⁎0.67. The soil resistance for
evaporation from the pore space (rss, s/m) was first parameterized using
lysimeters data collected during the summer dry periods in 2015–2017,
when grass was dry and evaporation was attributed to soil (Perez-
Priego et al. (2017) and Appendix A). Then we fitted the empirical
model in Eq. (3) between rss and SMp measured at the EC towers; data
were binned to percentile values to reduce noise. Finally, we predicted
instantaneous rss for each chamber measurement as a function of SMp

observed at the EC site, but including an offset computed from the SMp

chamber data in order to account for the generalized lower soil
moisture in the SMANIE experiment.

= +r a e c
SM

b SM
ss

( )

p
2

p

(3)

2.4. SCOPE model inversion and uncertainty propagation

SCOPE was inverted using a multiple-constraint approach with two
separated steps. This approach was used to assess the potential of GPP
and SIF to retrieve plant biophysical and functional traits using them
separately, as well as together. Moreover, we used an inversion not
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including any of them as a reference. Hereafter, we refer to these in-
version schemes as IGPP, ISIF, IGPP-SIF and IR, respectively. The para-
meters retrieved in each of the steps and the bounds imposed are pre-
sented in Table 1.

Fig. 1 summarizes the methodology proposed for the inversion of
SCOPE. In the first step (Step#1), the biochemical (Cab, Cca, Cs, Cw, Cdm,
N) and structural (LAI, LDIFa, LDIFb) parameters as well as Vcmax were
constrained minimizing the prediction error of the near-simultaneous

Table 1
Parameters estimated inverting SCOPE model, as well as the step of the inversion in which each parameter is retrieved.

Parameter Symbol Units Step Inversion bounds

Leaf chlorophyll content Cab μg/cm2 #1 [0, 100]
Leaf carotenoids content Car μg/cm2 #1 [0, 40]
Senescent material Cs – #1 [0, 3]
Leaf water content Cw, g/cm2 #1 [6.3·10−5, 0.04]
Leaf dry matter content Cdm g/cm2 #1 [0.0019, 0.0165]
Leaf structural parameter N layers #1 [1, 3.6]
Leaf area index LAI m2/m2 #1 [0, 8]
Leaf inclination distribution function LIDFa – #1 [−1, 1]; |LIDFa+ LIDFb|≤ 1
Bimodality of the leaf inclination LIDFb – #1
Maximum carboxylation capacity Vcmax μmol/m2/s #1 & #2 [0, 200]
Ball-Berry sensitivity parameter m – #2 [0, 50]
Fluorescence quantum efficiency fqe – #1 & #2 [0,1]

Fig. 1. Schematic diagram of the SCOPE model inversion.
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HCRF and GPP and/or F↑760 midday observations in each plot; IR used
only HCRF. In the second step (Step#2), the functional parameters
(Vcmax and m) were constrained minimizing the prediction errors of diel
GPP estimates and/or midday F↑760 observations together with diel TIR
radiance in the observation direction, assuming black body emissivity
(LT,out,BB); IR used only LT,out,BB. In Step#2, Vcmax previously retrieved
(Vcmax,S1) and its estimated uncertainty (σVcmax, S1

, this section) were used
as a prior, where a minimum σVcmax, S1

= 5 μmol/m2/s was imposed. EC
tower micrometeorological data, SMp, soil parameters, soil resistances,
E↓dif and E↓dir were provided as forcing. Only chamber and proximal
sensing observations constrained the inversion. Whenever F↑760 was
used as a constraint (ISIF and IGPP-SIF), fqe was also retrieved in both
steps.

SCOPE was inverted using the numerical optimization algorithm in
the Matlab™ function LSQNONLIN. For both steps, the termination
tolerance (TolFun) was set to 10−9. In Step#1, we minimized the fol-
lowing cost function (Eq. (4)):

= +

+

=
HCRF HDRF GPP GPP

F F

HCRF GPP

F

2
400

930 ,obs ,pred
2

noon,obs noon,pred
2

760,obs 760,pred
2

760 (4)

were σGPP is the GPP uncertainty as described in Perez-Priego et al.
(2015a), F 760 is the uncertainty in the F↑760 estimates and HDRFλ,pred is
the Hemispherical-Directional Reflectance Factor predicted by SCOPE.
HCRF and HDRF were assumed to be comparable enough at nadir, re-
ducing computation demand. Notice that whenever no specific type of
reflectance factor is specified, RF is used through the manuscript.

In Step#2 we minimized the cost in Eq. (5) combining diel LT,out,BB
and the Vcmax,S1 priors with either diel GPP (IGPP), noon F↑760 (ISIF), diel
GPP and noon F↑760 (ISIF-GPP), or nothing else (IR). Predicted LT,out,BB was
calculated as the combination of SCOPE reflected and emitted radiances
integrated in the 6–14 μm range, where the TIR sensors operate. Ob-
served LT,out,BB was computed from sensor surface temperature in the
same spectral range.
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where σLT, out
is the LT,out,BB uncertainty, t is each of the n diel ob-

servations and Vcmax,S2 is the Vcmax retrieved in Step#2.
At each step, a Bayesian approach was used to estimate un-

certainties in the constrained parameters as well as to predict un-
certainties in the SCOPE model outputs. To do so, we used the method
described in Omlin and Reichert (1999). For each observation, the Ja-
cobian matrix produced parameter uncertainties and the covariance
matrix. The covariance matrix was used to generate posterior dis-
tributions of the optimized parameters (Table 1). To avoid unrealistic
values out of the parameter bounds, we used the truncated Normal and
Student's t-distribution toolbox (Botev, 2017; Botev and Ecuyer, 2015).
We used 200 realizations of the model to predict uncertainty distribu-
tions in the fluxes, TOC RF and SIF.

2.5. Evaluation of the SCOPE inversion

The different inversion schemes tested in this work are evaluated
against 1) inversion constraints (GPP, F↑760, HCRF and LT,out,BB), 2)

direct measurement of retrieved parameters (e.g., LAI), 3) direct mea-
surements of variables related with the estimated traits (e.g., Nmass),
and 4) and quantities related to energy partitioning (EF).

LAI estimates were compared with values observed in the different
plots. For the evaluation of the Vcmax and m retrievals we did not use
direct measurements of these parameters. The high biodiversity at the
site hampered a representative scaling of leaf level gas exchange mea-
surements at canopy level. Such exercise would require specie-based
leaf level gas exchange and leaf area measurements in practice un-
affordable; and even if feasible, the additive uncertainty associated to
the scaling might become too large for the validation purposes.
Nonetheless, there is a well-established relationship between Vcmax and
foliar nitrogen (Ellsworth et al., 2004; Quebbeman and Ramirez, 2016;
Walker et al., 2014; Zhang et al., 2013). Therefore, we decided to
evaluate whether Vcmax estimates from inversion were related to Nmass

observations, as expected from literature (Walker et al., 2014); and to
assess the consistency between the Nmass observations - Vcmax estimates
relationship with other relationships reported in the literature from
grasslands (e.g. Feng and Dietze (2013)). Similarly, since no direct Cab
measurements were available, we also evaluated it against Nmass

(Houborg et al., 2013). The relationship between Vcmax, Cab and Nmass is
expected to be robust for green vegetation. Therefore we accounted for
the partitioning of N between green and senescent material by com-
puting Nmass in the green leaves (Nmass,green). To do so we used the re-
lationship Nmass - Nmass,green observed at this site (Gonzalez-Cascon
et al., 2019) and the observed green LAI fraction.

We used water and energy fluxes (e.g. λE, H, etc.) as well as eva-
porative fraction (EF= λE / (λE+H)) as independent observations to
evaluate the performance and consistency of the different inversion
schemes and the plausibility of m estimates. EF was chosen to evaluate
if the partitioning of energy fluxes in the model runs for the C treatment
was consistent with the ones measured in the nearby ECsub station. We
selected the EF rather than fluxes (H, λE) to ensure that energy parti-
tioning was well described by the model and the estimated parameters,
since biases in H and λE could be induced by differences between
SMANIE plots and the ECsub footprint.

Moreover, we used F↑687 for evaluation when available. F↑687 was
estimated only in the 2015 and 2016 campaigns, where a new SIF
spectroradiometer covering this spectral range was used.

We used two-way analysis of variance (ANOVA) to assess the main
effect -changes in mean- of treatments, campaigns and their interaction
on the observed and retrieved parameters; and therefore to disentangle
differences between treatments, independently of the seasonal varia-
bility. Also, parameter estimates were grouped per treatments ac-
cording to the Tukey's Honest Significant Difference (HDS) test (Tukey,
1949). During evaluation, significance was described with the symbols •

for p-values 0.05≤ p < 0.10; and ⁎ for p < 0.05.

3. Results

3.1. Characterization of SCOPE inputs

Fig. 2a shows the simulated LUT and the NN-predicted E↓tot; while
Fig. 2c shows the corresponding training and test errors. Errors are
larger in the sharp absorption features of irradiance. Test mean error
(ME), root mean square error (RMSE) and mean absolute (MAE) error
(Richter et al., 2012) are −0.11, 9.24 and 6.20W/m2 μm, respectively;
which are slightly lower than training errors (ME, RMSE and MAE are
−0.01, 6.51 and 4.63W/m2/μm, respectively). This suggests no
training overfitting and sufficient accuracy and precision of prediction.
Fig. 2b and d summarizes the inversion of 6S NN emulator against
observations. They show observed and predicted E↓tot as well as the error
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fit, respectively. Uncertainties and model discrepancies produce errors
larger than for training of the emulator: ME=20.05W/m2/μm,
RMSE=49.41W/m2/μm, and MAE=39.21W/m2/μm. Appendix B
presents an example of the characterization of the atmospheric irra-
diance and the modeling of the direct and diffuse components (Fig.
B.1a), as well as and the predicted diffuse-to-global radiation ratio (Fig.
B.1b).

Bare soil HCRF inverted against the BSM model provides the fol-
lowing soil parameters: B=0.921, Lat=20.27°, Lon=45.00°,
SMC=43.29%, film: 0.012 and SMp= 12.71%. Constrained SMC
equals the 99.99% percentile of the SMp values registered by 8 soil
moisture probes in the EC towers between January 2014 and January
2018. From the same probes, SMp interpolated at the time of the ac-
quisition of the soil spectra ranges between 8.74% and 13.89% (mean,
μ=10.20%, standard deviation σ= 1.66%); which is very close to the
retrieved SMp. For the 400–2400 nm spectral region, fit statistics were
ME=−0.00%, RMSE=0.04% and MAE=0.03%.

We fitted a model describing the rss - SMp relationship (Eq. (3)) with
R2= 0.61 and RMSE=21.03 s/m. Uncertainties are large for
SMp < 10% where an exponential decay is found (Fig. C.1), as ex-
pected in sandy soils (Baldocchi et al., 2000). rss values predicted from
SMp and used in the inversion show a low median (3.91 s/m), but rss
sometimes reach the upper bounds set for this variable (50,000 s/m,
according to Bayat et al. (2018)).

3.2. Model inversion

Fig. 3a presents the observed Normalized Difference Vegetation
Index (NDVIobs) -averaged per date and treatment-, representing both
seasonality and fertilization effects. Fig. 3b–e summarize the temporal
variability of the most relevant retrieved parameters grouped by
treatment (~4 replicates each) together with Cs (Fig. 3f), all of them
estimated with the scheme IGPP. Analogously, Appendix D presents the
results of the schemes ISIF, IGPP-SIF and IR in Figs. D.1, D.2 and D.3,
respectively. As can be seen, estimated parameters are coherent with
the seasonality represented by NDVIobs: the grassland development
starts around March, peaks in April, and then starts the senescence
phase due to water stress. Independent Cab and LAI observations follow
the same trend (Luo et al., 2018; Melendo-Vega et al., 2018).

Fig. 2. Simulated and NN-predicted total irradiance va-
lues (a). Test and fit errors of the 6S NN emulator. The
mean (μ) and the standard deviation (σ) of the error per
band are also presented (c). Observed and NN-predicted
total irradiance values (b). Fit errors in the inversion of
the 6S NN emulator against observed irradiances. The
mean (μ) and the standard deviation (σ) of the error per
band are also presented (d).

Fig. 3. Time series of observed Normalized Difference Vegetation Index
(NDVIobs) averaged per campaign and treatment (a). Time series of retrieved
key parameters Cab (b), LAI (c), Vcmax (d), m (e) and Cs (f) for the inversion
scheme IGPP. Parameters are presented per campaign and treatment: control (C),
Nitrogen (N), Nitrogen plus phosphorous (NP) and phosphorous (P). Red lines
separate campaigns corresponding to different years. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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The four inversion schemes show a good agreement between Cab
and Cs with NDVIobs seasonality; whereas LAI seasonal variations are
less pronounced. For IGPP (Fig. 3) and IGPP-SIF (Fig. D.2), Cab (b), LAI (c)
and Vcmax (d) increase during the growing season, peaking around
April, and decrease during the dry period (May – July, depending on the
year); whereas m values (e) are low for NDVIobs < 0.31. As expected,
Cs (f) increases in the dry period. ISIF (Fig. D.1) and IR (Fig. D.3) show
lower Cab and Cs values than the other schemes, especially during the
dry season. However, ISIF presents large intra-campaign variability for
Vcmax and m, which decouples these variables from phenology (Fig.
D.1d–e). On the contrary, these variables show very little intra-cam-
paign variability for IR (Fig. D.3d–e). In fact these estimates equal the
starting points used for the inversions; which suggest that Vcmax and m
had little effect on the constraints used by this scheme. Cw and Cdm (not
shown) are highly unconstrained in all the schemes since no informa-
tion was used either in the Short Wave Infrared region or the Near
Infrared (NIR) water absorption bands. Cw and Cdm show weak but

significant negative relationships with NDVIobs; which in the case of
Cdm is agreement with previous observations in the site (Melendo-Vega
et al., 2018; Vilar et al., 2016).

Fertilization with N and P increased foliar content of these elements
where applied; and increases of Cab and Vcmax related to foliar nitrogen
were not only expected, but coherent with ancillary observations (e.g.,
GPP) and modeling exercises in previous works at this site (Migliavacca
et al., 2017; Perez-Priego et al., 2015a). Fig. 4 presents the distributions
per treatment of the most relevant parameters retrieved by each in-
version scheme; informing therefore of the capability of each inversion
scheme to reproduce expected vegetation responses to treatments. For
all the inversion schemes, the highest Cab estimates (Fig. 4a–d) are
found in the N and NP treatments. IGPP and IGPP-SIF present higher va-
lues than ISIF and IR; however, two-way Tukey's HDS test only finds
group differences for ISIF and IR. LAI estimates (Fig. 4e–f), show no
strong differences between treatments nor inversion schemes. Both LAI
observations and estimates do not show significantly different

Fig. 4. Distributions of the most relevant retrieved parameters grouped per treatment: control (C), N (N), N plus P (NP), and P (P). Results for IGPP, ISIF, IGPP-SIF and IR
are respectively presented in each column from right to left. Cab (a–d), LAI (e–h), Vcmax (i–l), m (m–p). Grey boxes represent Vcmax,S1 (values constrained in Step#1)
(i–l) or fixed m values in Step#1 (m–p). Tukey's honest significant difference groups are presented in each subplot.
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treatment groups; the strong treatment effects observed in exclusion
cages (not shown) are likely minimized due to selective grazing of the
cattle on the fertilized plots. Vcmax estimates (Fig. 4i–l) quite vary be-
tween inversion schemes. IGPP and IGPP-SIF show the highest values for N

and NP. In IGPP-SIF N and NP are grouped together; whereas in IGPP only
NP was placed in a different group. Contrarily, ISIF shows the highest
Vcmax in the C and P treatments, with no differences between groups. In
the case of IR, solutions stay almost at the starting points of the

Table 2
p-Values of the two-way analysis of variance (ANOVA) test corresponding to the effects treatments, campaigns and their interaction on the estimates of four
parameters (chlorophyll, leaf area index, maximum carboxylation rate and Ball-Berry stomatal sensitivity). Results are presented for each of the inversion schemes.
Symbol • stands for 0.05≤ p < 0.10; and symbol ⁎ means p < 0.05.

Treatment Campaign Interaction

Cab LAI Vcmax m Cab LAI Vcmax m Cab LAI Vcmax m

IGPP 0.08• 0.71 0.04⁎ 0.56 0.00⁎ 0.00⁎ 0.00⁎ 0.00⁎ 0.55 0.8 0.55 0.07•

ISIF 0.04⁎ 0.90 0.00⁎ 0.55 0.00⁎ 0.00⁎ 0.00⁎ 0.00⁎ 0.48 0.01⁎ 0.22 0.73
IGPP-SIF 0.00⁎ 0.05• 0.21 0.83 0.00⁎ 0.00⁎ 0.00⁎ 0.00⁎ 0.11 0.92 0.15 0.19
IR 0.00⁎ 0.00⁎ 0.00⁎ 0.38 0.00⁎ 0.00⁎ 0.00⁎ 0.30 0.11 0.45 0.02⁎ 0.25

Fig. 5. Evaluation of the inversion schemes IGPP, ISIF, IGPP-SIF and IR (columns from left to right, respectively). Predicted and observed variables used in the cost
function during the inversion: NDVI (a–d), GPP (e–h), F↑760 (i–l), and LT,out,BB (m–p). Predicted and observed variables not involved in the model constraint: F↑687 – in
red - (i–l), LAI (q–t), and evaporative fraction (EF) summarizing the partition of water fluxes (u–y). EF is compared only for control plots against the fluxes of the
nearby unfertilized subcanopy EC tower. Total Least Squares (Golub and Loan, 1980) was used to compute R2, RMSE, offset and slope (orange line). The 1:1 line is
also shown for comparison (black). Notice that spectral observation –and therefore retrieved parameters- are available only at noon, whereas several diel flux
measurements were acquired per plot and campaign. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this
article.)
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inversion; which were set according to the relationship Vcmax-Nmass

used in Migliavacca et al. (2017); for this reason the highest values are
found in N and NP treatments; which are grouped together. IR Vcmax

values are lower than those estimated by IGPP and IGPP-SIF. Fig. 4i–l show
also Vcmax,S1 in grey boxes. Compared to Step#1, Step#2 Vcmax values
are 10.3% and 9.7.0% lower for IGPP and IGPP-SIF, respectively; and 1.9%
higher in the case of ISIF. As Vcmax, m estimates (Fig. 4m–p) also differ
for each inversion scheme. IGPP and IGPP-SIF show higher values for N
and for N and P than for the other treatments, respectively; whereas m
estimates present lower values in NP, suggesting higher water use ef-
ficiency. Nonetheless, no different groups are found by the statistical
analysis. ISIF obtains the lowest m values, most often below the value
used in Step#1 (m=10), and sometimes close to 0. As occurred with
Vcmax, IR values do not move from the inversion starting point.
Fig. 4m–p present the fix m value prescribed in Step#1 in grey;
Step#2m in IGPP and IGPP-SIF is 13.0% and 11.6% larger than Step#1m,
respectively; whereas m is 72.9% lower for ISIF.

Table 2 shows the p-value of the treatment, campaign and interac-
tion effects provided by the two-way ANOVA test. All the variable es-
timates present significant campaign effect but m in IR, since it features

the same value. For all the inversion schemes, Cab estimates show sig-
nificant treatment (p < 0.05 for al schemes but IGPP where p < 0.10),
but no interaction effects. Significant treatment effects on LAI are ob-
served for IGPP-SIF (p < 0.10) and IR (p < 0.05), and interaction effects
for ISIF (p < 0.05). Vcmax presents treatment effects for all the inversion
schemes (p < 0.05) but for IGPP-SIF; whereas for ISIF Vcmax shows in-
teraction effects (p < 0.05). No treatment effects are found for m, but
in IGPP m shows some interaction (p < 0.10).

3.3. Model inversion evaluation

Fig. 5a–p shows predicted and observed values of variables used in
the cost functions of the SCOPE inversion (Eqs. (4)–(5)): Normalized
Difference Vegetation Index (NDVI), GPP, F↑760, and LT,out,BB. NDVI
summarizes the fit of HCRF in Step#1. Additional statistics can be
found in Table E.1 (Appendix E). For the inversion schemes IGPP, ISIF,
IGPP-SIF and IR, HCRF in the spectral range 400–930 nm show
RMSE=0.029, 0.014, 0.028 and 0.014, respectively; and analogously
ME=0.004, 0.003, 0.003 and 0.003. However, the fit in absolute terms
is better in the Visible (RMSE=0.010, 0.004, 0.010, 0.004), which is

Fig. 6. Nmass,green vs. Vcmax retrieved in the second step of the inversion; results are compared with Feng and Dietze (2013) data and the same logarithmic function is
fitted for both datasets for IGPP (a), ISIF (c), IGPP-SIF (e) and IR (g). Nmass,green vs. estimated Cab for IGPP (b), ISIF (d), IGPP-SIF (f) and IR (h).. Vertical lines represent the
25%–75% confidence intervals of the estimated parameters. 95% confidence intervals for the fitted models are represented by dashed lines. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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underestimated (ME=−0.004, −0.000, −0.004, −0.000); than in
the NIR region (RMSE=0.043, 0.020, 0.041, 0.021), which results
overestimated (ME=0.015, 0.007, 0.013, 0.0078). ISIF and IR fit NDVI
(Fig. 5a–d) and HCRF better than IGPP and IGPP-SIF; however these
schemes largely underestimate GPP (Fig. 5.f,h), especially ISIF. On the
contrary, IGPP and IGPP-SIF accurately fit GPP (Fig.5e,g). F↑760 (Fig.5gi–l)
is well fitted in ISIF and IGPP-SIF; whereas it is overestimated by IGPP,
(slope equal to 0.77) and precisely buy not so accurately predicted by IR
(slope equal to 0.90). LT,out,BB is similarly fitted by all the schemes
(Fig. 5m–p); in all the cases the highest values are underestimated, and
ISIF R2 is lower than for the other schemes.

Fig. 5 also shows the observed and predicted values of three vari-
ables not used in the cost function: LAI, EF, and F↑687. LAI (Fig. 5q–t) is
acceptably estimated by IGPP and IGPP-SIF (R2= 0.41, 0.47;
RMSE=1.25, 1.19m2/m2, respectively), although it results under-
estimated (ME=−0.49m2/m2 in both cases). On the contrary ISIF and
IR poorly predict LAI (R2= 0.01 and 0.01, RMSE=1.65 and 1.64m2/
m2; ME=−0.56 and−0.61m2/m2). F↑687 is underestimated by all the
inversion schemes (Fig. 5i–l, in red), but with significant relationships
(p < 0.05) of slopes equal to 5.4, 5.1, 5.3 and 4.4, respectively.

Fig. 5u–y present predicted and observed EF; IGPP and IGPP-SIF pre-
dict less biased EF than ISIF and IR, and consequently simulate energy
partition more accurately. Also, IGPP and IGPP-SIF show closer agreement
with observed fluxes than ISIF and IR. IGPP, ISIF, IGPP-SIF and IR predict λE
with RMSE=86.8, 46.9, 85.7 and 56.8W/m2, and R2= 0.72, 0.74,
0.77 and 0.77, respectively. Similarly, H is predicted with
RMSE=83.9, 121.9, 88.3 and 105.1W/m2, and R2= 0.81, 0.62, 0.79
and 0.73, respectively. RMSE for G is close to 37W/m2 for all the
schemes.

Fig. 6 presents the evaluation of Cab and the functional traits (Vcmax,
m) estimates with direct measurements of plant traits at canopy scale.
The 25th and 75th percentiles of the predicted posterior uncertainties
are also presented. Fig. 6a,d,g,j relate Vcmax with Nmass,green for IGPP, ISIF,
IGPP-SIF and IR, respectively; and compare these relationships against the
one reported in the meta-analysis conducted by Feng and Dietze (2013)
for grasses. For both datasets a logarithmic model is adjusted and the
95% confidence intervals of the fitted curves are presented. For IGPP,
and IGPP-SIF, the Nmass,green-Vcmax relationship estimated after SCOPE
inversion is consistent with that reported by Feng and Dietze (2013),
but our estimates show lower Vcmax for large Nmass,green values. Con-
trarily, ISIF Vcmax shows non-positive relationship with Nmass,green;
whereas IR Vcmax values are below the Feng and Dietze (2013) re-
lationship, and are more uncertain than the estimates of other schemes.
Fig. 6b,e,h,k compare Cab with Nmass,green, all the inversion schemes
present a saturating relationship. IGPP and IGPP-SIF show some high Cab
values for Nmass,green < 2.0% during the dry period. On the contrary,
ISIF and IR Cab estimates for this period are lower, and their relationships
with Nmass,green are neater. Despite the differences in the dry period, the
Cab-Nmass,green models of all the schemes are relatively similar, and these
are even closer if values in the dry period are removed (not shown).
Additionally, m is compared with values reported in the literature. For
example the review of Miner et al., (2016) reports mean m values equal
13.5 ± 3.1 (1 standard deviation) for a reduced dataset of C3 grasses
(n=5); and 10.4 ± ~5 for herbaceous annual species (n=8). For
IGPP, ISIF, IGPP-SIF and IR, the mean and 95% confidence intervals are
respectively 11.3, [0.0, 32.9]; 5.3, [0.0, 40.0]; and 11.2, [0.4, 33.5];
and 10.0, [10.0, 10.0]. Estimated values are close to reported averages
for IGPP and IGPP-SIF; whereas these are lower for ISIF, and IR shows the

starting values of the inversion. Distributions found in IGPP and IGPP-SIF
are wider than in the literature; but also are the seasonality covered by
our dataset and the number of species.

4. Discussion

This work raised from the most recent efforts of the RS community
to characterize the spatiotemporal variability of key plant functional
traits by exploiting the increasingly rich RS data in coupled RTM and
SVAT models (Bayat et al., 2018; Celesti et al., 2018; Dutta et al., 2019;
Hu et al., 2018; van der Tol et al., 2016). Here, we have further de-
veloped a methodology to invert the SCOPE model with a multiple-
constraint approach and assessed the importance of the different con-
straints (GPP and SIF, together with TIR and RF) in the retrieval. Our
results suggest 1) that the inversion method proposed can provide ro-
bust estimates of biophysical and functional traits of vegetation (this
means, coherent with seasonality, fertilization, observed biophysical
parameters, fluxes, EF and Nmass; as discussed in the following subsec-
tions), and is applicable on research sites monitored with eddy covar-
iance systems and hyperspectral remote sensing data, and 2) that GPP is
a better constraint of functional traits than monochromatic SIF. The
additional contribution of this article to previous works can be sum-
marized in four points: 1) the inversion method, 2) the comparison of
GPP and SIF as constraints, 3) the use of pattern-oriented model eva-
luation and 4) the analysis the sources uncertainty.

4.1. Inversion method

We separated the inversion of SCOPE model in two different steps;
but unlike in former works (Bayat et al., 2018; Hu et al., 2018), we
included constraints sensitive to plant functioning in all of them. Split
model inversions have been already used in the literature in two ways:
constraining different parameters in each step (Bayat et al., 2018; Hu
et al., 2018; Migliavacca et al., 2009; Wutzler and Carvalhais, 2014), or
tuning the same parameters in different steps (Peylin et al., 2016); here
we combined both approaches. In Step#1, we jointly used midday
biophysical (e.g., RF) and functional (e.g., GPP) constraints to optimize
biochemical and structural traits together with Vcmax. Since assimilation
and transpiration are related, Vcmax estimates depend on m, and
therefore a second step was used to retrieve these two parameters
constraining the model with diel functional constraints (e.g., GPP and
TIR data). Simultaneous retrieval of all parameters led to equifinal re-
sults (not shown). Our results suggest that Vcmax can be estimated in
Step#1 and not strongly modified in Step#2 if an adequate guess on m
is used in Step#1 (e.g. typified PFT values in LSM). Vcmax,S1 was biased
respect to estimates in Step#2, but sensitivity to treatments and sea-
sonality remained. With the adequate constraints, the method provided
biophysical and functional parameters that are coherent with season-
ality (e.g., Fig. 3) and fertilization. The analysis of fertilization effects is
complex, and treatment differences shown in Fig. 4 and Table 2 are in
part occluded by the fact that they are minimized when grass senesces.
Statistical analyses carried out only on growing season data (not
shown) revealed significant treatment effects on Cab, LAI and Vcmax

estimates, but not on m. The combination of biophysical and functional
constraints in Step#1 improved the estimation of some biophysical
parameters, such as LAI. Nonetheless, the use of diel information was
still necessary to adequately estimate the functional traits (e.g., Vcmax,
m). Additional tests using only midday data in Step#2 (not shown)
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provided Vcmax values between Step#1 and Step#2 estimates, but in the
overall, not as robust as those obtained using diel observations. This
might be due to saturation in some of the physiological processes re-
lated to carbon fixation and stomatal closure during midday depression
(Collatz et al., 1991; Frankenberg and Berry, 2018; Roessler and
Monson, 1985; van der Tol et al., 2014). Saturation could make model
outputs little sensitive to variation in some of the functional para-
meters, leading to equifinality and ill-posed solutions. Diel information
is richer than midday observations since it comprehends vegetation
function under different light saturation and water stress conditions;
and therefore more robustly constrains functional traits.

In this work we proposed inverting SCOPE by means of numerical
optimization (as in van der Tol et al. (2016)); which is time demanding
when the full model is run. Former works used LUTs to speed up SCOPE
inversion (Bayat et al., 2018; Hu et al., 2018); whereas the use of
emulators has been limited so far to the inversion of the optical RTM
(Verrelst et al., 2017). The emulation of different modules of SCOPE
could facilitate the inversion of the model with imagery and large da-
tasets.

4.2. Evaluation of the potential of GPP and SIF as functional constraints

Previous works have used combinations of constraints similar to the
ones used in this work (RF, GPP, SIF and/or TIR radiance); but they
used methodologies different to the one proposed here, and focused on
the retrieval of vegetation parameters. Only Dutta et al., (2019) eval-
uated the effect of adding RF to the constraint imposed by carbon and
water fluxes, concluding that RF improved their results. Our study
compares for the first time the potential of GPP and SIF, in combination
with optical hyperspectral and TIR data, to estimate functional para-
meters of vegetation. An inversion excluding GPP and SIF was used as a
baseline for the evaluation of results. IGPP and IGPP-SIF presented the best
estimates of functional traits such Vcmax and m; as well as some key
biophysical traits, except some cases in the dry season. ISIF and IR
weakly and very weakly constrained the functional traits; and failed to
estimate LAI. We acknowledge that the comparison GPP vs. SIF was not
totally balanced since we used diel GPP to invert SCOPE, whereas a
single SIF value was available for the inversion. However, Vcmax esti-
mates in Step#1 -where single values of GPP and/or SIF were used-, and
tests performed using only midday data in Step#2 (not shown) were
consistent with results of Step#2 (Fig. 4i–l); which suggests that GPP is
a stronger constrain of functional parameters (e.g., Vcmax) than SIF.

The control of SIF on functional traits such as Vcmax and m has not
been evaluated in former works inverting SCOPE against SIF (Celesti
et al., 2018; Hu et al., 2018; van der Tol et al., 2016), since those fo-
cused on the estimation of parameters directly controlling SIF emission
(e.g. fqe). Recent works have assimilated SIF in order to estimate Vcmax

exclusively, obtaining better results than in this manuscript (Camino
et al., 2019; Zhang et al., 2014b). In these works Vcmax was constrained
with SIF after the remaining biophysical parameters had been esti-
mated, at the same time that no additional functional parameters such
as fqe or m were simultaneously involved in the cost function. We hy-
pothesize that this method forced a univoque relationship between
Vcmax and SIF, allowing a successful retrieval of Vcmax as long as the
guess on the prescribed functional parameters (fqe or m), was realistic.
Our results show that midday F↑760 weakly constrains Vcmax, and that
solutions become ill-posed when additional functional parameters are
simultaneously estimated. Also, it must be considered that SIF in Zhang
et al. (2014b) features bi-weekly temporal resolution, so that the

information provided by these data might differ from the one contained
by near-simultaneous datasets, as those presented in this manuscript.
The weak constrain of F↑760 on Vcmax and m that we found may be ex-
plained by the fact that Vcmax is related to the dark reactions of pho-
tosynthesis whereas SIF is more closely related to the light reactions.
Also, the link Vcmax-SIF is weak: Vcmax imposes a ceiling for photo-
chemistry, but changes in fluorescence rate in response to saturating
light are affected by the activation of alternative dissipation pathways
such as non-photochemical quenching (Frankenberg and Berry, 2018;
van der Tol et al., 2014), which can be enhanced at noon. In addition,
the formal link between F↑760 and GPP in the model is based on em-
pirical relationships extrapolated from limited datasets; which might
not be representative of the grassland under study. Another com-
plementary hypothesis could be that the retrieval of fqe against a single
F↑760 observation is too loose and that multi-spectral or multi-temporal
SIF data are needed to properly constraint this parameter. None of the
inversion schemes accurately predicted F↑687; which could be in part
explained by uncertainties in the retrieval of F↑687 related to i) as-
sumptions on the shape of fluorescence emission (Cogliati et al., 2015),
and ii) low signal-to-noise ration of the spectrometer used in this study
(Julitta et al., 2016). Also, it could be possible that the fixed ratio be-
tween the fqe of both photosystems was unrealistic. Hu et al. (2018)
solved this problem constraining fqe parameters of each photosystem
inverting SCOPE against diel cycles of F↑760 and F↑687. In our case, the
lack of reliable F↑687 data in all the campaigns prevented us from fully
exploiting multi-spectral SIF.

IR relied on constraints similar to those used by Bayat et al. (2018);
however, this scheme did not succeed to retrieve the functional traits.
This could be explained by the reduced influence of these parameter on
the outputs evaluated in Step#2 (LT,out,BB). Vcmax had no strong effect
on RF in Step#1, and the response of TIR radiance to Vcmax and m in
Step#2 was below the termination tolerance on the cost function in the
first run of the inversion. Consequently IR functional traits remained at
the initial values of Step#2. Bayat et al. (2018) relied on a LUT-based
approach, and therefore wide ranges of parameter values were eval-
uated at once leading to different solutions. This suggests that global
search methods might be more suitable than local optimization when
only RF and TIR data are used to estimate Vcmax and m.

Our works suggests that the joint use of constraints on i) optical
properties, ii) photosynthesis and iii) transpiration/evaporation, at
least, allows obtaining reliable estimates of biophysical and functional
traits. Such approach cannot rely exclusively on RS imagery, but could
be applied at the growing EC network jointly with spectral and thermal
data. This method would provide valuable information about the intra
and inter PFT spatial and temporal dynamics of the functional traits at
chamber/proximal sensing and EC site/RS scales. Such estimates could
be further used for evaluation, cross-validation or modeling of LSM
using different approaches.

4.3. Pattern-oriented model evaluation of functional parameter estimates

In this work, we overcame the absence of direct measurements of
the targeted functional traits using a pattern-oriented model evaluation
strategy. This allowed us evaluating the suitability of the method de-
veloped as well as the potential of different sets of constraints to esti-
mate plant functional traits. IGPP and IGPP-SIF Vcmax positively related to
Nmass,green, following a curve close to relationships reported for grasses
(Feng and Dietze, 2013); whereas ISIF estimates were unrelated to
Nmass,green. We also evaluated the consistency of Cab with Nmass,green; in

J. Pacheco-Labrador, et al. Remote Sensing of Environment 234 (2019) 111362

12



this case, all the inversion schemes provided expected positive satur-
ating relationships. IGPP and IGPP-SIF presented too high Cab values -
considering Nmass,green - during the dry period; suggesting that when
GPP constrained the model, Cab could result overestimated. This and
other issues are discussed section 4.4.

An additional pattern that we analyzed to evaluate the consistency
of the retrieved parameters is EF. This analysis revealed that IGPP and
IGPP-SIF provided the most accurate and precise EF predictions; which
suggests that the corresponding m estimates mimicked vegetation
function most closely. Alternatively, m estimates could be evaluated
using 13C isotope discrimination, under certain assumptions (Medlyn
et al., 2017). λE and H were overestimated by all the inversion schemes
(Table E.1); this could be in part explained by the differences in the
radiative regime of the open experimental area and the ECsub footprint,
more often shaded by tree crowns (e.g., up to a 60% of this footprint
was shaded during the campaigns); however, EF seems to be robust to
these differences. Patter-oriented model evaluation also showed that
SIF in IGPP-SIF slightly improved the estimation EF (and likely m) com-
pared to IGPP. This seems in agreement with recent works exploring the
relationships between SIF and transpiration (Alemohammad et al.,
2017; Lu et al., 2018). On the other hand, the weak constrain if IR and
ISIF, led to noisier and more biased EF predictions, in part related with
GPP underestimation (Fig. 5f,h). The evaluation of EF and the com-
parison with literature values suggests that ISIF estimates were not
realistic. These results open an interesting perspective to the use of
combined flux observation and remote sensing products of RF (and SIF)
for the parameterization as well as the evaluation of the stomatal slope
m, a crucial parameters in LSM (e.g. Rogers et al. (2016)).

4.4. Sources of uncertainty

Different inversion schemes showed high uncertainty in the esti-
mation of biophysical parameters traditionally retrieved from RTM
inversion (e.g., LAI, Cab). This seems to be related with the inaccurate
representation of the optical properties of the dry standing biomass,
abundant in the grassland under study in certain periods of the year.
Vilar et al. (2016) suggested that senescent material may hamper the
estimation of key variables such as LAI using empirical parametric and
non-parametric methods in the same study site. Melendo-Vega et al.,
(2018) related overestimation of NIR RF with the presence senescent
material using PROSAIL and measured model parameters in the site. We
hypothesize that this overestimation could have produced the under-
estimation of LAI in our study, since reduced LAI values would allow
fitting low NIR RF during inversion. The use of GPP in Step#1 improved
the estimation of LAI, which was likely due to the demand of suitable
APAR levels for fitting GPP. In fact in Step #1, IGPP and IGPP-SIF pre-
dicted APAR values a 29.37% and 23.28% higher than IR and ISIF, re-
spectively. These results might open the possibility of using precise
estimates or observations of APAR to constrain biophysical and func-
tional parameters; however, the potential of APAR to replace GPP needs
to be explored in the future. On the other hand, IGPP and IGPP-SIF also
provided high Cab values, especially in the dry season where the se-
nescent LAI fraction peaks. We hypothesize that in this case, light sa-
turation at midday allowed increasing Cab (and APAR) but not GPP,
while improving the fitting of RF in the Visible bands. This likely
compensated changes in other model parameters such as LAI. No strong
differences were found in the parameters controlling LAD; however,
IGPP and IGPP-SIF predicted canopies slightly less electrophile than the

other inversion schemes. These results suggest that exploiting biophy-
sical and functional constraints simultaneously, as proposed here, can
provide solutions more robust to observation uncertainties and model
error. Nonetheless, this approach did not fully solve model re-
presentation problems. In addition, we must consider that SCOPE si-
mulates homogeneous canopies where all the leaves present the same
effective properties; whereas in reality, green and senescent leaves
feature very different properties and processes. The effect of these
discrepancies on the estimated parameters remains unknown. Further
work is needed to improve representation of canopies mixing photo-
synthetic and senescent materials, ensuring robust estimates of plant
biophysical and functional traits in ecosystems with large senescent
fractions.

Additional sources of uncertainty can be related with the para-
metrization done before inversion. The large uncertainties in the fit of
SMp-rss model might have had a strong effect on the predicted fluxes
and therefore on the inversion. In order to understand the potential
impact of these uncertainties, we propagated SMp uncertainties to
predicted GPP, LT,out,BB and F↑760 (Appendix F). Small variations in SMp

translated into large variability of rss in dry conditions but also pro-
duced relatively small changes in the predicted fluxes, thus a low im-
pact on the inversion is expected. Also, in the inversion of 6S some
moderate uncertainties were found, especially within deep absorption
features; however, these estimates were only used to describe the
fractions of direct and diffuse E↓tot. These estimates are expected to be
more accurate than the fractions computed by default by SCOPE, ac-
cording to some standard atmospheric transfer functions; therefore the
impact of inversion uncertainties should be small.

5. Conclusions

The multiple-constraint inversion of coupled RTM and SVAT
models, such as SCOPE, requires information on i) biophysical prop-
erties, ii) photosynthesis, and iii) transpiration/evaporation in order to
provide reliable estimates of biophysical and functional traits of vege-
tation (e.g. Vcmax, m, Cab and LAI). Whereas hyperspectral RF and diel
TIR information can be used as constraints of i) and iii); GPP is a
stronger constraint of ii) than monochromatic SIF, indicating that the
use of SIF alone might not be enough to retrieve Vcmax. The simulta-
neous combination constraints on vegetation biochemistry and struc-
ture (e.g., RF) and function (e.g., GPP) provides more robust estimates
of biochemical and functional parameters than the separated retrieval
of each type of trait. We propose a method that can be exploited at EC
sites to improve the characterization of the spatio-temporal variability
of key functional traits by combining ground GPP and TIR time series
with hyperspectral RS. This information is nowadays needed to improve
the parameterization of LSM predicting Carbon cycle at global scale. In
this context, we also proved the potential of pattern-oriented model
evaluation approach to assess the suitability of models, inversion
methods and constraints.

Further work is needed test the proposed method at eddy covariance
sites and with satellite information, and to develop methods that suc-
cessfully exploit SIF to constrain parameters related with photo-
synthetic activity. This is critical for the exploitation of the RF, SIF and
TIR datasets provided by the up-coming FLuorescence EXplorer (FLEX),
in tandem with Sentinel-3 (Drusch et al., 2017). Also, new models
should be adapted to better represent processes in ecosystems featuring
senescent material, such as the widely distributed semi-arid grasslands.
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Appendix A. Computation of soil resistance for evaporation from the pore space

Soil resistance for evaporation from the pore space (rss) was computed according to Mahfouf and Noilhan (1991) as described in Eq. (A.1)

=r
C e e

E
rss

p sat a

soil
bs (A.1)

where rbs is the soil boundary layer resistance (s/m), ρ is air density (kgm−3), Cp is the specific heat capacity (J kg−1 K−1), γ is the psychrometric
constant (kPa k−1), esat and ea are the saturated and ambient water vapor pressure (kPa) of soil air pore spaces, respectively, and λEsoil (Wm−2) is the
latent heat flux measured by the lysimeters. esat was calculated as a function of soil temperature, whereas ea was computed according to thermo-
dynamic principles as a function of Eq. A.2, the relative humidity of the soil pores (φ).

= ea

g
R Tw s (A.2)

where g is the gravitational acceleration (9.81m s−2), ψ is the matric soil potential (water column, m), Rw is the water vapor gas constant
(461.5 J kg−1 k−1) and Ts is soil temperature expressed in K. Ψ was measured using tensiometers (Full Range Tensiometer, Umwelt-Geräte-Technik
GmbH, Müncheberg, Germany).

Appendix B. Example of the inversion of 6S and SCOPE models on spectral variables

Fig. B.1. Example of the VNIR observed down-welling and up-welling radiances together with the predicted global, direct and diffuse down-welling radiances from
the inversion of the 6S model. Irradiances are transformed to radiances (L) as E / π. Notice that here predicted 6S radiances present a lower spectral resolution than
the measurements (a). Observed and predicted reflectance factors corresponding to the left panel of this figure as well as the predicted diffuse-to-global radiation
ratio (b).
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Appendix D. Most relevant SCOPE parameter estimates

Fig. D.1. Time series of observed Normalized Difference Vegetation Index (NDVIobs) averaged per campaign and treatment (a). Time series of retrieved key para-
meters Cab (b), LAI (c), Vcmax (d), m (e) and Cs (f) for the inversion scheme ISIF. Parameters are presented per campaign and treatment: control (C), Nitrogen (N),
Nitrogen plus Phosphorous (NP) and Phosphorous (P). Red lines separate campaigns corresponding to different years.
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Fig. D.2. Time series of observed Normalized Difference Vegetation Index (NDVIobs) averaged per campaign and treatment (a). Time series of retrieved key para-
meters Cab (b), LAI (c), Vcmax (d), m (e) and Cs (f) for the inversion scheme IGPP-SIF. Parameters are presented per campaign and treatment: control (C), Nitrogen (N),
Nitrogen plus Phosphorous (NP) and Phosphorous (P). Red lines separate campaigns corresponding to different years.
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Fig. D.3. Time series of observed Normalized Difference Vegetation Index (NDVIobs) averaged per campaign and treatment (a). Time series of retrieved key para-
meters Cab (b), LAI (c), Vcmax (d), m (e) and Cs (f) for the inversion scheme IR. Parameters are presented per campaign and treatment: control (C), Nitrogen (N),
Nitrogen plus Phosphorous (NP) and Phosphorous (P). Red lines separate campaigns corresponding to different years.

Appendix E. Comparison of different inversion schemes

Table E.1 summarizes the performance of different inversion schemes tested to retrieve biophysical and functional parameters of the SCOPE
model. We compare the three inversion schemes described in this manuscript (IGPP, ISIF, IGPP-SIF and IR). The table shows R2, RMSE, RRMSE,ME,MAE,
posterior uncertainties (Uposterior), slope and offset obtained with each of the schemes comparing predicted and observed: LAI, Cab, HCRF, LT,out,BB,
F↑687, F↑760, GPP, λE, H, G and EF analogously to Fig. 5. Total Least Squares (Golub and Loan, 1980) is used in the comparisons. In addition, for LAI, Cab
and m, statistics for the models fit to the relationships Nmass,green-Vcmax, Nmass,green - Cab and Δ13C-m are presented.

Table E.1
Performance of the inversion of SCOPE using different inversion schemes.

R2 RMSE RRMSE MAE ME Uposterior Slope Offset

LAI
IGPP 0.41 1.25 44.31 0.93 −0.49 0.24 2.22 −2.34
ISIF 0.01 1.65 58.85 1.29 −0.56 0.22 27.32 −58.44
IGPP-SIF 0.47 1.19 42.44 0.89 −0.49 0.23 1.92 −1.66
IR 0.01 1.64 58.43 1.3 −0.61 0.17 22.87 −47.58

Cab
IGPP 0.16 15.00 64.1 10.84 0.00 12.21 – –
ISIF 0.31 9.00 54.14 7.20 0.00 7.21 – –
IGPP-SIF 0.20 16.45 65.76 12.00 0.00 12.61 – –
IR 0.34 8.40 51.39 6.82 0.00 0.73 – –

Vcmax

IGPP 0.25 30.85 43.71 24.03 0.00 1.67 – –
ISIF 0.00 71.93 127.04 57.5 0.00 0.91 – –
IGPP-SIF 0.30 29.48 38.95 24.31 0.00 1.69 – –
IR 0.31 7.66 23.70 5.79 0.00 43.42 – –

m
IGPP 0.12 4.37 42.16 3.37 0.00 4.51 – –
ISIF 0.12 2.48 69.77 1.94 0.07 10.21 – –
IGPP-SIF 0.13 3.76 37.58 2.75 0.00 4.08 – –
IR 0.00 0.00 0.00 0.00 0.00 13.05 – –

GPP
IGPP 0.90 2.11 21.92 1.55 0.04 1.23 0.98 0.12
ISIF 0.17 9.82 102.71 8.00 −7.78 2.50 2.73 4.69
IGPP-SIF 0.89 2.20 22.87 1.61 0.02 1.23 0.97 0.25
IR 0.62 5.64 58.76 4.13 −3.68 1.00 2.09 −2.75

R
IGPP 0.95 0.03 18.68 0.02 0.00 0.03 0.93 0.01
ISIF 0.99 0.01 8.73 0.01 0.00 0.03 0.97 0.00
IGPP-SIF 0.96 0.03 17.7 0.02 0.00 0.03 0.93 0.01
IR 0.99 0.01 9.01 0.01 0.00 0.01 0.96 0.00

LT,out,BB
IGPP 0.83 8.72 14.96 7.23 −7.17 3.98 1.57 −21.79
ISIF 0.75 7.82 13.43 5.92 −5.69 6.13 1.45 −18.05
IGPP-SIF 0.82 8.67 14.89 7.09 −7.03 4.32 1.59 −23.39
IR 0.79 8.02 13.76 6.41 −6.2 1.96 1.46 −17.96

λE
IGPP 0.72 86.79 104.56 69.6 60.36 19.35 0.65 −10.86
ISIF 0.74 46.87 54.02 31.70 16.45 42.98 0.95 −10.85
IGPP-SIF 0.77 85.66 103.19 67.68 62.49 19.06 0.66 −13.21
IR 0.77 56.8 68.43 43.75 39.02 60.7 0.91 −28.31

H
IGPP 0.81 83.94 94.43 67.73 67.16 22.57 0.69 −19.39
ISIF 0.62 121.89 146.94 103.36 103.03 38.97 0.62 −32.34
IGPP-SIF 0.79 88.29 99.33 70.05 68.4 22.2 0.65 −14.08
IR 0.73 105.11 118.25 87.8 87.51 49.67 0.67 −29.47

(continued on next page)
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Table E.1 (continued)

R2 RMSE RRMSE MAE ME Uposterior Slope Offset

G
IGPP 0.78 36.37 54.38 29.21 −18.76 6.25 1.92 −20.96
ISIF 0.69 38.81 59.79 30.21 −20.48 8.11 2.07 −22.12
IGPP-SIF 0.75 36.79 55.00 29.47 −18.88 6.39 1.90 −19.54
IR 0.77 37.87 56.61 30.49 −21.02 4.22 1.95 −17.81

EF
IGPP 0.56 0.17 36.4 0.13 −0.01 0.47 1.23 −0.10
ISIF 0.51 0.24 47.97 0.19 −0.16 0.29 1.77 −0.10
IGPP-SIF 0.67 0.15 30.94 0.12 0.00 0.48 1.20 −0.09
IR 0.59 0.18 37.48 0.14 −0.07 0.30 1.65 −0.20

F↑760
IGPP 0.61 0.27 55.11 0.20 0.13 0.11 0.77 0.01
ISIF 1.00 0.02 3.67 0.00 0.00 0.15 1.02 −0.01
IGPP-SIF 1.00 0.02 4.36 0.01 0.00 0.39 1.02 −0.01
IR 0.71 0.19 38.53 0.15 0.01 0.01 0.90 0.04

F↑687
IGPP 0.37 0.52 100.45 0.39 0.17 0.06 5.42 −1.76
ISIF 0.24 0.53 101.52 0.42 0.15 0.19 5.18 −1.51
IGPP-SIF 0.33 0.50 96.23 0.40 0.08 0.14 5.33 −1.24
IR 0.45 0.50 95.53 0.35 0.15 0.01 4.44 −1.27

Appendix F. Analysis of error propagation in soil water content

Eq. (3) describes the model fitted to predict rss data as a function of SMp. The overall RMSE=21.03 s/m is mainly explained by the fit errors in
the steepest part of the curve (SMp < 10%) and the noisy nature of the rss observations (Fig. C.1). RMSE=15.66 s/m for SMp > 10% and
RMSE=55.99 s/m for SMp < 10%. However in this region, the slope of the function (drss/dSMp, in m/s / 100·m3/m3) increases rapidly from −0.96
at SMp= 10.0% to −2.79 at SMp= 7.5% to −12,630.9 at SMp= 5.0%. Therefore model fit as well as SMp estimation errors might lead to large
uncertainties in rss under very dry conditions.

To understand the impact of rss uncertainties, we simulated diel GPP, LT,out,BB and F↑760 at the each solution of the IGPP scheme, but adding an
increment of± 0.50% to the SMp. Shifted SMp values were used to predict rss and this way the change in SMp propagated to variables used to
constraint the parameters. Fig. F.1 shows the differences (Δ) induced by these variations in SMp on rss, GPP, LT,out,BB and F↑760. As can be seen, small
changes in SM produce large variations in on rss. However, these propagate in the shape of small changes in for the remaining variables. Changes in
SMp values lead to negligible variations for most of the observed SMp range. The largest uncertainties occurred within the SMp range 2%–4%, and
become again negligible for lower values (due to the upper bound of 50.000 s/m). Additional simulations (not shown), reveal that predicted fluxes
are most sensitive to changes in rss in a relatively small range of values of this variable, out of which fluxes show low sensitivity. In general, the
effects of the simulated SMp are relatively small when compared to fit errors reported in Table E.1, but errors in the estimation of SMp should still be
a source of uncertainty, with effects on the inversion difficult to predict.
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Fig. F.1. Variation (Δ) of± 0.5% shifts in soil moisture content (SMp) on: soil resistance for evaporation from the pore space (rss, a), gross primary production (GPP,
b), emitted thermal radiance (LT,out,BB, c) and emitted sun induced fluorescence in the O2-A band (F↑760, d) predicted for the solutions of the inversion scheme IGPP.
Data are binned in ranges of SMp equal to 1%.
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