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Abstract

Fire regime shifts are driven by climate and natural vegetation changes, but can be strongly

affected by human land management. Yet, it is poorly known how humans have influenced

fire regimes prior to active wildfire suppression. Among the last 250 years, the human contri-

bution to the global increase in fire occurrence during the mid-19th century is especially

unclear, as data sources are limited. Here, we test the extent to which forest management

has driven fire regime shifts in a temperate forest landscape. We combine multiple fire proxies

(macroscopic charcoal and fire-related biomarkers) derived from highly resolved lake sedi-

ments (i.e., 3–5 years per sample), and apply a new statistical approach to classify source

area- and temperature-specific fire regimes (biomass burnt, fire episodes). We compare

these records with independent climate and vegetation reconstructions. We find two promi-

nent fire regime shifts during the 19th and 20th centuries, driven by an adaptive socio-ecologi-

cal cycle in human forest management. Although individual fire episodes were triggered

mainly by arson (as described in historical documents) during dry summers, the biomass

burnt increased unintentionally during the mid-19th century due to the plantation of flammable,

fast-growing pine tree monocultures needed for industrialization. State forest management

reacted with active fire management and suppression during the 20th century. However, pine

cover has been increasing since the 1990s and climate projections predict increasingly dry

conditions, suggesting a renewed need for adaptations to reduce the increasing fire risk.
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Introduction

Fire has influenced global biogeochemical cycles and natural ecosystems since the late Silurian

[1, 2] and has been essential to human evolution since at least the early Pleistocene [1, 3].

Humans have used fire for large-scale land cover control [4–6], which may have affected fire

regimes and the atmospheric composition beyond their natural variability over the past several

millennia [7–10]. In light of increasing drought occurrence and fire risks due to global climate

and land management change [11, 12], it is necessary to consider past climate-human-fire rela-

tionships that provide the baseline for current and future adaptation strategies. A key period in

shaping modern and future human-fire relations is the 18th and 19th centuries CE [13, 14],

when one of the largest socio-ecological transitions in human history—industrialization—sig-

nificantly altered land use strategies due to rapidly growing population densities and energy

demands, with fire becoming less important as a land management tool but rather turned into

a threat [3–5].

Global sedimentary charcoal records [15–17] and fire-related CO and CH4 concentrations

in Antarctic ice cores [18, 19] show that biomass burning peaked during the mid-to-late 19th

century and subsequently declined. This increase in fire was mainly attributed to improvement

of natural burning conditions at the end of the Little Ice Age (i.e., a warmer, drier climate and

increased biomass availability), but also to increased rates of human land-cover change [15,

20–24], with the intentional use of fires to expand grass and agricultural land [25] and in forest

management [26]. During the late 19th to early 20th century, both fire occurrence and the area

burnt strongly decreased in industrialized areas independent of spatial scale; this is generally

attributed to fire suppression due to the reduced importance of fire for human livelihoods [5,

22, 27]. The initiation of fire suppression is mainly associated with thresholds in population

densities and landscape fragmentation induced by the expansion of cropland and pastures [14,

28]. Due to fuel accumulation, fire suppression represents a major factor contributing to

increasing modern and future fire risks, not only in fire-prone landscapes [29, 30].

Assessment of the reconstructed decadal-scale variability of biomass burning using

dynamic vegetation-fire models has revealed a lack in understanding of past fire regimes and

emissions [14, 28] for two reasons. First, models based on modern global fire emission data

include highly resolved fire regime parameters and burning emission factors [14, 31] that are

largely unknown for periods preceding instrumental data [32]. Second, past human—fire—

land-use relationships are highly uncertain regarding the relative importance of ignition, sup-

pression, and human impacts on fire regimes, especially during periods predating active fire

suppression [14, 33, 34]. These unknowns challenge the capability to reliably predict future

fire regime shifts and to adapt to projected increased fire risks.

Guiding future carbon cycle modeling, land management, and nature conservation efforts

requires a comprehensive understanding of past fire regimes (i.e., the characteristic frequency,

severity, intensity, and seasonality of fire over space and time) combined with information on

past (human) land cover and climatic changes [4, 25, 26, 32]. Fire intensity, the rate of energy

released per unit fire line (kW m-1) related to burning temperatures and durations, i.e. fire res-

idence time [35], determines combustion efficiency and the severity of impacts on ecosystems,

and varies with fuel moisture, rate of spread, and fire type (e.g., surface vs. crown, smoldering

vs. flaming fire) [35–37]. Combined with the amount and type of biomass burnt, fire intensity

determines the injection height of the smoke plume [38, 39] and absolute emission factors

needed to assess the role of fires in biogeochemical cycles [37, 40].

To characterize past fire regimes, fire frequencies and the area and amount of biomass

burnt can be reconstructed using sedimentary macrocharcoal (i.e., >150 μm) [41], assuming

that larger particles derive from more proximal fires [42–45]. Charcoal, however, provides
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little information on fire intensities. In atmospheric chemistry, novel molecular markers used

to trace biomass burning of low intensities are the monosaccharide anhydrides (MAs) levoglu-

cosan (LVG, 1,6-anhydro-β-D-glucopyranose) and its isomers mannosan (MAN, 1,6-anhy-

dro-β-D-mannopyranose) and galactosan (GAL, 1,6-anhydro-β-D-galactopyranose). These

thermal dehydration products of cellulose (LVG) and hemicellulose (MAN, GAL) form at

burning temperatures <350˚C, thus representing smoldering conditions [46, 47]. Production

ratios between MA isomers are mainly related to the type of biomass burnt, i.e., the taxa-spe-

cific composition of (hemi-)cellulose [48], burn duration, and the relative contributions of

flaming and smoldering phases [49–51]. MAs have shown potential as sedimentary proxies

[36, 41, 52–54], because LVG is stable in the atmosphere for several hours to days [55, 56] and

is transported attached to aerosols, e.g., charcoal particles [57]. In temperate soils, MA degra-

dation is substantial [58], whereas LVG hardly degrades in the marine water column and only

partly in marine surface sediment [59], suggesting that MAs are stable during and after sedi-

mentation in lakes, similar to charcoal [43].

Here, we test the extent to which forest management drove fire activity over the last 250

years. We characterize and quantify source-area specific fire intensities and relative fire sizes as

major parameters of fire regimes near an Old-World center of industrialization in the temper-

ate central European lowlands. We use sub-decadal records of macroscopic charcoal (CHAR,

in three size fractions) and MAs from the same samples in a varved sediment core of Lake Cze-

chowskie (Tuchola forest, north Poland), spanning 1640–2010 CE, considering age and proxy

uncertainties to obtain statistically robust and spatially and temporally explicit fire regime

characteristics. Combined with climate information, quantitative land cover reconstructions

from pollen data, and analyses of historical maps and documents, we assess the drivers of

changing regional fire regimes and put these in context of anthropogenic influences on glob-

ally observed fire activity during the 19th century.

Materials and methods

Study area and sediment coring

The c. 300,000 ha Tuchola forest, north Poland (Fig 1), is characterized by mean annual precipita-

tion and temperature of 570 mm and 7˚C during 1951–1980 [60, 61]. Compared to other regions

of the world [62], fires are rare and burn small areas (100–250 events per year in Poland,<1 ha

per event), occurring mainly during dry summers [63, 64]. Historical documents suggest that a

shift in forest management occurred with the first partition of Poland in 1772 CE (Common Era),

when northern Poland became Prussian and energy demand for industrialization strongly

increased. At the onset of the 18th century, the royal Tuchola forest, as most European forests, was

a human-shaped mixed broadleaf forest of reduced carbon stocks [26, 33, 65], due to intensive

forest use including charcoal production and fire use to promote heather for beekeeping [66–68].

Yet, a royal decree in 1778 CE and a cabinet order in 1782 CE prohibited the use of fire in forests

[69], because forests became main resources for construction wood [67] and state foresters

restructured most of the Tuchola forest by planting pine monocultures [26, 69].

Today, c. 90% of the Tuchola forest is covered by single-species, single-aged Scots pine

(Pinus sylvestris) forest stands with dispersed cropland and pastures [70]. The 77 ha, 32 m deep

Lake Czechowskie (53˚52027@N 18˚14012@E, 109 m a.s.l., Fig 1) is located in the northern

Tuchola forest in formerly Prussian territory with a historically important route passing north

of the lake. The lake’s 1970 ha catchment is composed of glacial till and sandy outwash deposits

that limit surface runoff and erosion [26, 71, 72].

The sediment core JC11-K5 was recovered in 2011 in 30 m water depth using an UWITEC

gravity corer (Fig 1B). Sediments were composed of yellowish-brownish organic and
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calcareous muds that were finely laminated with dry bulk densities and TOC contents of

0.19 ± 0.03 g cm–3 and 7.6 ± 1.3% (μ±σ), respectively. Laminations represent calcite varves

interrupted by two faintly varved intervals during the mid-20th century, allowing high-resolu-

tion reconstruction [72]. JC11-K5 was dated by correlating ten macroscopically visible layers

with counted annual layer sequences of adjacent cores (Fig 2). Varve counting of JC12-K2 was

performed below the depth of tephra shards at 33 cm related to the Askja eruption in 1875 CE

(Fig 2A). As a conservative estimate, we assigned a 2σ error of 10 years to the marker layers

that we used for calculating the age-depth model in OxCal v. 4.2, a Bayesian age-depth model-

ling approach that provides posterior age uncertainties [73]. Prominent shifts in sedimentation

rates occurred in c. 1770 and 1890 (Fig 2B) with higher rates related to higher in-lake produc-

tivity (thicker diatom layers, such as the marker layer of 1830 CE) and reworking of littoral

material (observations from thin sections; F. Ott, unpublished).

Multi-(fire) proxy analyses

For sedimentary macroscopic charcoal analysis, 1 cm3 of wet sediment was dissolved in water,

sieved through a 150-μm mesh. Under a stereomicroscope, macroscopic charcoal of three size

classes (150–300, 300–500, and�500 μm) was counted continuously throughout the core

(n = 106, 1630–2011 CE, Fig 2C) assuming the largest charcoal particles to represent flaming

fires with nearby source areas [43, 44, 74]. To estimate a proxy error that combines sampling,

preparation and macrocharcoal counting uncertainties, we continuously sampled short core

JC11-K2 between 35–55 cm core depth (n = 20, Fig 2C), i.e., interval 1840–1875 CE, that could

be linked to core JC11-K5 by four marker layers as determined from varve counting. Samples

were processed in the same way as for JC11-K5. The numbers of absolute particles cm–3 were

compared with the JC11-K5 samples of the same time interval (n = 31) to determine an overall

mean relative standard deviation of 0.8% (RSD = 100� σ/μ of each sample for all size classes).

To account for low-intensity fires [46], the topmost 75 samples (1780–2010 CE) were also

analyzed for MAs (n = 75, 1780–2011 CE, Fig 2C): 125–250 mg dry sediment were extracted

with a DIONEX Accelerated Solvent Extractor (ASE 200, 100˚C, 7.6×106 Pa) using a 9:1 sol-

vent mixture of dichloromethane (DCM):methanol (MeOH). As an internal standard, 2.5–5

ng deuterated levoglucosan (dLVG) was added. The total lipid extracts were separated on an

Fig 1. Study area. A) Location of Lake Czechowskie, Tuchola Forest, northern Poland. Map: NASA’s Blue marble next generation and state

borders by EuroGeographics and UN-FAO. B) The lake catchment, representing the “local scale” referred to in the text, and location of the

analyzed sediment core JC11-K5 in the deepest part of the lake. Map: air image provided by provided by Head Office of Geodesy and

Cartography, Warsaw, Poland.

https://doi.org/10.1371/journal.pone.0222011.g001
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unactivated SiO2 gel column (Merck Si60, grade 7754) using sequential elution with DCM:

MeOH (9:1) and DCM:MeOH (1:1). The 1:1 fractions were re-dissolved in 95:5 acetonitrile:

H2O and filtered using a 0.45 μm polytetrafluoroethylene filter before analysis. The MAs were

analyzed by ultra-high pressure liquid chromatography-high resolution mass spectrometry

using a method adapted from an earlier HPLC-ESI/MS2 method [75]. Authentic standards for

LVG, GAL and MAN were obtained from Sigma Aldrich, and that for dLVG (C6H3D7O5)

from Cambridge Isotope Laboratories, Inc. Integrations were performed on mass chromato-

grams within 3 ppm mass accuracy. Concentrations were corrected for relative response

Fig 2. Dating of short core JC11-K5 of Lake Czechowskie. A) Correlation of marker layers (blue) detected in the core image and

in short core JC12-K2 (this study) and the core of the master sequence JC10-7 [26, 72]. B) Age-depth model and major changes in

sedimentation rates. C) Core sections analyzed for sedimentary charcoal and fire biomarkers.

https://doi.org/10.1371/journal.pone.0222011.g002
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factors to dLVG of 0.997, 0.822, and 2.137 for LVG, MAN, and GAL, respectively. Instrumen-

tal (standard) errors for LVG, MAN, and GAL were 4 ± 3, 14 ± 15, and 28 ± 38% (1σ),

respectively.

Quantitative land cover estimates were derived from pollen records of varve-dated sedi-

ment core JC10-7 in 2-cm steps, i.e., at a resolution of ~5 years/sample [26]. To convert % pol-

len to land cover, we used the REVEALSinR function of the DISQOVER R package with

pollen productivity estimates from the PPE.MV2015 data set and the LSM dispersal model

[76].

Robust proxy records considering age and proxy uncertainties

We provide a robust Monte Carlo based procedure, which adds uncertainty estimates to the

existing charcoal record analysis presented by Blarquez, Girardin [77]. The approach starts

with influx calculations of CHAR (particles cm–2 a–1) and MAs (ng cm–2 a–1), which were

derived from a Markov chain Monte Carlo routine that we developed in R version 3.4.4 using

the base R functions of the stats package (S1 Code, S1 Fig). Sample age ranges are described by

a Gaussian function using μage and σage of each depth from the marker layer-based OxCal age-

depth model. We randomly calculated 10,000 stratigraphically consistent, positive unit deposi-

tion time values for each sample (UDT) to retrieve μUDT and σUDT of the UDT distribution by

UDT (a cm–1) = Δt (a) / Δd (cm) (S1 Code, S1 Fig)

Proxy ranges for each sample are also described by a Gaussian distribution function (μproxy,

σproxy from parallel measurements) to randomly generate n normally distributed proxy values

(PV). These were divided by n randomly generated UDT values (using μUDT and σUDT) to

yield n flux values: Flux (proxy unit cm–2 a–1) = PV (proxy unit) / UDT (a cm–1). For the flux

density function (pdfflux, defined by μflux and σflux), we multiplied MA values (ng g–1) by the

sample’s dry bulk density (g cm–3), excluding extreme values (i.e., values above the 0.99 quan-

tile) that result from combining exceptionally high PVs with exceptionally low UDTs.

To consider the full age uncertainty of a sample, we generated the age density functions

pdfage for each sample by combining normalized segments of i) the older tail of the OxCal age

distribution for the lower sample boundary, ii) the younger distribution tail for the upper sam-

ple boundary, and iii) uniform values between these tails (S1 Code, S1 Fig). Both, pdfage and

pdfflux were sampled to generate n likely ages and fluxes per sample (S1 Code). Fluxes that fell

into evenly spaced 3-year age bins (i.e., median record resolution, S1 Fig) were used to calcu-

late the output statistics (used in Figs 3 and 4A).

In addition, mean fluxes were calculated using the pretreatment function in the paleofire R

package using the default parameters (9) and the mean OxCal age-depth model of core

JC11-K5 (Fig 2B, bold line). A comparison showed that robust fluxes were smoothed, but

underestimated absolute mean fluxes due to strongly overlapping pdfage of adjacent samples at

1 cm sample resolution. Hence, we averaged the raw proxy and age values of three adjacent

samples before robust flux calculation. Median MA flux records were used to calculate MA

ratio records (i.e., LVG MAN–1 and LVG (MAN+GAL)–1) of the same time resolution.

To provide relative estimates of biomass burnt and fire frequencies, fire proxy records were

decomposed into a low-frequency background and a high-frequency peak component, a classi-

cal approach in sedimentary charcoal analysis [42, 78, 79], which we adopted here also for

MA-record analyses. We performed the statistical decomposition in two ways (Fig 3B and 3C).

First, CHAR records of the classical influx calculation using the mean age-depth model were

decomposed translating some of the main principles of the CHARanalysis program [42] to R

(S1 Code). Briefly, charcoal records were interpolated to a 3-year median sample resolution

and CHAR was calculated using the pretreatment function in the paleofire R package using

Human-induced fire regime shifts, a reconstruction using lake sediments
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the default parameters (9) and the mean OxCal age-depth model of core JC11-K5 (Fig 2B, bold

line). A locally-weighted regression smoothing (LOESS) fit with a half window width (hw)

of 5% of the entire record length was used to separate the background from the peak compo-

nent with the R package locfit [80], i.e. Fluxpeak (proxy unit cm–2 a–1) = Fluxraw−Fluxback and

Fluxback (proxy unit cm–2 a–1) = LOESS (Fluxraw, hw = 0.05). With a Gaussian mixture model

(package mixtools [81]), the signal peaks were classified as fire events if they exceeded the 99th

percentile of the noise distribution [82, 83]. We attributed closely spaced peaks (of adjacent

years) to the same fire episode.

Fig 3. Fire proxy records of Lake Czechowskie, northern Poland. A) Raw macrocharcoal (CHAR, n = 82) and MA

(LVG, MAN, GAL, n = 75) influx records. CHARsum is the summed record of all charcoal particles>150 μm. Black

lines and gray polygons are medians and interquartile ranges of robust influx calculations, respectively (Methods).
Influxes calculated using the classical mean age-depth model are in red. B) Fire proxy background component. Black

lines and gray polygons are medians and Q10–Q90 ranges, respectively, of 1,000 random LOESS fits of the

standardized median of the robust influx records (black lines in A) with varying window widths. C) Fire proxy peak

components. Black lines and gray polygons are medians and Q10–Q90 ranges, respectively, from subtracting the

LOESS-fits of B from the standardized median records of A (black lines). Crosses and colored shaded areas (yellow to

orange) mark major positive peaks indicating source area- and temperature-specific fire episodes (FEs1–7, Table 1).

Black crosses in brackets mark tentative peaks that were above average only for some window widths. Red crosses

mark peaks from decomposition of the mean influx record.

https://doi.org/10.1371/journal.pone.0222011.g003
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Fig 4. Comparison of fire proxy records with climate, land cover, and historical data. A) Source- and intensity-

specific fire episodes (shaded areas from Fig 3C, Table 1); B–C) annual and 20 point LOESS-smoothed June-July-

August mean temperatures (JJA Δ T) and April-May-June precipitation (AMJ Δ P) relative to the period 1901–2000

CE [91]. D) Reconstructed Palmer Drought Severity Index (JJA PDSI), reflecting spring-summer soil moisture

conditions [92], averaged over the Tuchola area (53.4–54.4˚N, 17.3–18.85˚E, S2 Fig). E–G) REVEALS-transformed

Human-induced fire regime shifts, a reconstruction using lake sediments
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Second, we calculate statistically robust background and peak components following the

suggestion of Blarquez, Girardin (77) to vary the window widths during background calcula-

tion. Briefly, we standardized the medians of the robust CHAR and MA influx records to get

comparable units and distributions. Then, we use a Monte Carlo approach to fit a LOESS in

varying window widths (i.e., 5–25% of the record length, comparable to [77], 1000 times ran-

domly sampled) as background and subtracted the 1000 LOESS fits from the medians as 1000

peak component records. We mark the above-average peaks using the Monte Carlo approach

that are fewer peaks compared to those derived from classical decomposition using the mean

age model and one window width (black vs. red crosses, Fig 3C), the latter classically inter-

preted as individual fire events considering noise, e.g., related to re-deposition [42, 77].

Here, we assume that fire episodes (FEs) would result in peaks, even when accounting for

age and proxy uncertainties, hence, representing periods of multiple fire events that produced

sufficiently high influxes of burning residues to be preserved. We use the presence of robust

peaks in CHAR and/or MA records (black crosses, Fig 3C) to interpret three types of sub-

decadal FEs based on the dominant fire intensity, size, and source area of the burning proxies

(Table 1). These are then compared with historically documented fires.

For pollen data, we modified the calculation and used the REVEALS-output (μREVEALS and

σREVEALS) to define the Gaussian distribution function pdfflux. For the sum of human indicator

taxa (HI, i.e. sum of Plantago lanceolata, Ceralia spec., Secale spec., Rumex acetosella-var.), we

replaced pdfflux by the summed density functions (pdfsum) for each sample generated from n
sums of randomly drawn REVEALS values of each taxa, allowing only sums�100% to sustain

realistic land cover percentages.

Historical documents and maps of the Tuchola forest were provided by the State Archives

Gdańsk, Bydgoszcz and the State Library and Archive of Prussian Cultural Heritage, Berlin.

Many documents were lost and fires were reported sporadically without exact areas measured,

especially before 1850 [26, 84]. Hence, documented fire occurrences and extents (Fig 4I and S2

Fig) are minimum estimates, preventing a more quantitative comparison with fire proxy

peaks.

[76] pollen records of the sum of broadleaved taxa (light green), Scots pine (Pinus sylvestris, dark green), and human-

indicator (HI) taxa (yellow, compared to population densities) from core JC10-7 [26], respectively. Thick lines and

gray polygons are medians and Q10–Q90 ranges of the Markov chain Monte Carlo approach (Methods), thin lines are

calculated using the classical mean age-depth model. H) Background components of levoglucosan (LVG) and CHAR

(CHARsum) from Fig 3B, representing the relative amount of biomass burnt. I) MA ratios representing relative burning

conditions (y-axes reversed). J) Minimum estimates of area burnt (ha, black bars) and fire occurrence (red crosses) as

reported in historical documents of the Tuchola forest [26] (for 20th century instrumental data see S2 Fig).

https://doi.org/10.1371/journal.pone.0222011.g004

Table 1. Classification of robust peaks in fire proxies in relation to fire regime parameters.

Fire intensity Fire size Source area CHAR CHAR CHAR CHAR Levo-glucosan Manno-san Galacto-san

150–300 300–500 >500 μm sum

Low-High Large Regional 1 1 1 1 1 1 1

High Small-Medium Local 1 1 3 3 0 0 0

Low Medium-large Regional 1 1 0 0 2 2 2

The number of peaks during the period 1800–2000 (black crosses in Fig 3C) and colours as in Fig 3A. Levoglucosan, mannosan and galactosan are only produced by low

fire intensities (more produced if more area burnt). Bigger charcoal pieces are generally linked to more nearby source areas. See text for references and further

discussions.

https://doi.org/10.1371/journal.pone.0222011.t001
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Results and discussion

Fire regimes during the last two centuries

All fire proxies increase from below average influxes before 1800 CE (e.g., CHARsum: 0.45 par-

ticles cm–2 a–1, LVG: 0.5 ng cm–2 a–1) to maximum influxes during the 1860s (CHARsum: 3.4

particles cm–2 a–1, LVG: 1.2 ng cm–2 a–1), except the largest CHAR fraction (CHAR>500μm)

that peaks in the early 1800s and during the 1860s (Fig 3A). Influxes then declined to low val-

ues by the early 20th century (CHARsum: 0.4 particles cm–2 a–1, LVG: 0.5 ng cm–2 a–1) and

remained low until c. 1970 when CHAR300–500μm and LVG influxes increased again until their

later peaks (CHAR300–500μm: 0.8 particles cm–2 a–1, LVG: 0.88 ng cm–2 a–1) in the 1980s and

2000s, respectively, whereas CHAR>500μm, MAN, and GAL remained low (median robust

influxes, calculated using the Monte Carlo-based approach, Fig 3A).

We find similar decadal-scale background trends for CHAR and MAs (CHARback, MAback,

1780–2010 CE, Fig 3B), which we interpret as relative (not absolute) amount of biomass burnt

under various burning conditions and under low temperatures, respectively. CHARback is

known to reflect the regional amount of biomass burnt, although partly affected by sediment

reworking and catchment erosion [85, 86]. The latter effect is of limited relevance at Lake Cze-

chowskie as the high sedimentation rates are related to internal productivity [72]. Comparison

with the sedimentation rate-independent ratios of the three MA isomers (Fig 4I) shows that

MAback (i.e., LVGback, MANback, and GALback, Fig 3B) also reflects relative changes in biomass

burnt. The MAback and CHARback records are inversely correlated with the MA ratios (e.g.,

LOESS-fitted LVG MAN–1 vs. CHARsum_back: r = –0.8, p< 0.001), which are in the range of

modern MA emissions and ratios controlled by the type of biomass burnt and burning condi-

tions, i.e. burn duration, and the relative contributions of flaming and smoldering phases [49–

51]. The lower MA ratios and their higher variability before 1890 CE than after (boxplots, Fig

4I), with minimum and maximum values during the 1860s and 1960s, respectively (e.g., LVG

MAN–1: 4.2 vs. 9.6, Fig 4I) suggests that biomass burning conditions changed significantly in

the 20th century.

Yet, the differences between MAback and CHARback trends suggest varying burning condi-

tions on shorter (sub-decadal) timescales. MAback increased from below average toward 1σ
above average anomalies for 15 years longer than CHARback (1830–1885 vs. 1840–1880 CE,

respectively, Fig 3B) and reached maximum anomalies a decade later than CHARback (c. 1870

and 1860 CE, respectively, Fig 3B), which we attribute to biomass burnt during distinct fire

episodes.

Sub-decadal fire episodes (FEs) are marked by distinct peaks in CHAR and/or MA records

(black crosses, Fig 3C), with all fire proxies showing higher FE frequencies before than after

1890 CE. CHAR peaks are classically used to reconstruct local fires within ~1 km of the deposit

[44, 74], but charcoal can also derive from regional fires within few dozen km [38, 87, 88], e.g.,

crown fires with high injection columns. Given that charcoal forms under various combustion

conditions [43, 44] and MAs represent low burning temperatures (<350˚C) [46, 47], the

appearance of peaks in all fire proxies in the 1860s (Table 1, Fig 3C) suggests that during this

period fires of all intensities have produced high amounts of residues, probably from local- to

regional source areas. Historically, the largest documented fire episode burnt an area of>2300

ha over several parts of the Tuchola forest during August–September 1863 CE within ~25–30

km of Lake Czechowskie (Fig 4I and S2A Fig). The closest documented individual fire was ~14

km northeast (~1250 ha burnt, S2A Fig), probably providing coarser charcoal particles during

crown fires with high injection plumes [38].

In addition, comparison of our robust CHAR or MA peaks with historical data [26] sug-

gests the distinction of two further types of FEs (Table 1): local-scale FEs are represented by

Human-induced fire regime shifts, a reconstruction using lake sediments
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three peaks occurring in the coarsest and the total CHAR records during the 1800s, 1830s, and

c. 1980 CE, which were not visible in the MA records and only partly in the finer CHAR sizes

(FEs 1, 3, 7; Fig 3C, Table 1). We interpret these episodes as small and local, e.g., catchment-

scale (Fig 1B), fires that produced limited MAs due to high burning temperatures (Table 1).

Such episodes could represent human-induced fires of high intensity with continued fuel sup-

ply such as controlled burning of deforestation residues, e.g., after the sale of the lake shore

house in the 1980s (Iwiczno Municipality, pers. comm., March 2018).

Low-intensity, regional FEs relate to prominent peaks in the LVG and MAN records during

the 1820s that have no equivalent peak in CHAR anomalies, whereas a prominent GAL peak

around 1840 CE corresponds to a peak in CHAR150-300 μm (FEs 2, 4; Fig 3C). Documented

fires of unknown location burnt an area of 250 ha in 1828 CE [89], and fires burnt>10 ha c.

30–40 km southeast of Lake Czechowskie in 1843 CE [26]: these events may be related to the

observed MA peaks (Fig 3C). In the 1880s, small MA peaks that are partly reflected in CHAR-

peak records (FE 6, Fig 3C, Table 1) suggest low-intensity fires corresponding to a fire c. 30 km

south of the lake in 1887 (S2 Fig) or to the fires ignited by flying sparks (<130 ha) reported

along the Starogard-Chojnice railway line [26, 90] (S2D Fig).
Hence, we can detect low-intensity fire episodes from the sedimentary record and, sup-

ported by historical data, specify previously unknown source regions of sedimentary MAs [37,

52–54]. We find that sedimentary MAs derive from a regional source area, within roughly 50

km of the deposit (S2A Fig), recording low-intensity surface or wet-fuel fire events that were

large (or long) enough to emit sufficient MAs to be recorded as robust peaks.

Drivers of fire regime shifts

The period 1780–2010 CE is characterized by prominent shifts in fire regimes. Fire episodes

and the amount of biomass burnt increased during the early 18th century until the pronounced

FE in the 1860s. After this period, the biomass burnt declined until the 1890s towards changed

burning conditions and a 70-year-long period without local-to-regional FEs and characterized

by below-average biomass burnt. After the 1960s, regional low-intensity fires slightly increased

and a local high-intensity FE occurred in the 1980s (Fig 3B and 3C). These decadal-scale

regional fire regime trends in the Tuchola forest parallel the observed global biomass burning

pattern [14–17] and could, hence, serve as an example to study climate-human-fire relation-

ships that could have contributed to the global pattern. Comparing our source-specific fire

regime records with tree ring-derived climate reconstructions, i.e., central European tempera-

ture and precipitation [91] and the regional interpolation of the Palmer Drought Severity

Index (PDSI) [92] (Fig 4B–4D), quantitative vegetation cover reconstructions from

REVEALS-transformed pollen records of the same lake (Fig 4E–4G), and historical documents

(Fig 4J and S2 Fig) enables an integrative discussion of the primary drivers climate, human

impacts and associated natural vegetation changes.

Climate reconstructions do not show comparable decadal-scale trends (Fig 4B–4D) that

would explain the observed trends in biomass burnt and burning conditions (Fig 4I and 4H)

with weather and climate only partly explaining fire occurrences and extents here. In temper-

ate forested ecosystems, fires require summer droughts for fuel drying and fire spread [2],

which are reported in historical documents [93] and confirmed by PDSI reconstructions for

FEs 1, 4, 5 and 6 (Fig 4A and 4D). However, some sub-decadal-scale FEs, including the most

prominent FE (i.e., FE 5) and low-intensity FEs as reconstructed using MAs do not relate to

prolonged droughts alone (Fig 4A, 4C and 4D), as also reported by Zumbrunnen, Bugmann

[94]. The most prominent droughts during the 1800s, 1840s, and 1880s did not result in the

largest fire extents (e.g., 1828 and 1863 CE, Fig 4D and 4J), or even no FEs during the minima
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in PDSI during the 20th century (Fig 4A, 4C and 4D). This suggests that other factors affecting

fire extents and spread act on different timescales that we cannot resolve with the inherent

uncertainties in our proxy records.

Modern observations also show that natural ignition by lightning is limited, as strikes occur

at low frequencies of<5 flashes km–2 a–1 [95]. Instead, the historical data that we have ana-

lyzed suggest that fire ignition was primarily human-triggered, but not necessarily fully inde-

pendent of weather and climate (as in Roos, Zedeño [96]). Arson during drought periods as a

way to show anti-institutional resentments and unintentional human ignition were reported

repeatedly, for example, for widespread fires “by a nefarious hand” in the summer of 1863 CE

[26, 84] or along the Starogard-Chojnice steam railway in the 1880s [84, 97], respectively (S2D
Fig). Yet, we exclude the intentional use of fire as a human land management tool for three

reasons. First, human-indicator taxa from the same lake (HI, i.e., cereals and ruderals, Fig 4G),
a proxy for human deforestation, increased two decades after the increases in biomass burning

and reached maximum values in the 1930s when biomass burning was already low (Fig 4G
and 4H). Second, historical maps confirm the HI trends showing significant extension of open

land in the region after the increase in fire (early 20th century). Third, fire was banned as a

land management tool by Prussian authorities by the late 18th century (see above).

Instead, we find a link between fire regimes, Scots pine cover, and human forest manage-

ment, as previously suggested [26]. Pine cover increased by at least 10% since the late 18th cen-

tury and until reaching a maximum around 1830 CE, then declined by ~20% until c. 1910 CE.

This trend precedes a similar trend in biomass burnt during the 19th century by roughly three

decades (Fig 4F and 4H). Low MA ratios during the 19th century suggest the burning of soft-

wood, e.g., pine [51], whereas high MA ratios in the 20th century (Fig 4I, axes reversed) indi-

cate either the burning of hardwoods, grasses and crops, or both mixed with burned brown

coal emissions [48, 49, 51]. Yet, high ratios are also produced under more flaming conditions

and higher burning speeds [51] more typical of grass fires [98]. The lack of local-to-regional

FEs (Fig 4A) suggests that 20th-century fires probably occurred outside the Tuchola forest.

Hence, we suggest that, here, the co-occurrence of high MA ratios and high HI coverage (Fig

4G and 4I) represents more grassland and crop-residue burning, whereas low ratios suggest

pine fires.

Historical documents suggest that forest management was changed strongly after the 1770s,

from mixed broadleaved forests towards pine monocultures in the course of industrialization

[26, 69]. We suggest that the state decision to use forests solely as a timber resource initiated

an unintended socio-ecological adaptive cycle in forest management strategies (sensu Gunder-

son and Holling [99], Fig 5), superimposed on decadal-scale climate change. Hence, roughly

30 years after the increase in pine cover and decrease of mixed forest (Fig 4E and 4F), single-

aged pine stands with heather (Calluna vulgaris) understories [84], i.e. widespread flammable

fuel, had grown (phase P2, Fig 5). Supported by some prolonged droughts, biomass burning,

Fig 5. Adaptive cycle of human-induced fire regime shifts during industrialization, including phases P1–6

mentioned in the text (timing for northern Poland). Adapted after Gunderson and Holling [99].

https://doi.org/10.1371/journal.pone.0222011.g005
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fire occurrence and fire hazard were strongly increasing (Fig 4A and 4H, P3, Fig 5). Compared

to broadleaved trees, pine is easily flammable because of its resin-rich needles and its light can-

opy that results in rapid drying of its understory, even in rather short dry periods in wet years

[2, 94, 100]. During the dry summer of 1863, multiple simultaneous fires spread easily in the

Tuchola forest [26] (S2A Fig). Hence, the maximum in CHAR and MA records reflects the

regional maximum of available and connected fuel that allowed high fire frequencies and

extents, even in wetter years (Fig 4A, 4D, 4F and 4H, phase P4, Fig 5).

The increased fire risk led to a renewed shift in forest management strategies that included

active fire suppression (P5, Fig 5), explaining the reduction in regional FEs and below-average

burning since the 1890s (Fig 4A and 4H). Foresters became firefighters, especially during the

early-to-mid-19th century, and arson was an expression of anti-government resentment as his-

torical documents indicate [68, 84]. A planned network of forest tracks to access timber from

remote areas [65] was still not in place in 1845 CE (S2B and S2C Fig). Yet, it appeared as a tigh-

ter network after the major FEs in the mid-19th century (S2D Fig). The track network increased

forest fragmentation and state regulations initiated regular cleaning of forest tracks, which suc-

cessfully limited fire spread.

Fire occurrence remained low during the 20th century, despite prominent summer

droughts as in the 1940s (Fig 4C and 4D). The expansion of Tuchola’s forest areas from 57% in

1938 CE to 70% in 1990 CE [70] (see also the decline of HI, Fig 4G) due to people migrating to

expanding cities and abandoning poor soils [70] was dominated by less-flammable broad-

leaved trees (S2 Fig), probably limiting fire occurrences.

After the 1980s, fire proxy influxes increased again (e.g., LVG, CHAR300–500μm, Figs 3 and

2H) and MA ratios slightly decreased (i.e., more forest burning, Fig 4I), as confirmed by

increased instrumentally-measured fire numbers and area burnt in Poland [101] (S3 Fig). HI

declined strongly and pine cover increased (Figs 3A, 4F and 4G), which we attribute to changes

in land property structures after the end of Communism. Pine monocultures increased on pri-

vate lands since the 1990s, with>90% of the Tuchola forest being composed of pine today

[70]. Together with increasing temperatures across central Europe during recent decades (Fig

4B), the fire risk has again increased [26] and possibly requires a renewed adaptation of future

forest management (P6, Fig 5).

Conclusions

Our new approach provides sub-decadal records of sedimentary charcoal and intensity-spe-

cific sedimentary fire biomarkers, considering age and proxy measurement uncertainties, to

assess the relative importance of specific fire regime parameters in the past (fire intensities,

biomass burnt, relative fire extents, burning conditions, and fuel types) that could be included

in future data-model comparisons. Compared with land cover and tree ring-based climate

reconstructions, we find that since industrialization, human-driven forest management has

fundamentally changed human-fire relationships.

Fire was an important land use and land management tool in the central European low-

lands and globally since at least Mesolithic, and especially since Neolithic times [4, 10, 25]. The

close human-forest and human-fire relationships terminated when fire was replaced by other

agricultural measures [3, 5], banned from forests by state authorities, or unintendedly pro-

moted by replacing forest with more flammable taxa, as described here for Poland. Hence,

considering not only the conversion from forest to open land with increasing population den-

sities, but also internal forest type conversions could help to improve further dynamic vegeta-

tion-fire modelling and comparisons with sedimentary proxy records that should account for

several types of uncertainties.
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Here, we support previous conclusions [25, 26] that the fire trends during the 19th century,

as visible in global and continental charcoal compilations, were primarily influenced by

humans, even before active fire suppression, closely linked with and superimposed by natural

causes [15, 21, 96]. Sociopolitical shifts during industrialization could have driven unintended

adaptive socio-ecological cycles that affected forest composition, fire regimes, and biogeo-

chemical cycles [33, 34]. Timber became a precious resource, not only in Poland, and pine

spread far beyond its potential natural distribution [100], similar to other highly flammable

pioneer tree monocultures, such as Eucalyptus spec. in the subtropics and tropics (i.e., other

regions of low natural flammability that were industrializing during the 18th and 19th centu-

ries). Given these preconditions for current and future fire risks and the increased likelihood

of summer droughts under future climate change [11, 12], forest management could either

invest in further fire suppression measures or, by entering a new adaptive cycle, diversify

monocultures to include less-flammable broadleaved taxa to prevent fire spread and further

forest disturbances [26, 102, 103].
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S2 Fig. Regional fires in the Tuchola Forest and road network adaptation. A) Reported loca-

tions and extents of fire events in historical documents (State Archive in Gdańsk, compiled in ref.

[26]). Map: 2018 OpenStreetMap and contributors, license CC-BY-SA, modified with ArcGIS

Desktop: Release 10.2.2. ESRI 2014. Redlands, CA: Environmental Systems Research Institute.

B-D) Historical maps with location of Czechowskie catchment (Fig 1B) indicating road network

within forests: B) planned, manually drawn on the map by Prussian government authorities; C)

still historical (pre-industrial) road network and D) realization of planned network (map: For bet-

ter visibility and example of the tracks in forest were redrawn in pink (denser network in D than

planned in B to limit fire spread). Map sources with CC-BY open access license: B) “Karte von

den Provinzen Litthaen, Ost- und West-Preussen nebst dem Netzdistrict”, Kart. N 1020, Blatt 92

provided by Staatsbibliothek zu Berlin—Preußischer Kulturbesitz; C) “Topographische Specialk-

arte des Preussischen Staats und der angrenzenden Länder (Reyman’s Special-Karte)”, signature
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provided by Centralna Biblioteka Geografii I Ochrony Srodowiska IGiPZ PAN.
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S3 Fig. Total number of fires (bars) and burned area of forests (red line) in Poland in the

period 1948–2018. Data from ref. [101], Statistical Yearbook of Forestry, 2018, GUS Statistics

Poland, Warsaw and Statistical data of the Polish State Fire Service KG PSP [source: www.

kgpsp.gov.pl, last access: 09.08.2019].
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bined age and proxy uncertainties.
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52. Schüpbach S, Kirchgeorg T, Colombaroli D, Beffa G, Radaelli M, Kehrwald NM, et al. Combining char-

coal sediment and molecular markers to infer a Holocene fire history in the Maya Lowlands of Petén,

Guatemala. Quaternary Science Reviews. 2015; 115(0):123–31. http://dx.doi.org/10.1016/j.

quascirev.2015.03.004.

53. Battistel D, Argiriadis E, Kehrwald N, Spigariol M, Russell JM, Barbante C. Fire and human record at

Lake Victoria, East Africa, during the Early Iron Age: Did humans or climate cause massive ecosystem

changes? The Holocene. 2017; 27(7):997–1007. https://doi.org/10.1177/0959683616678466

54. Argiriadis E, Battistel D, McWethy DB, Vecchiato M, Kirchgeorg T, Kehrwald NM, et al. Lake sediment

fecal and biomass burning biomarkers provide direct evidence for prehistoric human-lit fires in New

Zealand. Scientific Reports. 2018; 8(1):12113. https://doi.org/10.1038/s41598-018-30606-3 PMID:

30108240

55. Sang XF, Gensch I, Kammer B, Khan A, Kleist E, Laumer W, et al. Chemical stability of levoglucosan:

An isotopic perspective. Geophysical Research Letters. 2016; 43(10):5419–24. https://doi.org/10.

1002/2016GL069179

56. Fraser MP, Lakshmanan K. Using Levoglucosan as a Molecular Marker for the Long-Range Transport

of Biomass Combustion Aerosols. Environmental Science & Technology. 2000; 34(21):4560–4.

https://doi.org/10.1021/es991229l

57. Mullaugh KM, Byrd JN, Avery GB Jr, Mead RN, Willey JD, Kieber RJ. Characterization of carbohy-

drates in rainwater from the Southeastern North Carolina. Chemosphere. 2014; 107:51–7. https://doi.

org/10.1016/j.chemosphere.2014.03.014 PMID: 24875870
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