日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

High-precision mass spectrometer for light ions

MPS-Authors
/persons/resource/persons207033

Heiße,  F.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons207035

Rau,  S.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons128164

Köhler-Langes,  F.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31090

Sturm,  S.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30312

Blaum,  K.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Heiße, F., Rau, S., Köhler-Langes, F., Quint, W., Werth, G., Sturm, S., & Blaum, K. (2019). High-precision mass spectrometer for light ions. Physical Review A, 100(2):. doi:10.1103/PhysRevA.100.022518.


引用: https://hdl.handle.net/21.11116/0000-0004-EC13-D
要旨
The precise knowledge of the atomic masses of light atomic nuclei, e.g., the proton, deuteron, triton, and helion, is of great importance for several fundamental tests in physics. However, the latest high-precision measurements of these masses carried out at different mass spectrometers indicate an inconsistency of five standard deviations. To determine the masses of the lightest ions with a relative precision of a few parts per trillion and investigate this mass problem, a cryogenic multi-Penning-trap setup, LIONTRAP (Light-Ion Trap), was constructed. This allows an independent and more precise determination of the relevant atomic masses by measuring the cyclotron frequency of single trapped ions in comparison to that of a single carbon ion. In this paper the measurement concept and a doubly compensated cylindrical electrode Penning trap are presented. Moreover, the analysis of the first measurement campaigns of the proton's and oxygen's atomic mass is described in detail, resulting in mp=1.007276466598(33)u and m(16O)=15.99491461937(87)u. The results on these data sets have already been presented by F. Heiße et al. [Phys. Rev. Lett. 119, 033001 (2017)]. For the proton's atomic mass, the uncertainty was improved by a factor of three compared to the 2014 CODATA value