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Abstract 

Genome analyses have revealed a profound role of hybridization and introgression in the 

evolution of many eukaryote lineages, including fungi. The impact of recurrent introgression on 

fungal evolution however remains elusive. Here, we analyzed signatures of introgression along 

the genome of the fungal wheat pathogen Zymoseptoria tritici. We applied a comparative 

population genomics approach, including genome data from five Zymoseptoria species, to 

characterize the distribution and composition of introgressed regions representing segments with 

an exceptional haplotype pattern. These regions are found throughout the genome, comprising 

five percent of the total genome and overlapping with > 1000 predicted genes. We performed 

window-based phylogenetic analyses along the genome to distinguish regions which have a 

monophyletic or non-monophyletic origin with Z. tritici sequences. A majority of non-

monophyletic windows overlap with the highly variable regions suggesting that these originate 
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from introgression. We verified that incongruent gene genealogies do not result from incomplete 

lineage sorting (ILS) by comparing the observed and expected length distribution of haplotype 

blocks resulting from ILS. Although protein-coding genes are not enriched in these regions, we 

identify 18 that encode putative virulence determinants. Moreover, we find an enrichment of 

transposable elements (TEs) in these regions implying that hybridization may contribute to the 

horizontal spread of TEs. We detected a similar pattern in the closely related species 

Zymoseptoria ardabiliae, suggesting that hybridization is widespread among these closely related 

grass pathogens. Overall, our results demonstrate a significant impact of recurrent hybridization 

on overall genome evolution of this important wheat pathogen. 
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Introduction 

Previous studies of fungal pathogen genomes have revealed exceptionally high levels of genomic 

variability (Möller & Stukenbrock 2017). Some of this variation is considered adaptive, allowing 

pathogens to cope with variation in host immune genes and overcome immune responses leading 

to infection in plant host tissues. Rapid evolution in fungal pathogen genomes has been 

associated with specific, repeat-rich genome compartments including accessory chromosomes, 

gene clusters, and repeat islands (Raffaele & Kamoun 2012; Möller & Stukenbrock 2017). In a 

few examples, interspecific hybridization has also been demonstrated as a driver of rapid 

evolution (e.g. (Brasier & Kirk 2010; Leroy et al. 2016a; Inderbitzin et al. 2011)). In fungi, 

hybridization can occur by vegetative fusion of hyphae or by recombination between non-

conspecific individuals (Schardl & Craven 2003; Feurtey & Stukenbrock 2018).  

Analyses of genome data have revealed new insights on howhybridization can provide a 

mechanism for the emergence of new plant pathogens and novel host specificities within few 

years (Stukenbrock et al. 2012; Menardo et al. 2016; Depotter et al. 2018). Hybridization gave 

rise to a new mildew pathogen on the crop species triticale, a hybrid cereal that was introduced in 

the 1960s (Menardo et al. 2016). This crop was initially resistant to the powdery mildew 

pathogen Blumeria graminis; however, a new virulent form of the pathogen, able to overcome 

this resistance, has emerged in Europe in the last decade (Walker et al. 2011; Troch et al. 2012; 

Menardo et al. 2016). Comparative population genomic analyses including data from several B. 

graminis formae speciales revealed that the genome of B. graminis f. sp. triticale comprises a 

mosaic structure with genomic segments of different origin and with high similarity to either the 

wheat infecting mildew form B. graminis f. sp. tritici or the rye infecting form B. graminis f. sp. 

secalis. The distribution of genomic segments in B. graminis f. sp triticale is consistent with a 

recent hybrid origin of the triticale infecting form by sexual mating between B. graminis f. sp. 

tritici and B. graminis f. sp. secalis (Menardo et al. 2016). The study provides a prominent 

example of how new pathogens of crops can evolve by hybridization, and it demonstrates how 

the history of hybridization events can be recovered from genome data. Introgressive 

hybridization was also shown to contribute to the genome evolution of other important fungal 

crop pathogens including Verticillium longisporum causing stem striping disease on oilseed rape 

andthe apple scab pathogen Venturia inaequalis (Depotter et al. 2017; Leroy et al. 2016b). 
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A population genomic study of a fungal grass pathogen, Zymoseptoria pseudotritici, provided 

detailed insight into the population genetics and demography associated with hybridization  ( 

Stukenbrock et al. 2012). In this particular case, the hybrid lineage emerged from a single sexual 

cross between two parental individuals. Consequently, the genome of Z. pseudotritici is almost 

deprived of variation: the genome alignment is a mosaic of segments representing either one or 

two haplotypes from the two parental individuals. Additional polymorphisms have not been 

introgressed from any of the parental species, and the only source of new variation is spontaneous 

mutations that accumulate at low frequency along the genome. The parental haplotypes exhibit 

on average 3% divergence indicating that hybridization has occurred between two closely related, 

but otherwise isolated, species (Stukenbrock et al. 2012).  Z. pseudotritici has so far only been 

isolated from wild grasses in Iran ( Stukenbrock et al. 2012). The biology of the species is poorly 

understood, and the parental species of the Z. pseudotritici hybrid is not known. However, Z. 

pseudotritici co-occurs with other Zymoseptoria species infecting other wild grasses, including Z. 

ardabiliae and Z. brevis (Stukenbrock et al. 2011; Quaedvlieg et al. 2011). The unique 

hybridization event that gave rise to Z. pseudotritici may have involved parental species infecting 

distinct hosts and possibly isolated by their distinct host specificities.  

Z. pseudotritici is one of the closest relatives of the prominent wheat pathogen, Zymoseptoria 

tritici, the causal agent of the disease Septoria tritici blotch. The two species shared a common 

ancestor approximately 12,000 years ago (Stukenbrock et al. 2007, 2011). In contrast to Z. 

pseudotritici, the genome of Z. tritici is characterized by high levels of genetic variation, 

including substantial structural variation in its core chromosomes and a set of highly variable 

accessory chromosomes (Plissonneau et al. 2016; Croll et al. 2013; Goodwin et al. 2011). 

Moreover, the nucleotide diversity along the 40Mb haploid genome is remarkably high; a recent 

study identified 1.4 million SNPs corresponding to a Watterson’s theta value of 0.014 

(Stukenbrock & Dutheil 2018). Mechanisms that contribute to this high variation in Z. tritici 

involve exceptionally high rates of recombination (Croll et al. 2015; Stukenbrock & Dutheil 

2018) and prominent activity of transposable elements that mediate structural variation along the 

genome (Plissonneau et al. 2016). Moreover, one study reported signatures of introgression in 

spliceosomal intron regions through detailed analyses of the distribution of selfish group II 

introns in Z. tritici, Z. pseudotritici and Z. ardabiliae (Wu et al. 2017).  
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In the present study, we have carefully analyzed genomic regions in Z. tritici with exceptionally 

high levels of genetic variation. We demonstrate how these regions cannot be recovered in 

population genomic data based on reads mapping but only in genome alignments generated from 

de novo genome assemblies. We also show that these “outlier” regions show genomic signatures 

compatible with inter-specific gene flow with other Zymoseptoria species. We extended our 

analyses to include the other sister species Z. ardabiliae and confirm that these genomic 

signatures are a commonoccurrence among this group of fungi. 

 

Materials and methods 

Generation of multiple genome alignments  

To assess the distribution of intra- and interspecific genetic variation along the 40Mb haploid 

genome of Z. tritici and its sister species, we generated four whole-genome alignments. The four 

genome alignments were based on de novo genome assemblies of either Illumina short read data 

or PacBio SMRT long read data (see Figure S1 and Table S1).  

For the first multiple genome alignment (hereafter “All-Zt MGA”), we used already published 

population genome sequencing data for 25 Z. tritici isolates, including two genomes sequenced 

with PacBio technology (Mcdonald et al. 2017; Haueisen et al. 2018; Stukenbrock et al. 2011). 

As a backbone for the alignment, we included the Sanger-sequenced reference genome of Z. 

tritici isolate IPO323, which includes 21 fully assembled chromosomes (Goodwin et al. 2011). 

Furthermore, we included one genome each of Z. ardabiliae, Z. brevis, and Z. pseudotritici 

sequenced with PacBio technology and one genome of Z. passerinii sequenced with Illumina 

technology (Stukenbrock et al, 2011).  

For the second multiple genome alignment (hereafter “All-Za MGA”), we used Illumina 

resequencing data from 17 Z. ardabiliae isolates (Stukenbrock & Dutheil 2018). Additionally, we 

included the reference genome of Z. tritici IPO323, one Illumina assembly of Z. passerinii and 

the PacBio assemblies of Z. brevis, Z. pseudotritici, and Z. ardabiliae.  

Finally, two genome alignments were generated to validate regions of high variability in the Z. 

tritici genome. One alignment (hereafter “3-Zt PacBio MGA”) included three high quality 

assembled genomes of Z. tritici: the Sanger-sequenced reference genome of IPO323 and the 
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PacBio assemblies of the isolates Zt05 and Zt10. The other alignment (“3-Zt Illumina MGA”) 

included the IPO323 reference sequence and the Illumina assemblies of Zt10 and Zt05.  

The pipeline used to create and process the four multiple genome alignments was adapted from 

(Stukenbrock & Dutheil 2018). Details and alignment filters can be found in the Supplementary 

Text and Figures S1, S2, and S3. To compare coordinate positions between alignments, all 

alignments were projected against the reference genome of IPO323. Alignment statistics are 

summarized in Table S2. 

 

Variant calling from multiple genome alignments and reference-based mapping  

Based on the filtered multiple genome alignments, we extracted variable sites using the option 

“VcfOutput” in MafFilter to obtain a list of variable positions in vcf format (Dutheil et al. 2014).  

We further compared the content and quality of the SNP dataset produced by alignment of de 

novo assembled genomes of Z. tritici isolates (3-Zt PacBio MGA) to a SNP dataset obtained by a 

read mapping approach of the same isolates. In brief, we aligned the Illumina reads of isolates 

Zt05 and Zt10 to the IPO323 reference with the program bwa v.0.7.15 using the mem algorithm 

(Li & Durbin 2009) and called variants with the program GATK (DePristo et al. 2011; McKenna 

et al. 2010). Details about data filtering and processing are summarized in the Supplementary 

Text. To compare vcf files obtained from the multiple genome alignments and the reference-

based assemblies we used custom made scripts in R and Python. Scripts and data used in this 

manuscript can be found on Zenodo (DOI: 10.5281/zenodo.3377936.). 

 

Diversity analyses and introgression detection  

Based on the multiple genome alignments, we inferred the distribution of intra- and interspecific 

genetic variation along the Zymoseptoria genomes. We used MafFilter (option 

“DiversityStatistics”) to compute the number of segregating sites, Theta, Pi, and Tajima's D per 

window (Dutheil et al. 2014).   

The All-Zt MGA and All-Za MGA were first divided into 1kb sliding windows (slide = 500 bp) 

and windows smaller than 500 bp were removed. We also filtered out sequences in each 

alignment block that was shorter than 80% of the entire block length. Potential local gene flow 
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was first assessed by generating phylogenetic trees in windows along the genome using MafFilter 

with the maximum likelihood estimate of distance and the BioNJ method for reconstructing the 

tree (Dutheil et al. 2014). Signatures of introgression were recognized as windows in which the Z. 

tritici sequences are non-monophyletic using the ete3 python library (Huerta-Cepas et al. 2016). 

For this analysis, only windows in which all species were represented were included.  

We further validated the signatures of introgression in the Z. tritici genome by computing the 

parameter Gmin along the All-Zt MGA and All-Za MGA (Geneva et al. 2015). For each window, 

we generated a distance matrix between sequences using the “identity” DistanceCalculator of the 

BioPython library. For Z. ardabiliae, Z. pseudotritici and Z. brevis, we divided the minimum 

distance between any Z. tritici isolate and the sister species sequences by the mean of the 

distances between sequences of the two species.  

Finally, the R package regioneR (Gel et al. 2016) was used to fuse neighboring windows with a 

signature of introgression or with high variability (highly variable regions (HVRs) defined by 1kb 

windows with more than 200 segregating per window) to call the coordinates of these loci. 

	

PCR-based validation of highly variable genomes in the Z. tritici genome 

In order to validate the existence of the highly variable regions, we amplified some of these 

regions using a PCR assay designed to bridge between conserved and highly variable regions. For 

extraction of DNA, Z. tritici isolates (N = 13) were maintained on solid YMS agar (0.4% [w/v] 

yeast extract, 0.4% [w/v] malt extract, 0.4% [w/v] sucrose, 2% [w/v] bacto agar) (Haueisen et al. 

2018). Fungal material was lysed using glass beads and 500 µL of lysis buffer. Then 500 µL of a 

1:1 phenol/chloroform mix was added and the tubes were shaken for 30 min. The supernatant 

was extracted and the DNA was precipitated using ethanol. Finally, the DNA was purified using 

RNase. The sequences of primers specifically designed for this study are listed in Table S3. The 

reaction mixture for PCRs was as follows: 1x Phusion High-Fidelity Polymerase Master Mix 

(Invitrogen, Carlsbad CA, USA), ten µM of each primer, 9 to 100 ng of genomic DNA template, 

and double distilled water to a final volume of 10 µL. PCR conditions were 98°C for 30 seconds; 

35 cycles of 98°C for 5 seconds, 63°C for 20 seconds, and 72°C for 30 seconds; 72°C for 10 

minutes. The annealing temperature for each primer pair was optimized through gradient PCR. 

Extension times were adjusted to approximately 30 seconds per kilobase of DNA amplified.  
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Amplicons were visualized on 0.8% TAE agarose gel containing SYBR Safe DNA gel stain 

(Invitrogen, Carlsbad CA, USA).   

 

Functional predictions 

We used the gene and transposable element (TE) annotations from the Z. tritici IPO323 reference 

genome (Grandaubert et al. 2015) to correlate signatures of introgression to genome features 

including genes and TEs. To this end, we used the R package regioneR to test the overlap 

between highly variable regions, predicted gene positions and TEs (Gel et al. 2016). This package 

implements a randomization strategy to statistically assess the association between sets of 

genomic regions by replacing one of the sets randomly along the genome. We used the 

permutation function “randomizeRegions” and 1000 permutations. Two limiting conditions were 

applied for the randomization: 1) As the ratio we used to detect introgression is only powerful 

enough in regions of the genome with a sufficient amount of information, we masked all regions 

with less than 12 Z. tritici sequences. This threshold of 12 corresponds to the minimum number 

of sequences in the windows with a signature of introgression as identified by the phylogenetic 

approach as well as by the Gmin-based approach. 2) The randomization was done per 

chromosome whereby regions from chromosome 1 were randomly placed on chromosome 1 and 

not on any other chromosome. 

The software SnpEff version 4 was used to predict the effect of the variants detected in the 

previous steps on predicted protein sequences (Cingolani et al. 2012). Such effects are classified 

on a scale that ranges from "low" impact variants (e.g., synonymous mutations) to "high" impact 

variants that can change the reading frame, add stop codons or modify split sites. The whole list 

of effects considered as "high", "moderate," and "low" impact can be found in the SnpEff manual 

(Cingolani et al. 2012). We used the output of this analysis to assess if “high” impact SNPs are 

enriched in the introgressed regions. Furthermore, we assessed if effector candidates 

(Stukenbrock & Dutheil 2018) were enriched in the introgressed regions using the 

“resampleRegions” from regioneR (Gel et al. 2016).  
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Results  
The genome of Z. tritici contains highly variable regions 
We first generated a full genome alignment based on de novo assemblies of 26 genomes of Z. 

tritici and high-quality genome assemblies of Z. brevis, Z. pseudotritici, Z. ardabiliae and Z. 

passerinii (All-Zt MGA). This alignment was used as input for the software MafFilter (Dutheil et 

al. 2014) to compute the number of variable sites along the Zymoseptoria genome. We inferred a 

total of 6,520,454 variable sites in the 27 Mb alignment comprising all genomes. The 

intraspecific variation in Z. tritici corresponds to 1,315,411variable sites. We analyzed the 

distribution of intraspecific variation in Z. tritici along the All-Zt MGA genome alignment in 

sliding windows of 1kb (slide window size 500bp). The distribution of polymorphisms showed a 

highly heterogeneous pattern along the chromosomes with unexpectedly high peaks of variation 

contained within short regions (Figure 1). The filtered alignment with a length of approximately 

26Mb (Table S2) comprises 51,539 1kb-windows with sites segregating in Z. tritici, and of these 

windows, 1,805 have more than 200 segregating sites. We defined a threshold to distinguish 

windows with more than 200 segregating sites within 1kb-windows as highly variable windows, 

and we joined consecutive windows in this category to have a map of highly variable regions 

(HVRs) along the Z. tritici genome. While these windows in total comprise a small proportion, 

3.5% of the total alignment (i.e. 665 highly variable regions with a total length of 990,074 bp), 

they contain a considerable amount of the variation, 24% of the total number of segregating sites 

(in highly variable regions: 315,060 and in the total alignment: 1,315,411).  

As a measure of allelic frequencies, we computed Tajima’s D in the HVRs and the remaining 

genome. Interestingly, we find that Tajima’s D is considerably higher in windows located in the 

HVRs: the median Tajima’s D value in windows of HVRs is 1.0, while it is -0.04 in windows of 

the remaining genome. Tajima’s D is positive when there is an excess of variants of intermediate 

frequencies. The higher Tajima’s D values in the HVR windows thereby show that these regions 

comprise a higher abundance of variants that are shared by different individuals. Manual 

inspection of the several HVRs confirmed this and revealed a pattern of two or more highly 

diverged haplotype groups within these regions (see Figure S4A-C for an exemplary visualization 

of the haplotype pattern in the alignment).  
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Validation of the highly variable regions 
The unexpected pattern of genomic variation in Z. tritici may arise either from technical bias in 

the processing of genome data or from actual demographic events in populations of Z. tritici. To 

validate that the high amount of variation in the alignment did not originate from assembly errors, 

we used two Z. tritici strains, Zt05, and Zt10, for which both Illumina and PacBio genome data is 

available. We included the independently generated assemblies, one generated from paired-end 

Illumina reads and the other from long SMRT reads, of the same isolates in two separate 

alignments: 3-Zt Illumina and 3-Zt PacBio. Longer reads are expected to facilitate de novo 

genome assemblies, therefore, if the observed high local variation is due to assembly errors, we 

expect more variation in the 3-Zt Illumina alignment compared to the 3-Zt PacBio alignment. 

However, we find that the numbers of segregating sites in the two genome alignments are very 

similar: 1,048,538 SNPs in 3-Zt Illumina and 1,067,522 SNPs in 3-Zt PacBio with a consistent 

distribution along the genome, including in the windows with high variability (Figure S4 A). In 

total, we compared SNP counts in 60,913 1kb-windows with data for both alignments and found 

that only 6.5% (3,944) of the compared windows showed different numbers of SNPs. In the 

Illumina-based alignment, 56,969 windows had SNP counts comparable (in a 10% range) to the 

corresponding window in the PacBio-based alignment, leaving 3,944 (6.5%) windows with a 

different SNP count. Among these, 70% had a difference of less than 16 segregating sites. From 

this, we conclude that assembly artifacts do not explain the high local variation observed. 

To experimentally validate the presence of HVRs and the observed haplotype patterns, we used 

PCR to amplify specific haplotypes with pairs of primers bridging the transition between HVR 

and the neighboring loci: one primer was designed in a conserved region and several others in the 

highly variable regions allowing us to amplify selectively the different haplotypes. Such primer 

design generated an "amplification/non-amplification" matrix that we compared to the 

distribution of haplotypes that we expect based on the multiple genome alignments (Table S4). 

We validated the amplification pattern of 11 loci for 13 samples and with some exceptions (4 

unpredicted amplifications over 429 reactions) confirmed the haplotype distribution and sequence 

variation predicted from the multiple genome alignment.  

Finally, we used a reference-based mapping approach to compare the distribution of SNPs. 

Interestingly, using this approach, we were not able to recover the majority of the HVRs. Indeed, 

the windows in the HVRs detected in the genome alignment correspond to regions of either low 
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or no variability in the reference-based SNP dataset (Figure S4 B). We compared the genotypes 

resulting from both variant-calling methods at each position to determine whether the differences 

in variants came from different genotypes being called, i.e., erroneous alleles at these positions, 

or missing data. Of the 762,543 total sites found to be variable, 378,431 sites were identified as 

being variable by both approaches, 308,908 were found in the multi-genome alignment only and 

75,204 in the reference-based mapping only. Among the differently identified SNPs, we found 

that these differences were due to missing data in more than 95% of the cases (N = 371,731). We 

conclude that only the alignment of de novo assembled genomes allows for the detection of such 

highly variable genome segments as the HVRs identified in the genome of Z. tritici.  

In summary, two independent genome alignments and a PCR assay confirmed the existence of 

HVRs in the genome of Z. tritici. However, we show that these regions cannot be recovered by 

mapping of Illumina reads to a reference genome due to the exceptionally high local sequence 

divergence in these regions.   

 

Signatures of introgression overlap with highly variable regions in the Z. tritici genome 

We next addressed the origin of the highly variable regions and the distinct haplotype patterns 

observed in these regions. Based on the sequence variation, we hypothesized that these regions 

reflect introgression in the Z. tritici genome. To test this hypothesis, we used the All-Zt MGA, 

which contains sequences from five different Zymoseptoria species (Z. tritici, Z. pseudotritici, Z. 

brevis, Z. ardabiliae, and Z. passerinii), to assess potential traces of introgression among these 

closely related species. First, we created a phylogenetic tree for every 1-kb window along the 

genome using MafFilter (Dutheil et al. 2014). For each tree, we assessed whether the Z. tritici 

isolates form a monophyletic group or if the Z. tritici isolates were non-monophyletic with Z. 

tritici sequences clustering with sequences of the sister species. We applied strict filtering criteria 

to ensure the absence of confounding effects such as alignment errors in the HVRs (see Materials 

and Methods) and thereby extracted phylogenetic trees from 18Mb of high-quality genome 

alignment. We classified windows as being “non-monophyletic” or “monophyletic" based on the 

clustering of Z. tritici sequences in the trees. We considered introgression to be reflected in 

windows were Z. tritici represents a non-monophyletic group. Indeed, we find 3,532 non-

monophyletic regions along the Z. tritici genome in comparison to 31,603 monophyletic 
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windows. To compute the length distribution of non-monophyletic segments, we joined 

consecutive windows with the same tree topology; in total, the non-monophyletic windows 

includes 1,903 regions comprising of 2,425,801 bp. The mean length of these segments is 1,275 

bp and the maximum length is 10,230 bp. In contrast, the monophyletic segments cover a total of 

15,757,555 bp with a mean length of 2,831 bp and a maximum length of 26,756 bp. We consider 

that the variation in lengths of segments reflects different ages of potential introgression events. 

In a sexually recombining organism such as Z. tritici, recombination breaks down the linkage of 

haplotype blocks as time increases. Thereby recurrent hybridization events followed by multiple 

generations of backcrossing leave introgressed segments of varying size in the genome of Z. 

tritici where long segments represent young events. 

To further test the hypothesis of introgression in the Z. tritici genome, we compared the overlap 

of non-monophyletic windows and the distribution of values of another measure of divergence, 

Gmin. We computed the parameter Gmin as a measure of sequence differentiation within and 

between species and defined windows with a clear signature of introgression as windows where 

the Z. tritici isolates are non-monophyletic and where the value of Gmin is lower than 0.85 in one 

of the pairwise analyses of Z. tritici with the other Zymosetoria species (Figure 2). We fused 

windows that exhibited both signatures of introgression resulting in 1129 segments with a clear 

signal of introgression comprising 1,398,089 bp (mean length = 1238bp, max length = 10kb).   

Next, we correlated the distribution and frequency of introgression signals with coordinates of the 

highly variable regions. Most of the windows in the HVRs had a signal of introgression as 

indicated by the phylogenetic analysis and the Gmin estimates. Among the windows for which 

we could estimate a tree, only 86 (representing 13% of the highly variable windows) exhibited no 

signal of introgression (either based on the topology of phylogenetic trees or the Gmin value), 

whereas 460 exhibited both signatures of introgression (representing 77% of the highly variable 

windows).  Likewise, the diversity (here estimated from the number of segregating sites per 1 kb 

window) is higher in windows where the Z. tritici isolates are non-monophyletic (Figure 2). The 

median number of segregating sites in a monophyletic 1kb window of Z. tritici is 22, while it is 

85 in non-monophyletic windows. Finally, we assessed the robustness of this finding by a 

permutation test  assuming neutrality of the introgressed sequences. The overlap between the 

highly variable regions and the regions with introgression signals is significantly and strikingly 
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more extensive than expected at random (width = 333,229 bp, p < 0.01). Based on the overlap of 

HVRs and segments with a strong signature of introgression, we conclude that the distinct 

patterns of nucleotide variation in the HVRs are consistent with a scenario of recurrent 

hybridization between Zymoseptoria species.  

	

Highly variable regions in Z. tritici likely originate from introgression and not incomplete lineage 

sorting 

Signatures of low divergence between closely related species can result from gene flow. 

However, other processes can also produce patterns of shared variation between species. An 

alternative explanation for the presence of shared variation between species is the retention of 

polymorphism from the common ancestor of the considered species, also termed incomplete 

lineage sorting (ILS). A substantial amount of ILS has been reported in Z. tritici previously 

(Stukenbrock et al. 2011), and we, therefore, set out to investigate if the HVRs could be the 

product of ILS rather than interspecific hybridization. The two processes can be distinguished by 

analysis of the length of haplotype segments (Racimo et al. 2015). Hybridization that has 

occurred after the split of the species as opposed to smaller segments of shared polymorphisms 

resulting from ILS. We used the equation presented in Racimo et al. (Racimo et al. 2015) to 

measure the expected length of shared haplotypes and the probability to observe fragments of a 

certain length. A recombination rate of 46 cM/Mb was estimated in the common ancestor of Z. 

tritici, Z. pseudotritici, and Z. ardabiliae from whole genome coalescence analyses (Stukenbrock 

et al. 2011), a value that is consistent (although slightly lower, making our estimations more 

conservative) with values obtained from experimental crosses of Z. tritici (Croll et al. 2015). The 

time of divergence between the lineages Z. tritici and Z. ardabiliae has previously been estimated 

to be 22,300 generations and between Z. tritici and Z. pseudotritici 11,000 generations 

(Stukenbrock et al. 2011). Using these values, we expect a length of 198 bp for shared haplotypes 

resulting from incomplete lineage sorting between Z. pseudotritici and Z. tritici and of 97 bp for 

shared haplotypes between Z. ardabiliae and Z. tritici. We next compared the observed lengths of 

the HVRs to these haplotype lengths expected from ILS. The minimum threshold for the window 

size that we used to scan the genomes for signatures of introgression is already larger than the 

predicted length of haplotype fragments with introgression. Thus our analyses would not be able 

to detect regions small enough to be similar in size to these expectations under ILS. The average 
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size of the haplotypes identified as outliers by our phylogenetic analysis and the Gmin parameter 

is 1238bp. The probability of retaining haplotypes of such length with an ILS assumption is 0.002 

when using the estimated split time between Z. pseudotritici and Z. tritici and smaller than 0.001 

for the estimated split time between Z. ardabiliae and Z. tritici. Although we cannot exclude that 

a fraction of the observed genomic variation is due to ILS, our analysis suggests that interspecific 

gene flow explains most of the variation detected in the HVRs.  

 

Regions exhibiting introgression signatures are not enriched with genes encoding virulence 

determinants 

Next, we asked whether the wide distribution of introgression in the genome of Z. tritici could be 

functionally relevant. We, therefore, searched for overlapping windows with a signal of 

introgression and different annotated genomic features including transposable elements (TEs) and 

protein-coding genes. Among these, we specifically considered genes predicted to be involved in 

plant-pathogen interaction, so-called effectors. With our strict filtering, we only included the 

genomic regions where the alignment had no missing data for any of the sister species used in the 

analyses. Hence, for this analysis, we only included the most conserved regions in the 

Zymoseptoria genome. As genomic regions enriched with TEs are typically more difficult to 

assemble and align, these are also among the alignment blocks that are most frequently excluded 

by our filtering approach. Therefore, thenumber of TEs was limited to 67 TEs in Z. tritici. Of 

these, fourteen TEs overlap with the introgressed regions. Based on random permutations, we 

find that this is a significantly higher number than the number expected from a random 

distribution (p-value < 0.01) suggesting that TEs in the genomic regions affected by 

introgression. We note that we may underestimate the association of TEs and introgressed 

regions due to the strict data filtering.  

We found 1,279 genes (of 13,847 predicted gene models (Grandaubert et al. 2015)) that overlap 

with windows with introgression signals. This number is lower than expected from random 

permutations (p-value < 0.01, Figure 3). Furthermore, we investigated the predicted effect on the 

protein sequences of the segregating sites detected in regions with a signature of introgression 

using SnpEff (Cingolani et al. 2012). Across the 1279 genes overlapping with regions with a 

signature of introgression, 487 genes contained variants, which were classified as “high effect” 

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/advance-article-abstract/doi/10.1093/gbe/evz224/5585751 by guest on 28 O

ctober 2019



	

	 15	

mutations (including genes with the gain of a stop codon or the loss of a start codon), which is 

significantly more than expected at random (p-value < 0.01). This may indicate that more rapidly 

evolving genes are located in the genome regions affected by introgression. 

To investigate a possible functional role of introgression, we searched for the enrichment of gene 

ontology (GO) categories using a previously published GO annotation (Grandaubert et al. 2015). 

The results, presented in Table S5, show enrichment of functions related to general cellular 

processes such as protein and DNA binding functions, but no enrichment of genes known to be 

associated with pathogenicity. To further address if introgression has influenced loci potentially 

involved in pathogenicity, we focused on genes encoding putative effectors. Using a previously 

published list of effectors genes (Stukenbrock & Dutheil 2018), we find there is no significant 

enrichment (p-value = 0.2) of effectors in the introgressed regions although a small number 

(N=18) co-localize with highly variable regions.  

 

Frequent hybridization in the Zymoseptoria genus  
Finally, to identify which species potentially have a hybridization history with Z. tritici, we used 

the minimum Gmin value in the pairwise comparisons of Z. tritici with Z. ardabiliae, Z. 

pseudotritici, Z. brevis, and Z. passerinii.  For each window previously identified to exhibit a 

signal of introgression, we identified the species with a Gmin value < 0.85.In some windows 

more than one species comparison showed a Gmin value < 0.85 and we were not able to identify 

a single source species: 32% of the HVR windows exhibited two species combinations with low 

Gmin values, 14% exhibited three species combinations with low Gmin values, and 5% four 

species combinations with low Gmin values.  47.8% of the windows in which the introgression 

signal was linked to a single species exhibited strong identify between Z. tritici and Z. 

pseudotritici. In 44.6 % of these windows, the low Gmin was attributed to Z. brevis, and in 7.2% 

and 0.4% to Z. ardabiliae and Z. passerinii, respectively. This pattern correlates with the 

phylogenetic relatedness of Z. tritici to Z. pseudotritici and Z. brevis and may suggest that 

successful interspecific hybridization occurs more readily and more often between the more 

closely related species.  

Knowing that several of the Zymoseptoria species infecting wild grasses were detected as source 

species of introgressed sequences , we hypothesized that introgression would not be limited to 
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this species but that the signatures of hybridization also would be visible in population genomic 

data of other Zymoseptoria species. To test this, we used an alignment comprising 17 Z. 

ardabiliae genomes (All-Za MGA) to look for traces of introgression in this species using the 

same methods as described above. We identified 68 regions with introgression signals in Z. 

ardabiliae corresponding to 92,241 bp (Table S2). Comparing the genome-wide coordinates of 

introgressed regions, we find that 50,526 bp overlap with coordinates of introgressed windows in 

Z. tritici. 128 non-monophyletic regions in the Z. ardabiliae alignment have an overlap with the 

identified introgressed regions in Z. tritici (80,379 bp out of 154,168 bp of the Z. ardabiliae 

genome). In summary, by conducting the same analyses using a population genomic dataset of Z. 

ardabiliae, we find similar evidence of introgression as observed in Z. tritici suggesting that 

hybridization is a widespread phenomenon in this group of fungi.  

	

Discussion 
Genome analyses of fungi reveal that interspecific hybridization occurs more frequently than 

previously thought. Hybridization was shown to promote the rapid evolution of fungal pathogens 

and in some cases, the emergence of new species (Brasier & Kirk 2010;  Stukenbrock et al. 2012; 

Menardo et al. 2016). Population genomic analyses of the wheat pathogen Z. tritici have 

documented extensive genomic variability as a result of transposon activity and chromosome 

instability (Plissonneau et al. 2016; Möller et al. 2018). However, so far, hybridization has not 

been considered a relevant driver of genome evolution in this species despite recent reports of 

introgression in spliceosomal intron sequences (Wu et al. 2017). 

In the present study, we investigated the genome-wide occurrence of genomic regions of 

exceptionally high variability in Z. tritici with the hypothesis that these originate from 

introgression. When analyzing these regions in 1-kb windows, we detect > 200 segregating sites 

between different isolates of Z. tritici. Because this extent of local within-species diversity is 

highly unusual, we first investigated the possibility of artifacts resulting from data handling or 

analyses. One possible artifact could be the unintended alignment of distinct paralogs rather than 

alignment of orthologous sequences. However, by assembling genomes de novo and careful 

filtering of whole-genome alignments generated from syntenic chromosome fragments, we 

consider it unlikely that the unusual variation represents the alignment of distinct paralogs. 
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Second, the high variability could originate from misassemblies of short Illumina reads. To 

address this possible artifact, we used Illumina and PacBio re-sequencing data of the Z. tritici 

strains Zt05 and Zt10. The PacBio technology produces considerably longer reads than Illumina 

sequencing, which facilitates the de novo assembly of genomes (Rhoads & Au 2015). We found 

that the number of SNPs per window was very similar between the two alignments based on 

Illumina and PacBio reads, including the amount of SNPs in the highly variable windows. 

Thirdly, we verified the haplotype patterns in eleven randomly selected high variation regions 

using a PCR assay. From these independent approaches, we conclude that the observed “outlier” 

regions are indeed regions with an exceptional extent of variation that are interspersed throughout 

the genome of Z. tritici. We note that a reference-based mapping approach failed to identify these 

regions due to the extent of divergence. Instead, the non-reference haplotypes appear as missing 

data in the read mapping assembly. This observation may explain why previous population 

genomic studies of Z. tritici have failed to identify these regions.  

The highly variable regions often comprise of two or fewer haplotypes with high sequence 

identity within haplotype groups (Fig S4), a pattern that resembles the genomic pattern in the 

hybrid sister species Z. pseudotritici (Stukenbrock et al. 2012). To investigate the origin of this 

particular haplotype pattern in Z. tritici, we combined several approaches. We determined the 

topology of phylogenetic trees in 1kb windows across an alignment of Z. tritici and its sister 

species and correlated this with another measure of introgression, Gmin (Geneva et al. 2015), and 

the distribution of the highly variable regions. Together these different estimates provide strong 

evidence for multiple regions with signatures of  interspecific gene flow along the Z. tritici 

genome. These signatures are highly localized with an average length of 1,238 bp in Z. tritici, 

distributed throughout the genome, and comprise of more than 20% of the total genetic variation.  

A smaller proportion of the highly variable regions do not exhibit a clear introgression signal. 

One reason that we fail to detect introgression in these windows may be that Z. tritici has 

hybridized with other species not included in our analyses. It is also possible that our approach is 

not sensitive to detect all signals of introgression; while highly variable regions can be detected in 

alignment blocks with very few sequences, the Gmin measure relies on a large number of 

sequences.  Thus, by our strict criteria for calling signatures of introgression, it is possible that we 

underestimate the overall impact of this phenomenon in the Z. tritici genome.  
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Another process that may produce genealogies that are discordant with the species tree is 

incomplete lineage sorting (ILS). Several methods have been developed to distinguish these two 

processes from each other, including the ABBA-BABA test (Durand et al. 2011). For the 

Zymoseptoria genus studied here, we find evidence for more complex hybridization histories with 

gene flow in different directions at different time points and involving multiple species. This 

more complex scenario of introression prevent us from applying tests like the ABBA-BABA test.  

However, to distinguish between ILS and introgression, we analysed the length distribution of the 

detected haplotypes in the highly variable regions (Racimo et al. 2015). Generation after 

generation recombination breaks up haplotypes into smaller fragments. Given the recombination 

rate and the speciation time between two lineages, it is possible to estimate the expected length of 

haplotypes along a given genome. In the Zymoseptoria genus, the recombination rate has been 

estimated previously from genomic data and determined from experimental crosses (Stukenbrock 

et al. 2011; Croll et al. 2015). Based on these measures and previously estimated split times 

between species, we find that the expected haplotype length is lower than 1kb, a value consistent 

with previous estimates (Stukenbrock et al. 2011). However, the observed highly variable regions 

showing discordant genealogies are considerably longer than expected in a model excluding 

introgression after speciation and without selection. Although ILS occurs throughout the genome 

of the Zymoseptoria species (Stukenbrock et al. 2011), it does not explain variation in the highly 

variable regions. Finally, another possible explanation for the maintenance of the long and highly 

divergent haplotypes is balancing selection (Charlesworth 2006). However, the observed patterns 

of non-monophyly and low Gmin values comprise a relatively large proportion of the genomes of 

Z. tritici and Z. ardabiliae. We consider it unlikely that balancing selection can shape genetic 

variation in such a large proportion of the genomes.  

Previous studies, including a recent study of the yeast species Saccharomyces paradoxus, 

demonstrated the emergence of new fungal populations via repeated events of hybridization 

(Eberlein et al. 2019). We speculate that recurrent hybridization likewise may be a driving force 

in shaping evolution in Zymoseptoria grass pathogens. In the Z. tritici genome we most 

frequently indentify Z. pseudotritici and Z. brevis as the source of the introgressed genomic 

regions and more rarely Z. ardabiliae. Interstingly, in > 50% of the windows, we  could not 

identify one unique source species. Such pattern may reflect that these regions are subject to 

repeated introgressions by different species. In support of this hypothesis, we found a similar 
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pattern of gene flow in the genome of the sister species Z. ardabiliae. The presence of the same 

genomic signatures in the two species suggests that the gene flow in the Zymoseptoria genus is 

not unidirectional and does not only occur from the wild species into the wheat infecting lineage 

Z. tritici. Rather, hybridization may occur more frequently among closely related Zymoseptoria 

species and may even be a mechanism for the exchange of adaptations between species. This 

scenario was previously shown to explain the mosaic genome structure observed most 

pronounced in Z. pseudotritici (Stukenbrock et al. 2012), but here also described in Z. tritici and 

Z. ardabiliae. A similar mosaic genome pattern has been reported previously in the biotrophic 

oomycete parasite, Albugo candida, in which 25% of the genome was found to be introgressed 

between different host-specific races (McMullan et al. 2015). In A. candida, introgression may be 

an important mechanism to facilitate host shifts as the introgression involves the exchange of 

host-specific effector genes. Likewise, it has been proposed that introgression has played an 

important role in the evolution of virulence traits in the fungal apple scab pathogen Venturia 

inaequalis (Leroy et al. 2016a). It is possible that Zymoseptoria in its original habitat can 

similarly hybridize to facilitate host range expansion. To which extent introgression has impacted 

the virulence of the specialized pathogen has still yet to be assessed. Although the introgressed 

regions are not enriched with effector genes, they overlap with 18 predicted effector genes. This 

finding suggests that hybridization may be  a mechanism whereby virulence determinants can be 

exchanged between Zymoseptoria species. Future experimental studies should elucidate the 

functional relevance of extensive allelic variation in these regions and the role of hybridization in 

the emergence of new host specificities.  

We find an enrichment of TEs in the highly variable regions. It is possible to speculate that 

selective constraints will act more strongly on introgressed protein-coding sequences than on 

TEs, explaining the enrichment of these sequences in the highly variable regions. Hybridization 

may even act as a mechanism for transposable elements to be transferred between species. 

Comparative genome analyses of closely related Drosophila species recently provided evidence 

for the recurrent transfer of TEs between sympatric Drosophila species by hybridization (Hill & 

Betancourt 2018). The authors proposed that the transfer of TEs by hybridization contribute to 

the highly dynamic genome content in the fly genomes. For Zymoseptoria, we hypothesize that 

the high variability in TE content between and within closely related species likewise could be 

explained by hybridization.  
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The results of our study underline the prominent role of interspecific gene flow in the genome 

evolution of a prominent wheat pathogen. While the functional relevance of such exchanges of 

genetic material in this genus is unknown, it is a phenomenon that is widespread in the genus 

Zymoseptoria. Sister species of Z. tritici have been collected from a variety of wild grasses in 

Iran (Stukenbrock et al. 2007, J. Haueisen personal. comm.), and we hypothesize that 

hybridization facilitates host shifts and host range expansion. The frequent occurrence of 

hybridization among these plant pathogens raises questions about the way we define species as 

isolated entities, which has fundamental relevance to disease management and plant breeding. 

Future studies should focus on the mechanisms promoting or preventing hybridization as well as 

the relevance of hybridization in the evolution of virulence and host specificity.  
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Figure legends: 

	

Figure 1: Highly heterogeneous distribution of genetic variation along the genome of Z. 

tritici. Number of variant positions in 1kb window along a randomly selected region in 

chromosome 10 as computed from a multi-genome alignment of 23 Z. tritici genomes.  

Figure 2: Distribution of variable sites in monophyletic and non-monophyletic 1kb windows 

in the genome of Z. tritici. Violin plots showing the number of variant sites for monophyletic 
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and non-monophyletic windows (left) and the distribution of minimum Gmin values obtained 

from a comparison of Z. tritici and each of the other Zymoseptoria species in monophyletic and 

non-monophyletic windows (right). 

Figure 3: Permutation test assessing possible associations in regions of the Z. tritici genome 

showing signatures of introgression. On the left, association with predicted genes. On the right, 

association with predicted effectors among the genes overlapping with signatures of 

introgression. In grey, the random distribution obtained from 1000 randomizations. The black 

line represents the median random value, the green line the observed value and the red line the 

threshold of significance (here, set at 0.05). 
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