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We assume that cosmological dark matter is composed of massive neutral scalar particles that
decay into two massless particles. The decay produces a stochastic background of gravitational
waves because of the “memory effect”. We calculate the spectrum of this background and discuss
its potential observability. Penrose has proposed a cosmological model for which these particles
have the Planck mass and decay into two gravitons [1]. For these, the spectrum has an additional
“direct” contribution from the decay products, which we also estimate and discuss.

INTRODUCTION

There is strong evidence that approximately 25% of
the cosmological fluid is composed of “dark matter” [2].
This behaves as pressureless dust with a mass density

ρDM ≈ 2.1× 10−30g/cm
3
,

but its composition is unknown.
This paper was motivated by Penrose’s “conformal

cyclic cosmology” [1], which suggests that dark matter
is composed of “erebons”. These have Planck mass

MP =

√
h̄c

G
= 2.2× 10−5g,

and only interact gravitationally. Erebons are not stable,
but have a lifetime τ which is longer than the Hubble time
TH = H−1 = 4.6× 1017 s.

Since erebons decay into gravitons, they should leave
behind a stochastic cosmological background of gravita-
tional waves (GW). Penrose conjectured that these might
produce a detectable background in the Laser Interferom-
eter Gravitational-wave Observatory (LIGO) GW detec-
tors. In Section II we calculate the spectrum of that GW
background, and show that it is far too weak to observe
with LIGO or other instruments.

Surprisingly, even if dark matter decays into massless
particles that are not gravitons (for example, photons)
a GW background is produced by an effect called “GW
memory”. In Section III we calculate that contribution
to the GW spectrum, which dominates the previous part
at the low frequencies accessible to current GW detec-
tors. Our results apply to any neutral scalar dark matter
particle which decays into two massless one.

In this paper, c denotes the speed of light, G is New-
ton’s gravitational constant, and h̄ is Planck’s constant.

I. SPECTRAL FUNCTION

In the literature, the stochastic background of GWs is
often characterized with a dimensionless spectral func-
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tion Ωgw(f), which describes how the GW energy is dis-
tributed in frequency [3, 4]. If dρGW c2 is the energy
density in GWs in the frequency interval [f, f +df ], then

Ωgw(f) =
f

ρc

dρGW

df
, (1)

where ρc = 3H2/8πG = 8.6 × 10−30g/cm3 is the
closure/critical density for which the Universe is spa-
tially flat. We use the Planck satellite value H =
67.4 km s−1 Mpc−1 [2] for the current Hubble expansion
rate.

Current observations with advanced LIGO, combin-
ing O1 and O2 data, place the best constraints at
around 40 Hz, as shown in Fig. 3 of [5]. These limits,
ΩGW(40 Hz) < 6 × 10−8, can be compared directly with
model predictions. There are additional low-frequency
limits from pulsar timing arrays, and broadband limits
from big bang nucleosynthesis modeling.

II. THE “DIRECT” SPECTRUM

We assume that the decay of the dark matter particle
of mass m results in two massless particles with equal and
opposite momenta. If those massless particles are gravi-
tons, then these gravitons themselves provide a spectrum
of GWs. Here we calculate that direct graviton spectrum.
For particles which decay into other massless particles
(for example photons) please skip to Section III.

In the rest frame of the dark matter particle, the two
gravitons resulting from the decay have equal energy and
opposite linear momentum. The mean frequency of the
two particles f0 follows from energy conservation:

f0 =
mc2

4πh̄
= 1.5× 1042

(
m

MP

)
Hz.

In the rest frame of the decaying particle, the gravitons
have a frequency close to f0 and an energy close tomc2/2.
The distribution around these values has a width deter-
mined by the particle lifetime τ .

Since we are assuming that these particles compose
the dark matter, which has survived to the present, the
lifetime τ must be greater than the Hubble time TH. This
means that the width ∆f = 1/2πτ of the emission line

ar
X

iv
:1

91
0.

08
21

3v
1 

 [
gr

-q
c]

  1
8 

O
ct

 2
01

9

mailto:bruce.allen@aei.mpg.de


2

is very narrow, ∆f << f0. Nevertheless there is some
small probability that the gravitons will be produced at
a frequency low enough to detect with LIGO.

In this narrow-line case, the normalized probability
distribution of the graviton frequencies f is described by
a Lorentzian distribution

L(x) =
1

π(1 + x2)
, (2)

where x = 2(f−f0)/∆f . In a time interval dt, the contri-
bution to the GW stochastic background energy density
from decaying particles in a frequency band [f, f + df ] is

c2 dρGW = 2× 2πh̄f L

(
2(f − f0)

∆f

)
2df

∆f
n
dt

τ
,

where n = ρDM/m is the number of particles per unit
volume, and the leading factor of two arises because each
decay produces two gravitons.

Integrating this over the Hubble time, and expressing
it in terms of the dimensionless spectral function Eq. (1)
yields

ΩGW(f) = 2
f2

f0∆f

(
ρDM

ρc

)(
TH

τ

)
L

(
2(f − f0)

∆f

)
. (3)

By integrating over frequency it can be easily verified
that the total energy density in GWs is

c2
∫
dρGW = c2ρc

∫
1

f
ΩGWdf = ρDMc

2TH

τ
.

This is what we expect from energy conservation, since
in this model the energy in GWs comes from the decay
of the dark matter; in the Hubble time the fraction that
has decayed is TH/τ .

The predicted ΩGW(f) at low frequency can be com-
pared with LIGO sensitivity. At low frequencies one finds
L(x) ≈ 1/πx2 ≈ ∆f2/4πf2

0 , so

ΩGW(f << f0) =
1

4π2

f2

τf3
0

(
ρDM

ρc

)(
TH

τ

)
. (4)

For the erebon, since the lifetime τ must be greater than
the Hubble time, we find ΩGW(40 Hz) < 7×10−144. This
is below detectability in LIGO by about 136 orders of
magnitude.

III. GW “MEMORY” EFFECT

There is another source of GWs, which puts more of
the energy at low frequencies. The decay of a massive
particle into two massless particles produces a sudden
change in the gravitational field, which propagates out-
wards at the speed of light. Similar effects were first
described by Zel’dovich and Polnarev [6] in the slow mo-
tion approximation, in the context of massive sources

such as supernovae. Braginskii and Thorne [7] called
such sources “GW bursts with memory”. Later work by
Christodoulou [8] showed that there was an additional
effect related to the loss of energy by the source.

For massive particle decays into two point particles,
one of which is massless, the gravitational waveform was
calculated exactly in the weak-field limit by Tolish, Bieri,
Garfinkle, and Wald [9], building on earlier work by Tol-
ish and Wald [10]. If the initial (massive) particle is at
rest at distance r from it, an interferometric GW detector
registers a step function (filtered through the response of
the detector) at time r/c after the decay.

The magnitude of the step is easily determined. Place
the origin of coordinates at the massive particle and align
the z−axis along the path of the massless decay products.
Then Eq. (12) of [9] (set E = m/2, since both decay
products are massless) gives the displacement ∆La in a
detector arm La, located at distance r from the particle,
as

∆La =
Gm

rc2
(θaθb − φaφb)Lb, (5)

where θa and φa are orthonormal spatial vectors tangent
to the sphere of radius r at the location of the detector,
with θa pointing along a line of constant longitude and φa

pointing along a line of constant latitude. Detector arms
based on optical delay lines or Fabry–Pérot cavities sense
length changes in the parallel directions. So contracting
both sides of this equation with La gives the observed
GW strain ∆L/L in one arm as

∆L

L
=
Gm

rc2

[
(L̂aθa)2 − (L̂aφa)2

]
,

where L̂a is a unit-length vector along the arm. A detec-
tor arm which points in the radial direction is unaffected,
a detector arm which points along the longitudinal direc-
tion gets longer, and a detector arm which points along
a line of latitude gets shorter.

In a LIGO-like detector with two equal-length perpen-
dicular arms M and N , the differential strain is given
by

h =
∆M

M
− ∆N

N

=
Gm

rc2

[
(M̂aθa)2 − (N̂aθa)2 − (M̂aφa)2 + (N̂aφa)2

]
.

Squaring this quantity and averaging over detector orien-
tations gives a mean-squared strain 〈h2〉 = 4G2m2/5r2c4.
This is equivalent to a root-mean-square (rms) strain

hrms =
2√
5

Gm

rc2
. (6)

This is easy to check. Although the source is axisymmet-
ric, the average effect on a GW detector (after rotation
through all possible orientations of the detector) is inde-
pendent of θ and φ and only depends upon r. This follows
because Eq. (5) has no θ or φ dependence. Examination
of Eq. (33) of [9] shows that the angular dependence of
the two null particles 1± cos θ cancels.
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A. GW “memory” spectrum

If the dark matter is composed of particles which decay
in this way, then they will act as GW source and give rise
to a uniform and isotropic background of stochastic GWs.
To find its spectrum, we calculate the auto-correlation
function C(T ) = 〈h(t)h(t+ T )〉 of the strain h(t) in one
detector.

FIG. 1. The “memory effect” waveform in a GW detector
from a set of particles decaying at fixed distance r with mean
time τ between events. The amplitude is given in Eq. (6); the
duration of the steps is the inverse of the detector’s effective
low-frequency cutoff flow. The physical signal would consist of
the sum of these events and similar ones with lower amplitude
and higher rate, coming from larger distances.

We begin by looking at the strain signal that would
arise from dark matter particles decaying at a fixed dis-
tance r from the detector, with mean time τ between
events. Assume that the detector has a low-frequency
cutoff flow = 20 Hz, so that its strain response h(t) is a
series of step functions as illustrated in Fig. 1. Overlap-
ping this waveform with a time-delayed copy and aver-
aging gives the auto-correlation for sources at radius r:

Cr(t) =

{
h2

rms(1− |t|flow)/τflow if |t| ≤ 1/flow

0 otherwise.

Fourier transforming this triangular auto-correlation
function into the frequency domain gives

C̃r(f) =

∫ ∞
−∞

Cr(t)e
2πiftdt =

1− cos(2πf/flow)

2π2τf2
h2

rms.

For an ideal detector (flow → 0) the oscillating term on
the right averages to zero, giving

C̃r(f) =
h2

rms

2π2τf2
=

2G2m2

5π2r2c4τf2
(7)

for the auto-correlation function of sources at distance r.
Since the sources are incoherent, we can sum their

contributions out to the Hubble radius cTH to get the
frequency-domain auto-correlation function of the detec-
tor strain:

C̃(f) =

∫ cTH

0

C̃r(f)n 4πr2dr =
8G2m2nTH

5πτc3f2
, (8)

where n = ρDM/m is the number of sources per unit
volume.

The frequency domain correlation function of the
strain in one detector is related to the spectral function
ΩGW(f) using Eq. (3.59) of [4], with overlap reduction
function γ = 1:

ΩGW(f) =
20π2

3H2
f3C̃(f) =

2

π

ρDM

ρc

TH

τ

m

MP

f

fP
, (9)

where we have defined the Planck frequency as fP =√
c5

h̄G/2π = 3.0 × 1042 Hz. This spectrum is “white”:

it describes a flat (uniform) distribution of energy as a
function of frequency. In Subsection III B we discuss the
high-frequency cutoff of this expression.

For a Planck-mass erebon m = MP, at LIGO frequen-
cies f ≈ 40 Hz, this “indirect” contribution to the GW
stochastic background is 100 orders of magnitude larger
than the “direct” contribution given in Eq. (4). Unfor-
tunately it is still very small. For example at LIGO fre-
quencies ΩGW(40 Hz) < 2.2× 10−42 misses detectability
by 34 orders of magnitude.

Reference [1] argues that this “memory” effect can
be calculated for particle decay using the “impulsive
Vaidya metric” [11], in which a spherically-symmetric
Schwarzschild space-time converts itself to Minkowski
space-time along an outgoing spherically-symmetric null
hypersurface. We believe this is not correct. For exam-
ple Eq. (2.43c) of [12] shows that for an isotropic source
Nl makes the integral vanish. Here, we obtain a memory
effect specifically because the two outgoing null particles
define an axis so that the spacetime has axial rather than
spherical symmetry.

B. Total energy converted to GWs

The GW energy spectrum we have found for a single
idealized decay (and for the resulting stochastic back-
ground) is white, meaning that the energy c2dρGW in a
frequency band df is independent of frequency f . Phys-
ically, the spectrum is cut off at high frequency because
the processes associated with the decay have a short-
est characteristic time-scale. Here we examine this more
closely.

It follows from Eq. (5) that the transverse-traceless
metric perturbation takes the form

hab =
2Gm

rc2
(θaθb − φaφb)W (t− r/c), (10)

where in the rest frame of the decaying particle t is time
after the decay, r is radial distance from the decay, and
W (x) is the “profile” of the expanding circular wavefront:
a smoothed dimensionless step function which vanishes
for negative argument and approaches unity for large pos-
itive argument.

In this gauge the energy-density in GWs is
c2ḣabḣ

ab/32πG where ˙ = d/dt. Integrate this over a spa-
tial slice at time t > 0, assuming that t is large enough
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to ensure that the outgoing radiation has formed a shell
away from the origin. One obtains a total energy

EGW =
Gm2

c

∫ ∞
0

[
Ẇ (t)

]2
dt, (11)

where Ẇ (t) = dW (t)/dt.
To evaluate this integral we use a simple linear model

waveform W (t) which enforces causality [13], so vanishes
for t < 0:

W (t) =


0 for t < 0,

t/∆t for 0 ≤ t < ∆t, and

1 for ∆t ≤ t.
(12)

Here ∆t is the time-duration of the outgoing pulse for an
observer at fixed radius r.

The integral over time that appears in Eq. (11) yields
1/∆t, so the outgoing GW carries energy EGW =
Gm2/c∆t. If the time-duration ∆t of the pulse is related
to the rest-mass energy mc2 of the decaying particle via
the Heisenberg uncertainty principle, then ∆t ≥ h̄/mc2

and the energy carried away is bounded by

EGW ≤
cGm3

h̄
=

(
m

MP

)2

mc2. (13)

Note that for particles of mass smaller than Planck mass,
GWs carry away only a small fraction of the total energy,
but for particles close to the Planck mass, a significant
fraction of the energy could be lost to GWs.

CONCLUSIONS

We have calculated the spectrum of GWs produced
by the decay of massive dark matter particles into two
massless ones. Because of the “memory effect”, the decay
produces an “indirect” stochastic background of GWs
with a flat spectrum, and spectral function ΩGW(f) given
in Eq. (9). If the massless particles are gravitons, then
the decay also produces a “direct” GW spectrum. The
spectral function for these rises with frequency, and is
given in Eq. (4), assuming that the gravitons produced
by the decay have a frequency which is high compared
to the detection band. For massive particles, the indirect
part of the spectrum dominates.

Current technology offers no prospects for constraining
or detecting these backgrounds. While our estimates do
not fully account for cosmological expansion and redshift,
those should not change the order-of-magnitude of the
results.

More conventional sources do not produce high fre-
quency GWs. So although it is weak, the background
from particle decay may nevertheless dominate the high
frequency GW spectrum.
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