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ABSTRACT: Controlling the droplet evaporation on surfaces is
desired to get uniform depositions of materials in many applications,
for example, in two- and three-dimensional printing and biosensors.
To explore a new route to control droplet evaporation on surfaces and
produce asymmetric particles, sessile droplets of aqueous dispersions
were allowed to evaporate from surfaces coated with oil films. Here,
we applied 1−50 μm thick films of different silicone oils. Two contact
lines were observed during droplet evaporation: an apparent liquid−
liquid−air contact line and liquid−liquid−solid contact line. Because
of the oil meniscus covering part of the rim of the drop, evaporation at
the periphery is suppressed. Consequently, the droplet evaporates
mainly in the central region of the liquid−air interface rather than at
the droplet’s edge. Colloidal particles migrate with the generated
upward flow inside the droplet and are captured by the receding
liquid−air interface. A uniform deposition ultimately forms on the substrate. With this straightforward approach, asymmetric
supraparticles have been successfully fabricated independent of particle species.

■ INTRODUCTION

Evaporation of water droplets on solid surfaces is a complex
process because mass and heat transfer in the liquid and air are
coupled.1,2 A droplet with suspended colloids2−4 or dissolved
molecules5−7 generally results in ring-like depositions after
drying on a solid surface, which is caused by the so-called
coffee-ring effect.1,8 It is initiated by the pinning of the droplet
edge and an evaporation gradient along the droplet surface.
Consequently, an outward capillary flow forms inside the
evaporating droplet, and the suspended matter transports along
with this flow and accumulates at the droplet edge (contact
line liquid−air−solid, CLAS). The coffee-ring effect has its
applications9 for the construction of complex material
assemblies in surface patterning, optics, or electronics10−12 as
well as micro- or nanodevices.13 However, the heterogeneity of
the deposition greatly restricts its development in inkjet-
printing,14 photonics,15 and biosensors,16 where uniform
deposition is required.
The final deposition in drying sessile droplets is correlated

with the mode of liquid evaporation,17 particle adsorption on
the liquid−air interface, particle agglomeration,18,19 and surface
tension gradients along the droplet’s surface.20 To realize
uniform depositions on a substrate, approaches by controlling
the evaporation process of droplets have been realized, for
example, regulating flow patterns inside evaporating drop-
lets,6,21−23 interface deformation,24 depinning of CLAS,19,25 or
modifying the dispersed colloidal particles.26 Recently,

lubricant-infused surfaces, consisting of micro/nano-structures
filled with lubricating liquids, have been discovered with
ultralow contact angle hysteresis to foreign immiscible
droplets.27−29 Yang et al. have released a novel technique
with capability of ultrasensitive molecular detection (down to
10−15 mol·L−1), which is realized by the enrichment and
delivery of analytes into the detective sites based on this
platform.30 McBride et al.31 demonstrated that salt crystal-
lization is suppressed at the droplet edge of salt solution during
its evaporation. Das et al.32 reported that the coffee-ring effect
can be suppressed on a silicone oil-coated surface. In these
cases, the lubricant film prevents pinning of the droplet edge at
the substrate during droplet evaporation. However, there is a
lack of understanding of how the pattern of the deposit is
influenced by the droplet, property of the lubricant, suspended
particles, and wetting properties of the substrate.
In this work, we investigated how silicone oil films with a

thickness of the order of 10 μm on a solid surface regulates the
evaporation of sessile water droplets and how it suppresses the
coffee-ring effect. The mechanisms of particles transport and
hence the flow inside of these droplets was studied with 3D
laser confocal microscopy. This evaporation approach was
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applied to fabricate disc-like or pill-like asymmetric supra-
particles.

■ MATERIALS AND METHODS
Silicone oils purchased from Sigma-Aldrich, with viscosities from 10
to 105 cSt, γ ≈ 20 mN/m. Two kinds of polystyrene (PS) beads,
fluorescently labeled PS (diameter 2.5 μm, excitable at 630 nm and
emitting in the range of 645−680 nm), obtained from life
technologies, USA) and unlabeled PS (3 μm, synthesis by dispersion
polymerization method in our lab) were used. The vinyl-terminated
polydimethylsiloxane (PDMS), cross-linking agent (HMS-301) and
platinum catalyst were purchased from Gelest Inc. The wettability of
the substrates was measured with a Dataphysics OCA35 goniometer
in the sessile drop configuration (DataPhysics Instruments GmbH,
Germany). The surface tension measurements were obtained by
DataPhysics DCAT11EC tensiometer (PT10, DataPhysics, Ger-
many), with the Wilhelmy plate method. Droplet evaporation was
imaged by an inverted laser scanning confocal microscope (Leica TCS
SP8 with a 20×/0.75 multi-immersion objective, n = 1.45, in the text
referred to as confocal microscope) as well as with an optical
microscope from above (Carl Zeiss Axiotech Vario 100HD, 10×
objective). Deposited patterns and their height profile were imaged by
scanning electron microscopy (low voltage LEO 1530 Gemini,
Germany, and SU8000, Hitachi, Japan). Height profiles were
measured optically with a NanoFocus microscope (μsurface, Nano-
Focus AG, Oberhausen, Germany) via depth profiles of scratches in
solid films. In all experiments, the environmental temperature and
humidity were Ta = 23 ± 2 °C and RH = 47 ± 5%.
Preparation of Oil-Coated Surfaces. Glass slides and silicon

wafers were used as substrates. They were first ultrasonically cleaned
in ethanol, acetone, and isopropanol for 15 min, respectively, and then
treated with oxygen plasma (120 W, Diener Electronic Femto) for 10
min. Substrates with different wettability can be obtained with

different procedures. Oil-coated hydrophobic substrates were
obtained by immediately depositing silicone oil on the substrates
after plasma cleaning. The thickness of silicone oil layer (1−50 μm)
was controlled by adjusting the spin-coating speed of the spin coater.
Then, the coated substrates were kept at room temperature for 12 h.
Silicone groups in the oil will covalently graft to the substrates and
endow the substrates with hydrophobicity (θa ≈ 102 ± 3°, θr ≈ 92 ±
5°). In contrast, by immersing the cleaned substrates in water for 3
hrs after plasma treatment, hydrophilic substrates (θa ≈ 75 ± 3°,θr ≈
40 ± 6°) were obtained (silicone groups will not graft on the
substrate). Then, silicone oil was deposited on top.

Because the thickness of the coated oil film is of the order of 10 μm
and it is in the liquid state, it is difficult to measure the thickness by
conventional profilometry or by optical techniques. Instead, we used a
cross-linkable vinyl-terminated PDMS (same viscosity with the
silicone oil). Our assumption is, when same spin-coating speed was
applied, the thickness of the cross-linked PDMS layer is to be almost
the same as liquid silicone oil film. The vinyl-terminated PDMS was
mixed with cross-linking agents (4 wt %) and platinum catalyst (0.005
wt %) and then spin-coated on the substrates. The coated PDMS
layer was cured by placing the substrates in an oven (60 °C) for 8 h.
Applying a scratch in the cross-linked PDMS layer, we measured its
depth profile with NanoFocus and thus obtained the thickness.

Observation of Particle Transport during the Droplet
Evaporation Process. The confocal microscope with a 20×/0.75
multi-immersion objective was used in these experiments. Fluo-
rescently labeled PS particles (d = 2.5 μm, 0.015 vol %, excited at 561
nm, negatively charged in water) were used as tracers, and the silicone
oil was fluorescently labeled with coumarin 6 (0.05 mg/mL, excitation
wavelength 458−488 nm). Microliter-sized droplets of the dispersion
(0.05 μL) were deposited on the oil-coated substrate. The motions of
particles during evaporation were recorded. Refractive indices:
silicone oil 1.422; water: 1.33; glass slides: 1.508.

Figure 1. Droplet evaporation. (a,b) Schematics of the evaporation process and deposition on oil-coated surface (a) and solid surface (b). Blue:
water droplet; yellow: oil phase; blue arrows mark the evaporation. (c) Top-view images (by optical microscope) of a 0.1 μL droplet evaporating on
oil-coated hydrophobic glass surface (oil viscosity: 100 cSt, thickness: 10 μm). The outer, orange dashed semicircle represents the rim of the
droplet base (CLLS). The inner, white dotted semicircle represents the apparent CLLA. The arrows represent the retracting of the corresponding
contact lines. (d) Bottom-view images (by inverted confocal microscope) of a 0.1 μL droplet evaporating on bare glass surface. Scale bars: 100 μm.
(e) Corresponding height profiles of deposits measured by NanoFocus microscopy along the lines marked with dashed, straight lines in (c,d),
respectively.
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■ RESULTS AND DISCUSSION

Morphology of Droplets Deposited on Oil-Coated
Surfaces. When a water droplet is deposited on a silicone oil-
coated surface, the oil spontaneously climbs up around the
water droplet.33 Oil will even wrap over a water droplet if the
surface energy difference between oil, water, and air,
represented by the spreading coefficient Sow(a) = γwa − γwo −
γoa, is positive.

34,35 In our experiment, the water−air, oil−air
and water−oil interfacial tensions are γwa = 72 mN/m, γoa = 20
mN/m, and γwo ≈ 45 mN/m, respectively. Thus, Sow(a) ≈ 7
mN/m, silicone oil will wrap over the droplet. In addition, the
oil film thickness B at the top of droplet can be calculated from
the balance of disjoining pressure from the van der Waals
repulsive force and the capillary force from the curvature of
droplet, B = (AHR/12πγoa)

1/3.36,37 (AH: Hamaker constant, AH
≈ 4 × 10−21 J, R: initial droplet radius). For the droplets with
microliters used in this study, the B was calculated to be about
10 nm, which is too thin to be directly experimental observed
or to have a significant influence on the evaporation.
Therefore, for analytical purposes, we assume the top surface
of the droplet is bared and only surrounded by an oil wetting
ridge.38 In our experiments, we observed an apparent liquid−
liquid−air contact line (CLLA) on the droplet (Figure 1).
When a water droplet is deposited on an oil-coated surface,

the question arises whether or not there is still an oil film
underneath this droplet. The stability of a possible oil film
underneath this droplet is affected by the wettability of the
surface. It has been pointed out28,39 that this is determined by
the interfacial tensions of oil, colloidal liquid, and solid
substrate, which is represented by the spreading constant Sow(s)
= γsw − γow − γos = −γow(cos θo + 1). Here, θo is the contact
angle of the water droplet on the substrate when submerged in
a silicone oil-filled bath. On the oil-coated hydrophobic

surfaces, we find θo = 177 ± 3° ≈ 180° (Figure S1a), and
therefore Sow(s) = 0, an oil film is sandwiched between the
droplet and the substrate. An interference pattern40 originating
from the solid−oil and oil−water interfaces, illustrates the
existence of a thin oil film underneath the deposited droplet
(Figure S1c). In contrast, on the hydrophilic substrates, θo =
135 ± 5° (Figure S1b), Sow(s) ≈ −14 mN/m, the oil film is
excluded from the contact area between droplet and substrate.
We observe no interference pattern within the resolution of the
microscope (Figure S1d), which demonstrates that water is in
direct contact with the hydrophilic substrate.

Suppression of the Coffee Ring Effect on the Oil-
Coated Surface. To understand droplet evaporation, the flow
of dispersed particles in the droplets, and the shape of
deposition formed on the oil-coated surface, we dispersed PS
colloids (diameter 3.0 μm, 0.1 vol %) in water.
The experimental situation of droplet evaporation on

substrates with or without oil films is schematically shown in
Figure 1a,b. When a droplet of particle dispersion is deposited
on an oil-coated substrate, the oil phase climbs up the droplet.
Two apparent contact lines show on the droplet surface:
liquid−liquid−air contact line (CLLA) and liquid−liquid−
solid contact line (CLLS). This oil ridge hinders the
evaporation from the bottom edge (CLLS). Because water
loss only occurs at the uncovered top of the droplet, an upward
flow generates inside of the evaporating droplet. This alters the
particle dispersion during droplet evaporation, yielding a
homogenous pattern left on the substrate, which will be
discussed later (Figure 1a).
The evolution in time for a 0.1 μL droplet of colloidal

suspension evaporating from an oil-coated hydrophobic surface
is shown in Figure 1c. Two distinct particle-enriched contact
lines, the apparent CLLA (inner, white dotted line) and the

Figure 2. Influence of parameters on the deposited patterns of droplets with PS particle dispersion (3 μm) on oil-coated surfaces. (a) “Phase”
diagram of the suppression of coffee ring effect on oil-coated hydrophobic surface, depending on the thickness of oil film and the viscosity of oil.
Solid squares (■): concentrated deposition; crosses (×): coffee ring deposition; dotted black line: critical thickness of the oil layer on the surface
for suppression of coffee-ring effect. (b,c) Deposition diameter changes with the initial volume of the colloidal droplet, while in (b) oil viscosity and
in (c) oil layer thickness varies. (d) Deposition diameter as a function of initial colloidal concentration of droplets.
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CLLS at the droplet base (outer, orange dashed line), can be
observed. Particles tend to transport to the upper interface and
enrich there rather than at the bottom edge. This phenomenon
indicates the evaporation at the droplet edge is hindered.
Particles are more likely to transport to the CLLA, indicating a
higher evaporation flux shown near the CLLA contact line
(details in Supporting Information).24,41 After complete
evaporation of the droplet, a uniform deposition is formed
on the oil-coated hydrophobic surface.
For comparison, on bare glass surfaces, particles in the

droplet continuously transport to the pinning three phase
liquid−air−solid contact line (CLAS) because of the outward
capillary flow inside the droplet (Figure 1b,d).1,3 A typical
coffee ring forms. We found that the evaporation time is
significantly prolonged when droplets evaporate on oil-coated
surfaces. It took about 500 s for a 0.1 μL droplet to dry on the
oil-coated hydrophobic substrate, whereas it took only 120 s
on a bare glass substrate. The water loss rate in the evaporation
process is reduced partly due to the decrease of the liquid−air
interface of the droplet and follows the V(t)2/3 relation for the
time of evaporation (eq S7, Figure S2). The corresponding
height profiles of the two patterns in Figure 1e confirm that the
oil-coated layer efficiently suppresses the coffee-ring effect,
which is independent of the substrate’s wetting property
(Figure S3).

Influence of Viscosity, Film Thickness, Volume, and
Concentration on Depositions. We analyzed the influence
of oil viscosity (5 to 105 cSt), film thickness (1−20 μm, before
droplet deposition on the surface), droplet size (0.03−2 μL),
and concentration of colloids (0.015−1.5 vol %) as well as
substrate wettability on the final structure of depositions
(Figure 2).
By depositing 0.2 μL of droplets on the oil-coated

hydrophobic surface, the “phase” diagram of the efficiency
for suppression of the coffee ring is explored (Figure 2a). The
coffee-ring effect is suppressed on the oil-coated hydrophobic
surface when the initial thickness of the oil is bigger than 1 μm,
irrespective of the oil viscosity. On oil-coated hydrophilic
surfaces (Figure S4), the coffee-ring effect could only be
suppressed when the initial oil thickness was bigger than 3 μm.
Changing the viscosity there is a slight difference, as the oil
thickness can be decreased to 1 μm for oils with viscosity
>1000 cSt.
Within the “No Coffee Ring” region, the diameter of the

deposition increased with the increase of the initial droplet
volume (Figure 2b). All of the data of the diameter of
deposition on oil-coated substrate with different oil viscosities
sit on two distinct curves determined only by the wettability of
the substrates. The above hydrophilic curve illustrates that
larger patterns are formed on oil-coated hydrophilic surfaces. A
similar relationship (with same curve corresponding to that in

Figure 3. Controlled evaporation of colloidal droplets on oil-coated surfaces. (a,b) Snapshots of colloidal droplets (PS, fluorescent, 2.5 μm)
evaporating on oil-coated hydrophobic (a) and hydrophilic (b) surfaces, respectively. The previous and actual profile of the droplets is marked by
dotted lines. Parallel arrows: the retracting of the droplet edge (CLLS); tilted arrows: the declining of the droplet profile; upward arrows: upward
flow generated inside droplet. Color scheme: orange: fluorescent PS particles; yellow: oil phase; cyan: reflection from interfaces. Scale bars: 50 μm.
(c,d) Evaporation kinematics of droplets, characterized by deposition base radius (R) and instant contact angle (θ) on the oil-coated hydrophobic
(c) and hydrophilic (d) surfaces. The blue and white background indicate regions of the droplet base line retracting and pinning, respectively. (e)
Schematic of the droplet evaporation on the oil-coated surface. Retracting and pinning of the droplet base line is illustrated.
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Figure 2b) was also observed when the oil layer thickness was
changed (Figure 2c). The size of the deposition is determined
by the initial size of droplet and wettability of the substrate,
while the oil properties (viscosity or thickness) show negligible
effects.
The concentration of colloidal suspension was studied

(Figure 2d). Droplets (0.2 μL) were deposited on oil-coated
surfaces, with the varying initial colloid concentrations from
0.015 to 1.5 vol %. On the oil-coated hydrophobic substrate,
the final deposition increased with the increase of the colloids
concentration and showed concentric patterns (Figure S5a).
On the contrary, on hydrophilic substrates, the size of the dried
depositions was independent of the initial colloid concen-
trations and identical with the initial droplet base radius before
evaporation occurred. The depositions show larger features
(Figure S5b) and indicate that particles deposited on the
surface did not move with the retracting droplet edge during
droplet evaporation. The deposition difference between the
hydrophobic and hydrophilic oil-coated surfaces implies
different particle deposition behavior during the evaporation
process.
Time Evolution of Droplet Evaporation and Particles

Distribution. To gain deeper insight into the flow pattern
during evaporation, fluorescent PS particles (diameter 2.5 μm)
were added as tracers, and we image the process by a confocal
microscope. The dispersion (0.05 μL, 0.015 vol %) was
deposited on the oil-coated surfaces and observed by the
confocal microscope (Figure 3a,b). On an oil-coated hydro-
phobic surface (Figure 3a and Video S1), the bottom edge of
the droplet continuously retracts with time during the initial
evaporation process (<280 s). No particles were attached to
the substrate. During this period, particles are driven to the
upper water−air interface and water−oil interface. Through
tracing the trajectory of the particle motions inside the
evaporating droplet (Figure S6), an upward flow pattern was
observed. With evaporation progressing, more and more
particles enrich at the water−air interface and temporarily
settle at the CLLA. One thing to note, particles enriched at the
CLLA might escape and travel downward to the bottom of the
droplet along the water-oil interface. When these particles
arrived at the bottom droplet edge, they moved inward with
the retracting droplet edge. At the last evaporation stage (280−
390 s), most of the colloidal particles at the interface are
packed into a viscous colloidal skin42 and the edge of the
droplet began to pin on the substrate. With the continuous loss
of water during droplet evaporation, the fully packed skin sinks
until it finally deposits on the substrate. A uniform,
concentrated pattern ultimately forms on the surface.
The deposition behavior of dispersed particles on oil-coated

hydrophilic surfaces was similar (Figure 3b). As the oil-solid
interface could be easily replaced by the water−solid
interface,33 the deposition of particles happened easily and
early, which is shown in the image taken at t = 120 s in Figure
3b. Images taken from 120 to 320 s show that some particles
attach to the substrate during the depinning of the droplet
edge. In this period, dispersed particles in the droplet transport
to the upper interfaces. During the last evaporation stage (from
320 to 370 s), the edge of the droplet completely pinned on
the surface, after which a large and flat deposition is obtained.
This evaporation evolution process was confirmed by the 3D
reconstruction of particles motion during droplet evaporation
(Figure S7).

The evolution with time of the deposition size (r) and the
instant contact angle (θ, at the droplet edge, observed by
confocal microscope in xzt mode) is given in Figure 3c,d
(corresponding to Figure 3a,b). On oil-coated hydrophobic
surfaces (Figure 3c), the deposition radius of droplets with
colloidal suspension decreases with time, while the droplet
contact angle changes slowly (from 100 to 280 s). This reflects
the continuous receding of the droplet edge. Once the contact
line was pinned on the substrate, the contact angle started to
decrease after t = 280 s. On the contrary, the deposition radius
did not change on the oil-coated hydrophilic surface (Figure
3d), indicating the colloids being attached to the substrate at
an early stage of the evaporation (t = 120 s). The instant
contact angle at the droplet edge was smaller than that on oil-
coated hydrophobic surface, and the contact angle continu-
ously decreased in the whole evaporation process.
In conclusion, on oil-coated surfaces drops of dispersions

evaporate in two stages (Figure 3e): first, the droplet base line
retracts freely. Because water can only evaporate in the central
area, which is above the CLLA, there is a central upward flow
in the droplet. This flow carries particles to the top. Particles
tend to attach at the upper water surface and form a
monolayer. In the second stage, the droplet edge is pinned
because the upper surface of the droplet has been fully packed
with colloids and is hardly to retract anymore. As the volume
of the drops keeps shrinking, the layer of particles attached to
the water surface is deposited on the solid surface.

Fabrication of Asymmetric Supraparticles. By evapo-
rating droplets of colloidal suspensions on oil-coated hydro-
phobic surfaces, colloidal supraparticles with various sizes can
be obtained. Because a stable thin oil film is formed between
the drying droplets and the hydrophobic substrate (Figure S1),
the self-assembled supraparticles can be easily rinsed off the
substrates by solvents (Figure 4a).
Supraparticles of a range of materials were obtained by

depositing droplet arrays. The size of the final supraparticles is
controlled by the initial volume and concentration of droplets.
Subsequently, the obtained supraparticles were collected by
immersing the loaded surface in a hexane solution. As
examples, the SEM images in Figure 4b−d show supraparticles
obtained from droplets with a dispersion of PS (3 μm, 0.1 vol
%), TiO2 (25 nm, 0.1 vol %), and carbon diamond (20 nm, 0.1
vol %), respectively. The shape of the supraparticles varied
from a disc-like to a pill-like, to a nearly spherical shape. The
different shapes of these supraparticles indicate that dispersed
microparticles show an earlier pinning to the substrate as
compared to nanoparticles, as a larger jamming area at the
liquid−air interface before it pins on the substrate. This is
further confirmed by depositing nanoscale PS particle
dispersion (68 and 486 nm; 0.1 vol %) on the substrate; the
dried supraparticles present pill-like shapes (Figure S8). By
applying this approach, we can fabricate supraparticles with
defined sizes and shapes, which shows no limitation of
materials or sizes of the dispersed particles. For instance, pill-
like supraparticles are obtained by evaporating TiO2, ZnO, and
SiO2 dispersion solutions as shown in Figure 4e−g.

■ CONCLUSIONS
In this paper, we demonstrate that oil-coated surfaces can be
applied to regulate the evaporation of droplets to suppress the
coffee-ring effect. With laser scanning confocal microscopy and
optical microscopy, we were able to elucidate the mechanism
of evaporation. When an aqueous dispersion droplet
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evaporates from solid-supported oil film, the flow in the central
region is directed upward. Evaporation at the periphery is
hindered by a self-generated oil “wetting ridge” at the droplet
edge. Thus, the flow pattern is reversed as compared to
evaporation from solid surfaces; on solid surfaces, flow is
directed outward toward the rim. The dispersed colloidal
particles are driven to the upper part of the droplet and
captured by the declining liquid−air interface, resulting the
particles deposit at the final stage of evaporation. Uniform
deposition patterns were realized in the study by varying oil
parameters as thickness of film and viscosity as well as using
hydrophilic and hydrophobic substrates. This simple approach
can be applied to control the evaporation process of droplets to
produce asymmetric supraparticles from micro- to millimeter
sizes.
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