
Geosci. Model Dev., 13, 1925–1943, 2020
https://doi.org/10.5194/gmd-13-1925-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hindcasting and forecasting of regional methane from coal mine
emissions in the Upper Silesian Coal Basin using the online nested
global regional chemistry–climate model MECO(n) (MESSy v2.53)
Anna-Leah Nickl1, Mariano Mertens1, Anke Roiger1, Andreas Fix1, Axel Amediek1, Alina Fiehn1, Christoph Gerbig2,
Michal Galkowski2,3, Astrid Kerkweg4,a, Theresa Klausner1, Maximilian Eckl1, and Patrick Jöckel1
1Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
2Max Planck Institute for Biogeochemistry, Jena, Germany
3AGH University of Science and Technology, Krakow, Poland
4Institute of Geosciences and Meteorology, University of Bonn, Bonn, Germany
anow at: Research Center Jülich, Institute of Energy and Climate Research, Jülich, Germany

Correspondence: Anna-Leah Nickl (anna-leah.nickl@dlr.de)

Received: 25 October 2019 – Discussion started: 30 October 2019
Revised: 26 February 2020 – Accepted: 15 March 2020 – Published: 16 April 2020

Abstract. Methane is the second most important greenhouse
gas in terms of anthropogenic radiative forcing. Since pre-
industrial times, the globally averaged dry mole fraction of
methane in the atmosphere has increased considerably. Emis-
sions from coal mining are one of the primary anthropogenic
methane sources. However, our knowledge about different
sources and sinks of methane is still subject to great un-
certainties. Comprehensive measurement campaigns and re-
liable chemistry–climate models, are required to fully under-
stand the global methane budget and to further develop fu-
ture climate mitigation strategies. The CoMet 1.0 campaign
(May to June 2018) combined airborne in situ, as well as
passive and active remote sensing measurements to quantify
the emissions from coal mining in the Upper Silesian Coal
Basin (USCB, Poland). Roughly 502 kt of methane is emit-
ted from the ventilation shafts per year. In order to help with
the flight planning during the campaigns, we performed 6 d
forecasts using the online coupled, three-time nested global
and regional chemistry–climate model MECO(n). We ap-
plied three-nested COSMO/MESSy instances going down to
a spatial resolution of 2.8 km over the USCB. The nested
global–regional model system allows for the separation of
local emission contributions from fluctuations in the back-
ground methane. Here, we introduce the forecast set-up and
assess the impact of the model’s spatial resolution on the sim-
ulation of methane plumes from the ventilation shafts. Un-

certainties in simulated methane mixing ratios are estimated
by comparing different airborne measurements to the simu-
lations. Results show that MECO(3) is able to simulate the
observed methane plumes and the large-scale patterns (in-
cluding vertically integrated values) reasonably well. Fur-
thermore, we obtain reasonable forecast results up to forecast
day four.

1 Introduction

In terms of radiative forcing methane is the second most
important anthropogenically altered greenhouse gas (Myhre
et al., 2013). The globally averaged dry mole fraction of
methane has increased rapidly since 2007 (Nisbet et al.,
2014, 2016), and its growth even accelerated in 2014 (Nis-
bet et al., 2019; Fletcher and Schaefer, 2019) when the an-
nual rise was 12.7± 0.5 ppb (Nisbet et al., 2019). The rea-
son for the rapid methane growth in the atmosphere is cur-
rently under debate and discussed in several studies (Schae-
fer et al., 2016; Nisbet et al., 2016, 2019; Saunois et al., 2017;
Thompson et al., 2018). The largest increase in methane is
observed in the tropics and midlatitudes (Nisbet et al., 2019).
Differences in isotopic methane source signatures (δ13C and
δD) can further help to constrain different source contribu-
tions (e.g. of thermogenic or biogenic origin) to the global
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methane budget. A depletion in global δ13C indicates a shift
from fossil fuel emissions towards more microbial sources
(Schaefer et al., 2016; Nisbet et al., 2016, 2019). Nisbet et al.
(2016) suggest that natural emissions from wetlands as a re-
sult of positive climate feedback are the primary source of
the methane enhancement. In contrast, Schaefer et al. (2016)
propose that the increase in atmospheric methane since 2007
mainly originates from enhanced agricultural activity. Addi-
tionally, a change in the atmospheric oxidation capacity, i.e.
a reduction of the OH sink, could play a role and may ex-
plain the shift in isotopic signature (Rigby et al., 2017). In-
creasing fossil fuel emissions could also explain the rise in
atmospheric methane (Thompson et al., 2018). Shale gas is
more depleted in δ13C relative to conventional gas and could
be associated with the observed global depletion in δ13C,
too (Howarth, 2019). And Schwietzke et al. (2016) pointed
out that fossil fuel emissions are 20 % to 60 % higher than
previously thought. However, we still do not fully under-
stand all factors that affect the sources and sinks of methane
(Saunois et al., 2016). Furthermore, a reduction of anthro-
pogenic emissions is attractive and inexpensive, and due
to its relatively short lifetime (∼ 9 years), it could rapidly
cause a change in the global methane budget (Dlugokencky
et al., 2011). Comprehensive measurements and the use of
chemistry–climate models can therefore help to improve fur-
ther climate change projections and to develop potential cli-
mate change mitigation strategies.

The AIRSPACE project (Aircraft Remote Sensing of
Greenhouse Gases with combined Passive and Active instru-
ments) aims for a better understanding of the sources and
sinks of the two most important anthropogenic greenhouse
gases: carbon dioxide and methane. Several measurement
campaigns within the project, e.g. CoMet (Carbon Diox-
ide and Methane Mission), are carried out to increase the
number of airborne and ground-based (Luther et al., 2019)
measurements of CO2 and CH4. CoMet 0.5 in August 2017
combined ground-based in situ and passive remote sensing
measurements in the Upper Silesian Coal Basin (USCB) in
Poland, where large amounts of methane are emitted due
to hard coal mining (roughly 502 kt CH4 a−1; CoMet inter-
nal CH4 and CO2 emissions over Silesia, version 2 (2018-
11), further denoted as CoMet ED v2). CoMet 1.0, which
took place in May and June 2018, additionally included air-
borne in situ as well as passive and active remote sensing
measurements in Upper Silesia and central Europe. In order
to localize the methane plumes and to obtain the best mea-
surement strategies for the campaigns, it is helpful to have
reliable forecasts of the methane distribution in the atmo-
sphere. We performed model-based forecasts over the en-
tire period of the campaigns using a coupled global and re-
gional chemistry–climate model. While local features are of-
ten not resolved in global climate models, it is important
for the CoMet forecasts to resolve the local methane emis-
sions from the coal mining ventilation shafts in the USCB.
Therefore, a smaller-scale atmospheric chemistry model is

required, which is provided by the online coupled model
system “MESSyfied ECHAM and COSMO models nested
n times” (MECO(n); Kerkweg and Jöckel, 2012b; Mertens
et al., 2016). To increase the resolution of our forecasts, we
apply a nesting approach with three simultaneously running
COSMO/MESSy instances down to a spatial resolution of
2.8 km. Section 2.2 presents the model set-up and the im-
plementation of two different methane tracers. We describe
the details of the new forecast system (Sect. 2.3) and dis-
cuss its evaluation. We evaluate the model performance by
comparing the methane mixing ratios simulated by the two
finest-resolved COSMO/MESSy instances with airborne ob-
servational data. In Sect. 3 we show the comparisons with
data that were sampled using three different measuring meth-
ods during the CoMet 1.0 campaign. Moreover, we assess the
forecast performance firstly by internal comparison of the in-
dividual forecast days with the analysis simulation of CoMet
1.0 (Sect. 4.1) and secondly by comparison of the forecast
results with the observations of CoMet 1.0 (Sect. 4.2).

2 Model and forecast system

2.1 Model description

The numerical global chemistry–climate model
ECHAM/MESSy (EMAC; Jöckel et al., 2010) consists
of the Modular Earth Submodel System (MESSy) coupled
to the general circulation model ECHAM5 (Roeckner et al.,
2006). EMAC comprises various submodels that describe
different tropospheric and middle atmospheric processes. It
is operated with a 90-layer vertical resolution up to about
80 km of altitude, a T42 spectral resolution (T42L90MA)
and a time step length of 720 s. For our purpose, EMAC is
nudged by Newtonian relaxation of temperature, vorticity,
divergence and the logarithm of surface pressure towards
the European Centre for Medium-Range Weather Forecasts
(ECMWF) operational forecast or analysis data. Sea surface
temperature (SST) and sea ice coverage (SIC), which are
also derived from the ECMWF data sets, are prescribed as
boundary conditions. The EMAC model is used as a global
driver model for the coarsest COSMO/MESSy instance.

The model COSMO/MESSy consists of the Modular Earth
Submodel System (MESSy; Jöckel et al., 2005) connected
to the regional weather prediction and climate model of the
Consortium for Small Scale Modelling (COSMO-CLM, fur-
ther denoted as COSMO; Rockel et al., 2008). The COSMO-
CLM is the community model of the German regional cli-
mate research community jointly further developed by the
CLM community. Details on how the MESSy infrastructure
is connected to the COSMO model are given in the first
part of four MECO(n) publications (Kerkweg and Jöckel,
2012a). Several COSMO/MESSy instances can be nested
online into each other in order to reach a regional refine-
ment. For chemistry–climate applications the exchange be-
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tween the driving model and the respective COSMO/MESSy
instances at its boundaries must occur with high frequency.
This is important to achieve consistency between the mete-
orological situation and the tracer distribution. Furthermore,
the chemical processes should be as consistent as possible.
In MECO(n) the model instances are coupled online to the
respective coarser COSMO/MESSy instance. The coarsest
COSMO/MESSy instance is then online coupled to EMAC.
In contrast to the offline coupling, the boundary and ini-
tial conditions are provided by direct exchange via com-
puter memory using the Multi-Model-Driver (MMD) library.
This coupling technique is described in detail in Part 2 of
the MECO(n) documentation series (Kerkweg and Jöckel,
2012b). The chemical processes are described in submodels,
which are part of MESSy. These submodels do not depend
on spatial resolution and can be used similarly in EMAC
and all COSMO/MESSy instances. A detailed evaluation of
MECO(n) with respect to tropospheric chemistry is given in
the fourth part of the MECO(n) publication series (Mertens
et al., 2016). In the present study we use MECO(3) based on
MESSy version 2.53.

The MESSy submodel S4D (Jöckel et al., 2010) online
samples the model results along a specific track of a mov-
ing object, such as airplanes or ships. The simulation data
are horizontally (and optionally also vertically) interpolated
to the track and sampled at every time step of the model.
This guarantees the highest possible output frequency (each
model time step) of respective vertical curtains along the
track. The submodel SCOUT (Jöckel et al., 2010) online
samples the model results as a vertical column at a fixed hor-
izontal position. The high-frequency model output is useful
for comparison with stationary observations, such as ground-
based spectroscopy or lidar measurements.

2.2 Model set-up

To resolve the local emissions from the ventilation shafts in
the USCB, we operate MECO(n) with three nested instances,
MECO(3); see Fig. 1. The first COSMO/MESSy instance
(hereafter called CM50) covers the European area and is op-
erated at a resolution of 0.44◦ (∼ 50 km) and with a time step
length of 240 s. CM50 is online coupled to EMAC, result-
ing in a direct exchange of boundary conditions between the
global model and the regional COSMO/MESSy model.

The second COSMO/MESSy instance (hereafter called
CM7) covers the area over central Europe and is operated
with a resolution of 0.0625◦ (∼ 7 km) and a time step length
of 60 s. The smallest instance (hereafter called CM2.8) cov-
ers the Upper Silesia in Poland and thus also the target re-
gion. CM2.8 has a resolution of 0.025◦ (∼ 2.8 km) and a time
step length of 30 s. The individual finer COSMO/MESSy in-
stances (CM7 and CM2.8) are online driven from the respec-
tive coarser model domain (CM50 and CM7). In doing so,
the respective coarser domain provides the boundary data for
the smaller domain at each of its model time steps (EMAC:

Figure 1. Overview of all three COSMO/MESSy domains over Eu-
rope (CM50), over central Europe (CM7) and over the USCB in
Poland (CM2.8), as well as the corresponding temporal and spatial
resolution. The black arrows indicate the data exchange between the
different models. The driving model EMAC is nudged towards di-
vergency, vorticity, temperature and the logarithm of surface pres-
sure from the ECMWF. SST and SIC are prescribed as boundary
conditions.

Figure 2. The illustration shows the initial and boundary data
exchange between EMAC and the different COSMO/MESSy in-
stances. The blue arrows symbolize the data exchange between the
different model instances. B stands for boundary data and I for ini-
tial data. The red circles visualize the specific time steps of data
exchange.

720 s→ CM50: 240 s→ CM7: 60 s→ CM2.8: 30 s). Fig-
ure 2 shows an overview of the initial and boundary data
exchange between the different domains. CM50 and CM7
are operated with 40 vertical layers, and the smallest do-
main CM2.8 is operated with 50 vertical layers that cover
the atmosphere from the surface up to an altitude of 22 km.
A sponge zone begins at 11 km, which reaches the model top
and nudges the model prognostic variables with increasing
weights towards the driving model.
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Figure 3. Illustration of the submodels which are used for the differ-
ent methane tracers. CH4_FX tracer (left side): methane emission
data and the oxidation reaction partners OH, O1D and Cl are read
from the NetCDF files and transformed to the computational grid
by the submodel IMPORT_GRID. OFFEMIS converts the emission
fluxes into tracer tendencies, and the CH4 submodel simulates the
chemical loss of methane using the predefined fields of the oxida-
tion partners and the calculated photolysis rate from the submodel
JVAL. PCH4 (right side): the submodel TREXP is used for the point
source emissions and tracer definition.

2.2.1 Methane tracers

CoMet aims to quantify the methane emissions in the USCB
region, which actually arise from coal mining. In order to
separate these emissions within our model, we define two
different methane tracers. One tracer takes into account all
methane emission fluxes (hereafter called CH4_FX) and in-
cludes the background methane, which is advected into the
model domain. The second tracer (hereafter called PCH4)
only considers the point source emissions of the ventilation
shafts. In this way, we are able to trace back the methane en-
hancements of the first tracer CH4_FX (equivalent to what
has been measured) to the coal mine emissions. Figure 3
shows an overview of both tracers, the involved submod-
els and the corresponding emission inventories. We initial-
ize these two independent tracers for EMAC and for all three
COSMO/MESSy instances equally. The initial conditions for
the forecast simulations are derived from a continuous anal-
ysis simulation, which is described in detail in Sect. 2.3.

CH4 point sources (PCH4)

The PCH4 tracer considers only point source emissions that
are emitted by the ventilation shafts of the various coal mines
in the USCB. In Fig. 4 the entire territory (49.90–50.40◦ N
latitude and 18.30◦–19.40◦ E longitude), together with the
location of the ventilation shafts, is shown. To prescribe the
emissions coming from the different shafts, we use CoMet
ED v1, an inventory mainly based on the European Pollu-
tant Release and Transfer Register (E-PRTR, 2014) but also
on data from Wyzszy Urzad Gorniczy (2014). Further details
on the names and exact positions of the different mines can

Figure 4. The map shows the locations and the emissions of
methane in tons per year of the ventilation shafts in the USCB
(CoMet ED v1). All ventilation shafts are gathered in the south-west
of Poland close to the polish city Katowice and the Czech border.

be found in the Supplement. The total point source methane
emissions in this area are estimated to be 465 kt a−1 (CoMet
ED v1 inventory). Emissions of single coal mines are split
equally between the corresponding ventilation shafts. For the
definition of point sources, we apply the MESSy submodel
TREXP that is described in detail by Jöckel et al. (2010).

Gridded methane emissions (CH4_FX)

The second tracer is called CH4_FX and includes all
methane emission fluxes, anthropogenic and natural. We
use an inventory which consists of two different parts, both
monthly averaged: the year 2012 of the Swiss Federal Labo-
ratories for Materials Science and Technology (EMPA) in-
ventory (Frank, 2018) with a 1.0◦× 1.0◦ grid resolution
and the EDGAR v4.2FT2010 (2017) inventory with a finer
grid resolution of 0.1◦× 0.1◦. All anthropogenic (includ-
ing rice cultivation) emissions are used from the EDGAR
v4.2FT2010. Natural emissions and emissions caused by
biomass burning are used from the EMPA inventory. The
emission data are imported and transformed to the compu-
tational grid (IMPORT_GRID; Kerkweg and Jöckel, 2015).
The emission fluxes are then converted into tendencies of
the tracer CH4_FX (OFFEMIS; Kerkweg and Jöckel, 2012b,
therein described as OFFLEM). Processes that are related
to the methane chemistry in the model are described in the
MESSy submodel CH4 (Frank, 2018). The submodel sim-
ulates the chemical loss of methane including the depletion
by photolysis rate calculated by the submodel JVAL (Sander
et al., 2014). The CH4 submodel uses predefined fields of the
oxidation reaction partners OH, O1D and Cl which, for our
set-up, are derived as monthly averages (2007–2016) from
a previous interactive chemistry simulation and read by IM-
PORT_GRID.
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2.3 The forecast system

In order to achieve the best initial conditions of PCH4 and
CH4_FX, the daily forecast simulations are branched from a
continuous analysis simulation, which is essentially a hind-
cast simulation until the start of the forecast day. In the anal-
ysis simulation EMAC is nudged by Newtonian relaxation
of temperature, vorticity, divergence and the logarithm of
surface pressure towards the 6-hourly ECMWF operational
analysis data. SST and SIC, derived from the same data set,
are prescribed as boundary conditions for EMAC. The initial
conditions of CH4_FX are derived as a monthly climatolog-
ical average (2007–2016) of the simulation SC1SD-base-01,
which is similar to the RC1SD-base-10 simulation (described
in detail by Jöckel et al., 2016). PCH4 is initialized with zero.
The starting date of the analysis simulations is 1 April 2018,
which results in a spin-up time of 45 d. Nudging is applied
in every model time step. The nudging fields (6-hourly data)
and the prescribed SST and SIC (12-hourly data) are linearly
interpolated in time. For this interpolation in time, starting
and continuing the analysis simulation requires two nudging
time steps ahead of the simulated time. An analysis simu-
lation which should start at 00:00 UTC hence requires the
nudging data of the time steps 06:00 and 12:00 UTC. Once
the respective time period is simulated and the correspond-
ing restart file is written, a new forecast simulation is trig-
gered. The forecast branches as a restart from the analy-
sis simulation and simulates a time period of 6 d by us-
ing the 6-hourly ECMWF operational forecast data for the
EMAC nudging. PCH4 and CH4_FX are automatically ini-
tialized from the restart files. Throughout this process the
analysis simulation continues. The forecast system is visu-
alized schematically in Fig. 5. As soon as the preprocessed
nudging files become available, the analysis simulation runs
for about 50 min. Each forecast simulation takes about 8 h,
and the post-processing takes another 1.5 to 2 h. The 8 h are
for 144 message-passing interface (MPI) tasks on an Intel
Xeon E5-2680v3-based Linux cluster (six nodes, each with
12 dual cores), whereby 6, 18, 56 and 64 tasks were used
for the model instances EMAC CM50, CM7 and CM2.8, re-
spectively. In our example, a forecast that simulates a time
period starting at forecast day one at 00:00 UTC is readily
post-processed on forecast day two at around 04:30 UTC (af-
ter approximately 28.5 h). Throughout both campaigns, fore-
casts were delivered every 12 h and made available online
on a web page. In order to guarantee a continuous and un-
interrupted supply of forecasts, we run the simulations alter-
nately on two independent HPC (high-performance comput-
ing) clusters. An example of a forecast web product, which
shows the forecast starting on 7 June 2019 at 00:00 UTC,
can be found here: https://doi.org/10.5281/zenodo.3518926
(Jöckel et al., 2019). The post-processing includes the ver-
tical integration of PCH4 and CH4_FX into a total-column
dry-air average mixing ratio, called XPCH4 and XCH4 for

PCH4 and CH4_FX, respectively. It is calculated as follows:

XCH4 =

∑(
χCH4 ·mdry

)∑
mdry

, (1)

where χCH4 is the methane mixing ratio, mdry stands for the
mass of dry air in a grid box and summation is carried out
over all vertical levels. Figure 6 shows the design of XPCH4
and XCH4 which appeared on the forecast website. It is
an example of a snapshot during CoMet 1.0 simulated with
CM2.8.

3 Evaluation of analysis simulation

3.1 Observational data

During CoMet 1.0, methane was measured by active remote
sensing. The instrument is an integrated-path differential ab-
sorption (IPDA) lidar called CHARM-F (Amediek et al.,
2017), which was installed on board the German Research
Aircraft HALO (High Altitude and LOng Range). CHARM-
F was operated by the German Aerospace Center (DLR) in
Oberpfaffenhofen and measured the weighted atmospheric
columns of the methane dry-air mixing ratio from the sur-
face to the flight altitude of the research aircraft. We compare
our model results to the observations of the HALO D-ADLR
flights on 6 and 7 June 2018. For simplicity, both data sets are
hereafter called C1 and C2. See also Table 1, which lists all
flights considered in this study and their abbreviations. Both
data sets have a temporal resolution of 1 s and are already
smoothed horizontally with a box window corresponding to
2 km of flight distance.

Additionally, methane was sampled in situ by cavity ring-
down spectroscopy (CRDS). A JIG (Jena Instrument for
Greenhouse Gases; Filges et al., 2015), which measured
the methane mixing ratio in situ by CRDS, was installed
on board HALO and operated by the Max Plank Institute
for Biogeochemistry in Jena. Our model results are com-
pared to the observations of the HALO flights on 6 and on
7 June 2018. Data sets are abbreviated as J1 or J2 (see Ta-
ble 1). Both data sets have a temporal resolution of 1 s. A
Picarro CRDS G1301-m instrument was installed on board
the DLR research aircraft Cessna 208B (D-FDLR) and op-
erated by the DLR in Oberpfaffenhofen. We compare seven
flight observations to our model. Data sets are named accord-
ingly as P1–P7 (see Table 1) and have a temporal resolution
of 1 s.

Upon completion of CoMet 1.0, we conducted the analy-
sis and forecast simulations again and used the specific ge-
ographical flight-track coordinates (degrees), pressure alti-
tudes (hPa) and time steps (UTC) of all flights for the S4D
submodel. The simulated data were then sampled as track-
following curtains at each model time step, i.e. every 720 s,
240 s, 60 s and 30 s for EMAC, CM50, CM7 and CM2.8, re-
spectively. However, our evaluation in this study only con-
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Figure 5. Chronology of the analysis simulation (dark grey) and the branching of the forecasts (FC, blue). The analysis simulation continues
as soon as the ECMWF operational analysis data (two time steps ahead) are available for nudging. The required nudging time steps are
indicated by the dotted lines in grey and green. A forecast simulation is branched (blue dots) every 12 h from the analysis at 00:00 or 12:00
and simulates a time period of 6 d. The initial conditions are provided by restart files of the analysis simulation.

Table 1. Overview of the abbreviations for all observational methane data sets.

Abbreviation Flight Instrument Type of observation

C1 HALO, 6 June 2018 CHARM-F XCH4
C2 HALO, 7 June 2018 CHARM-F XCH4

J1 HALO, 6 June 2018 JIG (with Picarro CRDS G2401-m) in situ
J2 HALO, 7 June 2018 JIG (with Picarro CRDS G2401-m) in situ

P1 D-FDLR, 29 May 2018 Picarro CRDS G1301-m in situ
P2 D-FDLR, 1 June 2018 Picarro CRDS G1301-m in situ
P3 D-FDLR, 5 June 2018 Picarro CRDS G1301-m in situ
P4 D-FDLR, 6 June 2018, morning Picarro CRDS G1301-m in situ
P5 D-FDLR, 6 June 2018, afternoon Picarro CRDS G1301-m in situ
P6 D-FDLR, 7 June 2018 Picarro CRDS G1301-m in situ
P7 D-FDLR, 11 June 2018 Picarro CRDS G1301-m in situ

siders the two finest COSMO/MESSy instances CM7 and
CM2.8. For the comparisons with the in situ observation, the
curtain is further subsampled onto the flight altitude by lin-
ear interpolation. As the observed data have a finer temporal
resolution than the model output, they are averaged over 60 s
for CM7 and over 30 s for CM2.8. In order to compare our
model results with those of the CHARM-F measurements,
we calculate the dry-air mixing ratio between the surface and
aircraft (in the following referred to as XflCH4) using the
S4D submodel output.

3.2 Comparison with analysis results

As the analysis simulation is nudged towards the ECMWF
operational analysis data, we assume that this simulation re-
produces the observed meteorology best. Thus, in order to
find the best estimate of our model performance, the ob-
servations are compared to the analysis simulation results

first. The model performance is analysed with respect to pat-
tern similarity and amplitude, i.e. root mean square error
(RMSE), standard deviation, correlation coefficient and nor-
malized mean bias error (NMBE):

NMBE=
∑
(χsim−χobs)

n ·χobs
· 100, (2)

where χsim is the simulated methane mixing ratio, χobs
stands for the observed methane mixing ratio and the sum-
mation is over all n time steps. Compared to the observa-
tions, all CH4_FX model results are equally biased towards
lower methane mixing ratios (see Figs. S2–S5 in the Supple-
ment). The systematic bias is due to the lower background
methane in the model. This is likely caused by the initializa-
tion from a monthly climatological average of a period be-
tween 2007 and 2016 (SC1SD-base-01; see Sect. 2.3), when
global methane mixing ratios were lower than in 2018 (Nis-
bet et al., 2019). As OH is initialized from the same simula-
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tion (also as a monthly climatological mean) as methane, the
OH field might also play a role. Yet, due to the short simu-
lation period, this should not have a significant influence in
our MECO(n) simulations. In order to evaluate the anomalies
resulting from coal mine emissions rather than the discrep-
ancies in background methane, we apply a bias correction
to all model results involved in statistical comparisons with
the in situ observations. For this purpose, we define an aver-
age bias of 0.108 µmolmol−1 using the most frequently oc-
curring difference between all D-FDLR in situ observations
and the model results of instance CM2.8. Biases between
CHARM-F and XCH4_FX are lower than the average offset
of 0.108 µmolmol−1, and it is difficult to determine a definite
offset. Integration over a varying number of model levels or
changes of topography, which are not resolved by the model,
could be an explanation for this. The bias correction is there-
fore not applied to the vertically integrated values, which are
compared to CHARM-F observations. The results are pre-
sented in Sect. 3.2.1 (CHARM-F) and Sect. 3.2.2 (D-FDLR
and HALO in situ). In Sect. 3.2.3 we discuss all statistical
results graphically.

3.2.1 Comparison with CHARM-F observations

Figure 7 shows the observed XCH4 values of C1 and C2 as
black lines. Red and blue dots display the simulated XflCH4
of CM7 and CM2.8, respectively, and all methane mixing
ratios are given in micromoles per mole (µmolmol−1). On
both days the observed patterns agree well with the simu-
lated patterns. Peaks in the observed methane mixing ratios
are represented in CM7 and in CM2.8. From a visual point
of view, amplitudes also appear to be similar. Mismatches
can be seen on 6 June at around 09:30 UTC (see Fig. 7a)
when model results are slightly shifted in time. Observed
XCH4 values follow a negative trend until 10:10 UTC, which
is not simulated by the models. On 7 June the observed am-
plitudes are larger than those of the model results. On both
days CM7 and CM2.8 do not differ significantly from each
other. Furthermore, the comparisons reveal a continuous and
constant bias. Simulated XflCH4 values are shifted towards
smaller values compared to C1 and C2. Table 2 lists the root
mean square error (RMSE; µmolmol−1), the NMBE in per-
cent and the correlation coefficient for all comparisons of
the observations with the model results. NMBE is negative
for all cases and ranges from −4.1 % to −5.3 %. NMBE
and RMSE are lower for C1 (0.08 µmolmol−1) than for C2
(0.10 µmolmol−1), which confirms the assumption of higher
mean amplitude similarity (standard deviation) on 6 June
than on 7 June.

3.2.2 Comparison with in situ measurements

Figure 8 shows the HALO in situ measurements of methane
J1 and J2 in black, along with the simulated CH4_FX of
CM7 and CM2.8 in red and blue, respectively. In addition,

atmospheric pressure along the flight track is plotted in hec-
topascals (hPa) and indicates the changes in the flight alti-
tude. The pressure follows a steep up-and-down movement
between 900 and 200 hPa, which is because both flight paths
were chosen to sample the vertical profile of methane in the
atmosphere. The flight routes of J1 and J2 cover the USCB
but also parts which are outside the smallest model domain
(see Fig. 9). Gaps in the simulated CM2.8 mixing ratios mark
the temporal leaving of the smallest area.

Overall, observed and simulated methane mixing ratios
correlate closely with atmospheric pressure. Consequently,
methane correlates negatively with flight altitude. Large-
scale patterns and amplitudes are very similar in both model
instances and in the observations. Table 3 lists the RMSE,
NMBE and the correlation coefficient of J1 and J2 for the
comparison with CM7 and CM2.8. NMBEs have similar val-
ues ranging from −0.29 % to 0.08 %. Although in very good
agreement, the model is not able to simulate the small-scale
fluctuations measured in the background methane at 400 hPa.
Moreover, the model does not resolve the fine structure of
the observations around 200 hPa. This can be seen in Fig. 8a
at 13:20 UTC and in Fig. 8b at 12:00 and 14:30 UTC. As
the mixing ratio at these altitudes is strongly influenced by
the boundary conditions of the global model, we would not
expect the model to be able to reproduce these features. In
contrast, methane variability at lower altitudes is well repre-
sented in CM7 and CM2.8. In general, CM7 and CM2.8 are
in good agreement. The RMSE for J1 is 0.02 µmolmol−1 for
CM7 and CM2.8. For the comparison with J2, the RMSE is
similar with 0.02 µmolmol−1 for CM7 and 0.03 µmolmol−1

for CM2.8.
Here, we discuss the D-FDLR flights P4, P5 and P2.

All other D-FDLR observations and their comparison to the
model results are shown in the Supplement. Figure 10 shows
the comparison of the methane in situ measurements derived
with the Picarro CRDS on board D-FDLR. The results shown
are for the two flights P4 and P5. Both measurement flights
aimed to sample the emissions of all methane sources within
the USCB. The flight routes surround the USCB and follow
a back-and-forth pattern along a horizontal track downwind
of the mines, crossing the methane plume several times at
different heights (see Fig. 11a and b). Figure 10a and b com-
pare the simulated CH4_FX tracer mixing ratios along the
flight tracks to the observations. Pattern similarity is good
for both flights, and background methane shows little vari-
ability. Table 3 lists the respective RMSEs in micromoles per
mole (µmolmol−1), the NMBE in percent and the correla-
tion coefficient for the comparison to both model instances
of P4 and P5. On 6 June in the morning, the NMBE is 1.30 %
for CM7 and 1.88 % for CM2.8. Peak mixing ratios of CM7
and CM2.8 reach values close to or higher than those of the
observations, and around 10:15 UTC CM2.8 mixing ratios
clearly exceed those of the observations. Although generally
in good agreement, CM7 and CM2.8 differ from each other
from 10:00 UTC to 10:30 UTC, when CM2.8 shows larger
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Figure 6. Snapshot of the methane forecasts during CoMet 1.0 simulated with the finest-resolved COSMO/MESSy instance CM2.8. The
total-column dry-air average mixing ratio in micromoles per mole (µmolmol−1) is calculated for PCH4 (a) and CH4_FX (b). The area
encompasses the USCB and shows the evolution of methane plumes in the atmosphere. Note that the colour bar on the left is pseudo-
logarithmic for better visualization.

Table 2. Summary of the results of the statistical analysis of C1 and C2 compared to the simulated XflCH4. Listed are the root mean square
error (RMSE) in micromoles per mole (µmolmol−1), the normalized mean bias error (NMBE) in percent and the correlation coefficient (R)
for the model domains CM7 and CM2.8.

Flight RMSE RMSE NMBE NMBE R R

(CM7) (CM2.8) (CM7) (CM2.8) (CM7) (CM2.8)

C1 0.08 0.08 −4.1 −4.2 0.47 0.47
C2 0.10 0.10 −5.3 −5.3 0.75 0.75

methane peaks than CM7. Regarding the afternoon flight
(P5) model results again represent the observations well in
terms of the time and location of the peaks. At 13:30 UTC the
measured mixing ratios display a sharp increase, which is not
distinctly presented in the model results. These high mixing
ratios were taken very close to a specific coal mine, which
is apparently not resolved well in CM2.8, and even less in
CM7. In general, observed peaks during the afternoon flight
are lower than those of the morning flight. This is also seen
in the model results. Again, simulated methane peaks exceed
the observational peaks but not as significantly, as seen for
P4. The NMBE is consequently lower for P5, with 1.17 %
and 1.18 % for CM7 and CM2.8, respectively.

Figure 10c and d show the comparison between the sim-
ulated PCH4 values along the flight track to P4 and P5. The
black line illustrates the observed CH4 mixing ratios mi-
cromoles per mole (µmolmol−1), and the red and blue dots
show the model results for CM7 and CM2.8, respectively.
As PCH4 only considers the point source emissions without
any background or other methane source emissions, one can
assume that the enhancements seen in the model and in the
measurements originate from the ventilation shafts. Smaller
variations within the background methane are consequently
not present in the model results and stay at a constant level of
zero. To allow for a better comparison with the observations
we added a constant offset of 1.85 µmolmol−1 in both plots.
The simulated PCH4 mixing ratios show a positive correla-

tion with the major observed methane peaks. Although they
have the same amplitudes, all methane elevations are simu-
lated by the model. On 6 June in the morning, CM2.8 values
exceed CM7 values and clearly show a more distinct struc-
ture. In the afternoon this difference is even more remark-
able. CM2.8 is able to simulate the variability more precisely,
whereas CM7 does not resolve the smaller patterns seen in
the observations (e.g. at 14:30 UTC). The result for PCH4
contrasts with the CH4_FX tracer, for which peak emis-
sions exceed the observations. We therefore compared the
point source emissions of CoMet ED v1 to the anthropogenic
emissions in the EDGAR v4.2FT2010 inventory. Whereas
the point source emissions sum up to only 465 kt a−1, the
EDGAR v4.2FT2010 emissions, summed over all corre-
sponding grid cells, are 1594 kt a−1; 96.40 % of these emis-
sions is attributed to the fugitive solid fuels of EDGAR sector
1B1.

Figure 12a shows the comparison of the D-FDLR in situ
observations of P2 on 1 June 2018 to the CH4_FX mix-
ing ratios simulated by CM7 and CM2.8. Again, a system-
atic bias between observations and model results exists. Un-
til 09:00 UTC atmospheric conditions were mostly stable
and D-FDLR flew a back-and-forth pattern at a distance
of 20 km downwind of the south-western cluster of USCB
mines. The very high observed mixing ratios around 08:22,
08:45 and 08:50 UTC result from the only slightly diluted
plumes. Those enhancements (M1 and M2) are barely de-
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Figure 7. Results of the CHARM-F measurements and the S4D submodel sampling, which was vertically integrated to yield XflCH4. XCH4
values of C1 (a) and C2 (b) are displayed in black, and the simulated XflCH4 values of CM7 and CM2.8 are shown as red and blue dots,
respectively. Mixing ratios are shown in micromoles per mole (µmolmol−1). The time axes display the time of the specific flight in UTC.

Figure 8. HALO in situ sampled methane mixing ratios (black lines) of J1 (a) and J2 (b), as well as the S4D submodel output at flight
level for CM7 (red dots) and CM2.8 (blue dots). All mixing ratios are in micromoles per mole (µmolmol−1), and the model results are
bias-corrected. Below the methane mixing ratios, the atmospheric pressure along the flight track is shown in hectopascals (hPa). The time
axis displays the time of the specific flight in UTC.

tectable in the S4D output. The M3 enhancement was sam-
pled further to the north, downwind of the northern USCB
mines. Panel (b) shows the corresponding simulated (CM2.8)
methane profile along a flight-track-following curtain and the
flight altitude in black. The model results in panel (b) show
elevated methane mixing ratios at M1 and M2. The methane
peaks are below the top of the simulated planetary boundary
layer height (PBLH) and below the flight track of P2. Con-
sequently, they are not visible in the S4D results (panel a).
These findings indicate that the simulated planetary bound-
ary layer (PBL) during the morning is too low. In contrast,
the observed methane peaks between 09:10 and 09:35 UTC
(panel a) can be seen in the S4D results. Here, the PBL al-
ready extends towards higher altitudes and the flight track
crosses the simulated methane plume (see panel b). Overall,

CM7 and CM2.8 show smaller methane mixing ratios than
observed.

3.2.3 Taylor diagram

Taylor diagrams combine three statistical metrics to better
compare and interpret different model performances. They
summarize the standard deviation (radial distance from the
origin), correlation coefficient (angle) and centred RMSE
(dashed semicircles) in a single diagram (Taylor, 2001).
Thanks to the normalization of standard deviation and cen-
tred RMSE (NRMSE), metrics become non-dimensional and
different model results can be compared to each other. The
point on the horizontal axis displaying a normalized stan-
dard deviation of 1 outlines the point at which model results
fit the observations perfectly. Figure 13 shows the results of
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Table 3. Summary of the results of the statistical analysis of J1, J2, P4 and P5 compared to the simulated CH4_FX mixing ratios (bias-
corrected). Listed are the root mean square error (RMSE) in micromoles per mole (µmolmol−1), the normalized mean bias error (NMBE)
in percent and the correlation coefficient (R) for the model domains CM7 and CM2.8.

Flight RMSE RMSE NMBE NMBE R R

(CM7) (CM2.8) (CM7) (CM2.8) (CM7) (CM2.8)

J1 0.02 0.02 −0.29 −0.06 0.78 0.70
J2 0.02 0.03 0.08 −0.04 0.88 0.77
P4 0.06 0.07 1.30 1.88 0.77 0.84
P5 0.05 0.05 1.17 1.18 0.76 0.68

Figure 9. D-ADLR flight routes for J1 (a) and J2 (b). The colour bar refers to the atmospheric pressure at flight level.

the statistical analysis of CM7 (circles) and CM2.8 (trian-
gles) compared to the observations (Table 1).

The three data sets differ in measuring technique and in
their geographical extent, duration and daytime of sampling.
This makes it difficult to define an overall model skill. The
meteorological situation, such as wind conditions or convec-
tion, and topographical features may lead to further uncer-
tainties. The comparison to J1 and J2 is the best in the Taylor
diagram. Results are close to the reference point on the hor-
izontal axis (normalized standard deviation 1.0) and correla-
tion coefficients are very high, especially for CM7. The mea-
surements cover larger areas outside the USCB including, for
example, the Czech Republic. Other than for C and P ob-
servations, the horizontal distribution of the methane plumes
only plays a minor role. The JIG samples focus on the ver-
tical gradient of methane in the atmosphere, which is well
represented in the model (Fig. S1 in the Supplement). The
comparisons to C are also reasonably good. The C1 pattern
statistically differs from the observations, which may be due
to a temporal or spatial shift of the plume in the model at the
beginning of 6 June. But normalized standard deviations are
close to 1, and CM7 and CM2.8 agree equally with the obser-
vations. Since CHARM-F measures the total-column aver-
age mixing ratio, mismatches between actual and simulated
PBLH are less apparent. The comparisons to the smaller-
scale P observations assess the model ability to represent
regional-scale features like coal mine emission plumes. As
described in Sect. 3.2.2, the skill also depends on how well

the model actually simulates the PBLH. We can further see
the highest variability between CM2.8 and CM7 for the com-
parisons with P. Depending on the grid size of the model,
the very localized methane enhancements can be either more
diluted or more intensified in the model results. And mix-
ing ratios sampled very close to the ventilation shafts are
often not resolved by the model. Furthermore, high wind
speeds, for example during the sampling of P7 (see the Sup-
plement), lead to a low correlation with MECO(n) and a nor-
malized standard deviation larger than 2. P7 is consequently
not present in the Taylor diagram. Finally, C and J data were
sampled on 6 and 7 June when wind conditions were stable.
Additional data would be necessary in order to compare the
models’ skill on days with less perfect conditions, such as for
P.

4 Evaluation of forecast skill

A good forecast should be able to simulate both the ampli-
tude and pattern variability of the observed methane mixing
ratios in the atmosphere. To identify the temporal evolution
of the forecast skill with each forecast day, we therefore cal-
culate skill scores (after Taylor, 2001) that consider standard
deviation and correlation coefficient. We used the two differ-
ent skill scores

SV =
4(1+R)

(σf+ 1/σf)2(1+R0)
(3)
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Figure 10. D-FDLR in situ sampled CH4 mixing ratios (black lines) of P4 (a, c) and P5 (b, d), as well as the S4D submodel output at flight
altitude for CM7 (red dots) and CM2.8 (blue dots). Panels (a) and (b) show the comparison with the CH4_FX tracer, whereas (c) and (d)
show the comparison with the PCH4 tracer. All mixing ratios are in micromoles per mole (µmolmol−1). CH4_FX is bias-corrected with
0.108 µmolmol−1, and an offset of 1.85 µmolmol−1 is added to PCH4 for a better visualization. The time axis displays the time of the
specific flight in UTC.

and

SC =
4(1+R)4

(σf+ 1/σf)2(1+R0)4
, (4)

which either emphasize the similarity of the amplitudes or
the similarity of the patterns. R is the correlation coefficient
between the forecast and observation, R0 is the maximum at-
tainable correlation coefficient, and σf is the ratio of the stan-
dard deviation of the forecast to that of the observation. We
assume R0 to be 1, although in reality maximum correlation
coefficients between observations and simulations cannot be
reached due to differences in spatial and temporal resolution.
The skill ranges between 0 and 1, with small values indicat-
ing low skill and high values indicating high skill. We use the
analysis simulation as a reference observation to evaluate a
theoretical forecast skill. As the forecasts are branched from
the analysis simulation we aim to quantify the deviation of
the forecast from the analysis with increasing forecast day.
The results are discussed in Sect. 4.1. In order to find the
actual skill of the forecast, we further compare the different
forecast days to the observations C1, C2, J1, J2, P4 and P5.
Section 4.2 describes these results.

4.1 Theoretical forecast skill

We compare every single forecast day out of six forecast days
to the analysis simulation (between 1 and 22 June 2018) and
calculate a daily skill score at each point on the respective
two-dimensional model grid. The skill is calculated for the
simulated CH4_FX values. In order to compare CM7 and
CM2.8, the analysed area only covers the area obtained by
removing the outermost 15 grid points of the CM2.8 domain
(relaxation area). Figure 14 assigns to each forecast day the
average percentage of the area which reveals a skill score
larger than 0.7. The results are shown in red for CM7 and in
blue for CM2.8. Panels (a) and (b) refer to the different skill
scores SV and SC, respectively.

On forecast days one to three, CM7 shows slightly larger
values than CM2.8. This is most obvious for SC, which puts
greater emphasis on the correlation coefficient. However, dif-
ferences between the two model instances are rather small.
The forecast skill is very large at forecast day one. Here, the
forecasts are branched from the analysis simulation, which
results in good agreement between the reference and fore-
cast. Both skills decrease with increasing forecast day, and
the skill in Fig. 14b shows a steeper decrease than the skill
in Fig. 14a. This suggests that the correlation between the
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Figure 11. D-FDLR flight pattern in the USCB for P4 (a, c) and P5 (b, d). Panels (a, b) show the vertical profile of the flight sections on
6 June 2018 between 10:10 and 11:20 UTC (a) and between 13:25 and 15:10 UTC (b). The colour bars refer to the bias-corrected CH4_FX
mixing ratios in micromoles per mole (µmolmol−1) simulated by CM2.8. Panels (c, d) show the flight routes in the USCB for P4 (c) and
P5 (d). Here, the colour bars refer to the atmospheric pressure at flight level (hPa). Blue triangles show the locations of the coal mining
ventilation shafts.

Figure 12. Panel (a) shows the D-FDLR in situ sampled CH4 mixing ratios (black lines) of P2 and the S4D submodel output of CH4_FX
at flight altitude for CM7 (red) and CM2.8 (blue). Panel (b) displays the corresponding flight altitude of P2 (black line) and the simulated
profile (CM2.8) of the methane mixing ratio along this flight track. All mixing ratios are in micromoles per mole (µmolmol−1). The time
axes display the time of the flight in UTC. M1, M2 and M3 mark specific methane peaks seen in the observation (a) and in the simulated
methane profile (b), but not necessarily in the sampled S4D output at flight altitude (a).

forecast and analysis is reduced faster than the similarity of
amplitudes. For SV, the area which exceeds a threshold of
0.7 covers about 65 % and 40 % at forecast days two and
three, whereas for SC it only covers about 50 % and 25 %,
respectively. From forecast day four onwards, less than 20 %
(SV) or 10 % (SC) of the area reveals a skill larger than 0.7.

The lower correlation could be attributed to a displacement of
the simulated plume in time or space, which would also ex-
plain the fact that the normalized standard deviation remains
within the given range.
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Figure 13. Taylor diagram summarizing normalized standard devi-
ation (radius), correlation coefficient (angle) and centred NRMSE
(dashed semicircles). Results show the comparison between obser-
vations and the model domain CM7 (triangles) and CM2.8 (circles).
Comparisons to C1 and C2 are displayed in orange, those to P1 until
P6 in blue and those to J1 and J2 in green. P7 is outside the diagram.

4.2 Actual forecast skill

Figure 15 shows the skill score SV calculated for the different
forecast days one to six when compared to the observations
C1, C2, J1 and J2 (see panel a) and to the observations P1–
P7 (see panel b). Results for CM7 and CM2.8 are shown on
the left and right side, respectively. In contrast to the theo-
retical skill, for which SV and SC clearly decrease with in-
creasing forecast day, a reduction of the skill is not obvious
here. Whereas the theoretical skill score is defined to measure
the skill averaged over the entire model domain, the actual
skill score compares the model results to observational data.
The latter measure the downwind methane plumes, which are
easier to forecast than the variability of the methane back-
ground in the overall model domain. Considering the differ-
ence between the single observations, SV is highest for J1 and
J2 with values above 0.8. They are followed by C1 and C2
with values above 0.65 (except for C1 on forecast day one)
and P1, P4, P5 and P6 mainly showing a skill between 0.6
and 0.8. The skill is lowest for the comparison with P2 and
P7. SV emphasizes the similarity of amplitude between the
forecast and observation. This similarity seems to be highest
with HALO in situ and CHARM-F observations. As already
discussed in Sect. 3.2.3, the models’ skill differs between
the three data sets, which is mainly due to different flight
patterns and measurement techniques. J and C observations
measure larger-scale vertical and integrated horizontal distri-
butions of methane, respectively. Both are well represented
in MECO(n). Modelling the smaller-scale features observed
by P is, however, challenging, which is also reflected in the

comparison with the forecasts. SV does not vary significantly
among the different forecast days nor does it show any spe-
cific trend. Results for C1, P4, P5 and P7 drop at forecast
day five but increase again at forecast day six. In contrast,
P2 suddenly increases at forecast day five. Differences be-
tween CM7 and CM2.8 are rather small. Figure 16 summa-
rizes the results of the skill score SC. SC is generally lower
than SV, which is due to higher weighting of the correla-
tion coefficient. Overall, the skill is best for J1, J2, C2, P4
and P5, meaning that the model and observations correlate
well here. As mentioned in Sect. 3.2.3, conditions for mea-
suring the downwind methane plumes on these days were
favourable and model results agree better with the observa-
tions. In contrast, P2 and P7 again show very low values (see
also Fig. 15). In panel (a), CM7 and CM2.8 show a similar
pattern. The skill among the different forecast days almost
stays at the same level or even increases until forecast day
four. Forecast days five and six show lower skill, with the
lowest values for C1 at forecast day five. The skill for J1 and
J2 shows generally lower values in CM2.8 than in CM7. In
panel (b) the skill is highly variable among all forecast days
until day four. On forecast days five and six, skill decreases
for all comparisons, with very low values for P7.

5 Discussion

Overall, the comparison of the analysis simulation with
airborne-derived measurements shows that MECO(n) is able
to simulate the observed methane plumes reasonably well.
This is the intended result considering that EMAC is nudged
towards the ECMWF data at a coarser resolution (T42 spec-
tral truncation), and CM50, CM7 and CM2.8 are nested into
each other and only driven by relaxation at their boundaries
by the next coarser model instance. Nevertheless, a contin-
uous and constant offset of the simulated CH4_FX to all
observations results from all model instances. As the bias
is constant at all altitudes, it is most likely not caused by
shortcomings in the vertical transport in the model. Instead,
a global increase in methane emissions (Nisbet et al., 2019)
could explain the discrepancy between the observations and
the model results that are based on EDGAR v4.2FT2010 for
anthropogenic emissions and on the EMPA inventory (Frank,
2018) for all other emissions fluxes. Apart from that, the tim-
ing of the simulated peaks is in good agreement for all obser-
vations. Compared to CHARM-F observations, the simulated
XflCH4 peaks show similar or slightly lower amplitudes. The
vertical methane gradient measured by the JIG is well repre-
sented by MECO(n). Besides the smaller variations in the
background methane, the model results correlate well with
the measured methane mixing ratios at different altitudes. By
comparing the small-scale D-FDLR in situ measurements,
the simulated amplitude of the peaks is mostly overesti-
mated. This particularly applies for the CM2.8 results. An-
thropogenic emissions in the EDGAR v4.2FT2010 inventory
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Figure 14. The graphic shows the evolution of the theoretical forecast skill with increasing forecast day for CM7 (red) and CM2.8 (blue).
The vertical axis displays the average area (%), according to the smallest model domain, with a skill score > 0.7. The horizontal axis shows
the specific forecast days one to six. The skill scores are calculated for each day at each grid point from 1 to 22 June 2018 (CoMet 1.0).
The CH4_FX total-column mixing ratios of the forecast simulations are compared to the CH4_FX total-column mixing ratios of the analysis
simulation. The error bars indicate the interval which contains 95% of all skill scores per day. SV (a) emphasizes variability and SC (b)
emphasizes the correlation.

Figure 15. The bar plots show the calculated skill scores SV for the comparison of forecast days one to six (horizontal axis) to the obser-
vations. The colours refer to the different observations. Panel (a) displays the results for C1, C2, J1 and J2. Panel (b) shows the results for
P1–P7. The CM7 and CM2.8 results are shown on the left and right side, respectively.

differ from the latest release of EDGAR v4.3.2 (2019). To-
tal anthropogenic methane emissions for the USCB (here:
long. 18.30–19.40◦ E, lat. 49.90–50.40◦ N) are 1636 kt a−1

in EDGAR v4.2FT2010 and only 605.6 kt a−1 in EDGAR
v4.3.2. The overestimation of local methane plumes in the
model can therefore be explained by the overestimation of
methane emissions in EDGAR v.4.2FT2010. However, we

also see high peaks in the methane mixing ratios of the D-
FDLR in situ observations, which are very low in the model
results or not present at all. This is mainly the case when
D-FDLR sampled very close to the ventilation shafts (see
results for P3 in the Supplement). Here, the model cannot
resolve the very localized enhancements. Larger grid sizes
lead to instantaneous dilution of the simulated mixing ratios
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Figure 16. The bar plots show the calculated skill scores SC for the comparison of forecast days one to six (horizontal axis) to the obser-
vations. The colours refer to the different observations. Panel (a) displays the results for C1, C2, J1 and J2. Panel (b) shows the results for
P1–P7. The CM7 and CM2.8 results are shown on the left and right side, respectively.

close to the ventilation shafts. Or, as seen for 2 June 2018,
the simulated PBL is too shallow and lies below the flight
altitude. Consequently, the enhanced methane mixing ratios
are not present in the S4D results along the flight track at
flight altitude. Previous studies (i.e. Collaud Coen et al.,
2014; Mertens et al., 2016) analysing the simulated PBLH
of the COSMO model show results that oppose our findings.
However, this is just a snapshot of a short-term simulation
and our study does not provide a detailed analysis of the
PBL. Additionally, PCH4, which only considers the emis-
sions of the ventilation shafts, is in good agreement with the
CH4_FX tracer and the observed methane elevations. This
indicates that the observed methane plumes actually origi-
nate from coal mining. Although the assessment of the sin-
gle point source emissions is not part of the current study, it
should be noted that the different PCH4 point sources can be
switched on and off in the model individually. This provides
a good tool to distinguish between different sources and to
assign them to the different measurements. When compared
to the small-scale D-FDLR in situ measurements, PCH4 cor-
relates well with the observed methane mixing ratios. In con-
trast to the CH4_FX results, the point source tracer does not
overestimate the emissions. However, it also does not show
the same emission strength as the observations. PCH4 peaks
have considerably lower amplitudes than observed. The rea-
son for this discrepancy is the different emission inventories
for CH4_FX and PCH4. The sum of all methane emissions in

CoMet ED v1 used for PCH4 is 465 kt a−1, which is less than
a third of the EDGAR v4.2FT2010 emissions (summed over
the corresponding grid boxes). Updated estimates of emis-
sions from CoMet ED v2 (based on E-PRTR, 2016) indi-
cated larger emissions of 502 kt a−1 and some changes in
the distribution of emissions, following structural and op-
erational changes in the mining sector over the period be-
tween reporting years (2014 and 2016 for CoMet ED v1 and
v2, respectively). This implies that the simulated PCH4 us-
ing the latest emission inventory CoMet ED v2 is expected
to match the observed amplitudes better. Another reason for
the underestimation of the simulated PCH4 peaks might be
the fact that we assume a temporally constant methane re-
lease from the ventilation shafts. But in reality the emit-
ted amount of methane varies from day to day. This might
have a small influence on the results but would not explain
the large differences between PCH4 and the observations.
Overall, CM7 is able to simulate the large-scale observa-
tions (HALO in situ) and the vertically integrated methane
(CHARM-F) as precisely as CM2.8. When compared to
small-scale measurements (D-FDLR in situ) the model over-
estimates the observed peaks. This is especially true for the
finer-resolved CM2.8, whereby methane mixing ratios are
larger than the mixing ratios simulated by CM7. Smaller grid
cells may catch locally enhanced methane mixing ratios in
the plume, whereas coarser grid cells cover a larger portion
of the methane plume and mixing ratios may be more di-
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luted. Additionally, CM2.8 is able to better simulate the fine
structure of the small-scale observations. However, the dif-
ferences are rather small and the observed methane peaks are
well represented in both model instances.

The theoretical forecast skill illustrates the deviation of
the forecast from the analysis simulation. Results show a de-
creasing trend with increasing forecast day. Nevertheless, the
correlation and amplitude similarities of a single forecast day
show a broad variation. The evaluation of the actual forecast
skill reveals even less clear results. The amplitudes seem to
be constant or at least do not show any specific trend with
increasing forecast day, but the correlation between the ob-
servation and forecast slightly decreases. Forecast day five
seems to yield the lowest skill for P4 and P5 and also for
C1 and J1, which is less obvious than for P4 and P5. Due
to the fact that these observations were sampled during only
1 d, namely 6 June 2018 in the morning and in the after-
noon, all comparisons for the fifth forecast day are related
to the forecast simulation start date on 2 June. Disagreement
may be due to the specific meteorological situation of this
day. In order to make a general statement about the forecast
skill, it would be necessary to compare additional observa-
tions within a broader time span.

We successfully conducted 6 d forecast simulations of
methane with the online coupled, three-time nested global
and regional chemistry–climate model system MECO(3).
The forecasts branch from a continuous analysis simulation,
in which EMAC is nudged towards the operational ECMWF
analysis data. This is essential for appropriate initial fore-
cast conditions. We continuously delivered the forecasts dur-
ing CoMet 1.0 and analysed the model and forecast perfor-
mance with respect to the observations. The advantage of
using the global–regional model system is that we are able
to simulate both the point source emissions and the back-
ground methane. For the latter, it is essential to provide
lateral boundary conditions to the nested model instances
which are consistent with the meteorology, i.e. the dynam-
ical boundary conditions. This makes it possible to distin-
guish between local source emissions and fluctuations in the
background methane, which is important for the quantifica-
tion of different methane sources. Even though the data for
Newtonian relaxation are first coarsened to a horizontal grid
resolution corresponding to the T42 spectral truncation and
then nested three times down to a spatial resolution of 2.8 km,
MECO(3) is able to simulate the observed methane plumes
correctly. Overall, the vertically integrated values, e.g. total-
column average mixing ratios, and the large-scale patterns,
such as the vertical gradient of methane, are well represented.
However, limitations exist for the simulation of small-scale
patterns. A bias reduction and better agreement of small-
scale simulated methane amplitudes with the observations
may be achieved by updating the applied emission invento-
ries to the EDGAR v4.3.2 inventory for anthropogenic emis-
sions and the latest information on point source emissions
(CoMet ED v2). Another anthropogenic emission inventory,

which could reduce the bias, is the CAMS-GLOB-ANT in-
ventory (Granier et al., 2019). CAMS-GLOB-ANT extrap-
olates the emissions to the current year by using EDGAR
v4.3.2 as a basis for 2010 and by projecting emission trends
for 2011 to 2014 from the Community Emissions Data Sys-
tem (CEDS) inventory (Hoesly et al., 2018) until 2018. Fur-
thermore, we obtained decent results up to forecast day four.
The skill score calculated for all forecast days is reasonable.
However, due to the limited number of comparable observa-
tions, the skill score might not be representative and its inter-
pretation must be treated with caution. All observed methane
peaks are well represented in both model domains CM2.8
and CM7. For the purpose of the field campaign, it is there-
fore sufficient to perform the forecasts with CM7 only.
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J., Swolkień, J., Fix, A., Roiger, A., and Butz, A.: Quantifying
CH4 emissions from hard coal mines using mobile sun-viewing
Fourier transform spectrometry, Atmos. Meas. Tech., 12, 5217–
5230, https://doi.org/10.5194/amt-12-5217-2019, 2019.

Mertens, M., Kerkweg, A., Jöckel, P., Tost, H., and Hofmann, C.:
The 1-way on-line coupled model system MECO(n) – Part 4:
Chemical evaluation (based on MESSy v2.52), Geosci. Model
Dev., 9, 3545–3567, https://doi.org/10.5194/gmd-9-3545-2016,
2016.

MESSy Consortium: The highly structured Modu-
lar Earth Submodel System (MESSy), available at:
http://www.messy-interface.org, last acces: 14 April 2020

Myhre, G., Shindell, D., BrÃ©on, F.-M., Collins, W., Fuglestvedt,
J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Men-
doza, B., Nakajima, T., Robock, A., Stephens, G., Takemura,
T., and Zhang, H.: Anthropogenic and natural radiative forc-
ing, Cambridge University Press, Cambridge, UK, 659–740,
https://doi.org/10.1017/CBO9781107415324.018, 2013.

Nisbet, E. G., Dlugokencky, E. J., and Bousquet, P.:
Methane on the Rise-Again, Science, 343, 493–495,
https://doi.org/10.1126/science.1247828, 2014.

Nisbet, E. G., Dlugokencky, E. J., Manning, M. R., Lowry, D.,
Fisher, R. E., France, J. L., Michel, S. E., Miller, J. B., White, J.
W. C., Vaughn, B., Bousquet, P., Pyle, J. A., Warwick, N. J., Cain,
M., Brownlow, R., Zazzeri, G., Lanoisellé, M., Manning, A. C.,
Gloor, E., Worthy, D. E. J., Brunke, E.-G., Labuschagne, C.,
Wolff, E. W., and Ganesan, A. L.: Rising atmospheric methane:
2007–2014 growth and isotopic shift, Global Biogeochem. Cy.,
30, 1356–1370, https://doi.org/10.1002/2016GB005406, 2016.

Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher,
R. E., Lowry, D., Michel, S. E., Myhre, C. L., Platt, S. M.,
Allen, G., Bousquet, P., Brownlow, R., Cain, M., France, J. L.,
Hermansen, O., Hossaini, R., Jones, A. E., Levin, I., Man-
ning, A. C., Myhre, G., Pyle, J. A., Vaughn, B. H., War-
wick, N. J., and White, J. W. C.: Very Strong Atmospheric
Methane Growth in the 4 Years 2014–2017: Implications for
the Paris Agreement, Global Biogeochem. Cy., 33, 318–342,
https://doi.org/10.1029/2018GB006009, 2019.

Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young,
D., O’Doherty, S., Lunt, M. F., Ganesan, A. L., Manning, A. J.,
Simmonds, P. G., Salameh, P. K., Harth, C. M., Mühle, J.,
Weiss, R. F., Fraser, P. J., Steele, L. P., Krummel, P. B., Mc-
Culloch, A., and Park, S.: Role of atmospheric oxidation in re-
cent methane growth, P. Natl. Acad. Sci. USA, 114, 5373–5377,
https://doi.org/10.1073/pnas.1616426114, 2017.

Rockel, B., Will, A., and Hense, A.: The Regional Climate
Model COSMO-CLM (CCLM), Meteorol. Z., 17, 347–348,
https://doi.org/10.1127/0941-2948/2008/0309, 2008.

Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann,
S., Kornblueh, L., Manzini, E., Schlese, U., and Schulzweida,
U.: Sensitivity of Simulated Climate to Horizontal and Vertical
Resolution in the ECHAM5 Atmosphere Model, J. Climate, 19,
3771–3791, https://doi.org/10.1175/JCLI3824.1, 2006.

Sander, R., Jöckel, P., Kirner, O., Kunert, A. T., Landgraf, J., and
Pozzer, A.: The photolysis module JVAL-14, compatible with
the MESSy standard, and the JVal PreProcessor (JVPP), Geosci.
Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-
2014, 2014.

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P.,
Canadell, J. G., Dlugokencky, E. J., Etiope, G., Bastviken, D.,
Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi,
S., Jackson, R. B., Alexe, M., Arora, V. K., Beerling, D. J., Berga-
maschi, P., Blake, D. R., Brailsford, G., Brovkin, V., Bruhwiler,
L., Crevoisier, C., Crill, P., Covey, K., Curry, C., Frankenberg, C.,
Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F.,
Kim, H.-S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langen-
felds, R., Locatelli, R., Machida, T., Maksyutov, S., McDonald,
K. C., Marshall, J., Melton, J. R., Morino, I., Naik, V., O’Doherty,
S., Parmentier, F.-J. W., Patra, P. K., Peng, C., Peng, S., Peters,
G. P., Pison, I., Prigent, C., Prinn, R., Ramonet, M., Riley, W.
J., Saito, M., Santini, M., Schroeder, R., Simpson, I. J., Spahni,
R., Steele, P., Takizawa, A., Thornton, B. F., Tian, H., Tohjima,
Y., Viovy, N., Voulgarakis, A., van Weele, M., van der Werf, G.
R., Weiss, R., Wiedinmyer, C., Wilton, D. J., Wiltshire, A., Wor-
thy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z.,
and Zhu, Q.: The global methane budget 2000–2012, Earth Syst.
Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016,
2016.

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P.,
Canadell, J. G., Dlugokencky, E. J., Etiope, G., Bastviken, D.,
Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi,
S., Jackson, R. B., Alexe, M., Arora, V. K., Beerling, D. J., Berga-
maschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Crevoisier,
C., Crill, P., Covey, K., Frankenberg, C., Gedney, N., Höglund-
Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.-S., Kleinen,
T., Krummel, P., Lamarque, J.-F., Langenfelds, R., Locatelli, R.,
Machida, T., Maksyutov, S., Melton, J. R., Morino, I., Naik,
V., O’Doherty, S., Parmentier, F.-J. W., Patra, P. K., Peng, C.,
Peng, S., Peters, G. P., Pison, I., Prinn, R., Ramonet, M., Ri-
ley, W. J., Saito, M., Santini, M., Schroeder, R., Simpson, I. J.,
Spahni, R., Takizawa, A., Thornton, B. F., Tian, H., Tohjima,
Y., Viovy, N., Voulgarakis, A., Weiss, R., Wilton, D. J., Wilt-
shire, A., Worthy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B.,
Zhang, Z., and Zhu, Q.: Variability and quasi-decadal changes in
the methane budget over the period 2000–2012, Atmos. Chem.
Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-
2017, 2017.

Geosci. Model Dev., 13, 1925–1943, 2020 www.geosci-model-dev.net/13/1925/2020/

https://doi.org/10.5281/zenodo.3518926
https://doi.org/10.5194/gmd-5-87-2012
https://doi.org/10.5194/gmd-5-87-2012
https://doi.org/10.5194/gmd-5-111-2012
https://doi.org/10.5194/gmdd-8-8607-2015
https://doi.org/10.5194/amt-12-5217-2019
https://doi.org/10.5194/gmd-9-3545-2016
http://www.messy-interface.org
https://doi.org/10.1017/CBO9781107415324.018
https://doi.org/10.1126/science.1247828
https://doi.org/10.1002/2016GB005406
https://doi.org/10.1029/2018GB006009
https://doi.org/10.1073/pnas.1616426114
https://doi.org/10.1127/0941-2948/2008/0309
https://doi.org/10.1175/JCLI3824.1
https://doi.org/10.5194/gmd-7-2653-2014
https://doi.org/10.5194/gmd-7-2653-2014
https://doi.org/10.5194/essd-8-697-2016
https://doi.org/10.5194/acp-17-11135-2017
https://doi.org/10.5194/acp-17-11135-2017


A.-L. Nickl et al.: Hindcasting and forecasting of regional methane 1943

Schaefer, H., Fletcher, S. E. M., Veidt, C., Lassey, K. R., Brails-
ford, G. W., Bromley, T. M., Dlugokencky, E. J., Michel, S. E.,
Miller, J. B., Levin, I., Lowe, D. C., Martin, R. J., Vaughn, B. H.,
and White, J. W. C.: A 21st-century shift from fossil-fuel to bio-
genic methane emissions indicated by 13CH4, Science, 352, 80–
84, https://doi.org/10.1126/science.aad2705, 2016.

Schwietzke, S., Sherwood, O., Bruhwiler, L., Miller, J., Etiope, G.,
Dlugokencky, E., Englund Michel, S., A. Arling, V., Vaughn, B.,
White, J., and P. Tans, P.: Upward revision of global fossil fuel
methane emissions based on isotope database, Nature, 538, 88–
91, https://doi.org/10.1038/nature19797, 2016.

Taylor, K. E.: Summarizing multiple aspects of model performance
in a single diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.

Thompson, R. L., Nisbet, E. G., Pisso, I., Stohl, A., Blake, D., Dlu-
gokencky, E. J., Helmig, D., and White, J. W. C.: Variability in
Atmospheric Methane From Fossil Fuel and Microbial Sources
Over the Last Three Decades, Geophys. Res. Lett., 45, 11499–
11508, https://doi.org/10.1029/2018GL078127, 2018.

Wyzszy Urzad Gorniczy: Ocena stanu bezpieczenstwa pracy, ra-
townictwa górniczego oraz bezpieczenstwa powszechnego w
zwiazku z działalnoscia górniczo-geologiczna w 2014 roku,
available at: http://www.wug.gov.pl/download/5710.pdf (last ac-
cess: 8 February 2017), 2014.

www.geosci-model-dev.net/13/1925/2020/ Geosci. Model Dev., 13, 1925–1943, 2020

https://doi.org/10.1126/science.aad2705
https://doi.org/10.1038/nature19797
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1029/2018GL078127
http://www.wug.gov.pl/download/5710.pdf

	Abstract
	Introduction
	Model and forecast system
	Model description
	Model set-up
	Methane tracers

	The forecast system

	Evaluation of analysis simulation
	Observational data
	Comparison with analysis results
	Comparison with CHARM-F observations
	Comparison with in situ measurements
	Taylor diagram


	Evaluation of forecast skill
	Theoretical forecast skill
	Actual forecast skill

	Discussion
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

