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Abstract

The differential Riccati equation appears in different fields of applied mathematics like control
and system theory. Recently Galerkin methods based on Krylov subspaces were developed for the
autonomous differential Riccati equation. These methods overcome the prohibitively large storage
requirements and computational costs of the numerical solution. In view of memory efficient
approximation, we review and extend known solution formulas and identify invariant subspaces
for a possibly low-dimensional solution representation. Based on these theoretical findings, we
propose a Galerkin projection onto a space related to a low-rank approximation of the algebraic
Riccati equation. For the numerical implementation, we provide an alternative interpretation of
the modified Davison-Maki method via the transformed flow of the differential Riccati equation,
which enables us to rule out known stability issues of the method in combination with the
proposed projection scheme. We present numerical experiments for large-scale autonomous
differential Riccati equations and compare our approach with high-order splitting schemes.
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1. Introduction
In this paper we consider the autonomous differential Riccati equation

Ẋ(t) = ATX(t) +X(t)A−X(t)BBTX(t) + CTC,

X(0) = X0.

The equation plays an important role in model order reduction, optimal control, differential
games and stability analysis [1, 7, 15, 17, 32, 38, 40]. We focus in this work on the large-scale case.
In this setting, the numerical approximation of X comes with high memory requirements and
high computational costs. Just the storage of the solution at the relevant time instances would
scale with Ntn

2, where n is the dimension of the problem and Nt is the number of time steps.
The approach of first discretizing in time and then focusing on efficient approximation of the
resulting algebraic equations has been the main course of research on this problem setup, see,
e.g., [13–15,27,33,35,36,41,42,52,54]. In all these approaches, the approximation of at least one
large-scale algebraic equation has to be solved and stored for every time step so that the memory
demands still scale with Ntn. Conceptually, it seems more beneficial for the autonomous differential
Riccati equation to first reduce the problem dimensions to, say, k � n and then approach the
reduced equation as this leads to storage requirements in the order of Ntk. In this respect, Krylov
subspace methods have been proposed [4, 23–26,31, 34] that generate a trial space for the numerical
solution using an Arnoldi method. The resulting Galerkin projected system is of lower order and
can be solved with low memory demand and with various methods that exist for differential Riccati
equations of small or moderate size.
In this work, we develop a Galerkin approach, where the trial space is based on the numerical
solution of the algebraic Riccati equation. This extends the concepts of our previous work on a
numerical scheme for differential Lyapunov equations [10].
The paper is organized as follows. In Section 3 we introduce the algebraic and differential Riccati
equations and review the relevant fundamental properties about their solutions. In Section 4
we review Radon’s Lemma and work out its implication that the differential Riccati equation is
connected to a flow on a Grassmanian manifold. Moreover, in Section 4.2, we apply Radon’s Lemma
to obtain solution formulas for the differential Riccati equation based on the solution of the algebraic
Riccati equation that we will use to explain and illustrate the major source of numerical instabilities
of the Davison-Maki method for the numerical solution of the differential Riccati equation; see
Section 4.3 Then we will use the connection to the Grassmanian manifold to derive the modified
Davison-Maki method in a way that overcomes these instabilities. In Section 5, we develop a
Galerkin approach for the solution of the differential Riccati equation in the matrix exponential
representation that results from Radon’s Lemma. We combine the monotonicity of the solution of
the differential and relevant properties of the solution of the algebraic Riccati equation to define
a suitable and numerically computable trial space for the approximation of the solution of the
differential Riccati equation. We propose to solve the resulting Galerkin system with the modified
Davison-Maki method. Numerical results are presented in Section 6 and Appendices A and B.
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2. Preliminaries
In this section we set the notation and review some basic results from linear algebra. The identity
matrix and zero matrix of size n are written by In and 0. The image or column space of a matrix
A ∈ Rn×m is denoted by range (A), and its kernel or null space by ker(A). The 1–norm, 2–norm,
Frobenius norm and Frobenius inner product are denoted by ‖·‖1 , ‖·‖2 , ‖·‖F and 〈·, ·〉F , respectively.
The spectrum of a quadratic matrix A is denoted by Λ(A). Generally, the spectrum is a subset
of C. A matrix is called stable, if its spectrum is contained in the left open complex half plane
C−, i.e. Λ(A) ⊆ C−. If A is real and symmetric, all eigenvalues are real and λ↓k(A) represents the
k–largest eigenvalue. Therefore, λ↓1(A) ≥ λ↓2(A) ≥ · · · ≥ λ↓n(A) are the eigenvalues of A ordered
in a non-decreasing fashion. The Loewner partial ordering on the set of real symmetric matrices
is defined by A 4 B, which means B − A is positive semidefinite, [28, Ch. 7.7]. The orthogonal
complement of a linear subspace U ⊆ Rn is denoted by U⊥ ⊆ Rn. For A ∈ Rn×n and B ∈ Rn×b,
the image of the Krylov matrix generated by A and B is denoted by

K(A,B) := range
([
B,AB, . . . , An−1B

])
⊆ Rn.

The linear space K(A,B) is A–invariant.

3. Algebraic and Differential Riccati Equations
In this section we introduce the algebraic and differential Riccati equation (ARE/DRE) and the
algebraic Lyapunov equation (ALE).
Consider A,X0 ∈ Rn×n and C ∈ Rc×n and B ∈ Rn×b. Throughout this paper, we assume that X0
is a symmetric positive semidefinite matrix and consider the DRE

Ẋ(t) = R(X(t)) := ATX(t) +X(t)A−X(t)BBTX(t) + CTC, (1a)
X(0) = X0. (1b)

Stationary points of (1a) are solutions of the corresponding ARE

0 = R(X) = ATX +XA−XBBTX + CTC. (2)

The linear version (B = 0) of the ARE is the ALE

0 = ATX +XA+ CTC. (3)

We review some fundamental results about existence, uniqueness and properties of the solution of
the DRE (1), ARE (2) and the ALE (3).
Theorem 3.1 (Existence and Uniqueness of Solutions to the ALE (3), [1, Thm. 1.1.3, 1.1.7]).
If Λ(A) ∩ Λ(−A) = ∅, then the ALE (3) admits a unique solution XL ∈ Rn×n. The solution XL is
symmetric. If A is stable, then XL is symmetric positive semidefinite and given by

XL =
∞∫

0

etA
T
CTCetAdt. (4)

Theorem 3.2 (Existence and Uniqueness of Solutions for the ARE (2), [1, Lem. 2.4.1, Cor.
2.4.3], [32, Ch. 10]).
Let (A,B) be stabilizable and (A,C) be detectable, then the ARE (2) has a unique stabilizing solution
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X∞ ∈ Rn×n. This means R(X∞) = 0 and Λ(A − BBTX∞) ⊆ C−. Moreover X∞ is symmetric
positive semidefinite and there is no other symmetric positive semidefinite solution of the ARE (2).
Theorem 3.3 (Range of the Solution of the ARE (2), [9, Thm. 3.2]).
Let (A,B) be stabilizable, (A,C) be detectable and X∞ ∈ Rn×n be the unique stabilizing solution of
the ARE (2). Then the following relation holds:

range (X∞) = K
(
AT , CT

)
.

The inclusion K
(
AT , CT

)
⊆ range (X∞) in Theorem 3.3 is actually true for each symmetric solution

of the ARE (2), cf. [1, Lemma 2.4.9]. In [2, Ch. 3.3] a Kalman decomposition is used to show
that rank (X∞) = dim

(
K
(
AT , CT

))
. A connection between the space K

(
AT , CT

)
and a certain

Krylov subspace generated by the associated Hamiltonian matrix, which can be used for numerical
approximation of the solution of the ARE (2), was presented in [11, Thm. 10].
Typically, solutions of quadratic differential equations like the DRE (1) exhibit a finite-time escape
phenomena. By means of comparison arguments and the fact that −BBT is negative semidefinite
one can show that the solution exists for all t ≥ 0. With additional assumptions, the solution
converges monotonically to the unique solution of ARE (2) and is, thus, bounded.
Theorem 3.4 (Existence and Uniqueness of Solutions of the DRE (1), [1, Thm. 4.1.6, 4.1.8], [32, Ch.
10]).
The DRE (1) has a unique solution X : [0,∞)→ Rn×n. The solution X has the following properties:

• X(t) is symmetric positive semidefinite for all t ≥ 0.

• If Ẋ(0) = R(X0) < 0, then t 7→ X(t) is monotonically non-decreasing on [0,∞), i.e.
X(t1) 4 X(t2) for all t1, t2 such that 0 ≤ t1 ≤ t2.

Theorem 3.5 (Invariant Subspace of the Solution of the DRE (1), cp. [9, Thm. 3.1]).
Let the columns of Q ∈ Rn×p span an orthonormal basis of K

(
AT , CT

)
and define the linear space

Q :=
{
QY QT | Y ∈ Rp×p

}
⊆ Rn×n or Q := {0} ⊆ Rn×n, if C = 0. Then the following holds:

X(t) ∈ Q for all t ≥ 0,

where X is the unique solution of the DRE (1) with X0 = 0.
With this relation, one can readily confirm that the solution of the DRE (1) evolves in an invariant
subspace of Rn×n.
For numerical approximations of the solutions of large-scale ALEs, AREs and DREs, one typically
seeks for low-rank approximations, i.e. a q � n so that the relation in Theorem 3.5 is still valid up to
a given tolerance, to avoid overly demanding memory requirements. Therefore, the relevant literature
features numerous contributions which study the decay rate of λ↓k(X) or λ↓

k
(X)

λ↓1(X)
for increasing k; see,

e.g., [5, 6, 8, 21,22,44,45,51] on the eigenvalue decay of the solution of the ALE and [11,44,54] for
results on the ARE and DRE.
For the autonomous DRE (1), one can derive estimates based on the monotonicity. Assume that
R(X0) < 0, then by Theorem 3.4 the function t 7→ X(t) is monotonically non-decreasing on [0,∞),
where X is the unique solution of the DRE (1). A direct consequence of the Courant-Fischer-Weyl
min-max principle [28, Cor. 7.7.4] implies that t 7→ λ↓k(X(t)) is also monotonically non-decreasing
on [0,∞). Therefore the number of eigenvalues of X(t) greater than or equal to a given threshold
ε > 0 is non-decreasing over time.
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Example 3.1 (Eigenvalue Decay).
We illustrate this by an example in Figure 1. We have chosen X0 = 0, C =

[
1, . . . , 1

]
= BT and A

to be tridiagonal with entries 5,−1,−5 on the subdiagonal, diagonal and superdiagonal, respectively.
The matrices are of size n = 100 and the DRE was solved numerically to a high precision on the time
interval [0, 15]. For this we have used the variable-precision arithmetic vpa of MATLAB® 2018a
with 512 significant digits and Algorithm 2 with step size h = 2−5. The eigenvalues of X(t) are
arranged in a non-increasing order and plotted for t ∈ {0.5, 1, . . . , 15}. The functions t 7→ λ↓k(X(t))
are highlighted in red for k ∈ {10, 20, 30, 40, 50}. All eigenvalues below 10−60 were truncated from
Figure 1. The shadowed red plane is drawn at the level 2 · 10−16, which is approximately machine
precision in double arithmetic.
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Fig. 1. Eigenvalues λ↓k(X(t)) of the numerical solution of DRE (1).

4. Radon’s Lemma
In this section, we consider the non-symmetric differential Riccati equation abbreviated by NDRE
as a generalization of the DRE. We will make heavy use of Radon’s Lemma that shows that the
NDRE is locally equivalent to a linear differential equation of twice the size. Vice versa, the solution
of the NDRE defines the solution of an associated linear system.
Radon’s Lemma (Thm. 4.1) has several consequences. In Section 4.1, we review the fact that the
solution of the NDRE induces a flow on the Grassmanian manifold. This flow has a simpler structure
as it is based on a matrix exponential. In Section 4.2 we show how solution formulas can be
obtained by applying suitable linear transformations, which decouple the linear differential equation.
Then, in view of numerical approximation, we review the Davison-Maki method and the modified
Davison-Maki method in Section 4.3. We use the solution formula from Section 4.2 to explain, why
the Davison-Maki method applied to the DRE usually suffers from numerical instabilities and show
that an exploitation of the structure of the transformed flow on the Grassmanian manifold leads to
a suitable modification of the Davison-Maki method.
Theorem 4.1 (Radon’s Lemma, [1, Thm. 3.1.1]).
Let M11 ∈ Rn×n, M12 ∈ Rn×m, M21,M0 ∈ Rm×n, M22 ∈ Rm×m and I ⊆ R be an open interval
such that 0 ∈ I. We consider the NDRE

Ẇ (t) = M22W (t)−W (t)M11 −W (t)M12(t)W (t) +M21, (5a)
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W (0) = M0. (5b)

The following holds:

1. Let W : I→ Rm×n be the solution of (5) and U : I→ Rn×n be the solution of the linear initial
value problem

U̇(t) = (M11 +M12W (t))U(t), U(0) = In. (6)

Moreover let V (t) := W (t)U(t). Then U : I→ Rn×n and V : I→ Rm×n define the solution of
[
U̇(t)
V̇ (t)

]
= M

[
U(t)
V (t)

]
:=
[
M11 M12
M21 M22

] [
U(t)
V (t)

]
,

[
U(0)
V (0)

]
=
[
In
M0

]
. (7)

2. If
[
U
V

]
: I→ R(n+m)×n is a solution of (7) and the matrix U(t) is nonsingular for all t ∈ I,

then W : I→ Rm×n, W (t) = V (t)U(t)−1 is a solution of (5).

Radon’s Lemma (Thm. 4.1) also holds for time-dependent continuous matrix valued functions
as coefficients. Note that, usually, the solution of the NDRE (5) has finite time escape, while
the solution of system (7) exists for all t ∈ R. However, one can consider the solution W of the
NDRE (5) on the interval of existence. As the function U is a solution of the linear initial value
problem (6) and U(0) = In is nonsingular, the determinant of U(t) can not vanish on the interval I.
It follows that the matrix U(t) is nonsingular for all t ∈ I, c.f. [57, §15]. Therefore as long as the
solution of the NDRE (5) exists, it can be recovered from the solution of system (7).

4.1. Flow on the Grassmanian Manifold
In this section we review the fact that the solution of the NDRE (5) is locally equivalent to a flow
on the Grassmanian manifold. This connection was first observed in [49] and the corresponding flow
was further studied in [39,50]. The content of this subsection is a summary of [50, §2]. One main
observation from Radon’s Lemma (Thm. 4.1) is that the solution W of the NDRE (5) depends only
on the linear space spanned by U(t) and V (t). This can be seen by the following arguments. Let[
U
V

]
: I→ R(n+m)×n be a solution of (7) and t0 ∈ I. Moreover assume that Ũ ∈ Rn×n, Ṽ ∈ Rm×n

are such that

range
([
Ũ

Ṽ

])
= range

([
U(t0)
V (t0)

])
.

The linear spaces are equal, if and only if there is a nonsingular matrix T ∈ Rn×n such that
[
Ũ

Ṽ

]
=
[
U(t0)
V (t0)

]
T.

Since U(t0) is nonsingular, we have

Ṽ Ũ−1 = V (t0)TT−1U(t0)−1 = V (t0)U(t0)−1 = W (t0).

6



Consequently, it is the linear subspace range
([
U(t)
V (t)

])
⊆ Rn+m that defines the solution W (t),

rather than the chosen basis
[
U(t)
V (t)

]
to represent the space. Since

range
([
U(t)
V (t)

])
= range

(
etM

[
In
M0

])
= etM range

([
In
M0

])
,

and the (nonsingular) matrix exponential is applied to an n-dimensional subspace range
([

In
M0

])
,

we obtain a time-dependent family of n-dimensional subspaces of Rn+m. The Grassmanian manifold
Gn

(
Rn+m) consists of all n-dimensional subspaces of Rn+m. Therefore the flow associated to the

NDRE (5) on Gn
(
Rn+m) is given by

ϕ : R×Gn
(
Rn+m

)
→ Gn

(
Rn+m

)
, (t, S) 7→ etMS.

The flow exists for all t ∈ R and has the flow properties ϕ(0, S) = S and ϕ(t2, ϕ(S, t1)) = ϕ(t1 +t2, S)
for all S ∈ Gn (Rn+m) and t1, t2 ∈ R.
In addition it holds that U(t) is nonsingular as long as W exists. This motivates us to consider the
set of all graph subspaces of Gn

(
Rn+m)

Gn0
(
Rn+m

)
:=
{

range
([
U
V

]) ∣∣∣∣∣ U ∈ Rn×n, V ∈ Rm×n, detU 6= 0
}
⊆ Gn

(
Rn+m

)
,

together with the function

ψ : Gn0
(
Rn+m

)
→ Rm×n, range

([
U
V

])
7→ V U−1.

The function ψ is well defined, as it does not depend on the basis of the graph subspace. Thus, we
have that

W (t) = ψ

(
range

([
U(t)
V (t)

]))
= ψ

(
ϕ

(
t, range

([
In
M0

])))
,

and

ψ−1 (W (t)) = range
([

In
W (t)

])
= range

([
In

V (t)U(t)−1

])
= range

([
U(t)
V (t)

])

= ϕ

(
t, range

([
In
M0

]))
,

as long as the solution W exists. Therefore the solution of the NDRE (5) induces a flow on the
Grassmanian manifold. The solution W can be recovered from the flow by using ψ, and, vice versa,
the flow can be obtained from the solution of the NDRE (5) using ψ−1.

4.2. Solution Formulas
Radon’s Lemma (Thm. 4.1) enables a certain solution representations for the DRE (1): Theorem 3.4
ensures that the DRE (1) has a unique solution for t ≥ 0. By Radon’s Lemma (Thm. 4.1) we have
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that U(t) is nonsingular for all t ≥ 0.

Let H :=
[

A −BBT

−CTC −AT
]
∈ R2n×2n be the Hamiltonian matrix corresponding to the DRE (1).

The matrices U(t) and V (t) are determined by the linear initial value problem
[
U̇(t)
V̇ (t)

]
= −H

[
U(t)
V (t)

]
,

[
U(0)
V (0)

]
=
[
In
X0

]
. (8)

We obtain
[
U(t)
V (t)

]
= e−tH

[
In
X0

]
.

The strategy is to decompose the Hamiltonian matrix H, such that (8) decouples.
Theorem 4.2 (Solution representation I for DRE (1), [48]).
Let X ∈ Rn×n be any solution of the ARE (2). Then the solution of the DRE (1) for t ≥ 0 is given
by

X(t) = X − et(A−BBTXT )T

X̃


In −

t∫

0

es(A−BB
TX)BBT es(A−BB

TXT )T

dsX̃



−1

et(A−BB
TX),

X̃ := X −X0.

Proof. We use T :=
[
In 0
X In

]
and apply a similarity transformation to H,

T−1HT =
[
In 0
−X In

] [
A −BBT

−CTC −AT
] [
In 0
X In

]

=
[
A−BBTX −BBT

0 −(A−BBTXT )T
]

=: H̃.

This gives
[
U(t)
V (t)

]
= e−tH

[
In
X0

]
= e−tT H̃T

−1
[
In
X0

]
= Te−tH̃T−1

[
In
X0

]
= Te−tH̃

[
In

X0 −X

]
=: T

[
Ũ(t)
Ṽ (t)

]
.

Clearly Ũ and Ṽ are determined by the solution of the initial value problem
[ ˙̃U(t)

˙̃V (t)

]
= −H̃

[
Ũ(t)
Ṽ (t)

]
=
[
−(A−BBTX) BBT

0 (A−BBTXT )T
] [
Ũ(t)
Ṽ (t)

]
,

[
Ũ(0)
Ṽ (0)

]
=
[

In
X0 −X

]
.

By using the variation of constants formula [57, §18] we obtain that Ũ and Ṽ are given by

Ṽ (t) = −et(A−BBTXT )T

(X −X0),

Ũ(t) = e−t(A−BB
TX) +

t∫

0

e−(t−s)(A−BBTX)BBT Ṽ (s)ds

8



= e−t(A−BB
TX)


In −

t∫

0

es(A−BB
TX)BBT es(A−BB

TXT )T

ds(X −X0)


 .

Since Ũ(t) = U(t) is nonsingular for all t ≥ 0 and the matrix exponential is nonsingular, the matrix
in brackets is also nonsingular for all t ≥ 0. Finally we obtain

V (t) = XŨ(t) + Ṽ (t),

X(t) = V (t)U(t)−1 = X + Ṽ (t)Ũ(t)−1
.

The formula was presented in [48] without proof. Since the existence of the involved inverse is not
trivially established, we provide a proof.
Theorem 4.3 (Solution Representation II for DRE (1), [18, Thm. 1], [47]).
Let (A,B) be stabilizable and (A,C) be detectable and X∞ ∈ Rn×n be the unique symmetric positive
definite stabilizing solution of the ARE (2). Moreover let Â := A−BBTX∞ and XL ∈ Rn×n be the
unique symmetric positive semidefinite solution of the Lyapunov equation

ÂXL +XLÂ
T +BBT = 0. (9)

Then the solution of the DRE (1) for t ≥ 0 is given by

X(t) = X∞ − etÂ
T (X∞ −X0)

(
In − (XL − etÂXLe

tÂT )(X∞ −X0)
)−1

etÂ.

Proof. Similar to the proof of Theorem 4.2 we use similarity transformations to decompose the
Hamiltonian matrix H. This is also known as a Riccati-Lyapunov transformation [1, Ch. 3.1.1.].
We obtain

T : =
[
In 0
X∞ In

]
, T−1HT =

[
Â −BBT

0 −ÂT
]

=: H̃,

T̃ : =
[
In −XL

0 In

]
, T̃−1H̃T̃ =

[
Â 0
0 −ÂT

]
=: Ĥ.

We thus get
[
U(t)
V (t)

]
= e−tH

[
In
X0

]
= e−t(T T̃ )Ĥ(T T̃ )−1

[
In
X0

]
= (T T̃ )e−tĤ(T T̃ )−1

[
In
X0

]

=
[
In −XL

X∞ In −X∞XL

] [
e−tÂ 0

0 etÂ
T

] [
In −XLX∞ XL

−X∞ In

] [
In
X0

]

=
[

e−tÂ (In −XLX∞) +XLe
tÂX∞ e−tÂXL −XLe

tÂT

X∞e
−tÂ (In −XLX∞)− (In −X∞XL) etÂX∞ X∞e

−tÂXL + (In −X∞XL) etÂ

] [
In
X0

]

=
[

e−tÂ(In −XL(X∞ −X0)) +XLe
tÂT (X∞ −X0)

X∞e
−tÂ(In −XL(X∞ −X0))− (X∞XL + In)etÂT (X∞ −X0)

]
. (10)

Now observe that

U(t) = e−tÂ
(
In − (XL − etÂXLe

tÂT )(X∞ −X0)
)
,

9



V (t) = X∞e
−tÂ

(
In − (XL − etÂXLe

tÂT )(X∞ −X0)
)
− etÂT (X∞ −X0)

= X∞U(t)− etÂT (X∞ −X0),

therefore

X(t) = V (t)U(t)−1 = X∞ − etÂ
T (X∞ −X0)

(
In −

(
XL − etÂXLe

tÂT
)

(X∞ −X0)
)−1

etÂ.

In [3, Ch. 15.4] one can find another solution formula, which holds under more restrictive assumptions.
A solution formula based on the Jordan canonical form is given in [1, Thm. 3.2.1].

4.3. Davison-Maki Methods
The Davison-Maki method for the NDRE (5) was proposed in [20]. The method is based on
first computing the matrix exponential ehM for a given step size h > 0. According to Radon’s
Lemma (Thm. 4.1) we have that

[
U(h)
V (h)

]
= ehM

[
In
M0

]
, W (h) = V (h)U(h)−1.

The next step is then to make use of the semigroup property of the matrix exponential
[
U(2h)
V (2h)

]
= e2hM

[
In
M0

]
=
(
ehM

)2
[
In
M0

]
, W (2h) = V (2h)U(2h)−1.

For the further steps we obtain
[
U(kh)
V (kh)

]
=
(
ehM

)k
[
In
M0

]
, W (kh) = V (kh)U(kh)−1. (11)

Another variant of the Davison-Maki method updates U and V instead of the matrix exponential.
The variant follows from

[
U(kh)
V (kh)

]
= ekhM

[
In
M0

]
= ehMe(k−1)hM

[
In
M0

]
= ehM

[
U((k − 1)h)
V ((k − 1)h)

]
. (12)

Both variants of the method are given in Algorithm 1.

10



Algorithm 1 Davison-Maki method for the NDRE (5) [20,30]
Assumption: The NDRE (5) has a solution W : [0, tf )→ Rm×n.
Input: Real matrices M0 and Mij as in Theorem 4.1, step size h > 0 and final time tf > 0.
Output: Matrices Wk, such that W (kh) = Wk for k ∈ N0 and kh < tf .

1: W0 = M0;
2: k = 1;

% Compute matrix exponential e.g. by a scaling and squaring method:

3: Θh = exp
(
h

[
M11 M12
M21 M22

])
;

Variant with matrix exponential update:
4: Θ = Θh;
5: while kh < tf do

6: Partition
n m[ ]

n Θ11 Θ12
m Θ12 Θ22

= Θ;

7: Udm = Θ11 + Θ12M0;
8: Vdm = Θ21 + Θ22M0;
9: Wk = VdmUdm

−1;
10: Θ = ΘΘh;
11: k = k + 1;
12: end while

Variant with updating U and V :
13: Udm = In;
14: Vdm = M0;

15: Partition
n m[ ]

n Θ11 Θ12
m Θ12 Θ22

= Θ;

16: while kh < tf do
17: Udm = Θ11Udm + Θ12Vdm;
18: Vdm = Θ21Udm + Θ22Vdm;
19: Wk = VdmU

−1
dm ;

20: k = k + 1;
21: end while

When the Davison-Maki method (Alg. 1) is applied to the DRE (1), usually numerical instabilities
occur which are due to the fact that each block of e−tH as well as U(t) and V (t) contains the
matrix e−tÂ, cp. equation (10). Since Â = A − BBTX∞ is stable, the matrix exponential of
−tÂ exhibits exponential growth which becomes problematic for large t. The occurrence of these
numerical problems with the Davison-Maki method (Alg. 1) was also pointed out in [19,30,37,56].
Another reason is that the spectrum of a real Hamiltonian matrix comes in quadruples, that
is Λ(H) = {λ1, . . . , λn,−λ1, . . . ,−λn} with Re(λi) ≤ 0. Therefore, usually, the spectrum of the
Hamiltonian contains eigenvalues with positive real part and, thus, also it’s matrix exponential
grows [43, Prop. 2.3.1].
A suitable modification of the Davison-Maki method (Alg. 1) was proposed in [30], but the modified
method originates back to [29, p. 9]. By Radon’s Lemma (Thm. 4.1), as laid out in Section 4.1, we
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have the identity

W (kh) = ψ

(
range

([
U(kh)
V (kh)

]))
= ψ

(
ekhM range

([
In
M0

]))
= ψ

(
ehM range

([
U((k − 1)h)
V ((k − 1)h)

]))

= ψ

(
ehM range

([
In

W ((k − 1)h)

]))
= ψ

(
range

(
ehM

[
In

W ((k − 1)h)

]))
.

Therefore the iteration for the modified Davison-Maki method is given by
[
Ũ

Ṽ

]
:= ehM

[
In

W ((k − 1)h)

]
, W (kh) = Ṽ Ũ−1. (13)

The modified Davison-Maki method is given in Algorithm 2.

Algorithm 2 Modified Davison-Maki method for the NDRE (5) [29,30]
Assumption: The NDRE (5) has a solution W : [0, tf )→ Rm×n.
Input: Real matrices M0 and Mij as in Theorem 4.1, step size h > 0, final time tf > 0 and a

moderate large number tolexp > 0.
Output: Matrices Wk, such that W (kh) = Wk for k ∈ N0 and kh < tf .

1: W0 = M0;
2: k = 1;

% Compute matrix exponential e.g. by a scaling and squaring method:

3: Θ = exp
(
h

[
M11 M12
M21 M22

])
;

% Check the norm of the matrix exponential:
4: if ‖Θ‖1 > tolexp then
5: return Error(”1-Norm of the matrix exponential is too large, decrease the step size h“).
6: end if

7: Partition
n m[ ]

n Θ11 Θ12
m Θ12 Θ22

= Θ;

8: while kh < tf do
9: Umod dm = Θ11 + Θ12Wk−1;

10: Vmod dm = Θ21 + Θ22Wk−1;
11: Wk = Vmod dmU

−1
mod dm;

12: k = k + 1;
13: end while

A decrease of the step size h > 0, does not improve the accuracy in general, because the iteration is
exact. The accuracy is determined by the accuracy of the matrix exponential computation and the
matrix inversion. The step size cannot be chosen arbitrary large as the matrix exponential may
become too large in norm. In practice we suggest to compute the norm of the matrix exponential
before the iteration starts. If the norm is too large, then the step size has to be decreased. In the
k-th iteration of Algorithm 2 we have

[
Umod dm
Vmod dm

]
= ehM

[
In

W ((k − 1)h)

]
=
[
Θ11 Θ12
Θ21 Θ22

] [
In

W ((k − 1)h)

]
,

12



and the norm of the iterates can be bounded by

‖Umod dm‖ ≤ ‖Θ11‖+ ‖Θ12‖ ‖W ((k − 1)h)‖ ,
‖Vmod dm‖ ≤ ‖Θ21‖+ ‖Θ22‖ ‖W ((k − 1)h)‖ .

For small step sizes of h > 0 it holds ehM ≈ In+m + hM and Θ11 ≈ In + hM11, Θ12 ≈ hM12,
Θ21 ≈ hM21 and Θ22 ≈ Im + hM22. Therefore for small enough step size and moderate norm of
the solution ‖W (t)‖, the norm of the iterates cannot grow heavily in contrast to Algorithm 1. If
the norm of the iterates becomes too large during iteration, the step size should be decreased.
Assume that the matrix exponential in line 3 of Algorithm 2 was approximated by using the scaling
and squaring method, then the intermediates of the squaring phase can be used and the matrix
exponential needs not be recomputed from scratch.
Example 4.1 (Exponential Growth Davison-Maki method).
We applied the Davison-Maki method (Alg. 1) with step size h = 2−8 to a DRE with the same
matrices A,B,C and X0 as for Example 3.1. We plot the 2-norm of the iterates Udm and Vdm as
well as the 2-norm condition number of Udm on the interval [0, 1]. The plot shows that all quantities
grow exponentially over time. Therefore, eventually, either a floating point overflow will occur or
the matrix inversion ceases to be executed accurately. Figure 3 shows the same quantities for the
iterates Umod dm and Vmod dm of the modified Davison-Maki method (Alg. 2).
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Fig. 2. Davison-Maki method Algorithm 1 and the growth of Udm and Vdm.
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Fig. 3. Modified Davison-Maki method Algorithm 2 and the growth of Umod dm and Vmod dm.

If a symmetric solution is expected, then line 11 in Algorithm 2 should be altered with Wk =
1
2

(
Wk +W T

k

)
, because due to numerical errors the symmetry will be lost after some iterations.

Any computational efficient norm can also be used for the matrix exponential in Algorithm 2
line 4. The modified Davison-Maki method is also more efficient than the Davison-Maki method in
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both variants, because less matrix-matrix products are needed by time step, compare Algorithm 2
line 8-13 with Algorithm 1 line 5-12 and line 16-21.
The computational cost apart from matrix exponential computation grows linearly with the time
step size h, compare Algorithm 2 line 8-13.
The intermediates Udm, Vdm from Algorithm 2 and Umod dm, Vmod dm from Algorithm 1 are usually
different. The next lemma shows the connection.
Lemma 4.1.
In the k-th iteration of Algorithm 1 and Algorithm 2, the iterates Udm, Vdm and Umod dm, Vmod dm fulfill

range
([
Udm
Vdm

])
= range

([
Umod dm
Vmod dm

])
.

Proof. From equation (11) it follows

range
([
Udm
Vdm

])
= range

(
ehkM

[
In
M0

])
.

Equation (13) gives

range
([
Umod dm
Vmod dm

])
= range

(
ehM

[
In

W ((k − 1)h)

])
= range

(
ehM

[
In

V ((k − 1)h)U((k − 1)h)−1

])

= range
(
ehM

[
U((k − 1)h)
V ((k − 1)h)

])
= range

(
ekhM

[
In
M0

])
.

5. Galerkin Approach for Large-Scale Differential Riccati Equations
In this section we develop a feasible numerical approach for large-scale differential Riccati equations.
We consider the DRE (1) and assume that X0 = 0. We develop the Galerkin approach based on
two theoretical considerations. First we use the solution formula of Theorem 4.3. We show that
the range of the solution X∞ of the ARE is invariant under the action of the closed-loop matrix
A−BBTX∞. It follows then that the action of the matrix exponential of the closed-loop matrix on
X∞ has the same property. This makes the approach consistent in the sense that the evolution does
not leave the ansatz space and provides reasoning that the consistency error made by a numerical
approximation to these subspaces can be made arbitrarily small. Moreover, this invariance property
allows for a straight-forward low-dimensional approximation of the matrix exponential. After that
we show that, for our proposed choice of a Galerkin basis, a quick decay of the eigenvalues of the
solution of the ARE implies a decent approximation of the solution X(t) of the DRE.
The result is a low-dimensional solution space with an accessible formula for the relevant matrix
exponential so that we can use the modified Davison-Maki (Algorithm 2) for an efficient solution of
the projected Galerkin system.

5.1. Invariant Subspaces for the Galerkin Approach
First we prove that the range space of the solution X∞ of the ARE is invariant under the action of
the transposed closed-loop matrix

(
A−BBTX∞

)T
.
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Lemma 5.1.
Let (A,B) be stabilizable, (A,C) be detectable and X∞ ∈ Rn×n be the unique stabilizing solution of
the ARE (2). Then range(X∞) is (A−BBTX∞)T –invariant.

Proof. We can assume that X∞ 6= 0. Let the columns of Q∞ ∈ Rn×p be an orthonormal basis for
range(X∞). Then Q∞Q

T
∞ is the orthogonal projection onto range(X∞). We obtain

Q∞Q
T
∞X∞ = X∞.

By Theorem 3.3, the columns of Q∞ are also an orthonormal basis for K
(
AT , CT

)
. The space

K
(
AT , CT

)
is AT –invariant. We obtain

ATQ∞ = Q∞Q
T
∞A

TQ∞.

Finally, we have

(A−BBTX∞)TQ∞ = Q∞Q
T
∞A

TQ∞ −Q∞QT∞X∞BBTQ∞

= Q∞
(
QT∞A

TQ∞ −QT∞X∞BBTQ∞
)
.

This means range(X∞) is (A−BBTX∞)T –invariant.

According to Theorem 4.3 the solution of the DRE (1) is for t ≥ 0 given by

X(t) = X∞ − etÂ
T
X∞

(
In −

(
XL − etÂXLe

tÂT
)
X∞

)−1
etÂ,

where Â = A−BBTX∞. The identity (In − P (t))−1 = In + (In − P (t))−1P (t) leads to

X(t) = X∞ − etÂ
T
X∞e

tÂ

− etÂT
X∞

(
In −

(
XL − etÂXLe

tÂT
)
X∞

)−1 (
XL − etÂXLe

tÂT
)
X∞e

tÂ. (14)

Derivation by using the exact solution X∞ of the ARE
By Lemma 5.1 it holds that range (X∞) is invariant under ÂT . Assume now that X∞ is given in
factorized form, this means that X∞ = Z∞Z

T
∞ and Z∞ ∈ Rn×p and 1 ≤ p = rank (X∞) ≤ n. If

rank(X∞) = 0, then also X∞ = 0 as well as the solution X(t). Now it holds that range(X∞) =
range(Z∞) and consequently range(Z∞) is invariant under ÂT .
By means of the compact singular value decomposition of Z∞, we obtain matrices Q∞ ∈ Rn×p,
S∞ ∈ Rp×p and V∞ ∈ Rp×p, such that Z∞ = Q∞S∞V

T
∞, range (Q∞) = range (Z∞) and

Z∞Z
T
∞ = Q∞S

2
∞Q

T
∞.

Because of the invariance we get

etÂ
T
Q∞ = Q∞e

tQT
∞Â

TQ∞ .

Now observe that

etÂ
T
X∞ = etÂ

T
Z∞Z

T
∞ = etÂ

T
Q∞S

2
∞Q

T
∞ = Q∞e

tQT
∞Â

TQ∞S2
∞Q

T
∞. (15)
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Therefore the solution X(t) can be written in the form

X(t) = X∞ −Q∞X̃(t)QT∞. (16)

We use the DRE (1) and equation (16) and get a differential equation for X̃(t)

˙̃X(t) = QT∞Â
TQ∞X̃(t) + X̃(t)QT∞ÂQ∞ + X̃QT∞BB

TQ∞X̃(t), (17a)
X̃(0) = QT∞X∞Q∞. (17b)

Derivation by using a low-rank approximation XN of the exact solution X∞ of the
ARE
Let now ZNZ

T
N = XN ≈ X∞ be a low-rank approximation obtained by a numerical method. We

replace X∞ by XN in formula 14 and obtain

X(t) ≈ XN − et(A−BB
TXN)T

XNe
t(A−BBTXN)

− et(A−BBTXN)T

XN

(
In −

(
XL − etÂXLe

tÂT
)
X∞

)−1 (
XL − etÂXLe

tÂT
)
XNe

t(A−BBTXN).

Let ZN = QNSNV
T
N be the compact singular value decomposition of the low-rank factor. According

to formula 15, we propose to approximate the action of the matrix exponential by

et(A−BBTXN)T

XN = et(A−BBTXN)T

ZNZ
T
N = et(A−BBTXN)T

QNS
2
NQ

T
N

≈ QNetQ
T
N(A−BBTXN)T

QNS2
NQ

T
N .

Therefore we obtain the Galerkin ansatz X(t) ≈ XN−QNX̃N (t)QTN for the numerical approximation.
Again we use the DRE (1) and get a differential equation for X̃N (t)

˙̃XN (t) = QTN

(
A−BBTXN

)T
QNX̃N (t) + X̃N (t)QTN

(
A−BBTXN

)
QN

+ X̃N (t)QTNBBTQNX̃N (t) +QTNR(XN )QN .
X̃N (0) = QTNXNQN .

We assume that the numerical low-rank approximation is accurate enough such that R(XN ) ≈ 0.
Then it holds:

∥∥∥QTNR(XN )QN
∥∥∥

2
≤ ‖R(XN )‖2 ≈ 0.

This means that the projected residual QTNR(XN )QN is even smaller than the residual of the ARE
R(XN ) and, therefore, we can neglect the residual.

5.2. Reduced Trial Space for the Galerkin Approach using Eigenvalue Decay
Let X∞ = Z∞Z

T
∞ be the exact solution of the ARE (2). Moreover let Z∞ = Q∞S∞V

T
∞ be its

compact singular value decomposition, such that Q∞ ∈ Rn×p, S∞ ∈ Rp×p and V∞ ∈ Rp×p and
Z∞ = Q∞S∞V

T
∞. The compact singular value decomposition of Z∞ gives a spectral decomposition

of X∞ that is

X∞ = Z∞Z
T
∞ = Q∞S

2
∞Q

T
∞, and S2

∞ = diag
(
λ↓1 (X∞) , . . . , λ↓p (X∞)

)
.
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This means that the diagonal matrix S2
∞ contains all non-zero eigenvalues of X∞ in a non-increasing

fashion. We have that range (X∞) = range (Z∞) = range (Q∞). Because of Theorem 3.3 it holds
that range (Q∞) = K

(
AT , CT

)
. According to Theorem 3.5 we can represent the solution in the

following form

X(t) = Q∞Q
T
∞X(t)Q∞QT∞.

This representation has the advantage that the entries of QT∞X(t)Q∞ can be bounded by the
eigenvalues of X∞.
Theorem 5.1.
Let (A,B) be stabilizable and (A,C) be detectable. Moreover let X∞ ∈ Rn×n be the unique symmetric
positive semidefinite solution of the ARE (2) and q1, . . . , qn ∈ Rn be a system of orthonormal
eigenvectors of X∞ corresponding to the eigenvalues λ↓1 (X∞) , . . . , λ↓n (X∞) ∈ R. Then for all
i, j = 1, . . . , n and t ≥ 0 the following holds:

∣∣∣qTi X(t)qj
∣∣∣ ≤

√
λ↓i (X∞)λ↓j (X∞), (18)

where X is the unique solution of the DRE (1) with X0 = 0.

Proof. According to Theorem 3.1 the inequality 0 4 X(t) 4 X∞ holds for all t ≥ 0. By multiplying
the inequality with qTi from the left and qi from the right we obtain

0 ≤ qTi X(t)qi ≤ qTi X∞qi = λ↓i (X∞) qTi qi = λ↓i (X∞) .

Now let i 6= j and α, β ∈ R. Again by multiplying the inequality with αqi + βqj we obtain

0 ≤ (αqi + βqj)TX(t) (αqi + βqj) ≤ (αqi + βqj)TX∞ (αqi + βqj) .

Since X(t) and X∞ are symmetric, it applies that

α2qTi X(t)qi + 2αβqTi X(t)qj + β2qTj X(t)qj ≤ α2qTi X∞qi + 2αβqTi X∞qj + β2qTj X∞qj .

As qi and qj are different orthonormal eigenvectors of X∞, we obtain for the right hand side

α2qTi X∞qi + 2αβqTi X∞qj + β2qTj X∞qj = α2λ↓i (X∞) + 2αβλ↓j (X∞) qTi qj + β2λ↓i (X∞)

= α2λ↓i (X∞) + β2λ↓i (X∞) .

As X(t) is symmetric positive semidefinite, the following inequality holds for the left hand side.

α2qTi X(t)qi + 2αβqTi X(t)qj + β2qTj X(t)qj ≥ 2αβqTi X(t)qj .

Now we have

0 ≤ α2λ↓i (X∞)− 2αβqTi X(t)qj + β2λ↓j (X∞) =
[
α β

] [ λ↓i (X∞) −qiTX(t)qj
−qiTX(t)qj λ↓j (X∞)

] [
α
β

]
.

Since this holds for all α, β ∈ R the matrix
[
λ↓i (X∞) −qiTX(t)qj
−qiTX(t)qj λ↓j (X∞)

]
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is symmetric positive semidefinite. Therefore its determinant must be non-negative,

0 ≤ λ↓i (X∞)λ↓j (X∞)−
(
qi
TX(t)qj

)2
.

Finally this leads to
∣∣∣qiTX(t)qj

∣∣∣ ≤
√
λ↓i (X∞)λ↓j (X∞).

Let the columns of Q∞ be q1, . . . , qp. Due to the decay of the eigenvalues λ↓k (X∞) of the solution
of the ARE (2) and the inequality (18) from Theorem 5.1, the values

∣∣∣qTi X(t)qj
∣∣∣ also decay for i+ j

increasing. We have that

X(t) = Q∞Q
T
∞X(t)Q∞QT∞ =

p∑

i,j=1

(
qTi X(t)qj

)
qiq

T
j .

For quick enough eigenvalue decay, we expect that
∣∣∣qTi X(t)qj

∣∣∣ ≤
√
λ↓i (X∞)λ↓j (X∞) ≈ 0 for i+ j

large enough. We truncate the series and obtain

X(t) ≈
k∑

i,j=1

(
qTi X(t)qj

)
qiq

T
j = Q∞,kQ

T
∞,kX(t)Q∞,kQT∞,k,

where Q∞,k =
[
q1, . . . , qk

]
∈ Rn×k. We also consider the appropriate real linear space

Q∞,k :=
{
Q∞,kY Q

T
∞,k | Y ∈ Rq×q

}
⊆ Rn×n

together with the orthogonal projection

Pk : Rn×n → Q∞,k, P∞,k(X) = Q∞,kQ
T
∞,kXQ∞,kQ

T
∞,k

As the columns of Q∞,k are orthonormal, it holds that P2
∞,k(X) = P∞,k(X). Moreover the projection

P∞,k is orthogonal, because

〈X − P∞,k(X), Q∞,kY Q∞,k〉F = 〈X −Q∞,kQT∞,kXQ∞,kQT∞,k, Q∞,kY QT∞,k〉F
= 〈X,Q∞,kY QT∞,k〉F − 〈Q∞,kQT∞,kXQ∞,kQT∞,k, Q∞,kY QT∞,k〉F
= 〈X,Q∞,kY QT∞,k〉F − 〈X,Q∞,kY QT∞,k〉F = 0

for all Y ∈ Rk×k. Therefore the best approximation of X(t) in Q∞,k is given by

k∑

i,j=1

(
qTi X(t)qj

)
qiq

T
j = P∞,k(X(t)) = argmin

X∈Q∞,k

‖X −X(t)‖F

and for the approximation error we obtain

‖X(t)− P∞,k(X(t))‖F =

∥∥∥∥∥∥∥∥

p∑

i,j=1
i>k∨j>k

(
qTi X(t)qj

)
qiq

T
j

∥∥∥∥∥∥∥∥
F

=

√√√√√√

p∑

i,j=1
i>k∨j>k

∣∣qTi X(t)qj
∣∣2
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≤

√√√√√√

p∑

i,j=1
i>k∨j>k

λ↓i (X∞)λ↓j (X∞).

Since the eigenvalues λ↓p+1 (X∞) , . . . , λ↓n (X∞) are 0 we obtain

‖X(t)− P∞,k(X(t))‖F ≤

√√√√√√

n∑

i,j=1
i>k∨j>k

λ↓i (X∞)λ↓j (X∞). (19)

We propose therefore to setup a trial space for the Galerkin approach using a system of eigenvectors
corresponding to the largest eigenvalues. This can be obtained by using a low-rank method to obtain
a numerical approximation of the solution of the ARE. Then a compact singular value decomposition
of the numerical low-rank approximation of X∞ can be used to obtain an approximation of the
eigenvectors corresponding to the largest eigenvalues. The small singular values can be safely
truncated from the singular value decomposition by virtue of Thm. 5.1. This reduces also the
dimension of the trial space. Let

ZN = QNSNV
T
N .

be the truncated reduced singular value decomposition of the low-rank approximation. With that,
the trial space for the Galerkin approach is given by

{
QNX̃Q

T
N | X̃ ∈ Rp×p

}
,

and, as X(t) converges to X∞ and X∞ ≈ ZNZTN , we propose the Galerkin ansatz

X(t) ≈ ZNZTN −QNX̃(t)QTN .

Example 5.1 (Decay of Absolute Values of Entries).
We illustrate the decay of

∣∣∣qiX(t)qTj
∣∣∣ in Figures 4-8. We have chosen the same matrices as for the

Example 3.1. To improve the visualization all values below machine precision were set to machine
precision. The eigenvalue decay of the solution X∞ of the corresponding ARE is shown in Figure 9.
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Remark 5.1.
With minor adjustments, all arguments also hold for the generalized DRE

MT Ẋ(t)M = ATX(t)M +MTX(t)A−MTX(t)BBTX(t)M + CTC, (20a)
X(0) = 0, (20b)

with M ∈ Rn×n nonsingular that can accommodate, e.g., a mass matrix from a finite element
discretization.
In summary, the proposed approach reads as written down in Algorithm 3.
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Algorithm 3 Galerkin approach for the generalized DRE (20) (ARE-Galerkin)
Assumption:

(
AM−1, B

)
is stabilizable and (AM−1, CM−1) is detectable.

Input: M, A ∈ Rn×n, B ∈ Rn×b, C ∈ Rc×n.
Output: X(t) ≈ Z∞ZT∞ −Q∞X̃(t)QT∞ that approximates the solution to

1: MT Ẋ(t)M = ATX(t)M +MTX(t)A−MTX(t)BBTX(t)M + CTC, X(0) = 0.

% Solve the ARE:
2: ATX∞M +MTX∞A−MTX∞BB

TX∞M + CTC = 0 for X∞ ≈ Z∞ZT∞ and Z∞ ∈ Rn×q;

% Compute compact singular value decomposition:
3: [Q∞, S∞,∼] = svd(Z∞, 0);

% Set tolerance to largest singular value times machine epsilon:
4: tol = εmachine · S∞(1, 1);

% Truncate all singular values smaller than tolerance and get truncated low-rank factor:
5: idx = diag(S∞) ≥ tol;
6: S∞ = S∞(idx, idx);
7: Q∞ = Q∞(:, idx);
8: Z∞ = Q∞S∞;

% Compute matrices:
9: AF = QT∞

(
AM−1 −BBTZ∞Z

T
∞

)
Q∞;

10: BF = QT∞B;

% Solve the differential equation using Algorithm 2:
11: ˙̃X(t) = ATF X̃(t) + X̃(t)AF + X̃(t)BFBT

F X̃(t), X̃(0) = S2
∞;
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6. Numerical Experiments
To quantify the performance of Algorithm 3, we consider a number of differential Riccati equations
that are used to define optimal controls. Concretely, we consider the generalized differential Riccati
equation

MT Ẋ(t)M = ATX(t)M +MTX(t)A−MTX(t)BBTM + CTC, (21a)
X(0) = 0. (21b)

and their realizations. First, we consider the RAIL benchmark example, that is a finite element
discretization of a heat equation; see [16] for the model description. The second example, CONV DIFF,
derives from a finite-differences discretized heat equation with convection on the unit square with
homogenous Dirichlet boundary conditions,

∂

∂t
x(ξ, t)−∆x(ξ, t)− v · ∇x(ξ, t) = f(ξ)u(t) in Ω× (0, T )

where Ω = (0, 1)2 and v = [10, 100]T ; see [46].
On both examples, we compare the proposed method with the splitting methods developed in [52,53].
The splitting methods are based on a splitting of the DRE into an affine and nonlinear subproblem.
The advantages of that approach lie in the fact that the nonlinear subproblem can be solved by an
explicit solution formula. The numerical solution of the linear subproblem is based on approximating
the action of a matrix exponential by means of Krylov subspace methods. We used the MATLAB
implementation DREsplit [55] of the splitting methods for our experiments. In the tests, we employed
the Lie and Strang splitting of order 1 and 2 respectively, as well as the symmetric splitting of order
4, 6 and 8. We abbreviate the methods by LIE, STRANG, SYMMETRIC2, SYMMETRIC4, SYMMETRIC6 and
SYMMETRIC8.
To evaluate the error, we computed a reference solution Xref(t) using SYMMETRIC8 with constant
time step size h. The basic information about the setup of the benchmark problems are given in
Table 1.

problem n matrices interval reference solution
M symmetric positive definite,

RAIL 5177 A symmetric, M−1A stable, [0, 464] SYMMETRIC8, h = 2−5

B ∈ Rn×6, C ∈ R7×n

M = In,
CONV DIFF 6400 A nonsymmetric and stable, [0, 0.125] SYMMETRIC8, h = 2−18

B ∈ Rn×1, C ∈ R1×n

Table 1: Information about benchmark problems.

All computations are carried out on a machine with 2× Xeon® Skylake Silver 4110 @ 2.10GHz
CPU with 8 cores, 192 GB Ram and MATLAB 2018a. We have used the low-rank Newton ADI
iteration implemented in MEX-M.E.S.S.[12] to solve the algebraic Riccati equations; as required for
our approach as laid out in Algorithm 3.
We report the absolute and relative errors

‖X(t)−Xref(t)‖ and ‖X(t)−Xref(t)‖
‖Xref(t)‖ ,
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where X(t) is the numerical approximation and Xref(t) is the reference solution in 2-norm and
Frobenius norm. We also report the norm of the reference solution ‖Xref(t)‖ as well as the
convergence to the stationary point ‖Xref(t)−X∞‖2.
Numerical results for the Galerkin approximation from Algorithm 3 and for the splitting scheme
based solvers and be found in Appendices A and B. The computational costs for both methods are
given in Section 6.2. Also, we evaluate the best approximation in the trial space of the reference
solution, which is given by

Xbest(t) := Q∞Q
T
∞Xref(t)Q∞QT∞ = argmin

X∈{Q∞X̃QT
∞|X̃∈Rp×p}

‖X −Xref(t)‖F ,

where Q∞ is the matrix from Algorithm 3 Line 8.
The code of the implementation and the precomputed reference solution are available as mentioned
in Figure 10.

Code and Data Availability
The source code of the implementations used to compute the presented results is available from:

doi:10.5281/zenodo.2629737
https://gitlab.mpi-magdeburg.mpg.de/behr/behbh19 dre are galerkin code

under the GPLv2+ license and is authored by Maximilian Behr.

Fig. 10. Link to code and data.

6.1. Galerkin Approach and Splitting Schemes
The initial step of Algorithm 3 requires the solution to the associated ARE. For this task we call
MEX-M.E.S.S. that iteratively computes the numerical solution to the following absolute and relative
residuals

∥∥∥ATZ∞ZT∞M +MTZ∞Z
T
∞A−MTZ∞Z

T
∞BB

TZ∞Z
T
∞M + CTC

∥∥∥
2

and
∥∥∥ATZ∞ZT∞M +MTZ∞Z

T
∞A−MTZ∞Z

T
∞BB

TZ∞Z
T
∞M + CTC

∥∥∥
2

‖CTC‖2
.

The achieved values for the different test setups as well as the number of columns of the corresponding
Z∞ after truncation (see Step 5 of Algorithm 3), that define the dimension of the reduced model,
are listed in Table 2.

instance n size of Galerkin system absolute residual relative residual
RAIL 5,177 319 5.068 · 10−14 4.223 · 10−15

CONV DIFF 6,400 56 1.922 · 10−10 4.291 · 10−14

Table 2: Residuals for the ARE 0 = ATXM +MXA−MTXBBTXM + CTC.

The 1-norm bound for the matrix exponential tolexp from Algorithm 2 was set to 1 · 1010. The
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resulting step sizes are given in Table 3.

Instance n Step sizes h

RAIL 5,177
{

20, 2−1, . . . , 2−5}
CONV DIFF 6,400

{
2−12, 2−13, . . . , 2−16}

Table 3: Step sizes h for modified Davison-Maki method Algorithm 2.

We plot the numerical errors in Figures 15–18 and 21–24. Figures 19, 20, 25 and 26 show the norm
of the reference solution and the convergence to the stationary point.
In view of the performance, we can interpret the presented numbers and plots as follows: Firstly,
the accuracy of the modified Davison-Maki method; cf. Figure 16 and 18 is independent of the step
size, as discussed in Section 4.3. Still we compute the solution on different time grids, since for
control applications the values of the solution might be needed at many time instances.
The computational times for ARE-Galerkin include the solve of the corresponding ARE and the
subsequent integration of the projected dense DRE. Since the efforts for the time integration exactly
doubles with a bisection of the step size, from the timings for the RAIL problem, with, e.g., 42s
(h = 2−3) and 77s (h = 2−4) (see Figure 11), one infers that most of the time is spent to solve
the dense DRE. Conversely, for the CONV DIFF benchmark problem, most of the time (45s) was
used to solve the ARE. As the resulting Galerkin projected DRE system is of size 56 only, the
computational costs for the time integration are vanishingly small. Accordingly, the differences in
the effort caused by finer time grids are hardly visible; see Figure 13.
The reference solution for the RAIL problem is large in norm what makes the absolute error
comparatively large; see the Figure 19 in Appendix A.
In both examples, in terms of accuracy, the ARE-Galerkin approximation is nearly at the same
level as the high order splitting schemes, cf. Figures 16, 32 and Figures 22, 38. We note, however,
that the ARE-Galerkin method does not give the best possible approximation in the trial space;
compare the error levels for Xbest.
In any case, the ARE-Galerkin method clearly outperforms the splitting methods in terms of
computational time versus accuracy in all test examples.

6.2. Computational Time
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7. Conclusion
We have reviewed and extended fundamental properties of the solution to the differential and algebraic
Riccati equation and heavily relied on the solution representation provided by Radon’s Lemma to
analyze variants of Davison-Maki methods and to derive an efficient Galerkin projection scheme.
Numerical tests confirmed that the resulting projected scheme outperforms existing methods in
terms of computation time, memory requirements, and approximation quality. In particular, storage
requirements have been the bottleneck in the numerical considerations of large-scale differential
Riccati equations.
Our proposed Galerkin ansatz bases on a low-rank approximation of the associated algebraic
Riccati equation (ARE) for which there are efficient solvers. Moreover, the information on the
residual and on eigenvalue decay, that come with the low-rank iteration for the ARE can be directly
transferred into estimates for the approximation quality of our approach the more that the use of
the Davison-Maki methods leads to an exact time discretization.
Future work will deal with the treatment of nonzero initial conditions. While the formulas are
easily extended to this case, the invariance properties and the eigenvalue comparisons, that were the
backbone of our numerical approach, are no longer given in general. For the (not so) special case
that the initial condition X0 writes as X0 = CTWC with a symmetric positive definite weighting
matrix W , the flow invariance as established in Section 5.1 still holds so that the presented algorithm
can be applied without modification. For a general low-rank initial condition X0 = Z0ZT0 the flow
invariance can be achieved by taking the columns of the solution to the ARE (2) with CTC replaced
by
[
CT , Z0

] [
CT , Z0

]T
as the Galerkin ansatz space. In any case, the inequality 0 4 X(t) 4 X∞,

where X∞ is the solution of the ARE, does not hold anymore and, thus, approximation quality
cannot be assured as in (19). However, if one can find a matrix X̃ for which the comparison
0 4 X(t) 4 X̃ holds, all arguments of Section 5.2 apply accordingly.
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[23] Y. Güldoǧan, M. Hached, K. Jbilou, and M. Kurulay. Low-rank approximate solutions to
large-scale differential matrix Riccati equations. Applicationes Mathematicae, 45(2):233–254,
2018.

[24] M. Hached and K. Jbilou. Computational Krylov-based methods for large-scale differential
Sylvester matrix problems. Numer. Lin. Alg. Appl., 25(5):e2187, 14, 2018.

[25] M. Hached and K. Jbilou. Numerical methods for differential linear matrix equations via Krylov
subspace methods. Technical Report arXiv:1805.10192v1, arXiv, 2018. math.NA.

27

https://www.mpi-magdeburg.mpg.de/projects/mess
https://www.mpi-magdeburg.mpg.de/projects/mess


[26] M. Hached and K. Jbilou. Numerical solutions to large-scale differential Lyapunov matrix
equations. Numer. Algorithms, 2018.

[27] J. Heiland. Decoupling and Optimization of Differential-Algebraic Equations with Application
in Flow Control. Dissertation, TU Berlin, 2014.

[28] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge,
1985.

[29] R. E. Kalman and T. S. Englar. A user’s manual for the automatic synthesis program. RIAS
Report CR-475, NASA, 1966.

[30] C. Kenney and R. B. Leipnik. Numerical integration of the differential matrix Riccati equation.
IEEE Trans. Autom. Control, 30:962–970, 1985.

[31] G. Kirsten and V. Simoncini. Order reduction methods for solving large-scale differential matrix
Riccati equations. e-print 1905.12119, arXiv, 2019. math.NA.

[32] H. W. Knobloch and H. Kwakernaak. Lineare Kontrolltheorie. Springer-Verlag, Berlin, 1985.
In German.
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A. Numerical Results for Galerkin Approach
RAIL, n = 5177 and MT Ẋ(t)M = ATX(t)M +MTX(t)A−MTX(t)BBTX(t)M +CTC, X(0) = 0.
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Fig. 15. Absolute error of the Galerkin and
Best approximation.
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Fig. 16. Relative error of the Galerkin and
Best approximation.
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Fig. 17. Absolute error of the Galerkin and
Best approximation.
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Fig. 18. Relative error of the Galerkin and
Best approximation.
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Fig. 19. Norm of the reference solution.
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Fig. 20. Convergence to the stationary point.
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CONV DIFF, n = 6400 and Ẋ(t) = ATX(t) +X(t)A−X(t)BBTX(t) + CTC, X(0) = 0.
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Fig. 21. Absolute error of the Galerkin and
Best approximation.
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Fig. 22. Relative error of the Galerkin and
Best approximation.
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Fig. 23. Absolute error of the Galerkin and
Best approximation.
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Fig. 24. Relative error of the Galerkin and
Best approximation.
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Fig. 25. Norm of the reference solution.
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Fig. 26. Convergence to the stationary point.
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B. Numerical Results for Splitting Schemes
RAIL, n = 5177 and MT Ẋ(t)M = ATX(t)M +MTX(t)A−MTX(t)BBTX(t)M +CTC, X(0) = 0.
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Fig. 27. Absolute error of the splitting
scheme approximation.
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Fig. 28. Relative error of the splitting scheme
approximation.
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Fig. 29. Absolute error of the splitting
scheme approximation.
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Fig. 30. Relative error of the splitting scheme
approximation.
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Fig. 31. Absolute error of the splitting
scheme approximation.
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Fig. 32. Relative error of the splitting scheme
approximation.
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CONV DIFF, n = 6400 and Ẋ(t) = ATX(t) +X(t)A−X(t)BBTX(t) + CTC, X(0) = 0.
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Fig. 33. Absolute error of the splitting
scheme approximation.
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Fig. 34. Relative error of the splitting scheme
approximation.
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Fig. 35. Absolute error of the splitting
scheme approximation.
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Fig. 36. Relative error of the splitting scheme
approximation.
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Fig. 37. Absolute error of the splitting
scheme approximation.
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Fig. 38. Relative error of the splitting scheme
approximation.
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