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Abstract

The differential Riccati equation appears in different fields of applied mathematics like control and system

theory. Recently, Galerkin methods based on Krylov subspaces were developed for the autonomous differential

Riccati equation. These methods overcome the prohibitively large storage requirements and computational

costs of the numerical solution. Known solution formulas are reviewed and extended. Because of memory-

efficient approximations, invariant subspaces for a possibly low-dimensional solution representation are

identified. A Galerkin projection onto a trial space related to a low-rank approximation of the solution of the

algebraic Riccati equation is proposed. The modified Davison-Maki method is used for time discretization.

Known stability issues of the Davison-Maki method are discussed. Numerical experiments for large-scale

autonomous differential Riccati equations and a comparison with high-order splitting schemes are presented.
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1. Introduction

In this paper, we consider the autonomous differential Riccati equation

Ẋ(t) = A>X(t) + X(t)A − X(t)BB>X(t) + C>C,

X(0) = X0.

The most prominent application of the differential Riccati equations is the linear-quadratic regulator problem

both in finite (cp., e.g., [1–3, 26]) and infinite dimensions [4]. More recently, the differential Riccati equation

has been used to analyze steady state solutions to reaction-diffusion equations [5, 6].
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We focus on the large-scale case that occurs, e.g., when infinite dimensional problems are spatially discretized.5

In such settings, the numerical approximation of X comes with high memory requirements and high

computational costs. Just the storage of the solution at the relevant time instances would scale with Ntn
2, if

n is the dimension of the problem and Nt is the number of time steps.

Most approaches discretize in time and then focus on an efficient approximation of the resulting algebraic

equations. This typically comes with a restriction on the choice of the time discretization method in order to10

preserve the definiteness of the discrete solution; cp. [7–10], although there have been efforts to overcome this

restriction; cp. [11, 14]. Nonetheless, in these methods, the use of higher order schemes implies additional

effort in every solve of the algebraic Riccati equation, so that only backward differencing schemes are

considered suitable choices for the time discretization. More flexibility is provided by the splitting schemes

(see, e.g., [13, 15, 16]) that separate the linear and nonlinear parts. Still, at least one large-scale algebraic15

equation has to be solved and stored for every time step in all the approaches mentioned in this paragraph.

Conceptually, it seems more beneficial for the autonomous differential Riccati equation to first reduce

the problem dimensions to, say, k � n, and then approach the reduced equation as this leads to storage

requirements of the order of Ntk
2 for the reduced problem and nk for the basis vectors. In this respect,

Krylov subspace methods have been proposed [17–23] that generate a trial space for the numerical solution20

using an Arnoldi method. The resulting Galerkin projected system is of lower order and can be solved with

low memory demands and with various methods that exist for differential Riccati equations of small or

moderate size.

In this work, we develop a Galerkin approach, where the trial space is based on the numerical solution of the

algebraic Riccati equation. This extends the concepts of our previous work on a numerical scheme for the25

differential Lyapunov equation [24].

The paper is organized as follows. In Section 2, we introduce the algebraic and differential Riccati equations

and review the relevant fundamental properties of their solutions. In Section 3, we review Radon’s Lemma.

Moreover, in Section 3.2, we apply Radon’s Lemma to obtain solution formulas for the differential Riccati

equation based on the solution of the algebraic Riccati equation that we will use to explain and illustrate30

the major source of numerical instabilities of the Davison-Maki method for the numerical solution of the

differential Riccati equation; see Section 3.3. We derive the modified Davison-Maki method in a way that

overcomes these instabilities. In Section 4, we develop a Galerkin approach for the solution of the differential

Riccati equation in the matrix exponential representation that results from Radon’s Lemma. We combine the

monotonicity of the solution of the differential Riccati equation and relevant properties of the solution of the35

algebraic Riccati equation to define a suitable and numerically computable trial space for the approximation

of the solution of the differential Riccati equation. We propose to solve the resulting Galerkin system with the

modified Davison-Maki method. Numerical results are presented in Section 5, Appendix A, and Appendix B.

We set the notation and review some basic results from linear algebra. The identity matrix and zero matrix
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of size n × n are written by In and 0n, respectively. The image or column space of a matrix A ∈ Rn×m is40

denoted by range (A), and its kernel or null space by ker(A). The 1–norm, 2–norm, Frobenius norm, and

Frobenius inner product are denoted by ‖·‖1 , ‖·‖2 , ‖·‖F , and 〈·, ·〉F , respectively. The spectrum of a square

matrix A is denoted by Λ(A). Generally, the spectrum is a subset of C. A matrix is called stable if its

spectrum is contained in the left open complex half plane C−, i.e., Λ(A) ⊆ C−. If A is real and symmetric, all

eigenvalues are real, and λ↓
k(A) represents the k–largest eigenvalue. Therefore, λ↓

1(A) ≥ λ↓
2(A) ≥ · · · ≥ λ↓

n(A)45

are the eigenvalues of A ordered in a weakly decreasing fashion. The Loewner partial ordering on the set of

real symmetric matrices is defined by A 4 B, which means B − A is positive semidefinite, [25, Ch. 7.7]. The

unique symmetric positive semidefinite square root of a symmetric positive semidefinite matrix X ∈ Rn×n is

denoted by X1/2; cf. [25, Thm. 7.2.6]. The orthogonal complement of a linear subspace U ⊆ Rn is denoted by

U⊥ ⊆ Rn. For A ∈ Rn×n and B ∈ Rn×b, the image of the Krylov matrix generated by A and B is denoted50

by K(A, B) := range
([

B, AB, . . . , An−1B
])

⊆ Rn. The linear space K(A, B) is A–invariant.

2. Algebraic and Differential Riccati Equations

This section introduces the algebraic and differential Riccati equation (ARE/DRE) and the algebraic

Lyapunov equation (ALE).

Consider A, X0 ∈ Rn×n, B ∈ Rn×b and C ∈ Rc×n. Throughout this paper, we assume that X0 is a symmetric

positive semidefinite matrix and consider the DRE

Ẋ(t) = R(X(t)) := A>X(t) + X(t)A − X(t)BB>X(t) + C>C, (1a)

X(0) = X0. (1b)

Stationary points of (1a) are solutions of the corresponding ARE

0n = R(X) = A>X + XA − XBB>X + C>C. (2)

The linear version of the ARE is the ALE

0n = A>X + XA + C>C. (3)

We review some fundamental results about existence, uniqueness, and properties of the solution of the55

DRE (1), ARE (2), and the ALE (3).

Theorem 2.1 ([26, Thm. 1.1.3, Thm. 1.1.7]).

If Λ(A) ∩ Λ(−A) = ∅, then the ALE (3) has a unique solution XL ∈ Rn×n. The solution XL is symmetric.
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If A is stable, then XL is symmetric positive semidefinite and given by

XL =
∞∫

0

etA>
C>CetAdt.

Theorem 2.2 ([26, Lem. 2.4.1, Cor. 2.4.3], [2, Ch. 10]).

Let (A, B) be stabilizable and (A, C) be detectable, then the ARE (2) has a unique stabilizing solution

X∞ ∈ Rn×n. This means R(X∞) = 0n, and A − BB>X∞ is stable. Moreover, X∞ is symmetric positive

semidefinite, and there is no other symmetric positive semidefinite solution of the ARE (2).60

Theorem 2.3 ([27, Thm. 3.2]).

Let (A, B) be stabilizable, (A, C) be detectable, and X∞ ∈ Rn×n be the unique stabilizing solution of the

ARE (2). Then the following relation holds:

range (X∞) = K
(
A>, C>)

.

The inclusion K
(
A>, C>)

⊆ range (X∞) in Theorem 2.3 holds for each symmetric solution of the ARE (2);

cf. [26, Lemma 2.4.9]. In [28, Sec. 3.3], a Kalman decomposition is used to show that rank (X∞) =

dim
(
K

(
A>, C>))

. A connection between the space K
(
A>, C>)

and a certain Krylov subspace generated

by the associated Hamiltonian matrix, which can be used for the numerical approximation of the solution of

the ARE (2), was presented in [29, Thm. 10].65

Typically, solutions of quadratic differential equations like the DRE (1) exhibit a finite-time escape phe-

nomenon. Through comparison arguments and the fact that −BB> is negative semidefinite, one can show

that the solution exists for all t ≥ 0. With additional assumptions, the solution converges monotonically to

the unique solution of the ARE (2) and is, thus, bounded.

Theorem 2.4 ([26, Thm. 4.1.6, Thm. 4.1.8], [2, Ch. 10]).70

The DRE (1) has a unique solution X : (t−, ∞) → Rn×n. The solution X has the following properties:

• X(t) is symmetric for all t ∈ (t−, ∞).

• X(t) is symmetric positive semidefinite for all t ≥ 0.

• If 0n 4 Ẋ(0) = R(X0), then t 7→ X(t) is monotonically increasing on [0, ∞), i.e. X(t1) 4 X(t2) for

all t1, t2 such that 0 ≤ t1 ≤ t2.75

Theorem 2.5 ([27, Thm. 3.1]).

Let the columns of Q ∈ Rn×p be an orthonormal basis of K
(
A>, C>)

and define the linear space Q :=

4



{
QY Q> | Y ∈ Rp×p

}
⊆ Rn×n or Q := {0n} ⊆ Rn×n, if C is zero. Then the following holds:

X(t) ∈ Q for all t ≥ 0,

where X is the unique solution of the DRE (1) with X0 = 0n.

With this relation, one can readily confirm that the solution of the DRE (1) evolves in an invariant subspace

of Rn×n.

For numerical approximations of the solutions of large-scale ALEs, AREs, and DREs, one typically seeks

low-rank approximations to avoid overly demanding memory requirements. Therefore, the relevant literature80

features numerous contributions that study the decay rate of λ↓
k(X) or λ↓

k
(X)/λ↓

1(X) for increasing k; see,

e.g., [30–37] on the eigenvalue decay of the solution of the ALE and [15, 29, 35] for results on the ARE and

DRE.

For the DRE (1), one can derive estimates based on the monotonicity. Assume that 0n 4 R(X0), then by

Theorem 2.4, the function t 7→ X(t) is monotonically weakly increasing on [0, ∞), where X is the unique85

solution of the DRE (1). A direct consequence of the Courant-Fischer-Weyl min-max principle [25, Cor.

7.7.4] implies that t 7→ λ↓
k(X(t)) is also monotonically weakly increasing on [0, ∞). Therefore, the number of

eigenvalues of X(t) greater than or equal to a given threshold ε > 0 is weakly increasing over time.

Example 2.1 (Eigenvalue Decay).

We illustrate this by an example in Figure 1. We have chosen C =
[
1, . . . , 1

]
= B>, X0 = 0n and A to be90

tridiagonal with entries 5, −1, −5 on the subdiagonal, diagonal, and superdiagonal, respectively. The matrices

are of size n = 100, and the DRE was solved numerically to high precision on the time interval [0, 15]. For

this, we have used the variable-precision arithmetic vpa of MATLAB® 2018a with 512 significant digits and

Algorithm 2 with step size h = 2−5. The eigenvalues of X(t) are arranged in a weakly decreasing order and

plotted for t ∈ {0.5, 1, . . . , 15}. The functions t 7→ λ↓
k(X(t)) are highlighted in red for k ∈ {10, 20, 30, 40, 50}.95

All eigenvalues below 10−60 were truncated from Figure 1. The shadowed red plane is drawn at the level

2 · 10−16, which is approximately machine precision in double arithmetic.
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Fig. 1. Eigenvalues λ↓
k

(X(t)) of the numerical solution of DRE (1).

3. Solution Formulas and Davison-Maki methods

3.1. Radon’s Lemma

In this section, we consider the nonsymmetric differential Riccati equation abbreviated by NDRE as a100

generalization of the DRE. We will make heavy use of Radon’s Lemma that shows that the NDRE is locally

equivalent to a linear differential equation of twice the size. Vice versa, the solution of the NDRE defines the

solution of an associated linear system. Radon’s Lemma (Theorem 3.1) has several consequences. Section 3.2

shows how solution formulas can be obtained by applying suitable linear transformations, which decouple

the linear differential equation.105

Then, because of numerical approximations, we review the Davison-Maki method and the modified Davison-

Maki method in Section 3.3. We use the solution formula from Section 3.2 to explain why the Davison-Maki

method applied to the DRE usually suffers from numerical instabilities.

We use the solution representation (Theorem 3.3) to motivate the Galerkin approach described in Section 4.1.

We make use of the modified Davison-Maki method in Algorithm 3 in Section 4.110

Theorem 3.1 (Radon’s Lemma, [26, Thm. 3.1.1]).

Let M11 ∈ Rn×n, M12 ∈ Rn×m, M21, M0 ∈ Rm×n, M22 ∈ Rm×m, and I ⊆ R be an open interval such that

0 ∈ I. We consider the NDRE

Ẇ (t) = M22W (t) − W (t)M11 − W (t)M12W (t) + M21, (4a)

W (0) = M0. (4b)
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The following holds:

1. Let W : I → Rm×n be the solution of (4) and U : I → Rn×n be the solution of the linear initial value

problem

U̇(t) = (M11 + M12W (t)) U(t), U(0) = In. (5)

Moreover, let V (t) := W (t)U(t). Then U : I → Rn×n and V : I → Rm×n define the solution of

U̇(t)

V̇ (t)

 = M

U(t)

V (t)

 :=

M11 M12

M21 M22

 U(t)

V (t)

 ,

U(0)

V (0)

 =

 In

M0

 . (6)

2. If

U

V

 : I → R(n+m)×n is a solution of (6), and the matrix U(t) is nonsingular for all t ∈ I, then

W : I → Rm×n, W (t) = V (t)U(t)−1 is a solution of (4).

Radon’s Lemma (Theorem 3.1) also holds for time-dependent continuous matrix-valued functions as coefficients.

Note that, usually, the solution of the NDRE (4) has finite time escape, while the solution of the system (6)115

exists for all t ∈ R. As the function U is a solution of the linear initial value problem (5) and U(0) = In

is nonsingular, the determinant of U(t) can not vanish on the interval I. It follows that the matrix U(t) is

nonsingular for all t ∈ I, c.f. [38, §15]. Therefore, as long as the solution of the NDRE (4) exists, it can be

recovered from the solution of the system (6).

3.2. Solution Formulas120

Radon’s Lemma (Theorem 3.1) enables certain solution representations for the DRE (1): Theorem 2.4 ensures

that the DRE (1) has a unique solution defined on the interval (t−, ∞). By Radon’s Lemma (Theorem 3.1),

we have that U(t) is nonsingular on the same interval.

Let H :=

 A −BB>

−C>C −A>

 ∈ R2n×2n be the Hamiltonian matrix corresponding to the DRE (1). The

matrices U(t) and V (t) are determined by the linear initial value problem

U̇(t)

V̇ (t)

 = −H

U(t)

V (t)

 ,

U(0)

V (0)

 =

 In

X0

 . (7)

We obtain U(t)

V (t)

 = e−tH

 In

X0

 .

The strategy is to decompose the Hamiltonian matrix H, such that (7) decouples.
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Theorem 3.2 (Solution Representation I for DRE (1), [39]).

Let X1 ∈ Rn×n be any solution of the ARE (2). Then the solution of the DRE (1) is given by

X(t) = X1 − et(A−BB>X>
1 )>

X̃

In −
t∫

0

es(A−BB>X1)BB>es(A−BB>X>
1 )>

dsX̃

−1

et(A−BB>X1),

X̃ := X1 − X0.

The formula was presented in [39] without proof. Since the existence of the involved inverse is not trivially125

established, we provide a proof.

Proof. We use T :=

 In 0n

X1 In

 and apply a similarity transformation to H,

T −1HT =

 In 0n

−X1 In

  A −BB>

−C>C −A>

  In 0n

X1 In

 =

A − BB>X1 −BB>

0n −(A − BB>X>
1 )>

 =: H̃.

This givesU(t)

V (t)

 = e−tH

 In

X0

 = e−tT H̃T −1

 In

X0

 = Te−tH̃T −1

 In

X0

 = Te−tH̃

 In

X0 − X1

 =: T

Ũ(t)

Ṽ (t)

 .

Clearly, Ũ and Ṽ are determined by the solution of the initial value problem ˙̃U(t)
˙̃V (t)

 = −H̃

Ũ(t)

Ṽ (t)

 =

−(A − BB>X1) BB>

0n (A − BB>X>
1 )>

 Ũ(t)

Ṽ (t)

 ,

Ũ(0)

Ṽ (0)

 =

 In

X0 − X1

 .

By using the variation of constants formula [38, §18], we obtain that Ũ and Ṽ are given by

Ṽ (t) = −et(A−BB>X>
1 )>

(X1 − X0),

Ũ(t) = e−t(A−BB>X1) +
t∫

0

e−(t−s)(A−BB>X1)BB>Ṽ (s)ds

= e−t(A−BB>X1)

In −
t∫

0

es(A−BB>X1)BB>es(A−BB>X>
1 )>

ds(X1 − X0)

 .

Since Ũ(t) = U(t) is nonsingular for all t ∈ (t−, ∞) and the matrix exponential is nonsingular, the matrix in
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brackets is also nonsingular. Finally, we obtain

V (t) = X1Ũ(t) + Ṽ (t),

X(t) = V (t)U(t)−1 = X1 + Ṽ (t)Ũ(t)−1
.

Theorem 3.3 (Solution Representation II for DRE (1), [40, Thm. 1], [41]).

Let (A, B) be stabilizable, (A, C) be detectable, and X∞ ∈ Rn×n be the unique symmetric positive definite

stabilizing solution of the ARE (2). Moreover, let Â := A−BB>X∞ and XL ∈ Rn×n be the unique symmetric

positive semidefinite solution of the ALE

ÂXL + XLÂ> + BB> = 0n.

The solution of the DRE (1) is represented by

X(t) = X∞ − etÂ>
(X∞ − X0)

(
In −

(
XL − etÂXLetÂ>

)
(X∞ − X0)

)−1
etÂ.

Proof. Similar to the proof of Theorem 3.2, we use similarity transformations to decompose the Hamiltonian

matrix H. This is also known as a Riccati-Lyapunov transformation [26, Ch. 3.1.1]. We obtain

T : =

 In 0n

X∞ In

 , T −1HT =

 Â −BB>

0n −Â>

 =: H̃,

T̃ : =

In −XL

0n In

 , T̃ −1H̃T̃ =

 Â 0n

0n −Â>

 =: Ĥ.

We thus get

e−tH = e−t(T T̃ )Ĥ(T T̃ )−1
= (T T̃ )e−tĤ(T T̃ )−1

=

 In −XL

X∞ In − X∞XL

 e−tÂ 0n

0n etÂ>

 In − XLX∞ XL

−X∞ In


=

 e−tÂ (In − XLX∞) + XLetÂX∞ e−tÂXL − XLetÂ>

X∞e−tÂ (In − XLX∞) − (In − X∞XL) etÂX∞ X∞e−tÂXL + (In − X∞XL) etÂ

 (8)
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and

U(t)

V (t)

 = e−tH

 In

X0

 =

 e−tÂ(In − XL(X∞ − X0)) + XLetÂ>(X∞ − X0)

X∞e−tÂ(In − XL(X∞ − X0)) − (X∞XL + In)etÂ>(X∞ − X0)

 . (9)

Now observe that

U(t) = e−tÂ
(

In −
(

XL − etÂXLetÂ>
)

(X∞ − X0)
)

,

V (t) = X∞e−tÂ
(

In −
(

XL − etÂXLetÂ>
)

(X∞ − X0)
)

− etÂ>
(X∞ − X0)

= X∞U(t) − etÂ>
(X∞ − X0),

therefore,

X(t) = V (t)U(t)−1 = X∞ − etÂ>
(X∞ − X0)

(
In −

(
XL − etÂXLetÂ>

)
(X∞ − X0)

)−1
etÂ.

In [42, Ch. 15.4], one can find another solution formula, which holds under more restrictive assumptions. A

solution formula based on the Jordan canonical form is given in [26, Thm. 3.2.1].130

3.3. Davison-Maki Methods

The Davison-Maki method for the NDRE (4) was proposed in [43]. The method is based on first computing

the matrix exponential ehM for a given step size h > 0. According to Radon’s Lemma (Theorem 3.1), we

have that U(h)

V (h)

 = ehM

 In

M0

 , W (h) = V (h)U(h)−1
.

The next step is then to make use of the semigroup property of the matrix exponential:U(2h)

V (2h)

 = e2hM

 In

M0

 =
(
ehM

)2

 In

M0

 , W (2h) = V (2h)U(2h)−1
.

For the further steps, we obtainU(kh)

V (kh)

 =
(
ehM

)k

 In

M0

 , W (kh) = V (kh)U(kh)−1
.
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Another variant of the Davison-Maki method updates U and V instead of the matrix exponential. The

variant follows fromU(kh)

V (kh)

 = ekhM

 In

M0

 = ehM e(k−1)hM

 In

M0

 = ehM

U((k − 1)h)

V ((k − 1)h)

 .

Both variants of the method are given in Algorithm 1.
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Algorithm 1 Davison-Maki method for the NDRE (4) [43, 44]
Assumption: The solution W of the NDRE (4) exists on [0, tf ).

Input: Real matrices M0 and Mij as in Theorem 3.1, step size h > 0 and final time tf > 0.

Output: Matrices Wk, such that W (kh) = Wk for k ∈ N0 and kh < tf .

1: W0 = M0;

2: k = 1;

% Compute matrix exponential:

3: Θh = exp

h

M11 M12

M21 M22

;

Variant with matrix exponential update:

4: Θ = Θh;

5: while kh < tf do

6: Partition

n m[ ]
= Θ;

n Θ11 Θ12

m Θ12 Θ22

7: Udm = Θ11 + Θ12M0;

8: Vdm = Θ21 + Θ22M0;

9: Wk = VdmUdm
−1;

10: Θ = ΘΘh;

11: k = k + 1;

12: end while

Variant with updating U and V :

13: Udm = In;

14: Vdm = M0;

15: Partition

n m[ ]
= Θ;

n Θ11 Θ12

m Θ12 Θ22

16: while kh < tf do

17: Udm = Θ11Udm + Θ12Vdm;

18: Vdm = Θ21Udm + Θ22Vdm;

19: Wk = VdmU−1
dm ;

20: k = k + 1;

21: end while

12



When the Davison-Maki method (Algorithm 1) is applied to the DRE (1), usually numerical instabilities

occur because each block of e−tH as well as U(t) and V (t) contains the matrix e−tÂ; cf. Equations (8)

and (9). Since Â = A − BB>X∞ is stable, the matrix exponential of −tÂ exhibits exponential growth, which135

becomes problematic for large t. The occurrence of these numerical problems with the Davison-Maki method

(Algorithm 1) was also pointed out in [44–47]. Another reason is that the spectrum of a real Hamiltonian

matrix comes in quadruples, that is Λ(H) = {λ1, . . . , λn, −λ1, . . . , −λn} with Re(λi) ≤ 0. Therefore, the

spectrum of the Hamiltonian matrix usually contains eigenvalues with positive real part, and its matrix

exponential grows for large times [48, Prop. 2.3.1].140

A suitable modification of the Davison-Maki method (Algorithm 1) was proposed in [44], but the modified

method originates back to [49, p. 9].

By Radon’s Lemma (Theorem 3.1), we have the identity

Ũ

Ṽ

 := e−hH

 In

W ((k − 1)h)

 , W (kh) = Ṽ Ũ−1.

The modified Davison-Maki method is given in Algorithm 2.
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Algorithm 2 Modified Davison-Maki method for the NDRE (4) [44, 49]
Assumption: The NDRE (4) has a solution W : [0, tf ) → Rm×n.

Input: Real matrices M0 and Mij as in Theorem 3.1, step size h > 0, final time tf > 0 and a moderate

large number tolexp > 0.

Output: Matrices Wk, such that W (kh) = Wk for k ∈ N0 and kh < tf .

1: W0 = M0;

2: k = 1;

% Compute matrix exponential:

3: Θ = exp

h

M11 M12

M21 M22

;

% Check the norm of the matrix exponential:

4: if ‖Θ‖1 > tolexp then

5: return Error(„1-Norm of the matrix exponential is too large, decrease the step size h“);

6: end if

7: Partition

n m[ ]
= Θ;

n Θ11 Θ12

m Θ12 Θ22

8: while kh < tf do

9: Umod_dm = Θ11 + Θ12Wk−1;

10: Vmod_dm = Θ21 + Θ22Wk−1;

11: Wk = Vmod_dmU−1
mod_dm;

12: k = k + 1;

13: end while

A decrease of the step size h > 0 does not improve the accuracy in general because, in theory, the exact values

of U(kh) and V (kh) are computed with the matrix exponential. In practice, the accuracy is determined by145

the accuracy of the matrix exponentiation, the repeated multiplication by the exponential, and the involved

matrix inversion.

For the realization in a simulation, the following considerations can be made. The step size should not

be chosen arbitrarily large as the matrix exponential may become too large in norm, which will lead to

cancellation errors. Thus, we suggest computing the norm of the matrix exponential before the iteration150

starts. If the norm is too large, then the step size has to be decreased. On the other hand, a small time

step means more multiplications with the matrix exponential and, possibly accumulating rounding errors.

However, if one can afford a single computation of the matrix exponential and the occasional application

with high accuracy for a larger step size, the solution can be corrected at the corresponding grid points.

14



In the k-th iteration of Algorithm 2, we haveUmod_dm

Vmod_dm

 = ehM

 In

W ((k − 1)h)

 =

Θ11 Θ12

Θ21 Θ22

  In

W ((k − 1)h)

 ,

and the norm of the iterates can be bounded by

‖Umod_dm‖ ≤ ‖Θ11‖ + ‖Θ12‖ ‖W ((k − 1)h)‖ ,

‖Vmod_dm‖ ≤ ‖Θ21‖ + ‖Θ22‖ ‖W ((k − 1)h)‖ .

For small step sizes of h > 0 it holds ehM ≈ In+m + hM and Θ11 ≈ In + hM11, Θ12 ≈ hM12, Θ21 ≈ hM21155

and Θ22 ≈ Im + hM22. Therefore, for small enough step size and moderate norm of the solution ‖W (t)‖, the

norm of the iterates cannot grow heavily in contrast to Algorithm 1. Assuming that the matrix exponential

in line 3 of Algorithm 2 was approximated using the scaling and squaring method, then the intermediates of

the squaring phase can be used, so that the matrix exponential is not recomputed from scratch.

Example 3.1 (Exponential Growth Davison-Maki method).160

We applied the Davison-Maki method (Algorithm 1) with step size h = 2−8 to a DRE with the same matrices

A, B, C, and X0 as in Example 2.1. We plot the 2-norm of the iterates Udm and Vdm as well as the 2-norm

condition number of Udm on the interval [0, 1]. The plot shows that all quantities grow exponentially over

time. Therefore, eventually, either a floating-point overflow will occur, or the matrix inversion ceases to be

executed accurately. Figure 3 shows the same quantities for the iterates Umod_dm and Vmod_dm of the modified165

Davison-Maki method (Algorithm 2).
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Fig. 2. Davison-Maki method (Algorithm 1) and the growth of Udm and Vdm.
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Fig. 3. Modified Davison-Maki method (Algorithm 2) and the growth of Umod_dm and Vmod_dm.

If a symmetric solution is expected, then line 11 in Algorithm 2 should be altered to Wk = 1
2

(
Wk + W >

k

)
because due to numerical errors, the symmetry will be lost after some iterations.

Any computationally efficient norm can also be used for the matrix exponential in Algorithm 2 line 4. The

modified Davison-Maki method is also more efficient than the Davison-Maki method in both variants because170

fewer matrix-matrix products are needed per time step; cf. Algorithm 2 lines 8-13 with Algorithm 1 lines 5-12

and lines 16-21.

4. Galerkin Approach for Large-Scale Differential Riccati Equations

In this section, we develop a feasible numerical approach for large-scale DREs. We consider the DRE (1) and

assume that X0 = 0n. We develop the Galerkin approach based on two theoretical considerations. First, we175

use the solution formula of Theorem 3.3. We show that the range of the solution X∞ of the ARE is invariant

under the action of the closed-loop matrix A − BB>X∞. It follows then that the action of the matrix

exponential of the closed-loop matrix on X∞ has the same property. This makes the approach consistent in

the sense that the evolution does not leave the space and provides reasoning that the consistency error made

by a numerical approximation to these subspaces can be made arbitrarily small. Moreover, this invariance180

property allows for a straight-forward low-dimensional approximation of the matrix exponential. After that,

we show that, for our proposed choice of a Galerkin basis, the approximation quality of the space can be

quantified by the eigenvalue decay of the solution of the ARE.

The result is a low-dimensional solution space with an accessible formula for the relevant matrix exponential

so that we can use the modified Davison-Maki (Algorithm 2) for an efficient solution of the projected Galerkin185

system.

4.1. Invariant Subspaces for the Galerkin Approach

First, we prove that the range space of the solution X∞ of the ARE is invariant under the action of the

transposed closed-loop matrix
(
A − BB>X∞

)>.
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Lemma 4.1.190

Let (A, B) be stabilizable, (A, C) be detectable, and X∞ ∈ Rn×n be the unique stabilizing solution of the

ARE (2). Then range(X∞) is (A − BB>X∞)>–invariant.

Proof. We can assume that X∞ 6= 0n. Let the columns of Q∞ ∈ Rn×p be an orthonormal basis for range(X∞).

Then Q∞Q>
∞ is the orthogonal projection onto range(X∞). We obtain

Q∞Q>
∞X∞ = X∞.

By Theorem 2.3, the columns of Q∞ are also an orthonormal basis for K
(
A>, C>)

. The space K
(
A>, C>)

is A>–invariant. We obtain

A>Q∞ = Q∞Q>
∞A>Q∞.

Finally, we have

(A − BB>X∞)>
Q∞ = Q∞Q>

∞A>Q∞ − Q∞Q>
∞X∞BB>Q∞

= Q∞
(
Q>

∞A>Q∞ − Q>
∞X∞BB>Q∞

)
.

This shows range(X∞) is (A − BB>X∞)>–invariant.

According to Theorem 3.3, the solution of the DRE (1) is given by

X(t) = X∞ − etÂ>
X∞

(
In −

(
XL − etÂXLetÂ>

)
X∞

)−1
etÂ,

where Â = A − BB>X∞. The identity (In − P (t))−1 = In + (In − P (t))−1
P (t) leads to

X(t) = X∞ − etÂ>
X∞etÂ

− etÂ>
X∞

(
In −

(
XL − etÂXLetÂ>

)
X∞

)−1 (
XL − etÂXLetÂ>

)
X∞etÂ. (10)

4.1.1. Derivation by using the exact solution X∞ of the ARE

By Lemma 4.1, it holds that range (X∞) is invariant under Â>. Assume now that X∞ is given in factorized195

form, this means that X∞ = Z∞Z>
∞ and Z∞ ∈ Rn×p and 1 ≤ p = rank (X∞) ≤ n. If rank(X∞) = 0, then

also X∞ = 0n as well as the solution X(t). Now it holds that range(X∞) = range(Z∞) and consequently

range(Z∞) is invariant under Â>.

Utilizing the compact singular value decomposition of Z∞, we obtain matrices Q∞ ∈ Rn×p, S∞ ∈ Rp×p, and

V∞ ∈ Rp×p, such that Z∞ = Q∞S∞V >
∞ , range (Q∞) = range (Z∞) and Z∞Z>

∞ = Q∞S2
∞Q>

∞. Because of
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the invariance, we get

etÂ>
Q∞ = Q∞etQ>

∞Â>Q∞ .

Now observe that

etÂ>
X∞ = etÂ>

Z∞Z>
∞ = etÂ>

Q∞S2
∞Q>

∞ = Q∞etQ>
∞Â>Q∞S2

∞Q>
∞. (11)

Therefore, the solution X(t) can be written in the form

X(t) = X∞ − Q∞X̃(t)Q>
∞. (12)

We use the DRE (1) and Equation (12) and obtain a differential equation for X̃(t):

˙̃X(t) = Q>
∞Â>Q∞X̃(t) + X̃(t)Q>

∞ÂQ∞ + X̃Q>
∞BB>Q∞X̃(t),

X̃(0) = Q>
∞X∞Q∞.

4.1.2. Derivation using a low-rank approximation XN of the exact solution X∞ of the ARE

Let now ZN Z>
N = XN ≈ X∞ be a low-rank approximation obtained by a numerical method. We replace

X∞ by XN in Equation (10) and obtain

X(t) ≈ XN − e
t
(

A−BB>XN

)>

XN e
t
(

A−BB>XN

)
− e

t
(

A−BB>XN

)>

XN

(
In −

(
XL − etÂXLetÂ>

)
X∞

)−1 (
XL − etÂXLetÂ>

)
XN e

t
(

A−BB>XN

)
.

Let ZN = QN SN V >
N be the compact singular value decomposition of the low-rank factor. According to

Equation (11), we propose to approximate the action of the matrix exponential by

e
t
(

A−BB>XN

)>

XN = e
t
(

A−BB>XN

)>

ZN Z>
N = e

t
(

A−BB>XN

)>

QN S2
N Q>

N

≈ QN e
tQ>

N

(
A−BB>XN

)>
QN S2

N Q>
N .

Therefore, we obtain the Galerkin approximation X(t) ≈ XN −QN X̃N (t)Q>
N for the numerical approximation.

Again we use the DRE (1) and get a differential equation for X̃N (t)

˙̃XN (t) = Q>
N

(
A − BB>XN

)>
QN X̃N (t) + X̃N (t)Q>

N

(
A − BB>XN

)
QN

+ X̃N (t)Q>
N BB>QN X̃N (t) + Q>

N R(XN )QN .

X̃N (0) = Q>
N XN QN .
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We assume that the numerical low-rank approximation is accurate enough such that R(XN ) ≤ τ � 1. Then

it holds: ∥∥Q>
N R(XN )QN

∥∥
2 ≤ ‖R(XN )‖2 ≤ τ � 1.

This means that the projected residual Q>
N R(XN )QN is even smaller than the residual of the ARE R(XN ),200

and, therefore, we neglect the projected residual.

4.2. Reduced Trial Space for the Galerkin Approach using Eigenvalue Decay

Let X∞ = Z∞Z>
∞ be the exact stabilizing solution of the ARE (2). Moreover, let Z∞ = Q∞S∞V >

∞ be its

compact singular value decomposition, such that Q∞ ∈ Rn×p, S∞ ∈ Rp×p, V∞ ∈ Rp×p, and Z∞ = Q∞S∞V >
∞ .

The compact singular value decomposition of Z∞ gives a spectral decomposition of X∞ that is

X∞ = Z∞Z>
∞ = Q∞S2

∞Q>
∞, and S2

∞ = diag
(

λ↓
1 (X∞) , . . . , λ↓

p (X∞)
)

.

This means that the diagonal matrix S2
∞ contains all nonzero eigenvalues of X∞ in a weakly decreasing

fashion. We have that range (X∞) = range (Z∞) = range (Q∞). Because of Theorem 2.3, it holds that

range (Q∞) = K
(
A>, C>)

. According to Theorem 2.5, we can represent the solution of the DRE in the form

X(t) = Q∞Q>
∞X(t)Q∞Q>

∞.

This representation has the advantage that the absolute value of the entries of Q>
∞X(t)Q∞ can be bounded

by the eigenvalues of X∞.

Theorem 4.1.

Let (A, B) be stabilizable and (A, C) be detectable. Moreover, let X∞ ∈ Rn×n be the unique symmetric

positive semidefinite solution of the ARE (2) and q1, . . . , qn ∈ Rn be a system of orthonormal eigenvectors of

X∞ corresponding to the eigenvalues λ↓
1 (X∞) , . . . , λ↓

n (X∞) ∈ R. Then for all i, j = 1, . . . , n and t ≥ 0, the

following holds: ∣∣q>
i X(t)qj

∣∣ ≤
√

λ↓
i (X∞) λ↓

j (X∞), (14)

where X is the unique solution of the DRE (1) with X0 = 0n.205

Proof. We use the fact that for any symmetric positive semidefinite matrix A ∈ Rn×n the inequality∣∣Ai,j

∣∣ ≤
√

Ai,iAj,j holds for all i, j = 1, . . . , n; see [25, Obs. 7.1.2, Problem 7.1.P1]. According to

Theorem 2.4, the inequality 0n 4 X(t) 4 X∞ holds for all t ≥ 0. This implies 0n 4 X∞ − X(t). Let the

columns of Q ∈ Rn×n be q1, . . . , qn, then the matrix Q>X∞Q − Q>X(t)Q is symmetric positive semidefinite.
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Therefore, the diagonal entries λ↓
i (X∞) − q>

i X(t)qi are nonnegative. We apply the inequality and obtain

∣∣q>
i X(t)qj

∣∣ ≤
√(

λ↓
i (X∞) − q>

i X(t)qi

) (
λ↓

j (X∞) − q>
j X(t)qj

)
for i 6= j. The inequality 0n 4 X(t) implies that 0 ≤ q>

i X(t)qi and the claim follows.

Let the columns of Q∞ be q1, . . . , qp. Due to the decay of the eigenvalues λ↓
k (X∞) of the solution of the

ARE (2) and the inequality (14) from Theorem 4.1, the values
∣∣q>

i X(t)qj

∣∣ also decay for i + j increasing.

We have that

X(t) = Q∞Q>
∞X(t)Q∞Q>

∞ =
p∑

i,j=1

(
q>

i X(t)qj

)
qiq

>
j .

For quick enough eigenvalue decay, we expect that
∣∣q>

i X(t)qj

∣∣ ≤
√

λ↓
i (X∞) λ↓

j (X∞) ≈ 0 for i + j large

enough. We truncate the sum and obtain

X(t) ≈
k∑

i,j=1

(
q>

i X(t)qj

)
qiq

>
j = Q∞,kQ>

∞,kX(t)Q∞,kQ>
∞,k,

where Q∞,k =
[
q1, . . . , qk

]
∈ Rn×k. We also consider the appropriate real linear space

Q∞,k :=
{

Q∞,kY Q>
∞,k | Y ∈ Rk×k

}
⊆ Rn×n

together with the orthogonal projection

Pk : Rn×n → Q∞,k, P∞,k(X) = Q∞,kQ>
∞,kXQ∞,kQ>

∞,k.

The columns of Q∞,k are orthonormal. Consequently, it holds that P2
∞,k(X) = P∞,k(X). Moreover, the

projection P∞,k is orthogonal because of

〈X − P∞,k(X), Q∞,kY Q∞,k〉F = 〈X − Q∞,kQ>
∞,kXQ∞,kQ>

∞,k, Q∞,kY Q>
∞,k〉F

= 〈X, Q∞,kY Q>
∞,k〉F − 〈Q∞,kQ>

∞,kXQ∞,kQ>
∞,k, Q∞,kY Q>

∞,k〉F

= 〈X, Q∞,kY Q>
∞,k〉F − 〈X, Q∞,kY Q>

∞,k〉F = 0

for all Y ∈ Rk×k. Therefore, the best approximation of X(t) in Q∞,k is given by

k∑
i,j=1

(
q>

i X(t)qj

)
qiq

>
j = P∞,k(X(t)) = argmin

X∈Q∞,k

‖X − X(t)‖F .
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For the projection error, we obtain

∥∥X(t) − P∞,k(X(t))
∥∥

F
=

∥∥∥∥∥∥∥∥
p∑

i,j=1
i>k∨j>k

(
q>

i X(t)qj

)
qiq

>
j

∥∥∥∥∥∥∥∥
F

=

√√√√√ p∑
i,j=1

i>k∨j>k

∣∣q>
i X(t)qj

∣∣2

≤

√√√√√ p∑
i,j=1

i>k∨j>k

λ↓
i (X∞) λ↓

j (X∞).

Since the eigenvalues λ↓
p+1 (X∞) , . . . , λ↓

n (X∞) are 0, we obtain

∥∥X(t) − P∞,k(X(t))
∥∥

F
≤

√√√√√ n∑
i,j=1

i>k∨j>k

λ↓
i (X∞) λ↓

j (X∞). (15)

We measure the projection error in the 2-norm.

Theorem 4.2.

Let (A, B) be stabilizable and (A, C) be detectable. Moreover, let X∞ ∈ Rn×n be the unique symmetric

positive semidefinite solution of the ARE (2). Then for all k = 1, . . . , n − 1 and all t ≥ 0, the projection

error is bounded by ∥∥X(t) − P∞,k(X(t))
∥∥

2 ≤ 2
√

λ↓
k+1 (X∞) λ↓

1 (X∞),

where X is the unique solution of the DRE (1) with X0 = 0n.

Proof. Again, Theorem 2.4 yields 0n 4 X(t) 4 X∞ for all t ≥ 0. Moreover,

X∞ = P∞,k(X∞) + X∞ − P∞,k(X∞) 4 P∞,k(X∞) +
∥∥X∞ − P∞,k(X∞)

∥∥
2 In.

This leads to the inequality

0n 4 X(t) 4 Q∞,kQ>
∞,kX∞Q∞,kQ>

∞,k + λ↓
k+1 (X∞) In. (16)

The orthogonal projection matrix In − Q∞,kQ>
∞,k is symmetric, and

(
In − Q∞,kQ>

∞,k

)
Q∞,k vanishes. We

multiply (16) from the left and right with In − Q∞,kQ>
∞,k, and obtain

0n 4
(
In − Q∞,kQ>

∞,k

)
X(t)

(
In − Q∞,kQ>

∞,k

)
4 λ↓

k+1 (X∞)
(
In − Q∞,kQ>

∞,k

)
. (17)

The 2-norm of any positive semidefinite matrix is equal to its largest eigenvalue. Using (17), we have the
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bound

∥∥∥(
In − Q∞,kQ>

∞,k

)
X(t)1/2

∥∥∥2

2
=

∥∥(
In − Q∞,kQ>

∞,k

)
X(t)

(
In − Q∞,kQ>

∞,k

)∥∥
2 ≤ λ↓

k+1 (X∞) .

Finally,

∥∥X(t) − P∞,k(X(t))
∥∥

2 =
∥∥X(t) − Q∞,kQ>

∞,kX(t)Q∞,kQ>
∞,k

∥∥
2

=
∥∥(

In − Q∞,kQ>
∞,k

)
X(t) + Q∞,kQ>

∞,kX(t)
(
In − Q∞,kQ>

∞,k

)∥∥
2

≤ 2
∥∥∥(

In − Q∞,kQ>
∞,k

)
X(t)1/2

∥∥∥
2

∥∥∥X(t)1/2
∥∥∥

2

≤ 2
√

λ↓
k+1 (X∞) ‖X(t)‖2 ≤ 2

√
λ↓

k+1 (X∞) λ↓
1 (X∞).

Therefore, we propose to set up a trial space for the Galerkin approach using a system of eigenvectors210

corresponding to the largest eigenvalues. This can be obtained by using a low-rank method to obtain a

numerical approximation of the solution of the ARE. A compact singular value decomposition of the numerical

low-rank approximation of X∞ can be used to obtain an approximation of the eigenvectors corresponding to

the largest eigenvalues. By virtue of Theorems 4.1 and 4.2, we remove the small singular values from the

singular value decomposition. This also reduces the dimension of the trial space. Let ZN = QN SN V >
N be215

the truncated reduced singular value decomposition of the low-rank approximation. With that, the trial

space for the Galerkin approach is given by
{

QN X̃Q>
N | X̃ ∈ Rp×p

}
, and, as X(t) converges to X∞ and

X∞ ≈ ZN Z>
N , we propose the Galerkin approach X(t) ≈ ZN Z>

N − QN X̃(t)Q>
N .

Example 4.1 (Decay of Absolute Values of Entries).

We illustrate the decay of
∣∣q>

i X(t)qj

∣∣ in Figures 4a-4e. We have chosen the same matrices as in Example 2.1.220

To improve the visualization, all values below machine precision were set to machine precision. The eigenvalue

decay of the solution X∞ of the corresponding ARE is shown in Figure 4f.
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Fig. 4. (a)–(e) Decay of
∣∣q>

i X(t)qj

∣∣ for t ∈ {1, 3, 5, 7, 9}. (f) The eigenvalue decay of X∞.

Remark 4.1.

With minor adjustments, all arguments also hold for the generalized DRE

M>Ẋ(t)M = A>X(t)M + M>X(t)A − M>X(t)BB>X(t)M + C>C, (18a)

X(0) = 0n, (18b)

with M ∈ Rn×n nonsingular that can accommodate, e.g., a mass matrix from a finite element discretization.

In summary, the proposed approach can be implemented based on Algorithm 3.
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Algorithm 3 Galerkin approach for the generalized DRE (18) (ARE-Galerkin)

Assumption:
(
AM−1, B

)
is stabilizable and (AM−1, CM−1) is detectable.

Input: M, A ∈ Rn×n, B ∈ Rn×b, C ∈ Rc×n, truncation tolerance toltrunc > 0.

Output: X(t) ≈ Z∞Z>
∞ − Q∞X̃(t)Q>

∞ that approximates the solution to the generalized DRE (18).

% Solve the ARE:

1: A>X∞M + M>X∞A − M>X∞BB>X∞M + C>C = 0n for X∞ ≈ Z∞Z>
∞;

% Compute compact singular value decomposition:

2: [Q∞, S∞, ∼] = svd(Z∞, 0);

% Truncate all singular values smaller than tolerance and get truncated low-rank factor:

3: idx = diag(S∞) ≥ toltrunc · S∞(1, 1);

4: S∞ = S∞(idx, idx);

5: Q∞ = Q∞(:, idx);

6: Z∞ = Q∞S∞;

% Compute matrices:

7: Ã = Q>
∞

(
AM−1 − BB>Z∞Z>

∞
)

Q∞;

8: B̃ = Q>
∞B;

% Solve the differential equation using Algorithm 2:

9: ˙̃X(t) = Ã>X̃(t) + X̃(t)Ã + X̃(t)B̃B̃>X̃(t), X̃(0) = S2
∞;

4.3. Nonzero Initial Condition225

In this section, we extend our discussion to the case of positive semidefinite nonzero initial conditions

X(0) = Z0Z>
0 . Here, the inequality

0n 4 X(t) 4 X∞ (19)

needs to be established by other means than Theorem 2.4, which requires R(X(0)) < 0n.

We distinguish the cases of R(X(0)) positive (semi)-definite, negative (semi)-definite, and indefinite.

If R(X(0)) < 0n, then, as for X0 = 0, Theorem 2.4 readily applies.

Curiously, the case of R(X(0)) 4 0n fits the framework without relying on the solution of the ARE. In fact,

in this case, the solution X(t) is monotonically weakly decreasing; cf. [26, Thm. 4.1.8]. Still, the solution X230

is positive semidefinite for all t ≥ 0, so that (19) can be replaced by 0n 4 X(t) 4 Z0Z>
0 for all t ≥ 0. In

particular, it follows that im(X(t)) ⊆ im(Z0) for all t ≥ 0, so that a trial space is readily defined by a basis

of im(Z0). Thus, a basis can be computed by a QR factorization or a compact singular value decomposition

of Z0.
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The symmetric but indefinite case that we write as R(X(0)) = Z+Z>
+ − Z−Z>

− , requires additional reasoning.

One may compute a suitable upper bound X̃∞ that replaces X∞ in (19) as follows. Consider the modified DRE

˙̃X(t) = R̃(X̃(t)) := A>X̃(t) + X̃(t)A − X̃(t)BB>X̃(t) + C>C + Z−Z>
− ,

X̃(0) = Z0Z>
0 .

By construction, it holds R̃(X̃(0)) = Z+Z>
+ < 0n so that X̃(t) is monotonically weakly increasing for all235

t ≥ 0. Moreover, with (A, B) stabilizable and (A, C) detectable, the solution X̃(t) converges to the unique

positive semidefinite solution X̃∞ of the ARE 0n = R̃(X̃∞). This means that 0n 4 X̃(t) 4 X̃∞. A standard

comparison argument gives that X(t) ≤ X̃(t) for all t ≥ 0; cf. [26, Thm. 4.1.4]. With that, we have

0n 4 X(t) 4 X̃(t) 4 X̃∞ for all t ≥ 0, and the bounds on the projection error (Theorem 4.1, Equation 15,

and Theorem 4.2) can be established analogously.240

5. Numerical Experiments

To quantify the performance of Algorithm 3, we consider a number of DREs that are used to define optimal

controls. Concretely, we consider the generalized DRE (18) and their realizations. First, we consider the

RAIL benchmark example, that is a finite element discretization of a heat equation; see [50] for the model

description. The second example, CONV_DIFF, results from a finite-differences discretized heat equation with245

convection on the unit square with homogeneous Dirichlet boundary conditions; see [51]. The third and the

fourth example, FLOW and COOKIE, are taken from [52] and [53].

We compare the proposed method with the splitting methods developed in [13, 54]. Splitting methods are

based on a splitting of the DRE into an affine and nonlinear subproblem. The advantages of that approach

lie in the fact that the nonlinear subproblem can be solved by an explicit solution formula. The numerical250

solution of the linear subproblem is based on approximating the action of the matrix exponential by means

of Gauss-Legendre Runge-Kutta methods. We employed the Lie and Strang splittings of order 1 and 2,

respectively, as well as the symmetric splittings of order 2, 4, 6, and 8. We abbreviate the methods by LIE,

STRANG, SYMMETRIC2, SYMMETRIC4, SYMMETRIC6, and SYMMETRIC8.

To evaluate the error, we computed a reference solution Xref(t) using SYMMETRIC8 with a constant time step255

size h. The basic information about the setup of the benchmark problems are given in Table 1.

The reference solutions were computed on a machine with 2× Xeon® Skylake Gold 6130 @ 2.10GHz CPU

with 16 cores, 192 GB RAM, and MATLAB 2019b. All other computations are carried out on a machine

with 2× Xeon® Skylake Silver 4110 @ 2.10GHz CPU with 8 cores, 192 GB RAM, and MATLAB 2019b.
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Instance n Matrices Interval Reference Solution

RAIL 5177

M symmetric positive definite,

[0, 4512] SYMMETRIC8, h = 2−5A symmetric,
M−1A stable,
B ∈ Rn×6, C ∈ R7×n

CONV_DIFF 6400
M = In,

[0, 0.125] SYMMETRIC8, h = 2−20A nonsymmetric and stable,
B ∈ Rn×1, C ∈ R1×n

FLOW 9669

M diagonal positive definite,

[0, 0.25] SYMMETRIC8, h = 2−21A symmetric and stable,
M−1A stable,
B ∈ Rn×1, C ∈ R5×n

COOKIE 7488

M nonsymmetric,

[0, 4] SYMMETRIC8, h = 2−16A nonsymmetric and stable,
M−1A stable,
B ∈ Rn×1, C ∈ R4×n

Table 1: Information about benchmark problems.

We report the absolute and relative errors

‖X(t) − Xref(t)‖ and ‖X(t) − Xref(t)‖
‖Xref(t)‖ ,

where X(t) is the numerical approximation, and Xref(t) is the reference solution, in 2-norm and Frobenius260

norm. We also report the norm of the reference solution ‖Xref(t)‖ and the convergence to the stationary

point ‖Xref(t) − X∞‖2.

Numerical results for the Galerkin approximation from Algorithm 3 and for the splitting scheme based

solvers can be found in Appendix A and Appendix B. The computational costs for both methods are given

in Section 5.2. Also, we evaluate the best approximation in the trial space of the reference solution, which is

given by

Xbest(t) := Q∞Q>
∞Xref(t)Q∞Q>

∞ = argmin
X∈

{
Q∞X̃Q>

∞|X̃∈Rk×k
} ‖X − Xref(t)‖F ,

where Q∞ is the matrix from Algorithm 3 line 6.

The code of the implementation is available, as mentioned in Figure 5.

5.1. Galerkin Approach and Splitting Schemes265

The initial step of Algorithm 3 requires the solution to the associated ARE. For this task, we use the RADI

algorithm that iteratively computes the numerical solution to the following absolute and relative residuals

∥∥A>Z∞Z>
∞M + M>Z∞Z>

∞A − M>Z∞Z>
∞BB>Z∞Z>

∞M + C>C
∥∥

2

26



Code and Data Availability
The source code of the implementations used to compute the presented results is available from:

doi:10.5281/zenodo.4460618

under the GPLv2+ license and is authored by Maximilian Behr.

Fig. 5. Link to code and data.

and

∥∥A>Z∞Z>
∞M + M>Z∞Z>

∞A − M>Z∞Z>
∞BB>Z∞Z>

∞M + C>C
∥∥

2
‖C>C‖2

.

The achieved values for the different test setups and the number of columns of the corresponding Z∞ after

truncation (see Algorithm 3 line 3), that define the dimension of the reduced model, are listed in Table 2.

Instance n toltrunc Size of Galerkin system Absolute residual Relative residual
10−8 193 2.91 · 10−14 2.43 · 10−15

RAIL
εmach 279 3.25 · 10−14 2.71 · 10−15

10−8 36 1.37 · 10−10 3.06 · 10−14
CONV_DIFF

εmach 54 1.39 · 10−10 3.11 · 10−14

10−8 115 2.85 · 10−8 2.85 · 10−8
FLOW

εmach 252 1.06 · 10−11 1.06 · 10−11

10−8 122 1.29 · 10−14 3.07 · 10−12
COOKIE

εmach 169 1.33 · 10−14 3.16 · 10−12

Table 2: Residuals for the ARE 0n = A>XM + M>XA − M>XBB>XM + C>C.

Instance n Time to solve ARE (s)
RAIL 0.86

CONV_DIFF 1.59
FLOW 2.10

COOKIE 2.68

Table 3: Timings for the ARE 0n = A>XM + M>XA − M>XBB>XM + C>C.

The 1-norm bound for the matrix exponential tolexp of Algorithm 2 was set to 1010. The resulting step sizes

are given in Table 4. Here, we used two values for the truncation threshold toltrunc, namely the machine

precision εmach that in this setup is approximately 2 · 10−16 and the rougher value toltrunc = 10−8.270
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Instance n Step sizes h

RAIL 5177
{

20, 2−1, . . . , 2−5}
CONV_DIFF 6400

{
2−12, 2−13, . . . , 2−16}

FLOW 9669
{

2−15, 2−16, . . . , 2−20}
COOKIE 7488

{
2−15, 2−16, . . . , 2−20}

Table 4: Step sizes h for the modified Davison-Maki method (Algorithm 2).

We plot the numerical errors in Figures A.7, A.10, A.13, and A.16. The Figures A.8, A.9, A.11, A.12, A.14,

A.15, A.17, and A.18 show the norm of the reference solution and the convergence to the stationary point.

In view of the performance, we can interpret the presented numbers and plots as follows: As discussed in

Section 3.3, the accuracy of the modified Davison-Maki method is independent of the step size; cf. Figures A.7b

and A.7d. Still, we compute the solution on different time grids, since for control applications, the values of275

the solution might be needed at many time instances.

The computational times for ARE-Galerkin include the numerical solution of the corresponding ARE and

the subsequent integration of the projected dense DRE. Since the efforts for the time integration exactly

doubles with a bisection of the step size, from the timings for the RAIL problem, with, e.g., 79s (h = 2−3)

and 148s (h = 2−4) (see Figure 6a, toltrunc = εmach), one infers that most of the time is spent solving the280

dense DRE.

The reference solution for the RAIL and FLOW problem is large in norm what makes the absolute error

comparatively large; see Figures A.8 and A.14 in Appendix A.

The LIE, STRANG, and SYMMETRIC2 splitting schemes gave an absolute and relative error nearly at the same

level, therefore the Figures B.19–B.22 only show the error of the SYMMETRIC2 splitting scheme.285

In all examples, in terms of accuracy, the ARE-Galerkin (toltrunc = εmach) approximation is nearly at the

same level as the high order splitting schemes; cf. Figures A.7b, B.19f and Figures A.10b, B.20f. However,

we note that the ARE-Galerkin method does not give the best possible approximation in the trial space;

compare the error levels for Xbest.

In any case, the ARE-Galerkin method outperforms the splitting methods in terms of computational time290

versus accuracy in all test examples. The performance can be further improved by adapting the truncation

threshold toltrunc; cf. line 3 of Algorithm 3. Apart from the savings in the timings (Figures 6a, 6c, 6e, and 6g)

the reduced memory requirements can be significant. For the RAIL example, the rougher tolerance, namely

10−8 instead of machine precision, means a reduction in storage by a factor of 2792
/1932 ≈ 2; cf. Table 2.

Indeed, these savings come at the expense of accuracy. For the RAIL example, this means a relative error level295

of about 10−9 versus 10−11 if truncation has happened with respect to machine precision; cf. Figure A.7d.

For the other examples, the approximation accuracy was only slightly affected by the larger truncation
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threshold The most favorable example is the FLOW example, where the relaxed truncation threshold led to

savings of a factor 407s/107s ≈ 4 (h = 2−20) in the timings (Figure 6e) and a factor of 2522
/1152 ≈ 5 in memory

requirements (Table 2) while, except for a short initial phase, maintaining the same approximation accuracy300

(Figure A.13d).

5.2. Computational Time

(a)

2−52−42−32−22−120
100

101

102

103

104

105

106

RAIL, n = 5177, Step Size h

C
om

pu
ta

ti
on

al
T

im
e

in
Se

co
nd

s

(b)

2−42−2202224
100

101

102

103

104

105

106

RAIL, n = 5177, Step Size h

C
om

pu
ta

ti
on

al
T

im
e

in
Se

co
nd

s

ARE-Galerkin toltrunc = 10−8 ARE-Galerkin toltrunc = εmach

LIE STRANG SYMMETRIC2 SYMMETRIC4 SYMMETRIC6 SYMMETRIC8

(c)

2−162−152−142−132−12
100

101

102

103

104

CONV_DIFF, n = 6400, Step Size h

C
om

pu
ta

ti
on

al
T

im
e

in
Se

co
nd

s

(d)

2−162−142−122−10
100

101

102

103

104

CONV_DIFF, n = 6400, Step Size h

C
om

pu
ta

ti
on

al
T

im
e

in
Se

co
nd

s

29



(e)
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Fig. 6. (a), (c), (e), (g) Timings for ARE-Galerkin. (b), (d), (f), (h) Timings for splitting schemes.

5.3. Large-scale Examples

We consider the benchmark problems RAIL, CONV_DIFF, and FLOW for finer space discretization resulting in

a larger state-space dimension n. Moreover, we consider the CHIP model [52]. The structural properties305

of the matrices A, E, B, and C of the CHIP model are the same as for the FLOW model; cf. Table 1. As

the computation of reference solutions for large-order systems by the high-order splitting methods easily

exceeds computational resources, we only report residuals. Table 5 reports the state-space dimension n

of the models, the size of the resulting Galerkin system, and the absolute and relative residual of the

numerical approximation of the ARE. Detailed information about computational timings of Algorithm 3310

are given in Table 6. We report the time for the numerical approximation of the ARE (tARE, Algorithm 3),

the computation of the singular value decomposition (tsvd), the assembly of the system matrices of the
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Galerkin system (tgal), the approximation of the matrix exponential and the norm computation (texpm);

cf. Algorithm 3 line 1, lines 2–6, lines 7–8, and Algorithm 2 lines 3–4. The computational time for the

time-stepping Algorithm 2 lines 8–13 is excluded. All timings are given in seconds.315

As the timings suggest, for similar setups, increasing system sizes almost exclusively affect the time needed

to solve the ARE, and to some extent, to compute the SVD for truncating the basis. As the truncation

extracts the relevant directions, the resulting sizes of the projected systems only show a moderate increase.

Accordingly, the efforts for solving the projected equations only increase slightly. Also, the computed residuals

turn out to be not affected by the sizes of the initial systems.320

Instance n toltrunc Size of Galerkin system Absolute residual Relative residual

10−8 224 6.75 · 10−14 5.63 · 10−15

RAIL_20K 20 209
εmach 323 6.37 · 10−14 5.31 · 10−15

10−8 254 6.13 · 10−14 5.11 · 10−15

RAIL_79K 79 841
εmach 353 5.90 · 10−14 4.92 · 10−15

10−8 48 2.16 · 10−9 1.93 · 10−14

CONV_DIFF_160K 160 000
εmach 79 2.16 · 10−9 1.93 · 10−14

10−8 52 1.94 · 10−8 2.77 · 10−14

CONV_DIFF_1M 1 000 000
εmach 82 1.93 · 10−8 2.76 · 10−14

10−8 57 3.72 · 10−7 5.91 · 10−14

CONV_DIFF_9M 9 000 000
εmach 101 3.02 · 10−7 4.80 · 10−14

10−8 156 5.05 · 10−14 6.37 · 10−10

COOKIE_425K 425 272
εmach 238 5.04 · 10−14 6.37 · 10−10

10−8 163 1.53 · 10−13 5.41 · 10−9

COOKIE_1185K 1 185 586
εmach 298 1.53 · 10−13 5.42 · 10−9

10−8 168 4.51 · 10−13 3.58 · 10−8

COOKIE_2656K 2 656 643
εmach 306 1.04 · 10−13 8.28 · 10−9

10−8 103 6.81 · 10−10 6.81 · 10−10

CHIP 20 082
εmach 198 1.79 · 10−12 1.79 · 10−12

Table 5: Residuals for the ARE 0n = A>XM + M>XA − M>XBB>XM + C>C and the size of the Galerkin system.
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Instance n toltrunc tARE tsvd tgal texpm ttotal

10−8 3.14 0.40 0.16 5.31 · 10−2 3.75
RAIL_20K 20 209

εmach 2.77 0.41 0.22 6.80 · 10−2 3.47

10−8 11.20 1.82 0.67 3.12 · 10−2 13.72
RAIL_79K 79 841

εmach 11.72 1.85 0.92 7.20 · 10−2 14.56

10−8 22.08 0.79 0.08 3.69 · 10−3 22.96
CONV_DIFF_160K 160 000

εmach 22.27 0.79 0.14 5.97 · 10−3 23.21

10−8 160.00 5.19 0.49 6.49 · 10−3 165.68
CONV_DIFF_1M 1 000 000

εmach 159.45 5.26 0.85 1.87 · 10−2 165.58

10−8 2732.65 43.23 5.10 3.00 · 10−2 2781.01
CONV_DIFF_9M 9 000 000

εmach 2745.94 52.55 9.18 1.67 · 10−2 2807.68

10−8 192.21 6.90 10.58 4.24 · 10−2 209.73
COOKIE_425K 425 272

εmach 191.63 6.80 13.93 5.30 · 10−2 212.40

10−8 868.96 25.60 41.42 3.54 · 10−2 936.02
COOKIE_1185K 1 185 586

εmach 866.70 26.83 56.95 4.92 · 10−2 950.53

10−8 2374.40 54.99 111.64 4.17 · 10−2 2541.08
COOKIE_2656K 2 656 643

εmach 2350.73 60.22 153.44 5.07 · 10−2 2564.44

10−8 5.58 0.29 0.08 9.35 · 10−3 5.96
CHIP 20 082

εmach 5.35 0.21 0.08 2.21 · 10−2 5.66

Table 6: Timings for the large-scale examples.

6. Conclusions

We have reviewed, and extended fundamental properties of the solution to the DRE and ARE and heavily

relied on the solution representation provided by Radon’s Lemma to analyze variants of Davison-Maki

methods and to derive an efficient Galerkin projection scheme. Numerical tests confirmed that the resulting

projected scheme outperforms splitting methods in terms of computation time, memory requirements, and325

approximation quality. In particular, storage requirements have been the bottleneck in the numerical

considerations of large-scale DREs.

Our proposed Galerkin method bases on a low-rank approximation of the associated ARE for which efficient

solvers exist. Moreover, the information on the residual and on the eigenvalue decay that come with the

low-rank iteration for the ARE, can be directly transferred into estimates for the approximation quality330
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of our approach. Future work will deal with error analysis of the Galerkin approximation. Moreover, the

stability and rounding error analysis for the modified Davison-Maki method is an open question.
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Fig. A.7. (a), (c) Absolute error of the ARE-Galerkin and Best approximation. (b), (d) Relative error of the ARE-Galerkin
and Best approximation.
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Fig. A.9. Convergence to the stationary point.
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CONV_DIFF, n = 6400, Ẋ(t) = A>X(t) + X(t)A − X(t)BB>X(t) + C>C, X(0) = 0n.
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Fig. A.10. (a), (c) Absolute error of the ARE-Galerkin and Best approximation. (b), (d) Relative error of the ARE-Galerkin
and Best approximation.
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Fig. A.11. Norm of the reference solution.
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Fig. A.12. Convergence to the stationary point.
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FLOW, n = 9669, M>Ẋ(t)M = A>X(t)M + M>X(t)A − M>X(t)BB>X(t)M + C>C, X(0) = 0n.
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Fig. A.13. (a), (c) Absolute error of the ARE-Galerkin and Best approximation. (b), (d) Relative error of the ARE-Galerkin
and Best approximation.
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Fig. A.14. Norm of the reference solution.
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Fig. A.15. Convergence to the stationary point.
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COOKIE, n = 7488, M>Ẋ(t)M = A>X(t)M + M>X(t)A − M>X(t)BB>X(t)M + C>C, X(0) = 0n.
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Fig. A.16. (a), (c) Absolute error of the ARE-Galerkin and Best approximation. (b), (d) Relative error of the ARE-Galerkin
and Best approximation.
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Fig. A.17. Norm of the reference solution.
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Fig. A.18. Convergence to the stationary point.
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Appendix B. Numerical Results for Splitting Schemes445

RAIL, n = 5177, M>Ẋ(t)M = A>X(t)M + M>X(t)A − M>X(t)BB>X(t)M + C>C, X(0) = 0n.
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Fig. B.19. (a), (c), (e) Absolute error of the splitting scheme approximation. (b), (d), (f) Relative error of the splitting
scheme approximation.
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CONV_DIFF, n = 6400, Ẋ(t) = A>X(t) + X(t)A − X(t)BB>X(t) + C>C, X(0) = 0n.
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Fig. B.20. (a), (c), (e) Absolute error of the splitting scheme approximation. (b), (d), (f) Relative error of the splitting
scheme approximation.

41



FLOW, n = 9669, M>Ẋ(t)M = A>X(t)M + M>X(t)A − M>X(t)BB>X(t)M + C>C, X(0) = 0n.
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Fig. B.21. (a), (c), (e) Absolute error of the splitting scheme approximation. (b), (d), (f) Relative error of the splitting
scheme approximation.
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COOKIE, n = 7488, M>Ẋ(t)M = A>X(t)M + M>X(t)A − M>X(t)BB>X(t)M + C>C, X(0) = 0n.
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Fig. B.22. (a), (c), (e) Absolute error of the splitting scheme approximation. (b), (d), (f) Relative error of the splitting
scheme approximation.
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