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Abstract

The appearance of blobs, filamentary structures featuring large intermittent perturbations, is characteristic for the scrape-off layer
(SOL) of magnetic fusion devices. Therefore, a global model, which does not rely on assumptions about the fluctuation level,
is necessary to model blobs accurately. Whereas GRILLIX, a global 3D fluid turbulence code, is originally designed to handle
complex geometries via the flux-coordinate independent approach (FCI), the analysis here aims on a thorough verification, valida-
tion and identification of basic phenomena in simplified slab geometry. As such the impact of the routinely employed Boussinesq
approximation is studied systematically, revealing that not only the density amplitude itself matters, but also the blob regime that
is also influenced by temperature. This points out that the validity of the Boussinesq approximation cannot generally be taken for
granted. Furthermore, GRILLIX is validated against the LAPD experiment and the formation of blobs is studied. A cross-phase
evaluation suggests as candidates for the blob drive mechanism the rotational iterchange instability.
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1. Introduction

Radial transport of plasma in the edge and scrape-off layer
(SOL) of magnetically confined plasmas is highly turbulent.
This turbulence is mainly dominated by filamentary large-
amplitude structures in density, electron temperature and elec-
tric potential known as ’blobs’ [1, 2, 3, 4]. It is known from
theory and simulation that these blobs are born as a result of the
nonlinear saturation of the underlying edge turbulence instabil-
ities [5]. These coherent structures are spatially localized in the
poloidal plane on a lower-density plasma background and are
elongated along the magnetic field lines. A comprehensive re-
view of blob physics is given in [6, 7, 8]. Analytical theories,
which are able to describe the basic blob dynamics were de-
rived in [9, 10, 11, 12], but most of the numerical studies were
performed in 2D [13, 5, 14, 15, 16]. However, blobs are a full
3D phenomenon such that in recent years the new standard for
blob dynamics became 3D simulations [17, 18, 19, 20, 21, 22].
The numerical results of blob dynamics can be compared to the
analytical scaling laws.

Reliable modelling of the tokamak scrape-off layer is crucial
for the realization of a future fusion device. The correct de-
scription of the blob dynamics is important in this context since
plasma turbulence in the SOL consists mainly of blobs, which
determine the profiles, the SOL width and the heat loads on
the divertor plates. Several code projects like GBS [23, 24],
HERMES(BOUT++)[25], TOKAM3X [26], GDB [27] and
GRILLIX [28, 29] aim to simulate SOL turbulence self con-
sistently based on 3D Braginskii fluid models [30, 31].
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GRILLIX employs the drift reduced Braginskii equations
[30] described in section 2. The implemented model is global,
as it retains the full parametric dependencies and does not make
use of the routinely Boussinesq approximation. GRILLIX
is based on the flux-coordinate independent approach (FCI)
[32, 33], which allows the treatment of complex diverted ge-
ometries [28, 29]. However, we employ here GRILLIX in a
simplified slab geometry. This allows an investigation of basic
phenomena, accurate verification and validation, which is of-
ten difficult in complex geometries. We study blob propagation
in section 3 and verify the implementation of GRILLIX based
on analytically derived scaling laws. Furthermore, we investi-
gate the impact of the Boussinesq approximation systematically
across different blob regimes. In section 4 we perform simula-
tions for the linear device LAPD [34]. We clarify the origin of
blob formation via evaluating the cross-phase between the den-
sity and electrostatic potential and comparing it to the character-
istics of the relevant plasma instabilities. Finally, experimental
data from [35, 36] allows to perform a validation of GRILLIX
vs. the LAPD experiment.

2. The GRILLIX code

2.1. Slab geometry

The GRILLIX code is based on the flux-coordinate indepen-
dent approach (FCI) that is very flexible with respect to geom-
etry and can deal with realistic diverted geometries [28, 29].
Here, we use GRILLIX in a simplified slab geometry to study
blob propagation in a flux tube and turbulence in the linear de-
vice LAPD. Otherwise the same algorithms and numerical tech-
niques as in the full FCI version are used.
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Figure 1: Slab geometry: The magnetic field is directed along z, where Bohm-
sheath boundary conditions are applied at z = 0 and z = 2π. In flux tube mode
an effective curvature is present.

The simulation domain is a rectangular box (x, y, z) with z a
coordinate along the magnetic field B = B0ẑ and x, y coordi-
nates perpendicular to the magnetic field (see Fig. 1). At the
ends of the box – in normalised coordinates at z = 0 and z = 2π
– Bohm-Sheath boundary conditions (see Eq. 9) are applied
modelling contact of the plasma with target plates. The box is
periodic in y and Dirichlet or Neuman boundary conditions are
provided for the dynamical fields in x direction. Provided that
the box is sufficiently large, the results are independent of the
perpendicular boundaries, as the main loss mechanism is along
magnetic field lines. In addition to strictly linear devices, an un-
wound flux tube in the SOL of tokamaks can be modelled via
an effective curvature operator. The flux tube ranges between
the limiter or divertor plates and effects of magnetic shear are
not captured. The effective curvature operator is defined as:

C( f ) :=


0, in linear mode,

−2
(
sin(z − z0)

∂ f
∂x

+ cos(z − z0)
∂ f
∂y

)
, in flux tube mode,

(1)

where via the parameter z0 the course of curvature with respect
to the sheath boundaries can be controlled, i.e. for z0 = 0 the
position of unfavourable curvature is located at z = π.

2.2. Physical model

The drift reduced Braginskii equations [31, 30] are employed
to model turbulence in LAPD. At electron temperatures of typ-
ically Te0 ∼ 6eV, densities of n0 ∼ 2 × 1012cm−3 and mag-
netic field strengths of B0 = 0.1T [34, 35], the assumptions of
a fluid approach are usually well fulfilled. Furthermore, the
cold ions are assumed based on the assumption Ti0 � Te0
(Ti0 ∼ 1eV in LAPD). Perpendicular coordinates (x, y) are nor-
malised against the sound Larmor radius ρs0 = c

√
Te0Mi/(eB0),

parallel scales against the connection length L‖/(2π) and time
against L‖/(2πcs0) with sound speed cs0 =

√
Te0/Mi. The dy-

namical fields evolved in GRILLIX are density n, electron tem-
perature Te normalised to reference values n0 and Te0, electro-
static potential φ normalised to Te0/e, parallel ion velocity u‖
normalised to cs0, parallel current j‖ normalised to en0cs0 and
parallel component of perturbed electromagnetic vector poten-
tial A‖ normalised to β0B0ρs0 with β0 = 4πn0Te0/B2

0 the dynam-
ical plasma beta. The set of equations implememted in GRIL-

LIX can be written in slab geometry as:

d
dt

n = −∂z(nv‖) + nC(φ) − C(pe), (2)

∇ ·

[
n
(

d
dt

+ u‖∂z

)
∇⊥φ

]
= −C(pe) + ∂z j‖, (3)(

d
dt

+ u‖∂z

)
u‖ = −

1
n
∂z pe, (4)

β0
∂

∂t
A‖ + µ

(
d
dt

+ v‖∂z

)
j‖
n

= −

(
η‖0

T 3/2
e

)
j‖ (5)

− ∂zφ +
1
n
∂pe + 0.71∂zTe, (6)

3
2

(
d
dt

+ v‖∂z

)
Te = TeC(φ) −

Te

n
C(pe) −

5
2

TeC(Te)

+ 0.71
Te

n
∂z j‖ +

(
η‖0

T 3/2
e

)
j‖
n

+
1
n
∂z

[(
χ‖e0T 5/2

e

)
∂zTe

]
, (7)

∇2
⊥A‖ = − j‖, (8)

where we defined as auxiliary variables the pressure pe = nTe

and the parallel electron velocity v‖ = u‖− j‖/n. Advection with

E×B velocity is contained in
d
dt

f = ∂t f−δ0

(
∂xφ∂y f − ∂yφ∂x f

)
.

Equations (2)-(8) are the continuity equation, vorticity equa-
tion, parallel ion momentum equation, Ohm’s law, electron
temperature equation and Farayday’s law. The dimensionless
parameters of the system are the drift scale δ0 = 2πρs0/L‖, the
dynamical plasma beta β0 defined above, the electron to ion
mass and temperature ratios µ := me/Mi, the normalised paral-
lel resistivity η‖0 := 0.51 R0

τe0cs0

me
Mi

and normalised parallel elec-
tron heat conductivities χ‖e0 := 3.15 τe0cs0

R0

Mi
me

, where τe0 is the
collision time evaluated at reference.

No separation of variables between background and fluctua-
tion has been made and the dependency of the resistivity and
heat conductivity on density and temperature has been kept.
Moreover, the dependency on the density in the polarization
term of the vorticity equation (3) is kept, i.e. the Boussinesq
Approximation (BS) has not been applied. In this sense the
model is global. The model conserves energy, apart from the
fact that we have neglected advection by the polarisation veloc-
ity. This has been shown to have only a negligible effect on the
conservation of energy [37].

Bohm sheath boundary conditions [38, 39] are applied at the
ends of the box :

u‖ = ±
√

Te, j‖ = ±n
√

Te

[
1 − exp

(
Λ −

φ

Te

)]
,

∂zTe = ∓
γe(

χ‖e0T 5/2
e

)Tenu‖, (9)

where the lower sign denotes the boundary at z = 0 and the
upper sign at z = 2π. Λ ≈ 0.5 ln Mi

2πme
is the sheath floating

potential and γe an effective sheath transmission factor. In the
x-direction homogeneous Neumann boundary condition are ap-
plied to all fields except for the electrostatic potential, which is
set to φ = ΛTe, and the electromagnetic potential, which is set
to A‖ = 0.
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2.3. Boussinesq approximation
The Boussinesq approximation (BS) is widely used in the

plasma turbulence community as it simplifies the numerical
treatment significantly. It is based on the assumption that the
fluctuations of the density are small relative to the background.
However, the BS can be problematic for several reasons:

Firstly, its assumption is factually not fulfilled for SOL con-
ditions, where turbulence is typically intermittent with large
fluctuation levels. Although, some studies indicate that the BS
has finally only a small quantitative effect [40, 29], this can-
not be taken for granted under all conditions. Therefore, we
address this issue systematically, and investigate the impact of
the Boussinesq approximation on blob propagation in the iner-
tial and sheath limited regime over a wide amplitude range in
section 3.3.

Secondly, models which make use of the BS are not global
in a strict sense, but hybrid. The full density is e.g. kept in
the continuity equation (2) but assumptions on it are made in
the polarisation term of the vorticity equation (3). Such vary-
ing assumptions in a coupled system of equations can lead to
inconsistencies, and different forms of the Boussinesq approx-
imation can be found. In a non-conservative form [41, 23, 42]
the spatial and temporal dependence of the density is retained:

∇ · (nupol)→ n∇ · upol, (10)

where upol = −

(
d
dt

+ u‖∂z

)
∇⊥φ is the polarisation velocity. It

is obvious that this form of the BS breaks the total divergence
property of the quasi-neutrality condition (∇ · J = 0), which the
vorticity equation (3) actually represents. According to our ex-
perience this non-conservative form of the BS lead to highly un-
stable conditions for closed field line configurations that often
crashed our simulations [37]. On the other hand, taking the den-
sity out of the divergence with a constant value, as e.g. used in
[26, 25, 28], preserves the total divergence property and worked
generally much better in our experience, although it seems less
accurate at first sight. Therefore, our studies will consider in
the following only this conservative form of the BS.

3. Blob dynamics

In this section, the basic blob dynamics, derived from a sim-
ple 2D model, are presented. This helps to understand the polar-
ization mechanism and the convection of the blobs in the SOL.
The extension to a 3D thermal model is discussed afterwards.

The basic mechanism can be described on the basis of the
vorticity equation (3), neglecting parallel advection and assum-
ing unfavourable curvature:

∇⊥ ·

[
n

d
dt
∇⊥φ

]
= ∂z j‖ − 2∂y pe (11)

Currents are induced in the perpendicular direction by the ion
polarization, which describes the collective plasma motion ac-
cording to the vorticity and the diamagnetic plasma drift, which
arises due to the curvature of the magnetic field. The diamag-
netic drift acts as a source for the vorticity (last term on right

+ + + +

− − − −

E

B

n

nB

Figure 2: The blob is polarized due to the interchange drive. An electric
field arises which is perpendicular to B and the curvature, causing the E × B-
advection of the entire structure. Contours show areas with equal density rang-
ing from the background density nB to the maximum blob density n.

hand side of Eq. (11)), interchanging high density plasma with
low density plasma [8]. The diamagnetic drift polarizes the
plasma due to the sign dependence for oppositely charged par-
ticles. The Gaussian density structure shown in Fig. 2 is po-
larized due to the interchange drive in Eq. (11), which conse-
quently produces an electric field perpendicular to the magnetic
field. This causes an E × B-advection of the entire structure.
The blob dynamics depends highly on the balancing of the in-
duced current. The last term on the right hand side of Eq. (11)
can be balanced by the inertial term (inertial regime) on the
left hand side or by the parallel current, which is limited by
the sheath current (sheath limited regime) at the limiter plates.
There is extensive theoretical work on scaling laws for the max-
imum blob velocity as cited in the introduction. We refer here
to [11, 43], where not only the width but also the amplitude of
the blob is taken into account for the scaling law. Given the blob
width δ⊥ and its relative amplitude Ap = ∆pe/peB, with peB the
background pressure and ∆pe = pe − peB the blob amplitude,
the scaling law is:

vI
f ∝

√
Apδ⊥, (12)

in the inertial regime, and:

vS
f ∝

T 3/2
eS

δ2
⊥

∆pe

peS
, (13)

in the sheath limited regime, where the subscript S denotes that
quantity has to be evaluated at the sheath. The sheath limited
and inertial regime are separated by a critical scale [6, 44] (un-
normalised):

δ∗ = ρs0

 L2
‖

ρs0R

1/5

, (14)

where the polarisation term and the parallel current term bal-
ance both the interchange drive term in Eq. (11) at a comparable
order of magnitude.
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Figure 3: Maximum blob velocity as function of blob width δ⊥. Below the
critical scale δ∗ ≈ 10 the blob velocity scales according to the inertial scaling
(Eq. (12)) and above according to the sheath limited scaling (Eq. (13)).

The scalings of Eqs. (12) and (13) will be compared against
our simulation results in the following sections. Our simula-
tions are based on the following parameters: R0 = 1.65m, L‖ =

8.25m, Te0 = 7eV, n0 = 1.0 · 1019m−3, B0 = 1.5T, Λ = 3, γe =

0 and z0 = 0. The simulations are initialised with a 3D Gaussian
blob:

n(x, y, z, 0) = nB + ∆n exp
(
−

x2 + y2

2δ2
⊥

)
· exp

− (z − π)2

2L2
‖

 , (15)

and the same for the temperature Te. This results in the critical
blob width δ∗ ∼ 10 in terms of ρs = 2.5 · 10−4m, where the
inertial and sheath currents are in balance.

3.1. Scaling with the width
In this section, the scaling laws for the radial width

of the blob in the inertial regime according to Eq. (12)
and in the sheath limited regime according to Eq. (13)
are verified. For this purpose the radial widths δ⊥ =

[0.1, 0.25, 0.4, 1, 2, 4, 6, 8, 10, 20, 40, 80] are scanned. The
perpendicular resolution is set in correlation to the blob width,
i.e. ∆x = ∆y = δ⊥/10, and the parallel resolution is ∆z = 2π/32.
The logarithm of the maximum values of the velocities v f is
plotted against the logarithm of the radial width of the blob in
Fig. 3. Below the critical scale δ∗ the expected inertial behav-
ior is obtained, where the maximum velocity increases with the
radial width v f ∝

√
δ⊥. The transition to the sheath limited

regime appears at the critical blob size δ⊥ ≈ δ∗ = 10. In the
sheath limited regime the velocity decreases according to the
sheath limited scaling v f ∝ δ−2

⊥ . Therefore, the full transition
from the inertial regime to the sheath limited regime is success-
fully recovered within GRILLIX simulations.

3.2. Scaling with the amplitude
The scaling laws with respect to the amplitude of the blob

are verified. For this purpose the radial widths δ⊥ = [2, 10, 80]

(left, middle and right column in Fig. 4) are chosen, covering
inertial, intermediate and sheath limited regime. A constant
background density nB = 1 and electron temperature TeB = 1
are chosen with varying blob amplitudes in density ∆n and elec-
tron temperature ∆Te.

Firstly (top row of Fig. 4), only the density amplitude is var-
ied with ∆Te = 1 fixed. In the inertial regime (δ⊥ = 2) the ex-
pected scaling of v f ∝

√
∆n is obtained. A slightly weaker than

linear scaling is obtained for δ⊥ = 80, which is in agreement
with the sheath limited scaling (Eq. 13), as the sheath pressure
peS is only weakly dependent on ∆n (see discussion at end of
this section).

Secondly (middle row of Fig. 4), only the electron temper-
ature amplitude is increased with ∆n = 1 fixed. In the case
δ⊥ = 2 we observed the blobs to become quickly unstable,
which made the determination of the center of mass very diffi-
cult and limited the maximum accessible amplitude to ∆Te = 5.
At δ⊥ = 80 a slightly higher than linear scaling with ∆Te is ob-
tained, which is also in agreement with Eq. (13), as the sheath
values TeS and peS are expected to scale with ∆Te due to paral-
lel heat conductivity.

Finally (bottom row of Fig. 4), ∆n and ∆Te are both increased
simultaneously. In the inertial regime (δ⊥ = 2) one would ex-
pect now a linear scaling at high amplitudes, which is not ob-
served. The reason for this is the shift of the inertial regime to-
wards the sheath limited regime with increasing temperatures.
The parallel conductivity is temperature dependent σ‖ ∝ T 3/2

e
which makes the sheath closure more favorable with increasing
temperature. This effect is captured thanks to the global nature
of GRILLIX, and would not be present if the heat conductivity
was uniform. For the sheath limited regime (δ⊥ = 80) it is again
necessary to know the sheath values of the quantities in order
to obtain the scaling. Due to the parallel heat conductivity TeS

correlates strongly with ∆Te, whereas this mechanism is absent
for the density and neS is therefore only weakly correlated with
∆n. A scaling that is slightly stronger than linear is eventually
observed.

3.3. Impact of the Boussinesq approximation
The blob simulations were also carried out in Boussinesq ap-

proximation (BS) in order to investigate its impact systemati-
cally, and in contrast to [44] the parallel dynamics is taken into
account self-consistently. Current balancing suggests that the
impact of BS should depend not only on the amplitude ∆n, but
also on the blob regime. In the sheath limited regime, where the
inertial term is negligible, the impact of the BS is expected to be
weak, as it only enters the inertial term. Indeed, we observe in
the sheath limited regime (Fig. 4, right column) only very small
differences of at most few percent at very high amplitudes.

Towards the inertial regime (Fig. 4, left and center column)
the difference between the full system (FS) and BS becomes
more pronounced of around 20% at blob amplitudes of around
∆n, ∆Te ≈ 5, i.e. still moderate given the high amplitude levels.
We recognise also differences between BS and FS even if only
∆Te is varied, which also holds true in the intermediate regime
where the blobs remain still coherent and a clear measurement
of the center of mass is possible. As discussed before, towards
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Figure 4: Maximum blob velocity as function of blob amplitude. Left column: for blob of width δ⊥ = 2 in inertial regime. Middle column: for δ⊥ = 10 in
intermediate regime. Right column: for δ⊥ = 80 in sheath limited regime. Top row shows results in dependence on density amplitude ∆n, middle row in dependence
on temperature amplitude ∆Te and bottom row in dependence on both varied simultaneously. Results for the full system (FS, blue) and the Boussinesq system
(BS, green) are shown. Dashed black lines show some scalings for reference as explained in text. Black points in bottom row and center column show result from
simulation with doubled resolution for convergence check.
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Figure 5: Snapshots of density at t = 0.022 for blob in intermediate regime
(δ⊥ = 10) with amplitude ∆n = ∆Te = 5, simulated with full system (top) and
with Boussinesq approximation (bottom).

higher electron temperature the blob transitions from the iner-
tial regime to the sheath limited regime, where the potential
starts to follow φ ∼ ΛTe. Via this effect the temperature enters
indirectly also the inertial term and amplifies the difference be-
tween full system FS and BS. It is even more pronounced when
∆n and ∆Te are increased at the same time. In conclusion, the
impact of the BS does not only depend on the density but also
the regime is important, which is also subtly influenced by the
electron temperature. In previous works (e.g. [44]) this fact was
not taken into account self-consistently.

Finally, we highlight in Fig. 5 the qualitative difference be-
tween FS and BS. The plot shows a blob with δ⊥ = 10 and
∆n = ∆Te = 5 at the same time point. In the BS the blob accel-
erates faster, loses its coherent form and decays, while the blob
in FS remains coherent. In order to exclude numerical artefacts
this simulation was also performed with the doubled poloidal
resolution, yielding the same results.

4. Large Plasma Device (LAPD)

4.1. Setup

In this section GRILLIX turbulence simulations are com-
pared to the LAPD experiment, a linear machine, which pro-
vides a very useful environment for the study of basic plasma
turbulence and transport. The axial magnetic field hitting mate-
rial walls at the end of the device leads to a situation similar to
the SOL of a tokamak. Although the densities and temperatures
are usually smaller compared to a fusion plasma, the size of the
machine allows the growth of many modes in parallel and per-
pendicular directions, leading to a wide range of turbulent pro-
cesses relevant for actual fusion devices [34]. The linear plasma
column has a length of approximately L‖ = 17m and a diameter
of up to 60cm. The LAPD plasma parameters are given by the
maximum density n0 = 2.0×1012cm−3, the electron temperature
Te0 = 6eV and the plasma beta β = 1.5×10−3. The low ion tem-
perature of Ti0 = 0.5eV justifies the cold ion assumption. For
the modeling of LAPD plasma the slab geometry is used with-
out curvature terms, a sheath transmission factor of γe = 2.5
and a floating potential of Λ = 3. The perpendicular domain
width spans from −L⊥/2 to L⊥/2 with L⊥ = 1.4m. Density and
electron temperature sources are modeled with top-hat shaped
profiles S n,T respectively:

S n,T = Cn,T (1 − tanh[(r − rs)/Ls]) exp(−λsz), (16)

with λs = 0.0813 the decay length of the ionisation front in
the parallel direction. The source is radially symmetric (r =√

x2 + y2) and has an extent of rs = 20 decaying sharply with
Ls = 0.5. The source rates Cn,T = 0.27 are chosen to match the
experiment. A grid with nx = ny = 128 and nz = 32 was used
for the simulations in this section.

Previous works on LAPD used an electrostatic model with
the non-conservative BS [35, 45] or a superficial geometry
neglecting the parallel boundaries [46]. Here, simulation re-
sults of GRILLIX, based on a truly global and electromagnetic
model, are compared to experimental data from LAPD.

4.2. Blob generation

There are three relevant plasma instabilities in LAPD that
may be present simultaneously [46, 47, 48], the resistive drift-
wave instability (DW), the rotational interchange instability
(RII) and the Kelvin-Helmholtz instability (KHI).

Driven by the density gradient Ln ∼ (d(log n)/dr)−1 DW
are a common phenomenon in magnetised plasmas [49]. They
are characterised by a small phase difference between density
and the electrostatic potential (δnφ . π/4). The latter two of
the mentioned instabilities are caused by the background ra-
dial electric field. Due to the sheath boundaries there is a radi-
ally varying background electrostatic potential φ0(r) ∼ Λ 〈Te〉,
where 〈Te〉 is the average electron temperature. The drive for
both instabilities can be understood by considering the E × B
advection term in the vorticity equation (3). Employing a polar
coordinate system r =

√
x2 + y2, tan θ = y/x, applying for clar-

ity the Boussinesq approximation and keeping only terms that
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are linear in the potential fluctuations φ = φ0(r) + φ̃ yields:

vE · ∇∇
2
⊥φ ≈ −

δ

r

{[
φ̃,∇2

⊥φ0

]
r,θ

+
[
φ0,∇

2
⊥φ̃

]
r,θ

}
= −

δ

r

[φ̃, φ′0r
]

r,θ
+

[
φ̃, φ′′0

]
r,θ

+
[
φ0,∇⊥φ̃

]
r,θ

 , (17)

where we introduced the Jacobi bracket
[
f , g

]
r,θ =

(∂r f∂θg − ∂θ f∂rg). The last two terms in Eq. (17) drive
the KHI due to a radially sheared flow. The KHI is discussed
for linear machines in detail in [35, 45, 50] and exhibits a phase
difference of δnφ ≈ π/2 to π [48, 51]. The first term on the
right hand side of Eq. (17) is only present due to the rotation of
the cylindric plasma column itself. It represents a centrifugal
force and is destabilising for a radially decreasing background
potential d(log φ0)/dr < 0. The RII exhibits a phase difference
between δnφ ≈ π/4 to π/2 [48, 47] and typically mode number
of m = 1 or m = 2 [51]. Snapshots from a full 3D turbulence
simulation are shown in Fig. 6, where the initial plasma column
decays into turbulence. We observe the azimuthal rotation vΘ

of the plasma column that is caused by the sheath boundary
condition at the plates of the machine φ ∼ Λ 〈Te〉.

In the following, we will investigate the dominant mecha-
nism for blob generation in LAPD. In linear devices like LAPD,
CSDX, and VINETA the blob-ejection process is preceded by
an acceleration of an m = 1 mode [52, 53, 54, 55]. Unlike in
tokamak plasmas, there is no curvature in linear devices caus-
ing a polarisation of the blob. Therefore, another mechanism
for blob generation and propagation must exist, namely either
of the above mentioned instabilities. We investigate in Fig. 7
two distinctive blobs (dashed boxes) at a particular time point.
These blobs are traced back in time until the onset of the blob
generation, which is at t = 76.5 for the blob in box 1 and at
t = 77.3 for the blob in box 3. At these particular time points,
we perform a Morlet wavelet transform [56, 57, 58, 59] in
azimuthal direction of the density and potential at the source
boundary. This allows a space and wavenumber resolved cal-
culation of the of the local cross-coherence and phase between
density and potential. The result of the wavelet analysis is
shown in Fig. 8 for t = 76.5. We observe a strong cross-
coherence between n and φ and a phase shift around ±π/2 at the
azimuthal angle Θ = π/2 and Θ = 3/2πwith m = 1. The phase-
shift around π/2 creates a positive perturbation (box 1), which
is disconnected from the rest of the plasma, due to the rotation.
This results in the generation of a blob. The phase-shift around
−π/2 creates a negative perturbation (box 2), which pushes the
plasma inwards. Another similar event with a phase difference
close to π/2 is seen at t = 77.3 (box 3), which also generates a
blob. The appearance of the cross-phase of around π/2 between
the density and potential at the mode number m = 1 indicates
that the mechanism for blob generation in LAPD is the RII.
Eventually, this is a qualitative discussion at a particular time
point, but we observed this mechanism also at any further times
analysed in our simulation, i.e. each time a blob is created, there
was the discussed cross-phase relation between n and φ around
m = 1.

4.3. Validation
The experimental data from [35, 36] is compared to the result

of the GRILLIX simulation. The considered quantities to be
compared are taken at at z = π and averaged over time.

The density profile, fluctuation level and skewness are shown
in Fig. 9. The density profile is overall in good agreement,
with deviations to the experiment becoming pronounced to-
wards the source region x < 0.28m. The fluctuation ampli-

tude δn =

√〈
n2 − 〈n〉2

〉
is plotted normalized to the maximum

value of the density nmax and its course agrees very well with
the experiment peaking at the source edge, where the strongest
gradients are present. However the absolute fluctuation level
obtained from GRILLIX is around a factor of 2 too high. The
skewness γn =

〈
n3 − 〈n〉3

〉
/δn3/2 is a statistical measure for

the presence of holes and blobs. A negative skewness is an
indicator for the presence of holes, while a positive skewness
indicates blobs. The remarkable dip in the experimental data
at x ≈ 0.35m is -much less pronounced however- only recov-
ered by GRILLIX without the Boussinesq approximation. Oth-
erwise, the overall trend is captured with GRILLIX, i.e. the
source region is dominated by holes whereas the source free
region is dominated by blobs. Finally, the probability density
function (PDF) taken at the source edge and the power spectrum
(calculated by squaring the discrete Fourier transform of the
density in a volume at the source edge x = 0.25m − x = 0.28m,
and using a Hanning window) are shown in Fig. 10 and show
an excellent agreement between GRILLIX and the experimen-
tal data. The PDF has a nearly Gaussian shape indicating a pure
uncorrelated behavior of the plasma in the gradient region.

The LAPD simulation run with BS show only very minor
quantitative differences to the FS in the statistical averages. At
most, the FS matches better the experimental data for the power
spectrum at high frequencies and qualitatively recovers the dip
in the skewness at x = 0.35. This indicates that the BS might be
misleading under extreme conditions. As an example we show
snapshots of the FS and BS simulation at the initial transition to
turbulence at t = 4.5 in Fig. 11, where very steep gradients are
present. Under these conditions we indeed observe a qualitative
difference between FS and BS.

In conclusion, GRILLIX is able to reproduce the experi-
mental data qualitatively and to a large extent also quantita-
tively, where deviations to the experiment may have several
reasons. Firstly, there are uncertainties from the experimental
side, e.g. the profiles of the density differ between [36] and [35]
although similar plasma parameters were used. Secondly, the
question arises if the experimental data shows general results.
As was pointed out in [35], also other values for e.g. the fluctua-
tion level have been measured. Finally, the effect of neutral gas
has not yet been taken into account in GRILLIX, which could
be potentially important in LAPD [60, 36, 61].

5. Conclusions

The global fluid turbulence code GRILLIX was applied to
(quasi)-linear geometry. Although a description of fusion plas-
mas in linear geometry would be an oversimplification, it is yet
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Figure 6: Overview over LAPD simulation: Snapshots of density during initial state (top left), at transition to turbulence (top middle) and in saturated state (top
right) and bottom row for Te and φ. White circle indicates top of the source (black circle source boundary). Bottom right: Normalised poloidal flow profile in
saturated regime averaged over time.

very useful for the study of basic common phenomena and for
thorough code verification and validation, which is often diffi-
cult in complex geometries.

The focus of this work was on the study of blob dynamics,
and the scaling laws for the inertial regime, Eq. (12), and for
the sheath limited regime, Eq. (13), were successfully verified
with GRILLIX. We investigated systematically the effect of the
Boussinsq approximation and found that not only the fluctua-
tion amplitude in density is important, but also the blob regime
affects the validity of the Boussinesq approximation, which is
also influenced by temperature. This is important as it points
out that the validity of the routinely applied Boussinesq approx-
imation cannot generally be taken for granted. Via the Mor-
let wavelet analysis we investigated the origin of blobs in the
linear device LAPD. During the blob/hole formation we found
m = 1 modes with cross phases of δnφ ≈ ±π/2 between density
and electrostatic potential. This points on the rotational inter-
change and Kelvin-Helmoltz instabilities as candidates for the
blob drive mechanism.

Finally, we validated our simulation results against the LAPD
experiment, where GRILLIX is able to reproduce experimental
data of LAPD qualitatively and to a large extent also quantita-
tively. We found that the Boussinesq approximation has only a
very minor impact on statistical averages, but can be significant
in extreme conditions, when e.g. steep gradients appear.
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