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Abstract 

This paper introduces an active inference formulation of planning and navigation. It illustrates how the 

exploitation–exploration dilemma is dissolved by acting to minimise uncertainty (i.e., expected surprise 

or free energy). We use simulations of a maze problem to illustrate how agents can solve quite 

complicated problems using context sensitive prior preferences to form subgoals. Our focus is on how 

epistemic behaviour – driven by novelty and the imperative to reduce uncertainty about the world – 

contextualises pragmatic or goal-directed behaviour. Using simulations, we illustrate the underlying 

process theory with synthetic behavioural and electrophysiological responses during exploration of a 

maze and subsequent navigation to a target location. An interesting phenomenon that emerged from the 

simulations was a putative distinction between ‘place cells’ – that fire when a subgoal is reached – and 

‘path cells’– that fire until a subgoal is reached. 

 

Keywords: active inference ∙ Bayesian ∙ novelty ∙ curiosity ∙ salience ∙ free energy ∙ epistemic value ∙ 

exploration ∙ exploitation 

 

Introduction 

The ability to navigate an uncertain world is clearly a central aspect of most behaviour. This ability 

rests on the optimal integration of knowledge about the world and the goals that we are currently 

pursuing (Hauskrecht, 2000, Johnson et al., 2007, Pastalkova et al., 2008, Hassabis and Maguire, 2009, 

Humphries and Prescott, 2010, Karaman and Frazzoli, 2011, Buzsaki and Moser, 2013, Pfeiffer and 

Foster, 2013a). This paper offers both a normative and process theory for planning and navigating in 
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novel environments – using simulations of subjects performing a maze task. Our objective was not to 

find an optimal solution to the problem at hand; rather, to develop a model of how the problem could 

be solved in a neurobiologically plausible fashion. In other words, we wanted to establish a modelling 

framework within which we can compare different models in terms of their ability to explain empirical 

responses; i.e., reaction times, saccadic eye movements and neurophysiological responses. To 

accomplish this, we focus on a minimal model of nontrivial planning that involves navigating a maze 

from a start location to a target location. Crucially, we consider this problem under uncertainty about 

the maze – thereby requiring the subject to explore the maze (visually) and then use this information to 

navigate to the target or goal. In what follows, we describe an active inference scheme based on Markov 

decision processes that accomplishes this task. This paper restricts itself to describing the scheme and 

generative model – and to illustrating the model predictions, using simulated behavioural and 

electrophysiological responses. Subsequent work will use the model described in this paper to 

characterise empirical responses and compare different models of behaviour along the lines described 

in (Schwartenbeck and Friston, 2016). 

The contribution of this work is not so much the solution to the maze problem but the sorts of solutions 

that emerge under Bayes optimality principles (i.e., active inference) when plausible constraints are 

applied: see also Solway & Botvinick (2015). These constraints range from general principles to 

specific constraints that must be respected by real agents or sentient creatures. For example, at a general 

level, we suppose that all perception (i.e., state estimation) and consequent behaviour conforms to 

approximate Bayesian inference – as opposed to exact Bayesian inference. In other words, by using a 

variational (free energy) bound on model evidence, we implicitly assume a form of bounded rationality. 

At a more specific level, realistic constraints on inference arise from how the environment is sampled 

and evidence is accumulated. For example, we will use synthetic subjects that have a limited working 

memory that can only entertain short-term (finite horizon) policies. Furthermore, we will use agents 

who have a rather myopic sampling of the environment, obliging them to forage for information to build 

a clear picture of the problem with which they are contending. These constraints, particularly the limited 

horizon of prospective planning, lead to, or mandate, a simple form of hierarchical planning. This 

basically involves identifying proximal subgoals – within reach of a finite horizon policy – that 

necessarily lead to distal goals in the long term; c.f., (Sutton et al., 1999).  

This paper comprises three sections. The first section reviews active inference and the form of the 

generative models necessary to specify normative (uncertainty resolving) behaviour. It deals briefly 

with the underlying process theory, in terms of evoked electrophysiological responses and the 

associative plasticity of neuronal connections. The second section describes a particular generative 

model apt for solving the maze problem. This problem can be regarded as a metaphor for any sequence 

of constrained state transitions that have to be selected under uncertainty about the constraints. The final 
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section provides some illustrative simulations to show the sorts of in silico experiments that can be 

performed with these sorts of schemes. This section concludes by considering how trajectories or paths 

through (state) spaces might be encoded in the brain. In particular, we consider the notion of ‘place 

cells’ and ask whether place-cell-like activity may be a subset of more generic ‘paths cells’ that report 

"where I have come" from, as opposed to "where I am". We conclude with a discussion of how the 

active inference scheme described in this paper relates to – and inherits from – previous work in 

reinforcement learning and theoretical neurobiology. 

 

Active inference and resolving uncertainty 

Over the past years, we have described active inference for Markov decision processes in a wide range 

of settings. These cover simple (two-step) choice tasks to complicated hierarchical inference; for 

example, in reading sentences (Friston et al., 2015, Mirza et al., 2016). The underlying principles of 

active inference do not change. The only thing that changes is the generative model that specifies the 

task or scenario at hand. What follows is a formulation of planning and navigation using the same 

scheme used previously to explain other perceptual, behavioural and cognitive phenomena.  

The specific aspect of the current application rests upon how prior beliefs are specified. By showing 

that planning and navigation can be modelled with a generic (active inference) scheme, we hoped to 

show (i) that many aspects of planning transcend the particular problem of spatial navigation and (ii) 

the solutions that emerge speak to – and contextualise – previous formulations: e.g., (Sun et al., 2011a, 

Solway et al., 2014, Fonollosa et al., 2015, Maisto et al., 2015, Donnarumma et al., 2016, Stachenfeld 

et al., 2017, Gershman and Daw, 2017). 

Active inference refers to the minimisation of surprise – or resolution of uncertainty – during the active 

sampling of an environment. Formally, active inference is a normative theory, in the sense that there is 

a single objective function; namely, variational free energy. Free energy provides an upper bound on 

surprise (the improbability of some sensory samples), such that minimising free energy implicitly 

minimises surprise. An alternative perspective on this optimisation follows from the fact that surprise 

is negative model evidence. In other words, active inference implies some form of self-evidencing 

(Hohwy, 2016); in the sense that inference and subsequent behaviour increase the evidence for an 

agent's model of its world. Clearly, to make inferences, an agent has to entertain beliefs. In active 

inference, these beliefs are constituted by an approximate posterior density; namely, a probability 

distribution over the causes of sensory samples based on sensory evidence. The causes of sensory 

consequences are generally referred to as hidden states because they are generally hidden from direct 

observation and have to be inferred. In other words, active inference entails state estimation. Crucially, 
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agents have beliefs about hidden states of the world and their behaviour. This sets active inference apart 

from other schemes, in the sense that inferences about action and behaviour become an integral part of 

the general inference problem. This enables state estimation and planning as inference (Attias, 2003, 

Botvinick and Toussaint, 2012) to be subsumed gracefully under a single objective; namely, self-

evidencing. 

Practically, actions are selected from posterior beliefs about sequences of actions or policies. Each 

action solicits a new observation from the world – leading to the next cycle of active inference or 

perception. There are two key aspects that fall out of this formulation. First, entertaining beliefs about 

sequences of action necessarily requires an agent to have beliefs about (i.e., approximate posteriors 

over) hidden states in the future (and past). This necessarily endows agents with a short term memory 

of the proximal future (and past) that can be used for prediction (and postdiction). The second key 

aspect is that posterior beliefs about policies rest on prior beliefs about future outcomes. These prior 

beliefs can be regarded as preferred outcomes or goals in a reinforcement learning or utilitarian 

(economics) setting. In short, the heavy lifting in active inference rests upon how prior beliefs about 

behaviour or policies are formed. 

 

Prior preferences, novelty and salience 

In active inference, prior beliefs about policies are proportional to (negative) expected free energy. This 

follows naturally from the imperative to minimise surprise as follows: expected surprise is uncertainty 

(mathematically speaking, expected self-information is entropy). It therefore follows that surprise 

minimising (self-evidencing) policies must minimise expected surprise or, in bounded or approximate 

inference, they must minimise expected free energy. This is formally equivalent to choosing policies 

that resolve uncertainty (see Appendix 1 for a more technical description). When expected free energy 

is unpacked, several familiar terms emerge (Friston et al., 2015). The expected free energy for a 

particular policy at a particular time in the future can be expressed as (see Table 1 and Appendix 2 for 

a list of variables and technical description): 

–

( , ) [ln (A) ln (A | , , )] [ln ( | ) ln ( | , )] [ln ( )]
Q Q Q

(negative) intrinsic or epistemic value (negative) intrinsic or epistemic value– extr

G E Q Q s o E Q s Q s o E P o             

Novelty Salience insic or expected value

             

Here, ( | ) ( | ) (A)Q P o s Q s Q     is the posterior (predictive) distribution over the probabilistic 

mapping A from hidden states s  to outcomes o  under a particular policy   at time   in the future. 
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Intuitively, expected free energy can be divided into epistemic, information seeking and pragmatic, goal 

seeking parts, corresponding to intrinsic and extrinsic value respectively. Extrinsic (pragmatic) value is 

simply the expected value of a policy defined in terms of outcomes that are preferred a priori; where 

the equivalent cost corresponds to prior surprise. The more interesting parts are uncertainty resolving 

or epistemic in nature. These correspond to the first two (novelty and salience) terms above. These 

quantities are variously referred to as relative entropy, mutual information, information gain, Bayesian 

surprise or value of information expected under a particular policy (Barlow, 1961, Howard, 1966, 

Optican and Richmond, 1987, Linsker, 1990, Itti and Baldi, 2009). In short, they score the reduction of 

uncertainty that would accrue under a particular policy for sampling the world. In other words, they 

score the epistemic value of the evidence that would be accumulated by pursuing a particular sequence 

of actions.  

Crucially, this uncertainty reduction comes in two flavours. There is an epistemic value associated with 

beliefs about the current state of the world – and how they unfold in the future. This epistemic value is 

generally referred to as the salience of sampling the world in a particular way: c.f.,   (Berridge and 

Robinson, 1998, Itti and Baldi, 2009, Friston et al., 2015). The equivalent salience for the parameters 

of a model (denoted by A) reflects the resolution of uncertainty about probabilistic contingencies that 

endows the world with causal structure. In other words, the epistemic value of a policy – that rests on 

uncertainty about model parameters (as opposed to hidden states) – encodes the novelty of a policy. Put 

simply, a novel situation becomes attractive because it affords the opportunity to resolve uncertainty 

about what would happen "if I did that". In what follows, we will call upon novelty (the epistemic value 

of reducing uncertainty about model parameters) and extrinsic value (the degree to which predicted 

outcomes conform to my preferences) in simulating goal-directed exploration of a novel maze. 

In summary, active inference casts perception as optimising beliefs about causes of sensory samples 

that minimise surprise (i.e., free energy) and action in terms of policies that minimise uncertainty (i.e., 

expected free energy). Expected free energy contains the right mixture of novelty, salience and prior 

preferences that constitute (Bayes) optimal beliefs about policies, which specify action (see Table 2 for 

a summary of the implicit resolution of surprise and uncertainty). Clearly, to evaluate posterior beliefs 

it is necessary to have a model of how states and parameters conspire to generate outcomes. So what 

does these models look like? 

 

Generative models and Markov decision processes 

Figure 1 provides a definition of a generic model that can be applied to most (discrete state space) 

scenarios. The particular form of the generative model used in this paper will be described in greater 
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detail in the next section. In brief, a generative model is necessary to optimise beliefs about hidden 

states of the world and subsequent behaviour. This model is a probabilistic specification of how sampled 

outcomes are generated. For the sorts of Markov decision problems usually considered, it is sufficient 

to distinguish among four sorts of hidden or latent causes. These are hidden states generating outcomes, 

where transitions among hidden states are specified by a policy. This means there are two sorts of hidden 

states; namely, states of the world and the policies currently being pursued. As described above, beliefs 

over policies are proportional to the expected free energy or uncertainty under each policy. The constant 

of proportionality constitutes the third unknown; namely, the precision of beliefs about policies. This 

plays an interesting role in encoding the confidence in beliefs about the policies in play. It plays the 

same role as a softmax or inverse temperature parameter in classical softmax response rules and related 

formulations (Daw et al., 2011). Finally, the fourth unknown quantities are the parameters of the model. 

These correspond to matrices that specify the likelihood and (empirical) priors of the model. The first 

(likelihood: A) matrices encode the probability of outcomes under each hidden state, while the 

probability transition (empirical prior: B) matrices encode the probability of a subsequent state, given 

the current state. Crucially, there is a separate transition matrix for each allowable action, where a 

sequence of transitions is determined by the sequence of actions or policy. Prior beliefs about allowable 

policies depend on (precision weighted) expected free energy, which depend upon prior preferences 

over outcomes (prior cost: C), for each outcome modality over time. Finally, there are priors over the 

initial state (initial priors: D). When the parameters are unknown, they are usually modelled as Dirichlet 

distributions over the corresponding (likelihood and transition) probabilities. In other words, the 

underlying concentration parameters are essentially the frequency or number of times a particular 

outcome or state is generated from the hidden state in question. In what follows, we will only consider 

uncertainty about the likelihood. In other words, we will assume the agent knows the immediate 

consequences of action. 

 

Belief propagation in the brain  

Equipped with this generative model, we can now derive update equations that minimise free energy. 

If this is done with careful respect for neurobiological constraints on the implicit Bayesian belief 

updating, one can derive a relatively straightforward process theory (Friston et al., 2015, Friston et al., 

2016). The ensuing Bayesian belief updates are summarised in Figure 2. A detailed description of the 

belief update equations – and how they might be implemented in the brain – can be found in (Friston et 

al., 2017a). A complementary treatment that focuses on learning model parameters can be found in 

(Friston et al., 2016). The contribution of this paper is the form of the prior beliefs that underwrite policy 

selection. We therefore focus on these priors and how they inform policy selection through expected 
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free energy. Appendix 2 derives the form of the subsequent belief updates (shown in Figure 2) for 

interested readers. 

In brief, a belief propagation scheme is used to update the expected hidden states using a gradient 

descent on free energy. Crucially, posterior beliefs are over states from the beginning to the end of a 

trial or sequence of actions. This means that belief updating involves expectations about the past and 

future; enabling both prediction and postdiction separately under each policy. The second equation in 

Figure 2 (perception and state estimation) is an ordinary differential equation describing how expected 

hidden state is updated. The form of this equation – that falls out naturally from the form of the 

generative model – has a nice biological interpretation: this is because the updating involves the rate of 

change of a log expectation that is a sigmoid (softmax) function of log expectations (plus a decay term). 

This means that we can associate log expectations with depolarisation and implicit message passing 

with neuronal firing rates (that are a sigmoid activation function of depolarisation). In turn, this allows 

one to simulate electrophysiological responses in terms of fluctuations in log expectations.  

These fluctuations occur at a number of timescales. At the fastest timescale they correspond to 

optimisation as the updates converge on a free energy minimum. This occurs following every new 

observation that, we assume, is sampled every 256 ms or so. These expectations are reset after a 

sequence of observations that we will refer to as a trial. In other words, a trial comprises a sequence of 

epochs in which an action is taken and a new outcome is observed. The length of a trial corresponds to 

the depth or horizon of the policies entertained by the agent. In what follows, we will use policies of 

two actions (that correspond to eye movements) and will call a two-action sequence a trial or sub-path. 

Expectations about policies rest upon the posterior precision and expected free energy. Expected free 

energy in turn depends upon the expected states under the policy in question. This is a softmax function 

of expected free energy with a precision or inverse temperature parameter producing a conventional 

softmax response rule. Note that this form of probabilistic response emerges naturally from minimising 

variational free energy. The precision updates are effectively driven by the difference between the 

expected free energy over policies, relative to the equivalent expected free energy prior to observing 

outcomes. This is closely related to reward prediction error formulations and speaks to the similarity 

between precision updates and dopaminergic responses that we will appeal to later (Schultz et al., 2008, 

Friston et al., 2014, FitzGerald et al., 2015). Finally, the updates for the likelihood (concentration) 

parameters correspond to associative plasticity with trace and decay terms as discussed elsewhere 

(FitzGerald et al., 2015, Friston et al., 2016).  

In short, we have a set of simple update rules for the four unknown quantities (namely, hidden states, 

policies, precision and parameters) that provide a process theory for state estimation, policy selection, 

confidence and learning respectively. Note that these equations are completely generic. In other words, 
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they are exactly the same equations used in all previous illustrations of active inference under Markov 

decision process models: e.g., (Friston et al., 2014, FitzGerald et al., 2015, Friston et al., 2015, Friston 

et al., 2016, Mirza et al., 2016). In the next section, we will see examples of this updating cast in terms 

of simulated neuronal and behavioural responses. However, before simulating these responses, it is 

necessary to specify the precise form of the generative model. 

 

A generative model for planning 

This section describes the particular form of the generative model – in terms of its parameters, hidden 

states and policies – that will be used in the remainder of this paper. This model captures the bare 

essentials of a maze foraging task under novelty or uncertainty. In brief, the (synthetic) subject sees a 

maze specified on an 8 x 8 grid. The subject initially fixates on a starting location and then has to 

navigate to a target location deep within the maze. Notice that we are simulating a maze that can be 

interrogated with a visual search – as opposed to simulating a physical maze of the sort that a rat would 

explore. This is because we hope to use this model to explain empirical responses from (human) subjects 

performing the task. Having said this, we imposed constraints on the sampling of the maze so that it 

was isomorphic with a (myopic) rat exploring a physical maze. This was implemented by restricting 

movements or actions to single steps in four directions (or remaining at the same location). Furthermore, 

the sensory (visual) outcomes were limited: the subject could only see whether the current location was 

accessible (open – white) or not or (closed – black). These constraints meant that – in the absence of 

any knowledge about the maze that has been accrued through previous learning or experience – the 

subject had to forage for local information to build an internal model of the maze structure, using short 

sequences of saccadic eye movements. Crucially, the agent could only entertain shallow policies of two 

moves. In other words, they could only consider (25) policies corresponding to all combinations of five 

actions (up, down, left, right, or stay). This is an important constraint that precluded an exhaustive 

(deep) search to identify the best policy for reaching the goal. In effect, this enforces a chunking of the 

problem into subgoals entailed by prior beliefs about outcomes or preferences.  

In addition to visual input, we also equipped agents with positional information; namely, the current 

location that they occupied. This meant that there were two outcome modalities: what (open versus 

closed) and where (among 64 locations). The generative model of these outcomes was very simple: the 

hidden states corresponded to the location (with 64 possibilities). The likelihood mapping from location 

to outcomes comprised two A matrices, one for each outcome modality. The first simply specified the 

probability of observing open versus closed at each location, while the second was an identity mapping 

returning the veridical location for each hidden state. The (empirical) prior transition probabilities were 

encoded in five B the matrices. Again, these were very simple and moved the hidden (where) states to 
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the appropriate neighbouring location, unless the action was stay or transgressed the boundary of the 

maze – in which case the location did not change. 

This generative model can be used in two modes. We can either assume that the subject has had a lot 

of experience with a particular maze and has accrued sufficient evidence to learn the mapping between 

location and outcome. In other words, knowledge about the maze is encoded in terms of what would be 

seen at each location. The subject can use this information to plan or navigate through the maze from 

the starting location to a target as described below – providing we instil the necessary prior beliefs. 

Alternatively, we could assume that the maze is novel. In this context, the (concentration) parameters 

of the likelihood mapping to what outcomes will be uniformly very small for all locations (we used 

1/8). In this instance, the subject has to first learn the maze before she can perform the task.  

Figure 3, shows the learning of the maze over 64 eye movements, using high values (128) of the 

concentration parameters for the mapping between location and the where modality. Learning is shown 

in terms of the accumulated concentration parameters for the what modality that are garnered by 

epistemic foraging. The key aspect of this behaviour is that the movements are driven by novelty, 

successively exploring unexplored regimes of the maze until all epistemic value or information gain 

has been consumed. In other words, once a location has been visited it is no longer novel or attractive, 

thereby rendering the probability that it will be sampled again less likely: c.f., inhibition of return (Wang 

and Klein, 2010). This epistemic foraging is driven entirely by the novelty afforded by ignorance about 

the first (what) modality. In other words, noise or stochastic fluctuations are unnecessary for generating 

explorative behaviour. The reason that exploration was driven entirely by novelty is that there is no 

uncertainty about hidden states (given the precise and ambiguous outcomes in the where modality – 

and the fact that there were no prior preferences to constitute place preferences). 

Figure 4 shows the simulated electrophysiological responses during the exploration above. These 

predicted responses are based upon the optimisation of expected hidden states and precision, described 

by the differential equations that mediate belief propagation (see Figure 2). It is these sorts of responses 

that are underwritten by the process theory on offer. The results in Figure 4 serve to illustrate the 

potential for generating predictions of behavioural, electrophysiological and dopaminergic responses 

that could be used in empirical studies. See (Schwartenbeck et al., 2015) for an example of using these 

sorts of simulated responses in computational fMRI.  

The upper panel shows the simulated firing rates of units encoding the expected location over the three 

epochs that surround the two eye movements that constitute successive trials. The fluctuations in 

transmembrane potential that drive these firing rates can be used to simulate induced responses (second 

panel) or evoked responses (third panel). The induced or time frequency responses over all units (second 

panel) are interesting from the point of view of theta-gamma coupling in the hippocampus during 
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exploration (Dragoi and Buzsaki, 2006, Colgin et al., 2009; Lisman and Redish, 2009, Jezek et al., 

2011, Buzsaki and Moser, 2013). This coupling arises naturally as the fast (gamma) optimisation of 

posterior expectations is entrained by a slow (theta) sampling of the environment (Friston and Buzsaki, 

2016). Finally, the lower panel shows simulated dopaminergic responses in terms of the rate of change 

of precision (plus an offset). Note how posterior precision fluctuates more markedly as the maze 

becomes more familiar and the subject becomes more confident about what she is doing. We will take 

a closer look at predicted electrophysiological responses in the last section. First, we consider how goal 

seeking emerges when we add prior preferences. 

 

Prior preferences, constraints and goals 

To simulate navigation per se, we need to consider the prior beliefs about outcomes that engender goal-

directed behaviour. In this paper, we will adopt a particular scheme; noting that many other plausible 

priors (i.e., heuristics) could have been used. We embrace this plurality because, ultimately, we want to 

adjudicate amongst different priors when trying to explain the empirical responses of real subjects. 

However, here, we will focus on one straightforward but efficient formulation. 

The prior preferences that lead to purposeful navigation – i.e. task set – can be specified purely in terms 

of prior preferences over location outcome. These reflect the subject’s beliefs about what are plausible 

and implausible outcomes and the constraints under which she operates. To accommodate these 

constraints, we used the following heuristic: namely, that a subject believes that she will occupy 

locations that are the most accessible from the target. If these prior preferences are updated after each 

trial, the subject will inevitably end up at the target location. To evaluate the accessibility of each 

location from the target location, the agent can simply evaluate the probability it will be occupied under 

allowable state transitions from the target location. Formally, this can be described as follows: 

1 1

3

1

ln ( )

16 [ ] ln T

P o

e

 



 

   

C

Ts Ts
  

The first term assigns a high cost to any location that is occupied with a small probability, when starting 

from the initial location. The second term corresponds to the (negative) log probability a given state is 

occupied, when starting from the target location (encoded by sT). Prior beliefs about allowable 

transitions T are based upon posterior beliefs about the structure of the maze; namely, whether any 

location is open or closed.  
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The probability transition matrix T plays the role of a Green’s function based upon the graph Laplacian 

T. Intuitively, T encodes the probability that any state will be occupied following diffusion from any 

other state during one time step – and the graph Laplacian encodes allowable paths based upon the 

posterior beliefs about the maze. Specifically, the graph Laplacian comprises the posterior probability 

that a state is open and can be reached by an action from another state. 

This particular heuristic was chosen to formalise the intuition that we decompose distal goals into 

intermediate subgoals and, in particular, attainable subgoals under an admixture of constraints. In other 

words, we tend to select those states that can be reached that can also be reached from the target state: 

see discussion and (Dijkstra, 1959). This suggests we contextualise our subgoals using knowledge about 

the ultimate goal so that the (forward and backward) passes through some problem space ‘meet in the 

middle’. Note the formal similarity between backwards induction and optimisation of state action 

policies under the Bellman optimality principle (Bellman, 1952) and the diffusion heuristic above. 

However, this heuristic goes a bit further and augments the implicit (extrinsic) value function of location 

with a reachability cost. This acknowledges the fact that, in active inference, agents are already 

prospective in their policy selection; even if the time horizon of these policies is not sufficient to reach 

the ultimate goal. Technically, active inference for Markov decision processes entails sequential policy 

optimisation – as opposed to optimising state-action policies. Having said this, state-action policies can 

be learned as habits under active inference, provided they are fit for purpose (Friston et al., 2016). Here, 

we effectively use a simple form of backwards induction to contextualise sequential policies with a 

limited horizon. 

As noted above, there are probably many schemes or heuristics that one could use. The diffusion 

heuristic appears to be remarkably efficient and is sufficient for our purposes; namely, to show how 

prior preferences about (where) outcomes can subsume all the prior beliefs necessary for instantiating 

a task set necessary for navigation. Figure 5 shows the results of a typical navigation when the maze is 

familiar; i.e., it is known a priori. The middle panels show the prior preferences (extrinsic value) over 

locations during navigation. Note how the locations with greatest extrinsic value effectively lead the 

agent towards the target location; thereby playing the role of subgoals. This simulation used 

concentration parameters – encoding the structure of the maze – of 128. This corresponds to 128 

exposures to each location. One might now ask how navigation depends upon experience. 
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The right panel of Figure 5 shows navigation performance (in terms of the time taken to secure the goal 

and transgressions into closed locations) as a function of familiarity with the maze. Familiarity was 

simulated using the accumulated concentration parameters from the exploratory simulations above. In 

other words, we effectively expose the subject to the maze for increasing durations of time (2 to 16 

seconds of simulated – and roughly computer – time). The degree to which familiarity supported task 

performance was then assessed by recording the path taken to the target when starting from the initial 

location. These results show that the subject was able to navigate to the goal, without making any 

mistakes, after about 16 seconds of exploration (no mistakes were made after 16 seconds in this 

example). Note that the time taken to reach the target is paradoxically the shortest when the maze is 

unfamiliar (i.e. on the first exposure), because the subject took shortcuts along illegal paths. In the final 

section, we ask what would happen when behaviour is driven by both epistemic and pragmatic value at 

the same time. 

 

Goal directed exploration 

Finally, we turn to the integration of intrinsic (epistemic) and extrinsic (pragmatic) value by equipping 

the agent with goal-directed prior beliefs (i.e., task set) during the epistemic foraging. The main purpose 

of this simulation is to show active inference dissolves the exploration–exploitation dilemma by 

absorbing extrinsic and intrinsic imperatives into a single objective function (i.e., expected free energy). 

Heuristically, the ensuing behaviour is initially driven by epistemic imperatives until sufficient 

uncertainty has been resolved to realise the pragmatic or extrinsic imperatives. This is precisely what 

we see in the current setup.  

Figure 6 shows the results of foraging for information under the goal directed prior beliefs above. Here, 

we see that the exploration is now (goal) directed. In other words, as soon as there is sufficient 

information about the structure of the maze, it is used to constrain epistemic foraging, until the target is 

reached. In these simulations, the subject navigated to the target location during four successive 

searches that were limited to eight trials or 16 eye movements. It can be seen that perfect (shortest path) 

performance is attained by the fourth attempt. Prior to this, there are excursions into closed locations. 

Interestingly, when the maze is still novel, curiosity gets the better of the subject and the target location 

is largely ignored in favour of resolving uncertainty about nearby locations.  

The right hand panels of Figure 6 show the corresponding simulated physiological responses, using the 

format of Figure 4. In this example, we see systematic and progressive changes in (simulated) 

electrophysiological and dopaminergic responses. The latter are particularly interesting and reflect the 

fact that as the subject engages with novel opportunities, she resolves uncertainty and thereby 
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suppresses fluctuations in precision or confidence. To our knowledge, this has not been addressed 

empirically and represents a prediction of the current simulations. Namely, one would expect to see 

more phasic dopamine responses (or fMRI responses in the target regions of the dopaminergic 

projections) during the initial exploration of a maze, relative to later periods that may be more 

exploitative in nature. This is a somewhat paradoxical prediction that, in principle, could be confirmed 

with human subjects and fMRI: c.f., (Bunzeck and Duzel, 2006, D'Ardenne et al., 2008, Schwartenbeck 

et al., 2015). 

 

Place cells or path cells or both? 

As noted in the introduction, the purpose of this work was to formulate spatial navigation in terms of 

active inference, using the same scheme that has been used to model several other decision-making, 

cognitive and perceptual paradigms. This scheme has a fairly well established process theory that allows 

one to make specific predictions about electrophysiological and psychophysical responses. There are 

many avenues that one could pursue in light of the simulations described in this paper. For example, 

the encoding of hidden states in terms of location leads naturally to a formulation in terms of place cells 

and the attendant spatiotemporal encoding of trajectories through space. In this setting, one could 

associate the encoding of policies with direction selective neuronal responses (Taube, 2007) – and 

consider how simulated place cell activity (expectations about hidden states) depend upon direction 

cells (i.e., expectations about policies) (Lisman and Redish, 2009). These predictions would speak 

against a simple (orthogonal) encoding of place and direction and would predict particular forms of 

joint peristimulus time histogram responses – that reflect the message passing between representations 

of state (i.e., place) and policy (i.e., directed trajectory). We will pursue this elsewhere and focus here 

on an even simpler insight afforded by the above simulations. 

 

In virtue of inferring the best policy, in terms of its consequences for latent states of the world, there is 

a necessary encoding of future states under allowable policies. This brings something quite interesting 

to the table; namely, the encoding trajectories or paths through state space. In particular, it means that 

certain units will encode the location at the start of any sequence of movements – and will continue 

doing so until a subgoal is attained. Conversely, units that encode future states will only respond when 

there is clear evidence that the subgoal has been reached. This dissociation – between the predicted 

firing patterns of units encoding hidden states at the beginning and ends of sub-paths – means that there 

must be a continuum of place specificity that could present itself as place-cell-like activity of greater or 

lesser precision. In other words, if one subscribes to the neuronal process theories above, then place cell 

responses can be regarded as the limiting case of a more general encoding of local paths (Knierim et 

al., 2014, Friston and Buzsaki, 2016).  
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This is illustrated in Figure 7, which plots the activity of several units as a function of location in the 

maze (see middle panels). Crucially, cells encoding the initial location at the beginning of each sub-

path maintain their firing during the course of the path to the subgoal. Conversely, cells that encode 

hidden states towards the end of each sub-path have a spatial specificity, because they are only engaged 

when the location is reached. It is tempting to think of neuronal encoding in terms of ‘path cells’ that 

encode where the (synthetic) agent has been recently; such that a proportion of these path cells – 

encoding hidden states at the end of a local trajectory – become ‘place cells’ proper. If this form of 

spatiotemporal encoding is in play in real brains, it suggests that there may be more information in 

neuronal responses available for reconstructing spatial paths or trajectories than based solely on 

canonical place cell activity (Guger et al., 2011). This speaks to a characterisation of neuronal responses 

both in terms of the position of a rat and its local trajectory in temporal frames of reference that maybe 

anchored to subgoals (Pfeiffer and Foster, 2013). Clearly, this would be a challenging but interesting 

possibility that might nuance our understanding of spatiotemporal encoding; in particular, scheduling 

in temporal frames of reference that transcend our normal conception of the past and future 

(Eichenbaum, 2014). 

 

 

Discussion 

In what follows, we consider related approaches and previous computational formulations of spatial 

planning. We then briefly consider the known functional neuroanatomy engaged by these sorts of tasks. 

This discussion is presented as a prelude to subsequent work that will use the current model to fit the 

behavioural and fMRI responses elicited by spatial planning in humans (Kaplan et al., 2017a). 

Relationship to Previous Work 

Many of the assumptions entailed by the priors of the generative model in this paper are inherited from 

previous work using the principles of optimal control and dynamic (reinforcement) learning to 

understand navigation through (state) spaces and implicit deep tree searches. In terms of systems and 

cognitive neuroscience, reinforcement learning paradigms provide a nice taxonomy within which to 

place the current active inference formulation. Put simply, spatial navigation and, more generally 

planning, presents an intractable deep tree search into the future. There are at least six ways in which 

one can avoid full tree searches (Mehdi Keramati – personal communication). First, one can formulate 

the problem in terms of habit learning. That is, avoid planning altogether and rely upon state-action 

policies that are accrued in the usual way through caching the value of actions from any given state 

(Sutton and Barto, 1998). Some key theoretical papers in this setting include (Sutton and Barto, 1998, 
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Daw et al., 2005, Keramati et al., 2011). Empirical evidence – for habits in the brain – derives from 

neuroimaging and the use of normative models based upon reinforcement learning (Daw et al., 2011, 

Lee and Keramati, 2017). Second, one can prune or limit the depth of the tree search. See (Huys et al., 

2012) for a discussion of how a (Pavlovian) system could sculpt choices by pruning decision trees. A 

nuanced version of pruning involves planning until a certain depth and then switching to habitual value 

estimation at the leaves of the search tree; i.e., plan until habit (Keramati et al., 2016). This combines 

the efficiency of habit learning, yet still retains a degree of context sensitivity via planning. An 

alternative approach – bidirectional planning – rests upon parallel searches of decision trees; one search 

starting from the current (inferred) state and another from the goal state (Dijkstra, 1959). An alternative, 

known as hierarchal decision-making, involves planning on an abstract representation of a Markov 

decision process (known as the ‘option’ framework in the hierarchal reinforcement literature). This is 

reviewed in (Botvinick et al., 2009), and enjoys a degree of empirical support (Ribas-Fernandes et al., 

2011, Collins and Frank, 2016). Finally, successor representation involves caching successor states that 

can be reached from each state action pair (Dayan, 1993). These representations can be used to estimate 

the value of state action pairs when combined with the reward associated with each state. Again, there 

is some experimental evidence for this formulation (Momennejad et al., 2017, Russek et al., 2017). 

These reinforcement learning approaches are formally distinct from active inference because they do 

not accommodate the effects of policies or action on belief states that may nuance optimal sequences 

of behaviour. This is a fundamental distinction that can be reduced to the following: active inference 

optimises a functional of beliefs about states; namely, the expected free energy above. This contrasts 

with reinforcement learning – and related approaches based upon the Bellman optimality principle – 

that try to optimise a function of states per se – as opposed to beliefs about states (Friston et al., 2015). 

Having said this, there are many aspects of the above reinforcement learning formulations that we have 

appealed to in this paper. For example, there are elements of hierarchal decision-making and successor 

representations implicit in the deep temporal (generative) model that underlies inferences about policies 

and subsequent policy selection. Furthermore, bidirectional planning is, in a loose sense, implicit in the 

bidirectional message passing between active inference representations of the past and future: see also 

(Gershman, 2017). As in pruning approaches, this bidirectional aspect is kept to a manageable size by 

the induction of subgoals that allow for a chunking or decomposition of the tree search. It remains an 

interesting and challenging exercise to migrate reinforcement learning schemes into the world of belief 

states (e.g., partially observed Markov decision processes). The current treatment is an attempt to 

leverage these ideas in the setting of active inference. 

The imperative to resolve epistemic uncertainty, under active inference, fits comfortably with recent 

work using variational inference in Bayesian neural networks to maximize information gain during 

exploration (Houthooft et al., 2016). Artificial curiosity in simulated agents is an essential aspect of 
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spatial planning (Vigorito and Barto, 2010). Curious, uncertainty resolving behaviour arises in our 

scheme via the selection of policies that not only reduce uncertainty about hidden states of the world 

(i.e., salience) but also reduce ignorance about hidden contingencies encoded by the parameters of the 

agent’s generative model; i.e., novelty (Friston et al., 2017b). The ensuing resolution of uncertainty 

through information gain is exactly as articulated in terms of planning to be surprised: see (Sun et al., 

2011b). In the current formulation, the information gain in question is a constituent of expected free 

energy; namely, the epistemic value that underwrites exploratory behaviour. 

 

Our formulation contributes to an emerging literature on multi-step planning in novel environments. 

Here, we focused on a spatial planning task that involves a myopic agent making saccadic eye 

movements, while learning the quickest path to a goal location. Other studies have investigated planning 

in novel environments (McNamee et al., 2016) or puzzle-like tasks (Solway et al., 2014, Maisto et al., 

2015). Despite these differences, all of these studies entail hierarchical problems that are solved by 

chunking action sequences (Fonollosa et al., 2015). In the context of planning, this chunking is known 

as subgoaling (van Dijk and Polani, 2011, Van Dijk and Polani, 2013, Maisto et al., 2015, Donnarumma 

et al., 2016); where the agent locates subgoals/bottlenecks en route to achieving a goal. Due our use of 

a graph Laplacian – in forming prior preferences – the imperative to reach subgoals emerges without 

any explicit marking of subgoals in the environment (e.g. explicitly informing the agent where a choice 

point is located). In other words, the agent behaves ‘as if’ it was securing a succession of subgoals; 

however, these subgoals are essentially phenomenological. 

 

One prominent advantage of locating subgoals within an environment, regardless of whether a subgoal 

is spatial or abstract, is that it affords modularization of a state space; in the service of focusing on 

relevant sub-tasks (Solway and Botvinick, 2012, Solway et al., 2014, Solway and Botvinick, 2015). 

State-space modularization is particularly important during online spatial planning in novel 

environments (McNamee et al., 2016). Recent work suggests that the type of online state-space 

modularization captured by McNamee and colleagues (McNamee et al., 2016) might rely on the 

hippocampal formation and anterior prefrontal cortex – brain areas thought to signal the current location 

within a state space, relative to a goal (Kaplan et al., 2017b).  

 

In neurobiology, a well-studied modularization of space at the level of single neurons occurs in grid 

cells located in the dorsomedial entorhinal cortex (Hafting et al., 2005). Some modelling work has 

already made substantial progress in that direction – by showing that populations of grid cells can guide 

goal-directed navigation (Erdem and Hasselmo, 2012, Bush et al., 2015). Systems level models have 

been proposed to address complex spatial planning behaviour; for example, Martinet and colleagues 

(Martinet et al., 2011) modelled a prefrontal-hippocampal network that could perform multi-level 

spatial processing, encode prospective goals and evaluate the distance to goal locations.  
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As in the maze foraging tasks simulated here, one of our fMRI studies required participants to search 

visually for the shortest path to a goal location in novel mazes containing one (shallow maze) or two 

(deep maze) choice points or subgoals (Kaplan et al., 2017a). Interestingly, we observed two anterior 

prefrontal responses to demanding choices at the second choice point. One in rostro-dorsal medial 

prefrontal cortex (rd-mPFC) that was also sensitive to (deactivated by) demanding initial choices and 

another in lateral frontopolar cortex, which was only engaged by demanding choices at the second 

choice point. This suggests that, in deep mazes, these regions are engaged by belief updating during 

planning to identify the most promising subgoal (Kaplan et al., 2017b). Subsequent work could 

potentially use the active inference scheme above to fit different anterior prefrontal responses – and 

how they reflect robust subgoal identification. Interestingly, a recent modelling initiative showed that 

strong grid cell representations could lead to better calculation of subgoals, when navigating an 

environment (Stachenfeld et al., 2017). Although we did not measure robust entorhinal cortex signals 

in our experiment, our spatial planning fMRI study revealed increased hippocampal coupling with rd-

mPFC when subgoals had to be identified. In the future, we hope to use the model described in this 

paper to elucidate the precise computational roles of the hippocampus, entorhinal cortex, and anterior 

prefrontal regions when formulating plans in novel environments.  

A key challenge in the computational neuroscience of reinforcement learning is real world learning, in 

state spaces that are high-dimensional, continuous and partially observable. To meet this challenge, a 

recent proposal endowed reinforcement learning systems with episodic memory (Gershman and Daw, 

2017). Interestingly, this approach produces equations that are formally similar to the updates in active 

inference (because they both involve message passing among representations of hidden or latent states 

in the future past). This speaks to the construct validity of both approaches, in terms of each other, and 

the possibility that reinforcement learning with episodic memory can be cast as active inference – and 

vice versa. Given the overlap between neuronal systems guiding spatial navigation and episodic 

memory (Burgess et al., 2002), an interesting future area of study will be to create agents that can 

navigate one environment and draw upon their previous experience when exploring another.  

 

Conclusion 

In conclusion, we have described an active inference scheme for epistemic foraging and goal directed 

navigation using a minimal setup. The key contribution or insight afforded by these simulations is to 

show that purposeful, goal directed behaviour can be prescribed through simple prior beliefs about the 

outcomes that will be encountered under allowable policies. Furthermore, we have described a plausible 

process theory for exploratory behaviour and associated neurophysiological responses that can be tested 

empirically in behaving subjects. An interesting aspect of these simulations is the pursuit of long-term 
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goals under the constraint of short-term policies. The apparent problem of failing to use appropriately 

distant policy horizons (i.e., deep tree searches) is easily finessed by contextualising prior beliefs such 

that they naturally offer attainable subgoals. Finally, we have shown that the resulting decomposition 

of long-term goals can operate online, even in the context of epistemic foraging. This means that goal 

directed behaviour and the resolution of uncertainty work hand-in-hand to underwrite predictable 

(minimally surprising) outcomes.  

 

Software note 

Although the generative model – specified by the ( , , )A B C, D  matrices – changes from application to 

application, the belief updates in Figure 2 are generic and can be implemented using standard routines 

(here spm_MDP_VB_X.m). These routines are available as annotated Matlab code in the SPM 

academic software: http://www.fil.ion.ucl.ac.uk/spm/. The simulations in this paper can be reproduced 

(and customised) via a graphical user interface: by typing >> DEM and selecting the Maze learning 

demo. 
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Appendices 

Appendix 1 – Expected free energy: variational free energy is a functional of a distribution over states, 

given observed outcomes. We can express this as a function of the sufficient statistics of the posterior: 

( | )( ) [ln ( | ) ln ( , )]Q sF E Q s P o s 
s

s s
        (A.1 
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In contrast, the expected free energy is the average over (unobserved) outcomes, given some policy that 

determines the distribution over states. This can be expressed as a function of the policy: 

( , | )

( , | )

( | )

( ) [ln ( | ) ln ( , | )]

[ln ( | ) ln ( | ) ln ( | )]

[ [ ( | )]]

P o s

P o s

P s
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E P s P o s P s

E H P o s







  

 

 
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
     (A.2 

The expected free energy is therefore just the expected entropy or uncertainty about outcomes under a 

particular policy. Things get more interesting if we express the generative model-terms of a prior over 

outcomes that does not depend upon the policy 

( , | )

( , | ) ( | )

( ) [ln ( | ) ln ( | , ) ln ( )]
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    (A.3 

This is the form used in active inference, where all the probabilities in (A.3) are conditioned upon past 

observations. This enables one to replace the posterior in (A.3) with the approximate posterior that 

minimises variational free energy based on (observed) outcomes in the past: see (A.5). 

 

Appendix 2 – Belief updating: Bayesian inference corresponds to minimising variational free energy, 

with respect to the expectations that constitute posterior beliefs. Free energy can be expressed as the 

(time-dependent) free energy under each policy plus the complexity incurred by posterior beliefs about 

(time-invariant) policies and parameters, where (with some simplifications): 
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The free energy of hidden states in this expression is given by: 
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The expected free energy of any policy has a homologous form but the expectation is over both hidden 

states and – yet to be observed – outcomes ( | ) ( | ) (A)Q P o s Q s Q    : 
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           (A.5 

Figure 2 provides the update rules based upon minimising variational free energy via a gradient descent: 

1 1 1( )F o    

             s v A B s B s       (A.6 

The auxiliary variables ln 

 ν s  can be regarded as transmembrane potential in a biological setting, 

while the resulting firing rate is a sigmoid function of depolarisation. A similar formalism can be 

derived for the precision (c.f., dopamine) updates. The remaining update rules are derived in a 

straightforward way as the solutions that minimise free energy explicitly.  
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Table 1: Glossary of variables and expressions 

Expression Description 

1

1

( , , ) {0,1}

( , , ) [0,1]

M

M

o o o  

  

 

 o o o
 

Outcomes in M modalities (one in K vectors) 

and their posterior expectations 

1( , , )to o o  Sequences of outcomes until the current time point. 

{0,1}

[0,1]

s





s
 

Hidden states (one in K vectors) 

and their posterior expectations 

1( , , )Ts s s  Sequences of hidden states until the end of the current trial 

{1, , }

[0,1]

K 

π
 

K policies specifying action sequences 

and their posterior expectations 

{1, , }

{1, , }

u L

U L






 

One of the L allowable actions 

and sequences of actions under the π-th policy 

ln

( )

 

 

 

 





ν s

s ν
 

Auxiliary variable representing transmembrane voltage 

and corresponding policy specific posterior expectations 

0

0

0

[A ]

[ln A ] ( ) ( )

m m m m

Q

m m m m

Q

m m

ij iji

E

E  

 

  



A a a

A a a

a a

 Expected outcome probabilities (likelihood) for the m-th modality 

under each combination of hidden states 

and their expected logarithms 

,m ma a  
Prior and posterior concentration parameters of the likelihood 

1{ , , }

ln

LU






 

 





B B B B

B B
 

Transition probability prescribed by a policy  

and its logarithm 

ln ( )m mP o  C  Logarithm of the prior probability of the m-th outcome; i.e. prior 

cost or negative preference 

1( )P sD  Prior expectation of the initial hidden state  

: ( ) ( , )F F 
   F F  Variational free energy for each policy 

: ( ) ( , )G G 
   G G  Expected free energy for each policy 

1





γ β  

The precision (inverse temperature) of beliefs about policies, 

its posterior expectation 

and prior expectation of temperature (inverse precision) 

,m m 

 o A s  Expected outcome m, under a particular policy 

n 

  
 s π s  Bayesian model average of hidden states over policies 

exp( )
( )

exp( )









 


G
G

G
 

Softmax operator, returning a vector that comprises a proper 

probability distribution. 

( ) ln ( )   
a

a a  Digamma function or derivative of the log gamma function. 
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01 1m m m W a a  A matrix encoding uncertainty about parameters for each 

combination of outcomes and hidden states 

( )m m mdiag  H A A  
A matrix encoding the uncertainty about outcomes for each 

combination of hidden states 

 

 

Table 2: sources of uncertainty and the behaviours entailed by its minimisation; i.e., resolution of 

uncertainty through approximate Bayesian inference. 

 

Source of uncertainty Free energy (surprise) Minimisation Active inference 

Uncertainty about hidden 

states given a policy ( )F   
With respect to 

expected states 


s  

Perceptual inference 

(state estimation) 

Uncertainty about policies 

in terms of expected: 

 future states 

(intrinsic value) 

 future outcomes 

(extrinsic value) 

 model parameters 

(novelty) 

( )

ln

G

  

  



 

 

 

 

   

 

 

o o H s

o C

o W s

 

With respect to 

policies π  

Epistemic planning 

 

 

 intrinsic motivation 

 extrinsic motivation 

 curiosity 

Uncertainty about model 

parameters given a model 
F  

With respect to 

parameters a  

Epistemic learning 

(active learning) 
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Figure legends 

 

Figure 1 – generative model and (approximate) posterior. A generative model specifies the joint 

probability of outcomes or consequences and their (latent or hidden) causes. Usually, the model is 

expressed in terms of a likelihood (the probability of consequences given causes) and priors over causes. 

When a prior depends upon a random variable it is called an empirical prior. Here, the likelihood is 

specified by matrices A whose components are the probability of an outcome under each hidden state. 

The empirical priors in this instance pertain to transitions among hidden states B that depend upon 

action, where actions are determined probabilistically in terms of policies (sequences of actions denoted 

by π). The key aspect of this generative model is that policies are more probable a priori if they 

minimise the (path integral of) expected free energy G. Bayesian model inversion refers to the inverse 

mapping from consequences to causes; i.e., estimating the hidden states and other variables that cause 

outcomes. In variational Bayesian inversion, one has to specify the form of an approximate posterior 

distribution, which is provided in the lower panel. This particular form uses a mean field approximation, 

in which posterior beliefs are approximated by the product of marginal distributions over unknown 

quantities. Here, a mean field approximation is applied both posterior beliefs at different points in time, 

policies, parameters and precision. See the main text and Table 2 for a detailed explanation of the 
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variables. The insert shows a graphical representation of the dependencies implied by the equations on 

the right. 

 

Figure 2 – Schematic overview of belief updating: the left panel lists the belief updates mediating 

perception, policy selection, precision and learning; while the left panel assigns the updates to various 

brain areas. This attribution is purely schematic and serves to illustrate an implicit functional anatomy. 

Here, we have assigned observed outcomes to representations in the Pontine-geniculate occipital-

system; with visual (what) modalities entering an extrastriate stream and proprioceptive (where) 

modalities originating from the lateral geniculate nucleus (LGN) via the superficial layers of the 

superior colliculus. Hidden states encoding location have been associated with the hippocampal 

formation and association (parietal) cortex. The evaluation of policies, in terms of their (expected) free 

energy, has been placed in the caudate. Expectations about policies – assigned to the putamen – are 

used to create Bayesian model averages of future outcomes (e.g., in the frontal or parietal cortex). In 

addition, expected policies specify the most likely action (e.g., via the deep layers of the superior 

colliculus). Finally, the precision of beliefs about – confidence in – policies rests on updates to expected 

precision that have been assigned to the central tegmental area or substantia nigra (VTA/SN). The 

arrows denote message passing among the sufficient statistics of each marginal as might be mediated 

by extrinsic connections in the brain. The red arrow indicates activity dependent plasticity. Cat and Dir 

referred to categorical and Dirichlet distributions respectively. Please see the appendix and Table 2 for 

an explanation of the equations and variables. 
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Figure 3 –explorative, epistemic behaviour. Left panel: This figure reports the results of epistemic 

exploration for 32 (two move) trials (e.g., 64 saccadic eye movements). The maze shown in terms of 

closed (black) and open (white) locations. The magenta dots and lines correspond to the chosen path, 

while the large red dot denotes the final location. The agent starts (in this maze) at the entrance on the 

lower left. The key thing to observe in these results is that the trajectory very seldom repeats or crosses 

itself. This affords a very efficient search of state space, resolving ignorance about the consequences of 

occupying a particular location (in terms of the first – what – outcome; black vs. White). Right panel: 

this figure reports the likelihood of observing an open state (white), from each location, according to 

the concentration parameters of the likelihood matrix that have been accumulated during expiration (for 

the first – what – outcome modality). At the end of search, the posterior expectations change from 50% 

(grey) to high or low (white or black) in, and only in, those locations that have been visited. The 

underlying concentration parameters effectively remember what has been learned or accumulated 

during exploration – and can be used for planning, given a particular task set (as illustrated in the Figure 

5). 
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Figure 4 – Simulated electrophysiological responses during exploration: this figure reports the 

simulated electrophysiological responses during the epistemic search of the previous figure. Upper 
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panel: this panel shows the activity (firing rate) of units encoding the expected location – over 32 trials 

– in image (raster) format. There are 192 = 64 x 3 units for each of the 64 locations over the three epochs 

between two saccades that constitute a trial. These responses are organised such that the upper rows 

encode the probability of alternative states in the first epoch, with subsequent epochs in lower rows. 

The simulated local field potentials for these units (i.e., log state prediction error) are shown in the 

middle panels. Second panel: this panel shows the response of the first hidden state unit (white line) 

after filtering at 4 Hz, superimposed upon a time-frequency decomposition of the local field potential 

(averaged over all units). The key observation here is that depolarisation in the 4 Hz range coincides 

with induced responses; including gamma activity. Third panel: these are the simulated local field 

potentials (i.e. depolarisation) for all (192) hidden state units (coloured lines). Note how visiting 

different locations evokes responses in distinct units of varying magnitude. Alternating trials (of two 

movements) are highlighted with grey bars. Lower panel: this panel illustrates simulated dopamine 

responses in terms of a mixture of precision and its rate of change (see Figure 2). There phasic 

fluctuations reflect changes in precision or confidence based upon the mismatch between the free energy 

before and after observing outcomes (see Figure 2). 
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Figure 5 –planning and navigation: this figure shows the results of navigating to a target under a task 

set (i.e., prior preferences), after the maze has been learned (with the concentration parameters of 128). 

These prior preferences render the closed (black) locations surprising and they are therefore avoided. 

Furthermore, the agent believes that it will move to locations that are successively closer to the target – 

as encoded by subgoals. Left panels: the upper panel shows the chosen trajectory that takes the shortest 

path to the target, using the same format as Figure 3. The lower panel shows the final location and prior 

preferences in terms of prior probabilities. At this point, the start and end locations are identical – and 

the most attractive location is the target itself. As earlier points in navigation, the most attractive point 

is within the horizon of allowable policies. Middle panels: these show the prior preferences over eight 

successive trials (16 eye movements), using the same format as above. The preferred locations play the 

role of context sensitive subgoals; in the sense that subgoals lie within the horizon of the (short-term) 

policies entertained by the agent – and effectively act as a ‘carrot’ leading the agent to the target 

location. Right panel: these report the planning or goal directed performance based upon partially 

observed mazes, using the simulations reported in Figure 3. In other words, we assessed performance 

in terms of the number of moves before the target is acquired (latency) and the number of closed regions 

or disallowed locations visited en route (mistakes). These performance metrics were assessed during 

the accumulation of concentration parameters. This corresponds to the sort of performance one would 
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expect to see if a subject was exposed to the maze for increasing durations (here, from one to 16 seconds 

of simulated time), before being asked to return to the start location and navigate to a target that is 

subsequently revealed. 

 

Figure 6 – goal-directed exploration: this figure illustrates behavioural, mnemonic and 

electrophysiological responses over four searches, each comprising 8 trials (or 16 eye movements). 

Crucially, the agent started with a novel maze but was equipped with a task set in terms of prior 

preferences leading to the goal directed navigation of the previous figure. Each row of panels 

corresponds to a successive search. Left panels: these report the path chosen (left) and posterior 

expectations of the likelihood mapping (right) as evidence is accumulated. However, here, the epistemic 

search is constrained by prior preferences that attract the target. This attraction is not complete and there 

are examples where epistemic value (i.e., novelty of a nearby location) overwhelms the pragmatic value 

of the target location – and the subject gives way to curiosity. However, having said that, the subject 
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never wanders far from the shortest path to the target, which she acquires optimally after the fourth 

attempt. Right panels: these show the corresponding evoked responses or simulated depolarisation in 

state units (upper panels) and the corresponding changes in expected precision that simulate 

dopaminergic responses (lower panels). The interesting observation here is the progressive attenuation 

of evoked responses in the state units as the subject becomes more familiar with the maze. Interestingly, 

simulated dopaminergic responses suggest that the largest phasic increases in confidence (i.e., a greater 

than expected value) are seen at intermediate points of familiarity; while the subject is learning the 

constraints on her goal directed behaviour. For example, there are only phasic decreases in the first 

search, while phasic increases are limited to subsequent searches. 

 

Figure 7 – path and place cells: this figure revisits the simulation in Figure 4 but focusing on the first 

six seconds of exploration. As in Figure 4, the upper panel shows the simulated firing of the (192) units 

encoding expected hidden states, while the lower panel shows the accompanying local field potentials 

(obtained by band-pass filtering the neuronal activity in the upper panel). The key point made in this 

figure is that the first 64 units encode the location at the start of each local sequence of moves and 
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maintain their firing until a subgoal has been reached. Conversely, the last 64 units encode the location 

at the end of the local sequence and therefore only fire after the accumulation of evidence that a subgoal 

has been reached. This leads to an asymmetry in the spatial temporal encoding of paths. In other words, 

first set of units fire during short trajectories or paths to each subgoal, while the last set only when a 

particular (subgoal) location has been reached. This asymmetry is highlighted by circles in the upper 

panel (for the third sub-path), which shows the first (upper) unit firing throughout the local sequence 

and the second (lower) unit firing only at the end. The resulting place preferences are illustrated in the 

middle panels; in terms of path cell (left panel) and place cell (right panel) responses. Here, we have 

indicated when the firing of selected units exceeds a threshold (of 0.8 Hz), as a function of location in 

the maze during exploration (the dotted red line). Each unit has been assigned a random colour. The 

key difference between path and place cell responses is immediately evident, path cells respond during 

short trajectories of paths through space, whereas place cell responses are elicited when, and only when, 

the corresponding place is visited. 
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