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Abstract
Longitudinal data collection is a time-consuming and cost-intensive part of developmental research. Wu et al. (2016)
discussed planned missing (PM) designs that are similar in efficiency to complete designs but require fewer observations
per person. The authors reported optimal PM designs for linear latent growth curve models based on extensive Monte Carlo
simulations. They called for further formal investigation of the question as to how much the proposed PM mechanisms
influence study design efficiency to arrive at a better understanding of PM designs. Here, we propose an approximate solution
to the design problem by comparing the asymptotic effective errors of PM designs. Effective error was previously used to
find optimal longitudinal study designs for complete data designs; here, we extend the approach to planned missing designs.
We show how effective error is a metric for comparing the efficiency of study designs with both planned and unplanned
missing data, and how earlier simulation-based results for PM designs can be explained by an asymptotic solution. Our
approach is computationally more efficient than Wu et al.’s approach and leads to a better understanding of how various
design factors, such as the number of measurement occasions, their temporal arrangement, attrition rates, and PM design
patterns interact and how they conjointly determine design efficiency. We provide R scripts to calculate effective errors in
various scenarios of PM designs.

Keywords Optimal design · Random effects · Random slope · Individual differences · Power analysis · Longitudinal data

Introduction

Longitudinal data collection is a time-consuming, cost-
intensive, and complicated part of developmental and lifes-
pan research. The challenges include acquiring and main-
taining a large participant pool, and matching participants’
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time constraints, available lab space, available research
assistants, and test instruments can be challenging, if not
impossible. For example, developmental longitudinal neu-
roscientific studies exemplify these problems with the added
complication a further bottleneck, the availability of the
magnetic resonance tomograph (Telzer et al., 2018); but
even purely behavioral studies may already become difficult
to run with large numbers of participants per wave or large
assessment batteries. Planned missing (PM) designs offer
a principled approach to planning longitudinal studies that
maximize the information that can be gained about each per-
son, and thus ultimately, maximize statistical power while
considering limited resources by strategically omitting mea-
surement occasions for some study participants (Rhemtulla
et al., 2014; McArdle, 1994; Graham et al., 2001).

Longitudinal study designs with planned missingness
prescribe patterns of measurement occasions that vary
across participants such that at any given measurement
occasion, only a subset of all participants is measured.
This is particularly interesting if testing of all participants
is impossible because of monetary or physical constraints
(e.g., due to limited testing facilities), or when retest or
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fatigue effects are to be minimized because administering
the full measurement battery would be prohibitive to
participants in terms of time and energy (McArdle, 1994).
PM designs are derived from traditional complete designs,
in which all participants are measured on all occasions,
by systematically choosing only subsets of measurement
occasions for subgroups of participants, and treating
the remaining occasions as missing data. Because the
patterns of missingness are randomly pre-assigned and
thus statistically independent of both the observed and
unobserved data (often referred to as a condition called
Missing Completely At Random, MCAR; Rubin, 1976),
they allow for unbiased parameter estimates when analyzed
with any modern analysis approach that can handle missing
data, e.g., structural equation models with full information
maximum likelihood estimation (FIML; e.g., von Oertzen
et al., 2015). The FIML approach has been compared
to multiple imputation approaches, and whereas the latter
generally obtain greater efficiency (i.e., smaller standard
errors of parameter estimates), the two are comparable with
respect to bias (i.e., recovery of correct parameter values)
(Schafer & Graham, 2002).

Planning a longitudinal study involves a variety of
design decisions. Typically, design decisions trade off
various properties of the study (e.g., increasing participant
numbers vs. decreasing cost) and optimal designs need
to consider given constraints, such as total cost or a
maximum total time in study for each participant. The
process of planning can be regarded as a search in the
space of all possible designs and thus, as an engineering
task that can be solved using constrained optimization (cf.
Brandmaier et al., 2015). When planning a longitudinal
study, researchers need to first determine the goal of the
study, which ultimately translates into maximizing precision
(or ultimately statistical power) of one or more formal,
statistical tests related to their hypotheses of interest.
Second, researchers need to identify potential constraints
and additional goals, such as the minimization of total cost
or the reduction of participants’ strain. There are a variety
of modifiable properties of a longitudinal study design that
contribute to statistical power (Brandmaier et al., 2018b),
such as the number of measurement instruments used at
each occasion, their reliability, the number of measurement
occasions and their temporal arrangement, the total time in
study, and the total number of participants tested.

PM designs add further degrees of freedom and thus
further complicate the search for an optimal design. Typical
design considerations for PM designs are the number of
different PM response patterns, the rule set to generate the
patterns, and the proportional assignment of participants
to patterns. For example, the multiform design is a simple
and versatile PM design approach in which each participant
is randomly presented only a subset of all available

items (Graham et al., 2006). Among the many possible
multiform designs, the three-form design is the most
popular (Rhemtulla et al., 2014). In cross-sectional three-
form design (see Table 1), all test items are divided into four
sets of items (“groups”), such that one group (the “common”
group; often denoted “X”) contains all items that are central
to the study and will be administered to all participants. The
three remaining groups (the “partial” groups; often called
“A”, ”B,” and “C”) are only administered to subsets of the
participants, thereby saving resources. Then, participants
would either obtain items XAB, XAC, or XBC, thus saving
25% of resources per person if items are equally distributed
among the groups; larger resource savings are possible
when fewer items are in “X”; however, “X” considerably
contributes to the efficiency of many parameters and should
not be too small (Rhemtulla & Little, 2012). As a result
of this standard design, only two-thirds of the participants
provide answers on the items from the partial group. This
idea can easily be carried over to longitudinal designs, in
which we replace items with measurement occasions. Thus,
a three-form longitudinal study would have all participants
measured at the first wave, a partial group would be
followed up on the second and third wave, another partial
group would be followed up on the second and fourth wave,
and a last group would be followed up on the third and
fourth wave (see also McArdle & Woodcock, 1997).

Researchers are not limited to the three-form design
for longitudinal studies. Generally, there are no prior
constraints to how patterns of missingness can be arranged
over waves of longitudinal data collection. In principle,
there is no need to have a “common” group at all and
eventually, one could come up with PM designs in which
each person has their unique pattern of missing data.
The optimal choice of partial response patterns in PM
designs depends on what statistical model one assumes and
which hypotheses one deems to be of primary interest. For
example, a researcher may choose between patterns with

Table 1 Example of a planned missing (PM) design. Participants are
randomly assigned to each pattern. Proportion of participants in each
pattern are typically identical

A three-form design

Pattern Test item groups

X A B C

1 1 1 1 0

2 1 1 0 1

3 1 0 1 1

One set of items/observation is common to everybody (“X”) whereas
the remaining “partial” groups are administered to subsets of
participants. Whether a specific item set was observed is encoded as
1 = observed, 0 = missing
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two, three, or more measurement occasions per participant,
with larger numbers of occasions yielding greater statistical
power for testing change-related parameters, but also
at higher cost, or a researcher may choose to favor
one particular pattern and attribute a larger portion of
participants to it. We have previously demonstrated how
effective error is related to reliability and statistical power
(Brandmaier et al., 2018a, b), and that it can be used to
develop a basis for comparing alternative research designs
under identical power to test a chosen hypothesis of interest,
and that this notion can be used for systematic searches
in study design space (Brandmaier et al., 2015). This
provides a formal way to trade off design parameters against
each other without changing power or investigating the
effect of the individual design decision on statistical power.
Leveraging asymptotic results, there is no need to run time-
intensive Monte Carlo simulations. Here, we revisit the
insightful and inspiring simulation work presented by Wu
et al. (2016) to investigate optimal PM designs for the study
of linear change. We complement their approach, which
is available as R package SEEDMC (Jia & Wu, 2015),
by providing an asymptotic perspective to their empirical
simulations. We aim to answer the authors’ call for the
need (1) to understand “the mechanisms by which PM
designs are influenced by attrition and why attrition favors
one PM design over another” (Wu et al., 2016, p. 1057)
and (2) to show the generalization of the efficient designs
they identified for limited cases to answer broader questions
about optimal design under PM.

Method

Latent growth curvemodels

To formally address the question of which PM designs
are optimal for modeling longitudinal change, we follow
Wu et al. (2016) and focus on latent growth curve models
(LGCMs) as statistical models for change over time.
LGCMs have become a commonly used analysis technique
to capture change in longitudinal data (Duncan et al., 2006;
Ferrer & McArdle, 2010; Meredith & Tisak, 1990). They
allow for modeling average change over time, individual
differences in change, and predictors of said change. In a
linear LGCM, participants’ observed scores are represented
by two latent factors: the intercept representing individual
differences at a specified time point (often study onset), and
a linear slope representing individual differences in linear
change over time. Residual factors capture the otherwise
unexplained variation around the growth curve, including
occasion-specific variation, model misspecification, and

measurement error (von Oertzen et al., 2010). In a linear
LGCM, the mean vector μ, and the covariance matrix � of
the observed variables are a function of factor loadings �,
latent variables’ intercepts υ, a latent covariance matrix �,
and a residual covariance matrix � (e.g., Bollen, 1989):

� = ���′ + � (1)

μ = �ν (2)

Under the assumption of homoscedastic and uncorrelated
residual errors

� =

⎡
⎢⎢⎢⎣

1 t1
1 t2

1
...

1 tM

⎤
⎥⎥⎥⎦ (3)
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S
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⎤
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with the number of measurement occasions M , at times t1
to tM , the residual error σ 2

ε , the mean μI , and variance of
the latent intercept σ 2

I , and the mean μS , and the variance of
the latent slope σ 2

S , and the latent intercept-slope-covariance
σIS . The loadings t1 to tM are fixed and typically, the
intercept is anchored at the first measurement time point
(even though other choices are possible) t1 = 0, and tM
represents a quantity proportional to the time elapsed since
the beginning of the study.

Effective error for complete data

To estimate the precision with which structural equation
models measure latent constructs of interest, such as the
intercept or the slope in linear LGCMs, von Oertzen
(2010), von Oertzen & Brandmaier (2013) developed the
concept of “effective error” based on the idea of power
equivalence. Two models are power-equivalent if they have
identical power to detect a given effect of interest. For
example, a LGCM with seven measurement occasions
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over 12 years may be power-equivalent to a LGCM with
four measurement occasions over fourteen years (the exact
trade-off depends on further assumptions such as indicator
reliability and that the model holds over both timespans;
von Oertzen & Brandmaier, 2013). Using power-equivalent
transformations, one can derive a hypothetical, minimal
model that directly measures a latent construct of interest,
e.g., the latent slope with a single residual error term.
Then, the effective error is the measurement error for
this hypothetical direct measurement of the latent variable
under investigation. For example, if we are interested in a
hypothesis test on the linear slope in a LGCM, effective
error is the measurement error we would face if we had
measured the linear slope directly. We could imagine the
complete study with its multiple occasions of measurements
as a single measurement instrument that outputs only a
single value (the linear slope estimate) for each person.
Then, the effective error would be the measurement error of
that entire study for measuring the linear slope. For Wald-
type tests on complete designs, Brandmaier et al. (2018b)
have shown that the effective error for measuring the slope
variance in an LGCM is

σ 2
eff = σ 2

ε

∑M
j=1 t2j − 1

M

(∑M
j=1 tj

)2 (7)

The main benefit of the effective error metric is that it is
independent of sample size, test size (also referred to as
alpha level) and true effect size. Brandmaier et al. (2018b)
have shown that effective error can be differently rescaled
to obtain other measures of sensitivity to detect effects of
interest, such as reliability (by scaling with true effect size)
or power (by scaling with true effect size, sample size, and
test size). Others have investigated LGCM with respect to
their efficiency, which is typically defined as the squared
standard error for a parameter (Rhemtulla & Little, 2012;
Wu et al., 2016). Then, the ratio of two models’ efficiencies
is of particular interest as a measure of relative efficiency.
This line of thinking is closely connected to effective error.
We can rescale effective error with sample size to obtain an
asymptotic estimate of the standard error of the parameter
of interest, which we term effective standard error. For
example, the effective standard error of the slope variance
σ 2

S in a linear LGCM with effective error σ 2
eff and sample

size N (cf. Ahn & Fessler 2003) is

seeff =
√

2

N − 1

(
σ 2

S + σ 2
eff

)
(8)

Both effective error and efficiency are variance metrics
and thus, we can similarly use the ratio of two effective
errors to compare relative efficiency of designs. Rhemtulla
and Little (2012) and Wu et al. (2016) have suggested
that such relative efficiencies can also be translated into

width inflation factors, which reflect the extent to which
a confidence interval around the parameter of interest is
expected to be inflated.

The idea of effective error was extended to optimization
in study design space by Brandmaier et al. (2015),
who proposed to systematically evaluate the efficiency
of alternative longitudinal study designs by means of
comparing their effective errors. In the remainder of this
paper, we will extend their approach to gauge efficiency
of PM data designs. This approach allows us to obtain
asymptotic estimates of precision and reliability that can be
leveraged to better understand how design features relate
to precision, to make final design decisions, or to narrow
down a small candidate pool of designs that is then further
explored using simulation-based approaches. These yield
unbiased estimates of precision and power and allow further
inquiry of properties like non-convergence rates.

Optimal design when studying linear change

In their first simulation, Wu et al. (2016) considered
efficiency to test parameters of a linear latent growth curve
model. For a given sample size, they determined total
sample size N = B/(T ·C) with a total budget B, the cost of
collecting a single data point C, and the number of repeated
measures per pattern T assuming that the collection of every
data point incurs the same cost. In aMonte Carlo simulation,
the authors evaluated empirical sampling variances, that is,
the variance of the Monte Carlo parameter estimates across
repetitions. To compare alternative designs, the authors
reported relative efficiency, that is, the ratio of the efficiency
of a given design and the efficiency of the most efficient
design. In their example, the budget was $100,000 and each
assessment cost $20, which yields a sample size of 1,666
participants for designs with three occasions or of 1,250
participants for designs with four occasions. Population
parameters of the linear model reported in Wu et al. (2016)
were adapted from a study by Biesanz et al. (2004) and
were as follows: The latent intercept has a mean μI =
39.46 and variance σ 2

I = 28.78, the latent slope had a
mean μS = 8.06, and variance σ 2

S = 8.20, and the
covariance of the intercept and the slope was σ 2

IS =
1.56, equaling a correlation of r = 1.10. Residual error
variances were constrained to be equal across time points
and set to σ 2

ε = 30. The five occasions of measurement
were equidistant. The corresponding path diagram is shown
in Fig. 1.

Wu et al. (2016) considered either complete designs (CD)
or PM designs. They defined CDs as those designs in which
all participants are assessed at the same time points (even
though not all possible time points have to be in a CD).
Henceforth, we will use their notation to refer to CD and PM
designs. A PM study is given in curly brackets containing
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Fig. 1 Latent growth curve model with five measurement occasions. The parametrization shown corresponds to the reference model considered
throughout. Icept = Intercept

all possible PM response patterns separated by vertical
bars. Each response pattern indicates which measurement
occasions were observed. For example, the aforementioned
three-form design (see Table 1) could be written as {1,2,3
| 1,2,4 | 1,3,4}. Unless otherwise noted, we assume that
participants are randomly and in equal shares distributed to
the response patterns. So, in this example, one-third of the
participants were measured at the first, second, and third
time point (that is, in pattern {1,2,3}), another third at the
first, second, and fourth time point (that is, {1,2,4}), and the
last third at the first, third, and fourth time point (that is,
{1,3,4}).

First, we will investigate the efficiency of all possible
CDs that will later be the set of partial response patterns
from which we can select and that we can then combine
to generate PM designs. All possible CDs with three
out of five measurement time points and their asymptotic
effective errors are listed in Table 2. Holding all design
parameters constant but varying only the arrangement of the
measurement occasions in time, we see from Eq. 7 that the
designs that maximize efficiency are those with the largest
variance in the time points (Var(t)). This translates to a
simple rule-of-thumb for the design of longitudinal studies
under a linear model of change: Measure as often as possible
very early in the study and measure as often as possible

towards its end. Asymptotically, this strategy reduces the
optimal design to a two-point latent change score model
with optimal (multiple-)indicator1 reliability (see Kievit
et al., 2018; Willett, 1989). This heuristic conforms with the
finding byWu et al. (2016) that among the models restricted
to any 3 of the 5 possible measurement occasions, the
designs {1,2,5} and {1,4,5}were the most efficient; while the
one with equally spaced measurement occasions, {1,3,5},
was not optimal. Both designs {1,2,5} and {1,4,5} maximize
the variance of measurement points in time among the
available designs (see Table 2 for all possible designs and
their variances). It follows from our formal derivation that
this finding is asymptotically true irrespective of the other
parameter values of the LGCM, which are held constant
across alternative designs. Furthermore, as von Oertzen and
Brandmaier (2013) already noted, it is typically beneficial
to prolong the total study time span to maximize statistical
power for finding effects if there is no attrition. However,
in realistic settings, increasing attrition over time will
counteract the beneficial effect of waiting for slope-related
individual differences to get larger over time.

1Assuming that multiple independent measurements can happen at
virtually the same time (practically, on the same day).
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Table 2 All possible complete designs with three out of five equidistant measurement occasions (Design), the variance of the time points (Var(t)),
and their effective error for a Wald test of slope variance (EE; effective error)

Design Var(t) EE Design Var(t) EE

{1,2,3} 1 15 {1,4,5} 4.33 (*) 3.46

{1,2,4} 2.33 6.43 {2,3,4} 1 15

{1,2,5} 4.33 (*) 3.46 {2,3,5} 2.33 6.43

{1,3,4} 2.33 6.43 {2,4,5} 2.33 6.43

{1,3,5} 4 3.75 {3,4,5} 1 15

Designs with optimal variance are denoted with an asterisk. Results are displayed in two adjacent columns

Effective error for plannedmissingness designs

How do the previous considerations translate and generalize
to PM designs? Without attrition, Wu et al. (2016) report
{1,5 | 2,5 | 3,5 | 4,5} as the most efficient PM design with
five measurement occasions. To fully understand the effects
that contribute to optimal efficiency, we extend effective
error for CDs as introduced in Eq. 7 to effective error for
PM designs. von Oertzen and Brandmaier (2013) derived
the effective error for study designs including multiple
independent groups. They found that the total effective error
of the design is the sample-size-weighted harmonic mean of
the group-specific effective errors (adapted from Theorem 4
in the Appendix of von Oertzen and Brandmaier (2013); see
also Dolan et al. 2004):

σ 2
eff = N∑k

j=1
Nj

σ 2
eff,j

(9)

with k being the number of groups with group j having
sample size Nj and effective error σ 2

eff,j . That is, if half
of the participants have an effective error of e1 and the
other half have an effective error of e2, the effective error
of the design is 1

1
e1

+ 1
e2

= e1e2
e1+e2

(Fig. 2). PM designs

can be thought of as designs with multiple independent
groups with each group corresponding to a different partial
response pattern. Wu et al. (2016) assumed only designs

with equal proportions of participants, so we can simplify
Eq. 9 (ignoring the absolute scale of σ 2

eff ) to

σ 2
eff ∝ j∑k

j=1
1

σ 2
eff,j

(10)

when comparing alternative study designs with identical
sample size. For example, if we wanted to compute the
effective error of a three-form design {1,3,5 | 1,2,5 | 1,4,5}
and we knew that their respective effective errors were 3.75,
3.46, and 3.46 (see Table 2), we would obtain an effective
error of

σ 2
eff = 3

1/3.75 + 1/3.46 + 1/3.46
= 3.55 (11)

We conclude that we need to choose the elements of a
PM such that a value proportional to the harmonic mean
of the effective errors is maximized. The harmonic mean is
dominated by the minimum of its arguments:

min
(
σ 2

eff,1, . . . , σ
2
eff,j

)
≤σ 2

eff ≤j ·min
(
σ 2

eff,1, . . . , σ
2
eff,j

)

(12)

In other words, the effective error of a PM design cannot
be lower than the effective error of any single partial
response pattern, and the effective error cannot increase
without limits when we decrease the precision of any pattern
but the pattern with the minimum effective error.

Fig. 2 Harmonic (left) and arithmetic (right) mean of effective errors. Effective errors (represented as Error #1 and Error #2) combine according
to the harmonic mean (left)
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By means of Monte Carlo simulation, Wu et al. (2016)
examined alternative designs constituting combinations of
the response patterns shown in Table 2, that is, combinations
of response patterns that always included the first and
last wave for each participant. Table 3 lists the ten most
efficient designs for detecting slope variance including the
original simulation results and our asymptotic results. The
left hand side of the table (caption: SEEDMC) repeats
Monte Carlo simulated results from Wu et al. (2016), and
their relative efficiency to the best design ({1,2,5}). The
right hand side of the table shows asymptotic results based
on effective error. In the original paper, the designs were
derived under a fixed cost constraint of 5,000 monetary
units, where inviting a participant to one occasion costs 1
unit. With three measurement occasions (e.g., {1,2,5}), we
could afford 5,000/3 = 1,666 participants, and with four
occasions, 5,000/4 = 1,250. Thus, we had to adjust the
effective errors for the different sample sizes. We did so by
computing a discounting factor based on the unequal sample
sizes as ψ = 1,666/1,250 = 1.34. This discounting factor is
used to re-scale the effective errors of all studies with 1,250
participants, such that we obtain a sample-size adjusted
metric for effective errors. From Table 3, we find that
the Monte Carlo simulation and our asymptotic approach
produced the identical rank order of optimal designs. At the
same time, there are small discrepancies due to the Monte
Carlo estimation procedure such that some designs appear to
show marginal differences when they are actually identical
(e.g., C4 and C6), whereas others appear identical although
they are really slightly different (e.g., M45 and M23).

With an asymptotic approach, it is straightforward to
expand the range of possible design considerations beyond
what is practically feasible using a Monte Carlo approach.
For example, we could derive all effective errors for all
missing response patterns of interest (see Table 4) in a
single run, and then search for arbitrary combinations of
them. These combinations could include designs in which
response patterns with different numbers of measurement
occasions are mixed, e.g., {1,2 | 1,2,3 | 1,2,3,4 | 1,2,3,4,5}, or
those in which the number of participants is unequal across
response patterns. For evaluating combinations of mixed
patterns, one first estimates effective error of each pattern
using Eq. 7. Then, one simply applies the combination rule
from Eq. 9, to arrive at the final effective error. In the
example just given, we would obtain the following effective
errors: 60 (for pattern {1,2}), 15 (for pattern {1,2,3}), six
(for pattern {1,2,3,4}), and three (for pattern {1,2,3,4,5}).
Using the combination rule, we obtain an effective error
of 6.86 when assigning participants equally to the five
patterns. The combination rule easily allows us to assign
different proportions of participants (Nj for pattern j in
Eq. 9) to each pattern. If we increased the proportion of
participants in the most effective pattern ({1,2,3,4,5}) to
70% and assigned each 10% to the remaining patterns, we
obtain an effective error of 3.87 whereas if we assigned
70% to the least effective pattern ({1,2}) and 10% to the
remaining patterns, we obtain an effective error of 14.63.
We provide R code (https://osf.io/ezgq3/) to reproduce these
computations.

Note that an initial analysis of the potential partial
response patterns may be insightful even before selecting

Table 3 Top ten designs for the variance parameter of the slope in a linear growth curve model without attrition

SEEDMC Asymptotic approach

Rank Design N Response pattern RE EE AEE RE

1 C1 1,666 {1,2,5} 1.00 3.46 3.46 1.00

2 C3 1,666 {1,4,5} 0.98 3.46 3.46 1.00

3 M33 1,666 {1,2,5 | 1,3,5 | 1,4,5} 0.97 3.55 3.55 0.97

4 C2 1,666 {1,3,5} 0.94 3.75 3.75 0.92

5 C5 1,250 {1,2,4,5} 0.85 3.00 4.00 0.86

6 M42 1,250 {1,2,3,5 | 1,2,4,5} 0.82 3.2 4.26 0.81

7 M45 1,250 {1,2,4,5 | 1,3,4,5} 0.81 3.2 4.26 0.81

8 M23 1,250 {1,2,3,5 | 1,2,4,5 | 1,3,4,5} 0.81 3.27 4.36 0.79

9 C6 1,250 {1,3,4,5} 0.79 3.43 4.57 0.76

10 C4 1,250 {1,2,3,5} 0.78 3.43 4.57 0.76

The order of designs corresponds to the order reported in the supplementary materials of the Wu et al. (2016) simulation #4; p. 2. Columns
show the rank order (rank), design name (design), the sample size feasible under the pre-specified cost constraint (N), the pattern of observations
(response pattern), efficiency relative to the best model according to the simulation by Wu et al. (2016) (RE; relative efficiency). The final three
columns show the result of our approach, effective error variance (EE; effective error), adjusted effective error (AEE), and relative efficiency (RE)
as the ratio of a design’s AEE and the best AEE
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Table 4 Effective errors for missing patterns derived from pattern C7 {1,2,3,4,5} that keep the first and last occasion of measurement

Design Pattern N Effective error Effective SE Relative error

C7 {1,2,3,4,5} 1,000 3 0.50 1.0

C5 {1,2,4,5} 1,250 3 0.45 1.0

C6 {1,3,4,5} 1,250 3.43 0.47 0.88

C4 {1,2,3,5} 1,250 3.43 0.47 0.88

C1 {1,2,5} 1,666 3.46 0.40 0.87

C3 {1,4,5} 1,666 3.46 0.40 0.87

C2 {1,3,5} 1,666 3.75 0.41 0.80

Columns describe the pattern name (design), the pattern of measurement occasions (pattern), sample size (N), effective error and effective standard
error (effective SE), and the relative error as the ratio of effective errors

and combining patterns into potential study designs. For
example, removing the centered occasion (measurement at
time point 3) from C7 (resulting in design C5) has virtually
no influence on the power to detect individual differences
in change (see Table 4, and our earlier discussion on the
importance of estimating the end points optimally) but
allows an increase in sample size by 25%, resulting in a
much more efficient design. von Oertzen and Brandmaier
(2013) have empirically demonstrated a similar effect using
six-wave longitudinal data gathered over 13 years in the
Berlin Aging Study, an interdisciplinary and longitudinal
study of very old individuals (Baltes & Mayer, 1999); for
a selected cognitive task (retrieval of semantic categories
from long-term memory), they showed that the statistical
power for hypotheses on the linear slope remained nearly
identical when removing an entire longitudinal wave2. Of
course, all these considerations only hold true assuming
that the linear change model is correctly specified, and in
general, researchers may need to pay respect to other design
features and goals when selecting a final study design.

Effective error for unplannedmissingness designs

Our earlier considerations assumed PM designs without
attrition, that is, all missingness was assumed to be planned
a priori. However, longitudinal studies will almost always
include unplanned missing data. In order to model random
participant drop-out, Wu et al. (2016) considered three
attrition groups in their simulation, with either no, low, or
high attrition. Attrition was assumed to be a linear function
of time and the probabilistic missing data mechanism was

2In particular, they showed that power remained identical when a
complete wave was removed while the total study time (13 years) had
to be extended by a mere 11 days. See Fig. 2 in von Oertzen and
Brandmaier (2013) for an illustration of further possible trade-offs.

formalized as a probability of missing data for person i at
occasion j that linearly depends on time elapsed and was
independent of the observed variables:

p
(
yij is missing

) = υ · tj

with υ representing the linear attrition rate per unit of time,
and ti the time elapsed between study onset and the i-th
occasion. They chose υ = .075 (low attrition), and υ = .175
(high attrition), which amounts to the proportion of
participants in the study not returning per unit of time.

Wu et al. (2016) noted that, with greater attrition,
SEEDMC tends to select those designs including later
rather than earlier time points. This may initially seem
counterintuitive because measurements at later time points
become less efficient due to the higher proportion of drop-
outs. For example whereas the designs {1,2,5} and {1,4,5}
are equally efficient under no attrition (same variance, same
effective error), {1,4,5} is superior to {1,2,5} under mild
attrition, and even more so under high attrition. To better
understand this effect, we can formalize it in our framework
by leveraging the combination rule for effective error from
multiple groups as shown in Eq. 9:

σ 2
eff = N

∑k
j=1

Nj

σ 2
eff,j

(13)

with Nj = N · υ · (
tj − 1

)
considering k groups of

distinct patterns of missing data. Note that we can treat a
CD with missing data as a PM design, the only difference
being that the cause of missingness is unplanned. For the
analysis and derivations of error, this distinction is irrelevant
under MCAR assumptions. Effectively, a {1,2,5} design
with random attrition is a {1 | 1,2 | 1,2,5} design, in which
some people drop out after the first occasion {1}, some after
the second {1,2}, and some perform all three measurement
occasions {1,2,5}. In standard wave missing design, the
proportions of persons in every response pattern is equal.
With unplanned missingness, the attrition rate determines
the proportions of persons in every response pattern. To
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formalize this, we propose the following extended notation
based on the original notation of Wu et al. (2016), in
which we denote the response patterns (as before) and in
addition, the proportion of cases in each pattern separated
by a colon. For example, a PM design in which the response
patterns always include two of all four measurement
occasions, always have the first measurement occasion,
and participants are evenly distributed among the partial
response patterns is written as {1,2 : 25% | 1,3 : 25%,
1,4 : 25% | 1,5 : 25%}. This allows us to denote implied
missingness designs by considering attrition rates. For
example, we can derive the implied response patterns from
the original response patterns {1,2,5} and {1,4,5} given low
and high attrition. The proportion of missing persons at
the j th measurement can be calculated as the sum of all
persons that are still in the study at the j -th measurement
minus all persons that are measured in response patterns
with measurements up to the (j − 1)th occasion, that is, we
obtain the implied designs {1 : 7.5% | 1,2 : 22.5% | 1,2,5 :
70% } and {1: 22.5% | 1,4 : 7.5% | 1,4,5 : 70%} for the low
attrition condition (υ = .075).

The participants with block {1} do not directly con-
tribute to the precision of estimation of slope effects because
change cannot be observed on the basis of a single obser-
vation. Rather, the participants with a single measurement
contribute to the precision of other parameters, such as
intercept variance and residual error variance. As shown in
Table 4, the respective last patterns in each pattern {1,2,5}
and {1,4,5} are equally efficient (in terms of their variance
contribution to effective error). They are represented with
equal proportions (70%) in both response patterns. Thus,
the relative efficiency of both designs is guided by the ques-
tion whether having to wait twice as long (going from {1,2}
to {1,4}) can compensate for the fact that sample size is

approximately reduced to a third (7.5%/22.5% = 1
3 ) of the

original number of participants by then. The effective error
for {1,2} is σ 2

eff {1,2} = 14.7 and for {1,4}, σ 2
eff {1,4} =

3.4. The effective error is lower by a factor of more than
4 (σ 2

eff {1,2}/σ 2
eff {1,4} = 4.3) when waiting for twice the

amount of time. This outweighs the fact that this more pre-
cise measurement of the linear slope is only performed with
a third of the participants.

Again, we investigated to what extent the asymptotic
approach was able to reflect the rank order structure of
optimal designs reported byWu et al. (2016). The results are
shown in Table 5. It shows the four most efficient designs
for low and high attrition rates respectively, their response
patterns, and total sample size as originally reported. In
addition, we report effective error and sample-size adjusted
effective error, which is then used to compute relative
efficiency to the adjusted effective error of the most efficient
design. The asymptotic approach is able to identify the
most efficient design as the one with the lowest adjusted
effective error and reflects the same rank order as the
Monte Carlo simulation. From this, we conclude that the
asymptotic approach provides a useful and computationally
cheap alternative for deriving optimal designs under both
planned and unplanned missing data.

Effective error for hypotheses on intercept variance

Cost effectiveness or design efficiency of a study with
respect to the slope component of a linear latent growth
curve may not be the only criterion for optimal design. One
may also be interested in detecting reliable differences at
the intercept level, that is, differences in general level of
performance. To this end, we derived effective error for the
intercept component in a linear LGCM. Following the same

Table 5 The four most efficient designs for hypotheses on the slope variance in linear latent growth curve models with low and high attrition rates

Attrition Rank Design Pattern N EE AEE RE

Low 1 C3 {1,4,5} 1,666 4.68 4.68 1.0

2 M33 {1,2,5 | 1,3,5 | 1,4,5} 1,666 4.87 4.87 0.96

3 C1 {1,2,5} 1,666 4.85 4.85 0.96

4 C5 {1,2,4,5} 1,250 4.04 5.39 0.87

High 1 C5 {1,2,4,5} 1,250 7.52 10.02 1.0

2 M45 {1,2,4,5 | 1,3,4,5} 1,250 7.71 10.28 0.97

3 C6 {1,3,4,5} 1,250 7.91 10.55 0.95

4 M29 {1,2,4,5 | 1,3,4,5 | 2,3,4,5} 1,250 9.26 12.35 0.81

Columns show level of attrition rate (attrition), the rank order of the designs (rank), name of the design (design), pattern of missing data (pattern),
the affordable sample size under the chosen cost constraint (N), effective error (EE), adjusted effective error (AEE), and relative efficiency based
on the ratio of a model’s AEE and the optimal AEE
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principles as described in the Appendix of Brandmaier et al.
(2018b), we obtain the corresponding effective error:

σ 2
eff = σ 2

ε

M − η
(∑M

j=1 tj

)2 (14)

with η = 1
∑M

j=1 t2j + σ2e
σ2
S

. Following the derivations of

Brandmaier et al. (2018b), we obtain the limiting case as
η = 1∑M

j=1 t2j
and thus, the effective error for Wald-type tests

is:

σ 2
eff = σ 2

ε

M −
(∑M

j=1 tj

)2
(∑M

j=1 t2j

)
(15)

From this, we can infer that, asymptotically, there is no
effect of total time on the precision with which we can
measure intercept variance. Assume a factor λ with which
we prolong the total study time span, such that t̃j = λtj ,
then effective error remains constant for any λ > 0:
(∑M

j=1 λtj

)2
∑M

j=1

(
λtj

)2 =
(
λ

∑M
j=1 tj

)2
∑M

j=1 λ2t2j

=
λ2

(∑M
j=1 tj

)2

λ2
(∑M

j=1 t2j

)

=
(∑M

j=1 tj

)2
∑M

j=1 t2j

(16)

Table 6 shows optimal designs to detect variance of
intercept as reported by Wu et al. (2016). It parallels Table 3

by showing both the Monte Carlo estimates derived from
SEEDMC and our asymptotical findings using the effective
error for intercept variance. We find that the asymptotic
results largely reflect the Monte Carlo findings. The rank
order of results is identical with the exception of designs
M42, M10, M33, and C2, which yielded overoptimistic (that
is, too small) effective error values. Still, the asymptotic
approach proves valuable as a simple and computationally
cheap alternative to Monte Carlo simulations (Table 7).

Effective error for mean parameters

So far, we have focused on the effective error for variance
parameters. In practice, mean-related parameters are tested
as well, for example, when researchers investigate average
change, or if there is a mean effect of an exogeneous
variable on the latent variable of interest. Here, we briefly
discuss that our approach can be used to study these
settings as well. Asymptotically, the effective error is the
inverse of the precision with which we can measure a latent
variable (Brandmaier et al., 2018b). Thus, the effective
error applies identically to both hypotheses about the mean
or the variance of a latent variable of interest. In other
words, any change to a study design that increases the
precision of the slope variance asymptotically also increases
the precision of the slope mean. The prediction of our
approach is simply that, under the asymptotic assumptions,
the rank order of optimal designs is identical for tests on
means and variances. The prediction that both the effect of
exogenous predictors and tests on the means produce the

Table 6 Top ten designs (and designs C2, C3) for the variance parameter of the intercept in a linear growth curve model without attrition

SEEDMC Asymptotic approach

Rank Design N Response pattern RE EE AEE RE

1 C1 1666 {1,2,5} 1.0 19.62 19.62 1.0

2 M30 1666 {1,2,3 | 1,2,4 | 1,2,5} 0.95 21.79 21.79 0.90

3 C4 1250 {1,2,3,5} 0.89 18.00 24.00 0.82

4 M42 1250 {1,2,3,5 | 1,2,4,5} 0.85 18.72 24.96 0.79

5 M10 1666 {1,2,3 | 1,2,4 | 1,2,5 | 1,3,4 | 1,3,5 | 1,4,5} 0.84 24.17 24.17 0.81

6 M40 1250 {1,2,3,4 | 1,2,3,5} 0.83 19.38 25.85 0.76

7 M20 1250 {1,2,3,4 | 1,2,3,5 | 1,2,4,5} 0.82 19.42 25.90 0.76

8 M33 1666 {1,2,5 | 1,3,5 | 1,4,5} 0.82 23.88 23.88 0.82

9 C5 1250 {1,2,4,5} 0.81 19.50 26.00 0.75

10 M41 1250 {1,2,3,4 | 1,2,4,5} 0.79 20.22 26.96 0.73

12 C2 1666 {1,3,5} 0.79 25.00 25.00 0.78

29 C3 1666 {1,4,5} 0.65 28.85 28.85 0.68

The order of designs corresponds to the order reported in the supplementary materials of Wu et al. (2016), simulation #3; p. 2. Columns show the
rank order (rank), design name (design), the sample size feasible under the pre-specified cost constraint (N), the pattern of observations (response
pattern), efficiency relative to the best model according to the simulation by Wu et al. (2016) (RE; relative efficiency). The last three columns
show the result of our approach: effective error (EE); adjusted effective error (AEE), and relative efficiency (RE) the ratio of a design’s AEE and
the best AEE.
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Table 7 Monte Carlo simulated effective standard errors for intercept variance listed for all complete designs with three or four measurement
occasions

Design EE Design EE Design EE

{1,2,3} 2.05 {1,4,5} 2.23 {2,3,4,5} 3.21

{1,2,4} 1.89 {2,3,4} 4.18 {1,3,4,5} 2.26

{1,2,5} 1.81 {2,3,5} 2.98 {1,2,4,5} 2.01

{1,3,4} 2.18 {2,4,5} 3.49 {1,2,3,5} 1.93

{1,3,5} 2.05 {3,4,5} 7.77 {1,2,3,4} 2.08

Columns show the design pattern (design) and their effective errors (EE). Results are displayed in three adjacent columns

same rank order are confirmed by Wu et al. (2016, see their
Supplementary Materials). For example, under no attrition,
the most efficient designs for tests on the mean slope are
reported as M18, C3, C1 (their Table 4) and the same rank
order is reported for tests on the effect of an exogeneous
predictor. Note that we have identified C1 and C3 as the
best designs with almost identical efficiency but not M18
(see our Table 3), which is defined as {1,5 | 2,5 | 3,5 |
4,5}. We discuss the implications of this difference between
asymptotic and simulation-based results in the Limitations
section below.

Discussion

Longitudinal data collection is a resource-costly and time-
intensive part of research focusing on within-person change,
for instance, when investigating questions of child devel-
opment and aging. Planned missing data designs provide
an excellent opportunity to maximize study design effi-
ciency (McArdle, 1994). Recent advances in computational
power endow researchers with means to simulate a variety
of alternative designs such that a design with optimal power
or optimal resource investment can be selected. Wu et al.
(2016) have made an important contribution to study design
planning by extending considerations on optimal design
from CDs to PM designs. In this article, we extend their
important work and provide firm grounds for efficiently
planning study designs by providing an asymptotic solution
to the underlying design problem that is computationally
much more efficient than a simulation-based approach. As
we have noted earlier, Monte Carlo simulations can be time-
consuming, particularly when large spaces of possible study
designs need to be searched. Even though parallelization
of computations can mitigate the problem to some degree,
the exponential growth of the problem space will always
limit the practicality of the approach (in terms of compu-
tation time) when the degrees of freedom of the design are
large. In addition, the current implementation of SEEDMC
relies on Mplus (Muthén & Muthén, 2007), a closed-source

commercial application that may not be available to all
researchers. Finally, an asymptotic solution allows us to
fully examine and understand underlying principles about
how design facets relate to statistical power. Here, we have
specifically revisited alternative PM designs for the study of
effects on the linear slope in a LGCM from the perspective
of effective error, reliability, and statistical power (also see
Brandmaier et al. 2015, 2018b).

As we mentioned earlier, a comprehensive understanding
of how specific facets of a study design influence statistical
power frees researchers from unnecessary constraints in
designing future studies. There is less of a need for
basing future studies on existing study designs, which may
unnecessarily restrict researchers’ exploration of even more
efficient designs. Also, there is less of a need to base future
studies on simple heuristics. Specifically, we disagree with
the heuristics given by Wu et al. (2016) that, for a linear
change process, the optimal allocation of repeated measures
in a CD design is approximately equally spaced. With Eq. 7,
we can show that this is not true under the assumptions of
a standard LGCM (cf. Willett, 1989). In fact, the design
that maximizes the variance over the measurement time
points yields optimal power. Variance is maximal if we
place half of the measurements on the first occasion, i.e.,
repeat the measurements within a short time on the first day
of the study, and the remaining half on the second and last
occasion, again repeating the measurements within a short
time on the last day of the study. Of course, this is assuming
independence of the measurements, that is, no spill-over or
retest effects from repeated assessments on a single day. Wu
et al. (2016) based their conclusion on findings from Tekle
et al. (2011) who considered designs with an auto-regressive
structure and showed that equal spacing is more efficient
the larger the auto-regressive coefficient is; without an auto-
regressive component in the model, however, this claim no
longer holds. In other cases (specifically, see bottom left
panel of their Fig. 2; and likewise the panels of Fig. 1 in
Ouwens et al. 2002, that shows the same picture for when
the auto-correlation approaches zero), the distributions of
time points that maximize the variance are optimal.
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Limitations

As with any approach of statistical power analysis, a
priori values for all model parameters must be assumed.
If no values are known, researchers must aim at providing
conservative values, such as low indicator reliability and
small effect sizes. Any uncertainty or bias in the a priori
values is reflected in uncertainty or bias in the estimates
of effective error and/or relative efficiency; similarly,
misspecification of the model may lead to deviation
from the optimal solution; however, this is true for both
simulation-based and asymptotic approaches and a general
issue in optimal study design.

In practice, every now and then models do not
converge to an admissible solution. Reasons for non-
convergence are various and one such reason is empirical
underidentification, which may arise due to low sample size.
Our asymptotic approach is over-optimistic in the sense
that it operates under the assumption that non-convergence
rate is unchanged in expectation by the power-equivalent
transformations. If non-convergence rate is an issue or of
specific interest, one needs to resort to simulation-based
approaches.

Our current approach is limited to models of linear
change with independently and identically distributed
residual errors. These models are typically used when
the modeled time span is relatively short and when the
direction of change rather than the exact shape or the
temporal dynamics are of interest (cf. Ghisletta et al.,
2020). Rhemtulla and Little (2012) implemented a more
general asymptotic approach to computing efficiency for
MCAR designs. Their approach does not have the benefit
of producing an elegant formula that can be inspected (e.g.,
to see that effective error decreases as variance of the time
points increases) but it has the advantage that it can be
applied to any model (such as models of quadratic change)
and any pattern of MCAR data. One must keep in mind that,
no matter what approach is taken, optimizing designs for
linear change may decrease their ability to detect non-linear
change. Also, note that the linear models discussed here and
in Wu et al. (2016) do not model retest effects, that is, we
assume that the change in the dependent variable of interest
is completely described by the time relation as in Eq. 3,
and not subject to additional influences directly related to
number of previous exposures to that variable. In principle,
it is possible to consider explicit models of retest effects in
the considerations presented here but an implementation of
this idea remains as future work.

Simulation approaches are generally more flexible with
respect to extensions to other types of non-linear growth
curves, other estimators, non-normality of errors, or other
types of inference procedures (e.g., weighted-least-squares-
based estimation). At the same time, they often impose

limitations for computational reasons. For instance, Wu
et al. (2016) limited the set of possible designs to reduce the
search space to a practical searchable space. Indeed, they
reduced the space of possible CDs to only those models
with three out of five measurement occasions. However,
optimal PM designs may include subgroups that are only
tested on any subset of measurement occasions, such as
only the last two or only the first two. In particular, the
search space typically grows exponentially with the number
of measurement occasions. An asymptotic approach is
much more flexible with respect to the optimization of a
study design in a well-defined search space as it does not
require computationally expensive Monte Carlo simulation
but offers an optimal solution under formal models of
change considering both planned and non-planned attrition.
Still, one must keep in mind that the asymptotic assumptions
may be violated with small to moderate sample sizes and
optimal design solutions are rather approximate than exact.
However, approximate solutions help us build a general
understanding of how design decisions trade off against
each other and how design parameters affect precision and
power.

Last, we would like to note that the results in this paper
were derived on the basis of maximum likelihood estimation
and Wald-type tests based on the sampling variance of
the estimator. Results may differ if one is interested
in properties of other tests, such as the power of the
likelihood ratio test. For example, effective error of the slope
component in a LGCM may then also depend on intercept
variance and intercept-slope covariance (Brandmaier et al.,
2018b).

Outlook

PM designs for longitudinal data can also be extended to
include multi-form designs on the item level (Rhemtulla
et al., 2014). Then participants are not only a part of
a partial wave pool but also part of partial item pools.
That is, participants do not need to answer all items of
a questionnaire at a particular occasion. Wave-level and
item-level missing designs can be combined (Rhemtulla
et al., 2016) and in principle be analyzed by the same
logic proposed here using an effective error estimate for
multiple indicator LGCMs (see von Oertzen et al., 2010).
For example, following the logic presented earlier, we
can derive the effective error of a longitudinal three-form
missing design, in which participants in each block are
randomly assigned to either the first half or the second half
of items, which yields a design that minimizes both the
number of assessments per person but also the number of
items administered to each person.

In future work, effective error could be extended to
account for auto-regressive processes (also see Willett,
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1989). Generally, equal spacing of measurements may still
be a viable option because it allows testing for other shapes
of change. Again, we want to emphasize here that—if
possible—researchers should explore the design space to
the best possible extent instead of applying rules of thumb.
We hope that the asymptotic approach presented here will
support researchers in the quest for optimal designs to save
resources, reduce study participants’ load, and optimize the
statistical power of their study designs.
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