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ABSTRACT
Increasing the efficiency of materials design remains a significant challenge given the large size of chemical compound space (CCS). The
use of a chemically transferable coarse-grained model enables different molecular fragments to map to the same bead type, significantly
increasing screening efficiency. Here, we propose new criteria for the design of coarse-grained models allowing for the optimization of their
chemical transferability and evaluate the Martini model within this framework. We further investigate the scope of this transferability by
parameterizing three Martini-like models in which the number of bead types ranges from 5 to 16. These force fields are fully compatible
with existing Martini environments because they are parameterized by interpolating the Martini interaction matrix. We then implement a
Bayesian approach to determining which chemical groups are likely to be present on fragments corresponding to specific bead types for
each model. We demonstrate that a level of accuracy comparable to Martini is obtained with a force field with fewer bead types, using the
water/octanol partitioning free energy (ΔGW→Ol) as our metric for comparison. However, the advantage of including more bead types is a
reduction of uncertainty when back-mapping these bead types to specific chemistries. Just as reducing the size of the coarse-grained particles
leads to a finer mapping of conformational space, increasing the number of bead types yields a finer mapping of CCS. Finally, we note that,
due to the large size of fragments mapping to a single Martini bead, a resolution limit arises when using ΔGW→Ol as the only descriptor when
coarse-graining CCS.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5119101., s

I. INTRODUCTION

Molecular design is a cornerstone of materials science, requir-
ing a fundamental understanding of the relationships between the
molecular structure and the resulting properties. Traditionally, these
structure-property relationships1 only arise after multiple rounds
of screening and discovery of new materials.2–6 These screening
approaches constitute examples of direct molecular design in which
the space of all chemical compounds, known as chemical compound
space (CCS), is explored to determine the most suitable chemistry
for the target application. Direct molecular design can be inter-
preted as projecting a hypersurface in the high-dimensional CCS
onto a lower dimensional space defined by certain key molecu-
lar descriptors that strongly correlate with the desired property. In
contrast, inverse molecular design, in which a structure-property
relationship is used to infer a suitable chemical structure from a
desired property, remains a “holy grail” of materials science. The

main obstacle to achieving this goal is the inability to quickly estab-
lish structure-property relationships that can span broad regions
of CCS. This is an exceedingly difficult task, given that the size
of CCS was estimated to be 1060 for druglike molecules less than
500 Da.7 Experimentally, this process is inhibited due to both the
material and time cost associated with synthesizing and testing a
large variety of chemistries that are necessary to infer a relation
that is both robust and accurate enough to enable inverse molecular
design.

Computationally, recent advancements in processing power
and in machine learning have enabled several efficient methods for
estimating the electronic properties of a large variety of materials.8–13

These methods have the added benefit of screening molecules that
cannot be easily synthesized and can thus motivate (or demotivate)
the experimental exploration of these chemistries. However, there
has been relatively little success in applying computational high-
throughput screening methods to determine the stability of chemical
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compounds in soft-matter systems for which thermal fluctuations
play a critical role.14,15 Force-field based methods, such as molecular
dynamics simulations, are typically used to account for the immense
number of configurations that result from thermal fluctuations in
these systems. Unfortunately, due to the extensive computational
resources required, a high-throughput scheme based on atomistic
molecular dynamics simulations is currently unfeasible for span-
ning the large regions of CCS needed to obtain broadly applicable
structure-property relationships.

Coarse-grained molecular dynamics simulations provide a
means to significantly reduce the computational expense relative to
fully atomistic simulations while still capturing the relevant physical
properties.16–19 Coarse-grained representations of molecules result
from mapping groups of atoms to coarse-grained “pseudoatoms”
or beads. The governing interactions between beads are determined
such that the desired properties of the atomistic system are retained.
This usually corresponds to a smoothing of the underlying free-
energy landscape, allowing for more efficient sampling. Convention-
ally, coarse-graining is applied to a single molecule with the goal of
efficiently sampling a specific system of interest. The coarse-grained
potentials are obtained via one of several possible methods (e.g., iter-
ative Boltzmann inversion20,21 and force-matching22,23). However,
these methods are computationally expensive, requiring an initial
atomistic simulation that sufficiently explores the underlying free
energy landscape of the system of interest.24 Therefore, adapting
coarse-grained molecular dynamics simulations to high-throughput
screening of chemical compounds requires flexible yet reliable map-
ping and force field parameterization methods that do not rely
on results from higher-resolution simulations for each compound
screened.

The coarse-grained Martini force field has become widely used
to simulate biological systems as it provides a robust set of trans-
ferable force field parameters by constructing biomolecules from
a small set of bead types.25–27 The Martini model is a top-down
model, which maps an atomistic compound or a molecular frag-
ment to a coarse-grained site based on its partitioning between aque-
ous and hydrophobic environments.28 In the context of molecular
design, the main advantage that Martini provides is its chemical
transferability. While the force field was explicitly parameterized
for a set of specific molecules, a single Martini bead can represent
several different chemistries that share similar oil/water partition-
ing characteristics. Thus, the main feature captured by the Mar-
tini model is hydrophobicity, which can act as a key driving force
in the physics of soft-matter systems. Rather than running a sin-
gle atomistic simulation that yields a single data point in CCS, a
Martini coarse-grained molecular dynamics simulation provides a
representative point in CCS, corresponding to the average behav-
ior of all the chemistries that lay in the region surrounding that
point. Thus, high-throughput coarse-grained (HTCG) simulations
that use chemically transferable force fields, such as Martini, are
advantageous because they span vast regions of CCS to quickly infer
the structure-property relationships and chemical descriptors that
can be used to enable inverse molecular design at any resolution.
Menichetti et al. recently demonstrated this by running Martini
HTCG simulations to construct a structure-property relationship
describing the thermodynamics of the insertion of a small organic
molecule into a biological membrane across CCS.29–31 In doing so,
they discovered a linear relationship between the bulk partitioning

behavior of the solute and its potential of mean force. They were
then able to identify a structure-property hypersurface to obtain
membrane permeabilities for these solute molecules. Using the Gen-
erated DataBase (GDB),32,33 a systematically computer-generated
set of organic druglike compounds, as a proxy for CCS, we then
related the regions of this surface to regions of CCS that were
dominated by specific chemical moieties, enabling inverse molec-
ular design of small molecules given a desired permeability. The
question remains: how representative of CCS is the Martini force
field? Given that Martini was designed to reproduce the partitioning
behavior of certain solvents as well as the properties of lipid-bilayer
membranes, is there a way to accurately parameterize a transferable
coarse-grained force field with the goal of optimizing its coverage
of CCS? In the context of high-throughput coarse-grained simu-
lations that use Martini, creating a structure-property relationship
that enables inverse design requires an understanding of the chem-
istry that is representative of a specific bead type. The metrics used in
assigning specific chemical fragments to Martini bead types mainly
consist of several water/oil partitioning free energies, although bulk
liquid densities and membrane-specific properties have also been
used.28,34 Here, we focus specifically on the water/octanol partition-
ing free energy (although other water/oil partitioning free energies
could also be used as they also effectively encode hydrophobicity).
Therefore, an intuition for which chemistry maps to a given bead
type can only be obtained by understanding how ΔGW→Ol varies
as a function of chemistry. Given that the number of heavy (non-
hydrogen) atoms that usually map to a Martini bead is around four,
we can think of each bead as representing a small carbon scaffold
perturbed to some degree by either replacing carbons with other
heavy atom types (e.g., oxygen, nitrogen, or fluorine) or by replac-
ing single bonds with double or triple bonds. We define a functional
group as being one or a localized combination of these types of
perturbations.

In this work, we quantify the information loss that occurs
when a top-down coarse-grained model, like Martini, is used to
reduce the resolution of CCS. Additionally, we parameterize three
sets of coarse-grained force fields in the Martini framework. In this
context, we use the terms “force field” and “model” interchange-
ably, defined as a set of parameters which describe the interac-
tions between a fixed number of coarse-grained representations
called bead types. Each force field developed in this work consists
of 5, 9, and 16 neutral bead types, as well as two extra types to
account for hydrogen-bond donors and acceptors. We observe that
Martini does not provide the most efficient reduction of CCS. We
show that the nine-bead force field reduces CCS to the same degree
as Martini despite having three fewer bead types and that further
increasing the number of bead types yields negligible improvements
in the performance of the model. The models are validated by per-
forming coarse-grained simulations to calculate the water/octanol
partitioning free energies of approximately 500 compounds for
which experimental data are available. Finally, we demonstrate that
the main advantage of a force field with a large number of bead types
is the reduction of uncertainty when back-mapping these coarse-
grained representations to real chemical functional groups. Just as
decreasing the resolution of the coarse-grained mapping reduces
the resolution of the potential energy landscape, a reduction in the
number of bead types of a chemically transferable coarse-grained
force field allows for an increased degeneracy of chemical fragments
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FIG. 1. A cartoon schematic showing the
projection of CCS onto the hydrophobic-
ity descriptor ΔGW→Ol, allowing for the
creation of top-down chemically transfer-
able coarse-grained models with (a) five,
(b) nine, (c) 12, and (d) 16 bead types.
The number of bead types included
in these models defines the degree to
which CCS is partitioned on theΔGW→Ol
axis. By varying the number of bead
types in each model, we obtain greater
insight into the range of chemistries
spanned by a single bead type.

that map to a single bead type, illustrated in Fig. 1. Ideally, a well-
designed chemically transferable coarse-grained force field would
contain some number of bead types that can be intuitively back-
mapped to single chemical functional groups. However, the size of a
single functional group is small relative to the size of a Martini bead
such that many functional groups could be identified within a frag-
ment mapping to a single Martini bead. Here, we demonstrate that
this mismatch between the size of a Martini bead and a single func-
tional group requires additional constraints in order to identify the
unique chemistry that maps to each bead type. Incorporating these
constraints into a Bayesian formalism yields probabilities of specific
chemistries mapping to a given bead type, further promoting inverse
molecular design. However, even these additional constraints allow
for the same functional groups to be present in multiple bead types,
indicating a natural resolution limit when using ΔGW→Ol as the
sole basis for a chemically transferable, top-down coarse-grained
model.

II. METHODS
A. The auto-Martini algorithm

This work relies on the AUTO-MARTINI algorithm initially devel-
oped by Bereau and Kremer.35 The algorithm first determines an
optimal mapping for an organic small molecule. The mapping pro-
vides the number of coarse-grained beads used to represent the
molecule as well as their placement. A mapping cost function is min-
imized for each molecule so as to optimize both the number and
placement of beads used in its coarse-grained representation. The

assignment of coarse-grained potentials to each bead (bead-typing)
occurs by assigning an existing Martini bead type that has the closest
matched water/octanol partitioning free energy (ΔGW→Ol) with that
of the molecular fragment encapsulated by the bead. The partition
coefficients of these fragments are obtained by using ALOGPS,36,37 a
neural network algorithm that predicts these values given the chem-
ical structure of the fragment. In this work, we use an updated ver-
sion of the AUTO-MARTINI algorithm that has three significant changes
from the previous version. The first change is an increased ener-
getic penalty for “lonely” atoms (i.e., atoms that fall outside the van
der Waals radius of the placed coarse-grained beads). The second
change is a reduction of the multiplicative factor used when assign-
ing bead types to rings for both five and six-membered rings. Finally,
the cutoff value for the ΔGW→Ol for the assignment of donor and
acceptor fragments to their corresponding bead types was modified
such that the coarse-grained and atomistic population distributions
more closely matched. All of these changes increased the algorithm’s
accuracy, which is quantified in the supplementary material (Sec. II).
The updated code is available for use via a GITHUB repository.38

Using the refined AUTO-MARTINI algorithm, approximately 3.5 × 106

molecules with ten heavy atoms or less that make up the GDB were
mapped to coarse-grained representations for four different force
fields. The molecules contain carbon, nitrogen, oxygen, fluorine,
and hydrogen atoms only. Of these 3.5 × 106 compounds, approx-
imately 340 000 were successfully mapped to both coarse-grained
unimers (1 bead representations) and dimers (2 bead representa-
tions) for all of the force fields described in this work. The majority
of the remaining compounds were mapped to coarse-grained rep-
resentations with a higher number of beads, and a small fraction
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of compounds were unable to be successfully mapped by the algo-
rithm. Histograms comparing the distributions of ΔGW→Ol for each
set of atomistic compounds mapping to coarse-grained unimers
and dimers and their coarse-grained counterparts were constructed
using the NUMPY histogram function,39 with the number of bins being
equal to 1000 and 1050 for unimers and dimers, respectively. These
histograms are shown in Figs. 2(a)–2(d) for Martini, while the other
histograms can be found in the supplementary material (Fig. S4).
Here, we noticed two systematic errors of the prescribed Martini

FIG. 2. Histograms of 343 700 small molecules extracted from GDB that map
onto one-bead or two-bead coarse-grained Martini representations. [(a) and
(c)] Coarse-grained and [(b) and (d)] atomistic populations as a function of
water/octanol partitioning free energy. The width of the bars in (a) and (c) cor-
responds to the range of atomistic water/octanol partitioning free energies that
can map to that coarse-grained representation. (e) Jensen-Shannon divergence
calculated for the histograms corresponding to those in (a)–(d) for all force fields
described in this work.

mapping process that are done by AUTO-MARTINI. About 14% of the
GDB molecules were undermapped by the algorithm, meaning that
molecules and fragments with greater than seven heavy atoms were
mapped to single Martini beads. These molecules are included in the
histograms but do not significantly affect the results of various sta-
tistical analyses conducted in this work. The other error is the treat-
ment of molecules containing five-membered rings, which make up
roughly 18% of the dataset obtained using AUTO-MARTINI. AUTO-MARTINI

assigns two “small” beads to represent these rings. While this does
technically follow the mapping rule for these “small” beads (which
should map two to three heavy atoms to a bead), ring planarity
is no longer enforced with only two beads. Overall, these system-
atic errors have a negligible impact on our findings, and we include
further discussion of these issues in the supplementary material
(Sec. III).

B. The Jensen-Shannon divergence
In this work, the main tool used to quantify information loss

when going from atomistic to coarse-grained resolution is the rel-
ative entropy in the form of a Jensen-Shannon divergence (JSD
or DJS).40 The relative entropy framework has been previously
established as a useful tool for evaluating the quality of coarse-
grained models.41,42 The JSD is a variation of the well-known
Kullback-Leibler divergence43 (DKL) used to calculate the relative
entropy between two distributions. It offers two advantages over the
Kullback-Leibler divergence in that it is symmetric and always has
a finite value. Rather than directly relating two distributions, as is
the case for the Kullback-Leibler divergence, the JSD computes the
relative entropy by comparing each of these distributions to a third
distribution which is the average of the other two distributions, as
shown in the following equations:

DJS =
1
2
DKL(PCG∥Pavg) +

1
2
DKL(PAA∥Pavg), (1)

where DKL(A∥B) =
N

∑
i=1

ai ln(ai
bi
)

and Pavg =
1
2
(PCG + PAA).

In the above equations, we define DKL in terms of two arbi-
trary distributions, A and B with N elements ai and bi. Here, we use
the JSD to evaluate how well the distribution of the water/octanol
partitioning free energies for the coarse-grained molecules (PCG)
matches the corresponding distribution at the atomistic resolution
(PAA). A value of 0 indicates that the two distributions are the same.
The use of the average distribution (Pavg) conveniently prevents
divisions by zero when comparing histograms like those shown in
Figs. 2(a)–2(d).

C. Basin-hopping and minimization schemes
In this work, we use multiple methods to optimize the coarse-

grained partitioning free energies to best match the atomistic distri-
bution of free energies. The first such method is the basin-hopping
method,44 which is a variation of Metropolis-Hastings Monte Carlo.
The algorithm proceeds in the following steps. Given a set of initial
coordinates and objective function, the initial coordinates are first
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randomly perturbed and subsequently minimized. The results of the
minimization are either accepted or rejected based on a predefined
Metropolis criterion. These two steps form a single iteration of the
algorithm, and a large number of iterations may be required to find
the desired minima. Here, we use the JSD as our objective func-
tion and a set of possible water/octanol partitioning free energies for
each coarse-grained bead type as our initial coordinates. Each move
then corresponds to shifting the values of ΔGW→Ol for each coarse-
grained bead type in a given force field. The optimizations were
performed in order to define the desired ΔGW→Ol values for the five-
bead-type force field, using the BASINHOPPING function provided by
SCIPY

45 with a Broyden-Fletcher-Goldfarb-Shanno local minimizer,46

a Metropolis temperature parameter of 0.008, and a step size of
0.024 kcal/mol. For the reference atomistic distribution, we applied
the ALOGPS neural network to predict ΔGW→Ol for all molecules in
the GDB with eight heavy atoms or less that were known to map
to single bead Martini representations using the AUTO-MARTINI algo-
rithm. However, finding the optimal set of ΔGW→Ol values for the
16-bead-type force field using this approach proved to be computa-
tionally unfeasible, as the dimensionality of the problem scales with
MN , where N is the total number of bead types in the force field
and M is the range of ΔGW→Ol values spanned by the Martini bead
types divided by the step size. To parameterize the 16-bead-type
force field, we used the SCIPY minimize function45 with the modified
Powell method,46 starting with an initial set of 18 bead types that
were evenly distributed along the ΔGW→Ol axis. The results of the
minimization indicated two sets of two bead types that were within
0.1 kcal/mol of each other, and so each pair was combined into a
single bead type, resulting in 16 bead types total.

D. Clustering the GDB
In addition to the optimization of the JSD, a new set of coarse-

grained water/octanol partitioning free energies was also proposed

by clustering the GDB, leading to the 9-bead-type force field. Specifi-
cally, all GDB molecules with eight heavy atoms or less were grouped
based on the number and type of heteroatom substitutions present
in the molecule (i.e., the number of times that a C was replaced
with N, O, or F). The resulting atomistic molecular populations as
well as the mean and standard deviation of their water/octanol par-
titioning free energies are shown in Fig. 3. Detailed information
on each of the distributions (beyond what is provided in Fig. 3) is
available in the supplementary material (Sec. V and the ZENODO

47

repository). The desired water/octanol partitioning free energies are
determined by clustering the points on this graph, starting from the
highest populated points and accepting anything that was within
±0.5 kcal/mol of these points. For example, the first point with
the highest population in Fig. 3(a) is chosen as a starting point
for the first bead type. All points that fall within 0.5 kcal/mol are
assigned to this bead type, and the ΔGW→Ol is determined by tak-
ing a population-weighted average of all of these points. The next
bead type is determined by selecting the highest point in Fig. 3(a)
that is not already assigned to a bead type and repeating the pro-
cess. For both this clustering and for the numerical optimization
methods discussed in Sec. II C, the maximum number of heavy
atoms per molecule was limited to eight. For all other data-driven
calculations, all GDB molecules with up to ten heavy atoms were
included.

E. Functional group analysis
A statistical analysis of the functional groups found in the

molecular fragments mapping to single beads is necessary in order to
obtain a more detailed picture as to which chemistries are represen-
tative of specific bead types. The enumeration of functional groups
was achieved through the use of the CHECKMOL software developed
by Haider.48 This software uses the 3D coordinates of each atom
and the corresponding atom labels in a given molecule to identify

FIG. 3. (a) Population vs average values of the distributions of water/octanol partitioning free energies corresponding to GDB molecules with up to 8 heavy atoms and a
specific number and type of heteroatom substitutions. The error bars refer to the standard deviations of each distribution. The colored backgrounds denote how these average
values are clustered to obtain new bead types that more efficiently divide CCS. (b) Example distribution corresponding to top-most point labeled in the graph on the left. The
label refers to the number and type of heteroatom substitution, in this case 1 nitrogen and 1 oxygen substitution. The color applied to the histogram corresponds to the colors
shown in (a), indicating the bead types to which these molecules would be assigned.
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common chemical functional groups. A full list of the functional
groups identified can be found in the supplementary material
(Sec. VII and the ZENODO

47 repository). Using CHECKMOL, we deter-
mine the degeneracy of specific functional-group pairs with respect
to single bead types for the set of molecular fragments that mapped

to a single bead. This amounts to counting the number of fragments
containing a specific functional group pair and mapping to a sin-
gle bead type. This population is then normalized with respect to
the total number of fragments containing the same functional group
pair across all bead types. It is useful to frame this statistical analysis

FIG. 4. Heat maps portraying the degen-
eracy of specific pairs of functional
groups for a given bead type for force
fields containing five (a), nine (b), 12
(c), or 16 (d) bead types. The hori-
zontal axes denote specific functional-
group pairs that exist in a chemical frag-
ment with five heavy atoms only. The
color corresponds to either the column-
normalized or row-normalized probabil-
ities. The column-normalized probabil-
ities (left side) are equivalent to the
Bayesian likelihood of a given functional
group mapping to a specific bead type.
The row-normalized heat maps (right
side) show the Bayesian posterior prob-
abilities of obtaining a specific functional
group given a bead type.
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in terms of conditional probabilities, as this yields specific infor-
mation relevant for molecular-design applications. For example, the
aforementioned counting and normalization is equivalent to calcu-
lating the likelihood of assigning a bead type (T) given a specific
functional group pair (F), defined as P(T|F). We use the fragment
population distributions for each bead type and each functional
group pair to obtain probabilities P(T) of a bead type and P(F) of a
functional group pair. We then calculate the posterior probabilities
P(F|T) of a given bead type back-mapping to a specific functional
group pair using Bayes’ theorem

P(F∣T) = P(T∣F)P(F)
P(T) . (2)

The results are shown as a series of heat maps for each force
field in Fig. 4.

F. Parameterization of new bead types
The new force fields share most of the parameters defined

by the Martini force field.34 For the intramolecular interactions,
bonded, angle, and dihedral force constants remain the same as
those prescribed by Martini. The nonbonded interactions only devi-
ate from Martini through the strength of the potential used. We lin-
early interpolate across the interaction matrix defined in Martini,34

utilizing the distance between the established Martini ΔGW→Ol
35

and the desired ΔGW→Ol for the interpolation. The partitioning
free energies of each bead type were then confirmed by running
coarse-grained molecular dynamics simulations of single beads of
each new bead type. These results are included in the supple-
mentary material (Sec. VI) and show that this method yields an
accurate force field without relying on an iterative scheme. Lin-
ear interpolation is chosen as it is clear that there is no under-
lying functional form or smooth landscape that can be derived
from this parameter space (see supplementary material, Sec. VI for
details). The new bead types are named Ti types, with i ranging
from 1 to N, where N is the total number of bead types in the
force field. The numbering is also ordered by polarity. For exam-
ple, the T1 bead type for all new force fields is the most polar
type. Conversely, the T5, T9, and T16 bead types are the most
apolar bead types in the 5, 9, and 16-bead-type force fields,
respectively. The full list of bead types for each force field, their
force field parameters, and their corresponding ΔGW→Ol values is
available in the supplementary material (Sec. VI and the ZENODO

47

repository).

G. Coarse-grained simulations
Coarse-grained molecular dynamics simulations were per-

formed in GROMACS
49 version 4.6.6 using the standard Martini force

field parameters34 as well as the new force field parameters derived
in this work. A time step of δt = 0.03τ was used for all simu-
lations, where τ is the natural time unit for the propagation of
the model defined in terms of the units of energy E, mass M,
and length L as τ = L

√
M/E. The simulations were run in an

NPT ensemble with a Langevin thermostat and Andersen baro-
stat50 to keep the temperature and pressure at 300 K and 1 bar,
respectively. The corresponding coupling constants were τT = τ and
τP = 12τ.

Water/octanol partitioning free energies were obtained by
simulating approximately 500 coarse-grained molecules in octanol
and water. Approximately, 250 octanol molecules and 350 Mar-
tini water molecules were simulated for their respective systems,
with the appropriate number of antifreeze particles.34 The free ener-
gies were computed using the Bennett acceptance ratio method51

in which the coarse-grained solute was incrementally decoupled
from the solvent via the coupling parameter, λ. 21 simulations
were run for each molecule at evenly spaced λ values ranging from
0 to 1, with each simulation run for 200 000 time steps. Finally,
the partitioning free energies were calculated using the relation
ΔGW→Ol = ΔGOl − ΔGW. As this method does not take into
account the saturation of the octanol phase with water that
occurs in experimental systems,52 we also ran some test simula-
tions using an octanol phase which contained 25% molar water
molecules. We found that only coarse-grained molecules contain-
ing a majority of highly polar beads would show a reduction
in their ΔGW→Ol values due to increased contact with water in
the water-saturated octanol phase (Fig. S5 in the supplementary
material).

III. RESULTS
A. Quantifying information loss of coarse-grained
models with varying number of bead types

The updated AUTO-MARTINI algorithm was used to first map and
subsequently assign bead types to 3.5 × 106 molecules of the GDB
containing ten or fewer heavy atoms using the Martini force field
as well as the other three force fields parameterized by interpo-
lating the Martini interaction matrix. Figure 2 shows a compari-
son of the atomistic and coarse-grained ΔGW→Ol distributions for
molecules mapping to Martini unimers [Figs. 2(a) and 2(b)] and
dimers [Figs. 2(c) and 2(d)]. The corresponding histograms for the
other three force fields as well as a histogram constructed using
the Martini force field but with the original AUTO-MARTINI algorithm
can be found in the supplementary material (Fig. S4). The width
of the coarse-grained bars reflects the range of ΔGW→Ol values
within which a molecule must fall in order to be assigned that
bead type, or, in the dimer case, a combination of bead types. The
height of the bars is set such that the area covered by each bar
is equal to the total number of molecules that were assigned that
coarse-grained representation. We then calculate the JSD between
the coarse-grained and atomistic histograms for each force field to
quantify the information loss as a function of the number of bead
types present in each force field [Fig. 2(e)]. Increasing the number
of bead types reduces the information loss when going from atom-
istic to coarse-grained resolution, though this reduction becomes
insignificant after reaching nine bead types. The JSD comparing
the unimer histograms [red curve in Fig. 2(e)] changes negligibly
when increasing the number of bead types from 9 to 16, with only
a small increase for the Martini case (12 bead types). This is expected
due to the fact that the atomistic histogram of GDB molecules map-
ping to a single bead is a simple, unimodal distribution with a
peak at ΔGW→Ol = 0. Since all of the force fields have at least one
amphiphilic bead type with a ΔGW→Ol close to 0, they all capture
this defining feature of the histogram, and, comparatively, further
information gains are negligible. Remarkably, we find the JSDs were
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largely insensitive to the choice of numerical optimization technique
used for the derivation of each force field, as they all capture this
prominent feature.

The JSDs calculated from the dimer histograms [blue curve
in Fig. 2(e)] show a variety of interesting features. Both the 9
and 16-bead-type force fields maintain roughly the same JSD,
suggesting that the combinatorial explosion that results from dou-
bling the molecular weight is captured by these force fields. The
slight increase seen in the unimer JSD for Martini is noticeably
amplified for the dimer case, indicating that careful placement of
bead types on the ΔGW→Ol axis is necessary to maximize chem-
ical transferability. Surprisingly, the greatest deviation in the JSD
going from the unimer to dimer histogram comes from the five-
bead-type force field, dropping well below the values for the higher
bead type force fields. The reason for this is shown in Fig. S3b,
which shows that the distribution of atomistic compounds map-
ping to dimers in the five-bead-type force field is significantly dif-
ferent from its analogs for the other force fields. This indicates
that a significant number of molecules that would map to dimers
when using one of the other force fields are mapped to trimers
or tetramers using the 5-bead-type force field. Unfortunately, we
were unable to compute histograms of molecules corresponding
to coarse-grained trimers or tetramers due to computational con-
straints: in order to get a converged distribution that could rep-
resent the chemical space corresponding to molecules mapping to
trimers, we would need to run the AUTO-MARTINI algorithm on the
GDB molecules containing up to at least 15 heavy atoms (assuming
a 5 heavy atom to 1 bead mapping), which is computationally unfea-
sible due to the exponential growth of CCS as a function of molecule
size.

B. Relating chemistry to bead types
As an alternative to purely numerical methods for determining

the optimal ΔGW→Ol values for the bead types of a coarse-grained
force field that best partitions CCS, we cluster the GDB itself and use
the weighted average of ΔGW→Ol for each cluster. Figure 3(a) shows
the two descriptors upon which we project and subsequently cluster
the GDB. Each point in Fig. 3(a) represents the set of molecules in
the GDB that have a specific number and type of heavy atom sub-
stitutions (i.e., N, O, or F). The points are placed on the ΔGW→Ol
axis according to the average of their ΔGW→Ol distribution. The
error bars represent the standard deviation of the ΔGW→Ol in each
distribution. One of the corresponding distributions is shown in
Fig. 3(b), with the rest available in the ZENODO repository.47 The
points are clustered hierarchically with respect to population and
average as shown in Fig. 3(a). The highest-populated points are all
chosen as cluster centers as long as they are separated by at least
0.5 kcal/mol, which is an arbitrarily chosen length-scale for the clus-
tering to ensure a reasonable number of bead types in the final force
field. After the points are clustered, the desired ΔGW→Ol of each
bead type is determined by taking the population-weighted aver-
age of all the points in a cluster. This intuitively provides a basic
understanding of the chemistry that maps to a specific bead type.
For example, a T4 bead is more likely to back-map to a molecule
with one N and one O substitution compared to two N substitutions
because of the difference in the GDB populations of each molecule
type.

It is important to characterize the degree to which unique
chemistries are captured by the bead types of each force field. Using
the GDB as a proxy for CCS enables a quantitative understanding
of the chemical transferability of each bead type through the calcu-
lation of conditional probabilities. Figure 4 shows a series of heat
maps corresponding to each of the four force fields investigated in
this work. These heat maps are constructed by counting all frag-
ments containing only five heavy atoms and assigned to a specific
bead type such that two functional groups are detected by the CHECK-

MOL software package. The fragment population distributions are
then used to calculate the Bayesian likelihood P(T|F) and posterior
P(F|T) for each bead type/functional pair combination in every force
field. The numbers on the horizontal axis for each heat map denote
specific pairs of functional groups found in the chemical fragments
that are assigned to a bead type, while the color corresponds to either
the likelihood or posterior probabilities. We see the localization of
functional-group pairs to specific bead types mainly because of the
constraint of only including fragments with five heavy atoms. This
constraint limits the combinatorics of heteroatom and bond substi-
tutions that result in functional-group pairs. Despite the addition
of these constraints, a large number of functional-group pairs are
still split across multiple bead types. The corresponding heat maps
constructed using four-heavy-atom fragments only are included in
the supplementary material (Sec. VII) and show far less degeneracy
of functional-group pairs across bead types compared to these heat
maps, although the general trends observed are the same. Table I
provides additional quantification of the trends shown in Fig. 4,
displaying the average number of functional-group pairs per bead
type, as well as the number of likelihood and posterior values above
cutoff values of 0.99 and 0.2, respectively. As the number of bead
types increases, both the average number of functional-group pairs
per bead type and the number of likelihood values greater than 0.99
decrease, indicating that fewer bead types in a force field increase the
coverage of CCS for each bead type. The opposite trend is observed
for the number of posteriors greater than 0.2, indicating that
more bead types result in higher chemical specificity for each bead
type.

C. Coarse-grained force field validation
While we have demonstrated that the careful placement of

bead types on the ΔGW→Ol axis leads to more chemical transferabil-
ity, the force fields themselves must be validated. Because ΔGW→Ol
was used as the target property for the interpolation of the Martini

TABLE I. For each force field, the number of bead types, the average number of
functional-group pairs per bead type, the total number of likelihood values over 0.99,
and the total number of posterior values over 0.2.

No. of bead Avg. no. of No. of No. of
types func. group pairs likelihoods > 0.99 posteriors > 0.20

5 16.4 40 8
9 10.1 33 17
12 (Martini) 7.4 35 20
16 6.4 27 26
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interaction matrix, we must ensure that this property is indeed cap-
tured by the resulting models and determine to what extent the accu-
racy of these models changes as the number of bead types increases.
Because we used the Martini interpolation matrix in our parameter-
ization, our force fields are, by construction, fully compatible with
the existing Martini model. This allows us to use the Martini sol-
vent models for both water and octanol in our validation, without
having to derive new solvent models for each new force field. Essen-
tially, this means that, using the methods outlined in this work, it is
possible to parameterize any number of new bead types with desired
ΔGW→Ol values within the ΔGW→Ol range covered by Martini that
will also be compatible with the Martini model. Figure 5 shows
correlation plots comparing ΔGW→Ol values computed from coarse-
grained MD simulations with experimental values for approximately
500 ring-less molecules obtained from the National Cancer Institute
database.53 The comparison is made for all four of the models exam-
ined in this work. The number of compounds varies for each model,
as the AUTO-MARTINI algorithm was able to successfully find map-
pings for more molecules in the database when using a model with a
higher number of bead types, ranging from 479 compounds mapped

when using the 5-bead-type model to 505 when using the 16-bead-
type model. The full set of compounds as well as their correspond-
ing coarse-grained representations is provided in the supplementary
material (specifically in the ZENODO

47 repository). The vertical series
of points prominently shown in Fig. 5(a) are a consequence of the
increased degeneracy of CCS for the 5-bead-type model: they rep-
resent many compounds mapping to the same coarse-grained rep-
resentation. As expected, the correlation becomes less discretized as
the number of bead types increases. Examining Figs. 5(e) and 5(f),
we see corresponding gains and losses in the Pearson correlation
coefficients and mean absolute errors (MAEs), respectively. Surpris-
ingly, the gains in accuracy are very slight as a function of num-
ber of bead types—with the correlation coefficient only increasing
by 0.01 and the MAE decreasing by 0.2 kcal/mol—despite tripling
the number of bead types. Even with the five-bead-type model, we
achieve an MAE of 0.8 kcal/mol, within the standard for chemical
accuracy. We deliberately chose not to include molecules that con-
tained rings because this version of the Martini force field quantita-
tively fails in modeling molecular rings for many documented rea-
sons. These reasons include lack of cross-parameterizations between

FIG. 5. Correlation curves comparing the ΔGW→Ol calculated from coarse-grained MD simulations of approximately 500 molecules to their measured values from the
experiment. The results are shown for each of the force fields described in this work [(a)–(d)] as well as their respective Pearson correlation coefficients and mean absolute
error (MAE) values [(e) and (f)].
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normal-sized and the “small” sized beads used to model rings,54 as
well as the size disparity between the atomistic and coarse-grained
ring structures.55 For these reasons, and in anticipation of the new
Martini version 3.0 that is currently being developed to address
these flaws, we refrained from addressing ring molecules in this
study.

IV. DISCUSSION
Given the immense size of CCS, the creation of reduced mod-

els that efficiently subdivide the space is necessary for screening
applications. Here, we demonstrate the use of the water/octanol par-
titioning free energy as the parameter used to generate top-down
chemically transferable coarse-grained models of varying numbers
of bead types. This choice of descriptor is inspired by the Martini
force field, which prescribes the use of partitioning free energies as
the tool to encode the natural hydrophobic/hydrophilic character of
a molecule when determining the bead type to be used to represent
a molecular fragment.28 A major strength of Martini is its ability
to model this important molecular property using simple Lennard-
Jones potentials with varying attractive well depths. Here, we use the
GDB as a proxy for CCS29,31 and apply the AUTO-MARTINI algorithm
to compare the populations of the GDB molecules and their cor-
responding coarse-grained representations for four different force
fields with varying numbers of bead types. This effectively amounts
to a discretization of CCS projected onto ΔGW→Ol at multiple res-
olutions. Other oil/water partitioning free energies have also been
proposed for the determination of bead-type assignment in Martini,
such as hexadecane, chloroform, and ether.34 We restrict ourselves
to the water/octanol partitioning free energy because of the difficulty
involved in obtaining either experimental partitioning free energy
data or predictions for the wide variety of chemistries found in the
GDB. The ALOGPS neural network allows us to obtain accurate pre-
dictions of ΔGW→Ol for new chemistries in this regard. While it is
possible that the use of other water/oil partitioning free energies
would change the resulting force field parameterizations, previous
studies have shown that many Martini partitioning free energies
can be viewed as linear transformations of ΔGW→Ol.29,31,56 There-
fore, the use of a single type of partitioning free energy should be
sufficient as a metric for parameterizing these types of models with
respect to the overall hydrophobic/hydrophilic character of the bead
types.

Figure 2(e) quantifies the level of information loss using the
JSD as the resolution is varied, allowing us to determine how effec-
tively each of these force fields, including Martini, represents CCS
projected onto ΔGW→Ol. The JSD decreases as the number of bead
types increase. However, the information retention becomes negligi-
bly greater, essentially plateauing after nine bead types. Remarkably,
despite the fact that the Martini force field was parameterized using
a small number of chemical compounds (relative to the large dis-
tribution of compounds used to parameterize the other models in
this work), it shows only a minuscule increase in the JSD. This is
mainly due to the lack of a bead type that is placed at 0.0 kcal/mol on
the ΔGW→Ol axis. The highly populated peak at this location is the
major defining feature for the atomistic distribution of molecules
mapping to unimers, and the placement of the Martini Nda and
P1 bead types is insufficient to fully capture this feature. Unfortu-
nately, this increase in the JSD is amplified when comparing the

ΔGW→Ol distributions for dimer molecules, whereas for the nine
and 16 bead type models, the JSD seems to converge. The combi-
natorial explosion that results from doubling the size of molecules
(i.e., going from unimer to dimer) is reflected in these histograms
as a broadening of the total distribution, since more hydrophobic
and hydrophilic values of ΔGW→Ol are possible as molecule size
increases. Figure 2(e) shows that the nine and 16 bead type force
fields match this combinatorial explosion.

On the other hand, Figs. 5(e) and 5(f) clearly demonstrate that
a high level of accuracy is already achieved with respect to ΔGW→Ol
using the five-bead-type force field. What, then, is the benefit to
using a model with more than five bead types? As shown from Figs. 3
and 4, the main advantage is in back-mapping the coarse-grained
representations to their likely atomistic counterparts.30 Specifically,
the nine bead force field is parameterized not by simply optimiz-
ing the JSD, but rather by clustering the GDB molecules into sub-
distributions based on the type and number of heavy-atom sub-
stitutions on the carbon scaffold of each molecule as shown in
Fig. 3. As expected, this clustering strategy also results in a mini-
mal value of the JSD, while providing an added convenience. The
distributions that were clustered to make this force field provide a
method for predicting the chemistries that are most representative
of a bead type. Since the standard deviations of these distributions
are so large such that some span across three different bead types,
this provides only a rough idea of the probable chemistry accessi-
ble to a bead type. Moreover, knowledge of the presence of one or
two heavy-atom substitutions on a carbon scaffold of up to eight
heavy atoms is insufficient for back-mapping given the number of
ways in which they can be arranged on that scaffold resulting in
wildly different chemical properties. Figure 4 shows how different
functional-group pairs will map clearly to specific bead types when
the scaffold size is reduced to five heavy atoms. This extra constraint
enables a clearer understanding of the range of unique chemistries
that are accessible to a specific bead type. Decreasing the size of the
scaffold from five to four heavy atoms yields correspondingly nar-
rower distributions of ΔGW→Ol, meaning that the same functional
group pair can be found in fewer bead types. By no longer requiring
functional-group pairs and increasing the scaffold size to eight heavy
atoms, we begin obtaining distributions similar to those shown
in Fig. 3.

Table I also shows that the number of unique functional-group
pairs that map to a given bead type decreases as the number of bead
types increases, to the point where, for Martini as well as the 16
bead type force field, there exist bead types that essentially back-
map to a single functional group pair. Here, we see a clear parallel
with structural coarse-graining methods: just as decreasing the size
of the beads leads to a finer mapping of the configurational space,
increasing the number of bead types leads to a finer mapping of
CCS. The efficiency of a coarse-grained model can be optimized
by tuning the mapping function and bead size of a coarse-grained
model such that the accuracy of the model is balanced with respect
to the computational cost of simulating a greater number of parti-
cles. By fixing the geometric mapping method and bead size, and
only varying the number of bead types possible, we instead bal-
ance between the accuracy of representing specific chemical features
and the cost of parameterization and validation of the interparti-
cle potentials. We circumvent this cost by interpolating the Mar-
tini interaction matrix to obtain accurate parameters for all of the
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force fields presented in this work. However, this cost will be signifi-
cant for models requiring a more rigorous parameterization scheme
relying on other molecular descriptors. Separate from this trade-off
between accuracy and parameterization cost, a “screening efficiency”
can be defined as the average number of functional-group pairs
that map to a single bead type, indicating a larger region of CCS
being captured by a single bead type. Unsurprisingly, Table I shows
that the five-bead-type force field clearly has the highest screening
efficiency.

This statistical analysis of functional-group pairs also suggests
a Bayesian approach to computing the probability of a functional
group pair, F, given a bead type, T, represented as P(F|T) in Eq. (2).
P(F), the Bayesian prior, is the probability of finding the specific
functional group pair in the set of molecular fragments (made up
of five heavy atoms and containing two functional groups as defined
by CHECKMOL) that mapped to single beads, and P(T) is the proba-
bility of choosing the given bead type from that same data set. The
likelihood, P(T|F), shown in the left side of Fig. 4 prescribes the
bead type or types to which a fragment could be assigned based
on its chemistry—the equivalent of the Martini “bible” for assign-
ing bead types. As shown in Table I, the number of functional-
group pairs with likelihoods greater than 0.99 (essentially local-
ized to a single bead type) decreases as the number of bead types
increases. The Martini force field deviates slightly from this trend,
with two more functional-group pairs with high likelihoods as com-
pared to the nine-bead-type force field. This may stem from the
parameterization strategy used for Martini that relied on specific
molecules and their functional groups rather than aiming to effi-
ciently span chemical space by optimizing the JSD, as proposed
in this work. The posterior probabilities, which provide a quanti-
tative description of which chemistries are more representative of
each bead type, increase as the number of bead types increases. This
effect more easily facilitates the back-mapping of coarse-grained
representations. These two quantities, the Bayesian likelihood and
posterior, are essential for further exploring CCS covered by spe-
cific bead types and enabling both direct and inverse molecular
design.

Interestingly, we immediately see a resolution limit with respect
to the functional-group pairs that map to specific bead types.
Because there are certain length scales on the ΔGW→Ol axis that
correspond to the distribution of specific functional-group pairs,
increasing the number of bead types will naturally split these dis-
tributions such that one functional group pair is represented in mul-
tiple bead types. Figure 4(a) shows that the majority of functional-
group pairs are encompassed either by a single bead type or one of its
neighbors on the ΔGW→Ol axis. Increasing the number of bead types
causes these splits to become more exacerbated, spanning multiple
bead types for an increased number of functional-group pairs. This
is the resolution limit of this type of top-down coarse-graining. The
large bead sizes of these models lead to a high degree of variability in
the chemistry, meaning that it is no longer obvious which functional
group/functional group pair belongs to which bead type. The limit
is most evident for the functional-group pairs mapping to the T3
and T13 bead types in Fig. 4(d), indicating that they are placed too
close to their neighbors on theΔGW→Ol axis. These functional-group
pairs contain some combination of the following functional groups:
alkene, alkyne, enamine, hydrazine, hydroxylamine, carboxylic acid
derivatives, and fluorine substitution. The placement of these

functional groups within a five-carbon scaffold will drastically shift
the ΔGW→Ol beyond the range of the next-nearest bead type on the
ΔGW→Ol axis and highlights the limitations of only using this single
descriptor for the projection of CCS. While the addition of other par-
titioning free energies may further increase the accuracy of both the
models themselves and the mapping of specific functional groups,
these descriptors are encoding essentially the same information as
ΔGW→Ol: the hydrophobicity of the underlying chemistry. However,
determining a suitable orthogonal descriptor and then parameteriz-
ing a chemically transferable coarse-grained force field to achieve a
more direct relation with CCS is outside the scope of this work, and
will be addressed subsequently.

V. CONCLUSION
In this work, we use the Jensen-Shannon divergence (JSD) to

quantify the information loss in chemically transferable top-down
coarse-grained models with varying numbers of bead types, with the
GDB as our proxy for chemical compound space (CCS). We find
that Martini, while not designed to efficiently reduce CCS, only per-
forms remarkably well in this regard, closely matching the other
force fields explicitly designed to minimize the JSD with only a
small deviation. All force fields yield roughly the same level of accu-
racy with respect to ΔGW→Ol but vary greatly in their coverage of
CCS. We used a Bayesian approach to calculating the probabilities
of back-mapping given bead-types to fragments containing specific
chemical substitutions. Here, we found it necessary to constrain the
size of chemical fragments to five heavy atoms and the presence
of two functional groups in order to clearly differentiate between
the chemical moieties mapping to each bead type. The results of
this Bayesian analysis indicate that increasing the number of bead
types decreases the range of accessible chemistry while increasing
the corresponding posterior probabilities for each chemistry. How-
ever, there is a resolution limit when using this approach, as it
does not take into account the specific positions of heteroatom and
bond substitutions within a fragment, causing different bead types
to appear representative of the same chemistry. Martini, as well as
other chemically transferable coarse-grained models, can be used
to quickly build structure-property relationships that span broad
regions of CCS. Here, we highlight the powerful combination of this
method with Bayesian inference, providing an informed mapping
of a coarse structure-property relationship to a higher resolution in
chemical compound space and further enabling inverse molecular
design.

SUPPLEMENTARY MATERIAL

The attached supplementary material provides details on (i) the
changes made to the AUTO-MARTINI code, (ii) systematic errors made
by the AUTO-MARTINI algorithm, (iii) the histograms used to calcu-
late JSDs for all force fields described in this work, (iv) statistics for
each of the distributions clustered when obtaining the nine-bead-
type force field, (v) the parameterization method for the new force
fields, and (vi) more information about the functional-group pairs
used in the Bayesian analysis. In addition, we provide databases con-
taining the set of GDB compounds mapping to each unimer and
dimer, the force field parameters, the trajectories simulated for each
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force field in a repository, the list of all compounds from the NCI
database used to construct Fig. 5, the gromacs topology files for
the coarse-grained compounds to which the NCI compounds were
mapped, and the full list of functional-group pairs identified using
CHECKMOL as well as the corresponding probabilities calculated in
Fig. 4 for all force fields.47
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