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Abstract

Calibrated functional magnetic resonance imaging can remove unwanted sources of

signal variability in the blood oxygenation level-dependent (BOLD) response. This is

achieved by scaling, using information from a perfusion-sensitive scan during a

purely vascular challenge, typically induced by a gas manipulation or a breath-hold

task. In this work, we seek for a validation of the use of the resting-state fluctuation

amplitude (RSFA) as a scaling factor to remove vascular contributions from the

BOLD response. Given the peculiarity of depth-dependent vascularization in gray

matter, BOLD and vascular space occupancy (VASO) data were acquired at submilli-

meter resolution and averaged across cortical laminae. RSFA from the primary

motor cortex was, thus, compared to the amplitude of hypercapnia-induced signal

changes (tSDhc) and with the M factor of the Davis model on a laminar level. High

linear correlations were observed for RSFA and tSDhc (R
2 = 0.92 ± 0.06) and some-

what reduced for RSFA and M (R2 = 0.62 ± 0.19). Laminar profiles of RSFA-

normalized BOLD signal changes yielded good agreement with corresponding

VASO profiles. Overall, this suggests that RSFA contains strong vascular compo-

nents and is also modulated by baseline quantities contained in the M factor. We
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conclude that RSFA may replace the scaling factor tSDhc for normalizing the laminar

BOLD response.

K E YWORD S

7 T-fMRI, calibrated fMRI, hypercapnia, laminar fMRI, resting-state fMRI, VASO

1 | INTRODUCTION

Functional magnetic resonance imaging (fMRI) based on echo-planar

imaging (EPI) with gradient-recalled echoes (GRE) is currently the most

widespread technique to look at human brain function. However, its

baseline-dependent nature makes data comparisons across participants,

brain areas, and brain states challenging. Apart from true differences in

neuronal activity, significant differences in the blood oxygenation level-

dependent (BOLD) responses could be attributable to factors that are

difficult to control for, such as caffeine intake, time of the day, age,

baseline oxygenation, vascularization density, or baseline cerebral blood

flow (CBF) (Krieger et al., 2014; Whittaker, Driver, Bright, & Murphy,

2016). The spatial signature of these effects becomes particularly clear

at laminar resolutions (Polimeni, Fischl, Greve, & Wald, 2010; Yen,

Zhao, & Kim, 2012), such that the so-called physiological noise

(Krüger & Glover, 2001) is strongly linked to the baseline cerebral blood

volume (CBV) (Koopmans, Barth, Orzada, & Norris, 2011).

Calibrated fMRI attempts to solve this issue by scaling the task-

related BOLD response by one obtained with a purely vascular challenge,

typically hypercapnia. Combined with a biophysical model, this has been

used to extract information on (relative) changes of the cerebral meta-

bolic rate of oxygen consumption (CMRO2) (Davis, Kwong, Weisskoff, &

Rosen, 1998; Gauthier & Hoge, 2013; Hoge et al., 1999). This normaliza-

tion is believed to result in a quantity that is more directly coupled to the

neuronal response than unscaled BOLD signal changes. The underlying

rationale is that the oxygen uptake needed for adenosine triphosphate

(ATP) production happens at the closest capillary bed. Consequently, it

should be more spatially specific to the site of neural activity than the

BOLD signal changes, which are driven by the venous vasculature

(Huber, Uluda�g, & Möller, 2019). The method has proven to account for

a high degree of variability in the BOLD response and, therefore, found

some application (Blockley, Griffeth, Simon, & Buxton, 2013; Pike, 2012).

Most calibrated fMRI studies suffer from two main drawbacks:

(a) They rely on a gas manipulation scan (apart from the functional para-

digm). (b) They require the acquisition of an additional non-BOLD func-

tional contrast for quantifying the vascular response. The vascular

challenge has been traditionally taken to be a gas manipulation inducing

hypercapnia, under the assumption that it does not induce changes in oxi-

dative metabolism. This isometabolic assumption has not yet been

robustly proven, and previous studies have reported a decrease (Xu et al.,

2011; Zappe, Uluda�g, Oeltermann, U�gurbil, & Logothetis, 2008), an

increase (Jones, Berwick, Hewson-Stoate, Gias, & Mayhew, 2005), or no

change (Chen & Pike, 2010; Jain et al., 2011) in CMRO2. The metabolic

effect of hypercapnia is believed to be dependent on the carbon dioxide

(CO2) content of the inspired gas, with higher concentration inducing

higher oxidative metabolism changes (Jones et al., 2005; Zappe et al.,

2008). The setup needed for the gas manipulation usually involves a facial

mask or a mouth piece and a nasal clip, which causes discomfort to the

participant. Additionally, the inflow of gas may be perceived as unpleasant

(e.g., a dry mouth and throat) and may lead to dizziness if the CO2 con-

centration of the gas mixture is high (e.g., above 5%). Such setup-specific

problems can be circumvented by using a breath-hold task (Kastrup, Li,

Glover, & Moseley, 1999). However, this comes at the expense of

reduced signal quality (e.g., due to enhanced task-related head motion)

and reproducibility (because of a reduced response amplitude). Moreover,

respiratory manipulations might be inapplicable in noncompliant subject

populations, such as children, or might be too demanding for patients

with pulmonary or cardiac disease (Moreton, Dani, Goutcher, O'Hare, &

Muir, 2016) or for elderlies. Finally, the additionally required functional

contrast, such as CBF recorded with arterial spin labeling (ASL) (Alsop

et al., 2015; Detre, Leigh, Williams, & Koretsky, 1992; Lorenz, Mildner,

Schlumm, & Möller, 2018; Mildner et al., 2003) or CBV recorded with

vascular space occupancy (VASO) techniques (Hua, Jones, Qin, & van Zijl,

2013; Huber et al., 2014b; Lu, Golay, Pekar, & van Zijl, 2003; Lu, Hua, &

van Zijl, 2013), is penalized by a reduced sensitivity compared to the

GRE-BOLD response. Consequently, this has a crucial impact on the qual-

ity of the CMRO2 estimation (Huber et al., 2019).

Given these obstacles, measures obtained with so-called resting-

state fMRI have been proposed as alternative normalization approaches.

At present, there is, however, no general consensus on how to best

extract a scaling factor from the resting-state time series. Previous

attempts include the use of the resting-state fluctuation amplitude

(RSFA) (Kannurpatti & Biswal, 2008), the low-frequency spectral ampli-

tude (Biswal, Kannurpatti, & Rypma, 2007), the amplitude of low-

frequency fluctuations (ALFF) (Zang et al., 2007), the fractional amplitude

of low-frequency fluctuations (fALFF) (Zou et al., 2008), the power in the

low frequencies of the residuals in the task general linear model (Kazan

et al., 2017), the temporal correspondence of global low frequency fluc-

tuations with individual voxels (Liu et al., 2017), and others (Golestani,

Wie, & Chen, 2016; Jahanian et al., 2017; Liu, 2013; Liu et al., 2013).

Nevertheless, most of the calibrated BOLD studies still rely on

gas manipulation or breath-hold scans rather than on resting state-

based approaches. This might be due to the fact that several different

scaling factors have been proposed and most of them are missing a

clear validation. Given that the band of interest is the low-frequency

one, which is considered to be more closely coupled to spontaneous

neural activity and, thus, used for connectivity studies (Birn, 2012;

Murphy, Birn, & Bandettini, 2013), a mixture of neuronal and vascular

contributions is expected. This “confounding” neural contribution rep-

resents one of the biggest impediments to the use of resting-state
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fluctuations as a scaling factor (Lipp, Murphy, Caseras, & Wise, 2015;

Liu, 2013). Moreover, the choice of the repetition time, TR, impacts

the amount of aliased cardiac and respiration frequencies into the

low-frequency band (Viessmann, Möller, & Jezzard, 2017; Viessmann,

Möller, & Jezzard, 2019; Wise, Ide, Poulin, & Tracey, 2004).

So far, these methods have only been applied at relatively low

spatial resolution. Their applicability to high-resolution fMRI, as

required for obtaining depth-dependent information, has not yet been

investigated. An increase in resolution is limited, in general, by the

achieved temporal signal-to-noise ratio (tSNR). A more specific poten-

tial problem is related to the interpretation of the BOLD response

because traditional assumptions about neurovascular coupling mecha-

nisms may not be valid locally on a submillimeter spatial scale. Voxels

of a dimension on the order of the cortical thickness (or above) in a

given brain region contain similar mixtures of arterial, capillary, and

venous blood. On this spatial scale, it can be assumed that BOLD sig-

nal changes are modulated by consistent dynamic changes in CBF,

CBV, and CMRO2 (Buxton, Uluda�g, Dubowitz, & Liu, 2004). On a sub-

millimeter scale, however, different voxels of the same brain region

may have different total CBV fractions or different portions of arterial,

capillary, and venous blood. For example, voxels located at the pial

surface should contain relatively large fractions of arterial and venous

blood but should be mostly devoid of capillary blood. In such voxels,

significant changes in the deoxyhemoglobin concentration, [dHb],

may be observed if they contain veins draining an (upstream) acti-

vated area (Markuerkiaga, Barth, & Norris, 2016). However, this local

BOLD signal change may not have a colocalized CMRO2 change.

One goal of the current work was to investigate the use of RSFA

indices for normalizing BOLD signal changes recorded at submillimeter

spatial resolution on a laminar basis. This was done by comparing the

obtained results to other metrics recorded with gas-calibration experi-

ments in a separate session. Given that the human neocortex is organized

into six layers, each of which can be treated—to some extent—as a func-

tional unit, averaging was performed along laminae rather than across the

full patch of cortex. Compared to standard-resolution scans, laminar fMRI

yields additional information about an approximate location within the

cortical ribbon where BOLD signal changes occur. This helps to better dis-

entangle contributions from the capillary bed and those from the down-

stream vasculature (Huber et al., 2015; Kim & Kim, 2010; Koopmans,

Barth, & Norris, 2010). For further validation, a second goal was a direct

comparison of laminar CBV changes and simultaneously recorded BOLD

signal changes with and without RSFA-based normalization.

2 | METHODS

2.1 | Comparison of RSFA-based normalization
and gas calibration

2.1.1 | Participants

Ten right-handed healthy volunteers (6 males, mean age: 256 ± 4 years)

with no history of neurological disorders participated in the first part of

the study after giving informed written consent. The experimental proce-

dures had been previously approved by the Ethics Committee at the Med-

ical Faculty of the University of Leipzig (Reg.-No. 273-14-25082014).

Participants were asked to refrain from coffee and alcohol intake on the

day of the experiment. A physician was present during each session to

monitor physiological recordings during the breathing manipulation task.

2.1.2 | Experimental setup

Magnetic resonance imaging (MRI) was performed on a MAGNETOM

7T scanner (Siemens Healthcare, Erlangen, Germany) using a circularly

polarized transmit/32-channel receive radiofrequency (RF) head coil

(Nova Medical, Wilmington, MA).

The gas mixture used to induce hypercapnia contained 5% CO2,

21% oxygen (O2), and 74% nitrogen (N2). It was delivered to the partici-

pant through a mouthpiece connected by a tube to a gas wall socket.

The mouthpiece was adjusted to fit tightly to the participant's face in

order to avoid inflow of room air. A nose clip was used to prevent

breathing from the nasal cavity. The inflow of gas was manually adjusted

to a rate of approximately 18 L/min (standard temperature and pres-

sure). Normocapnia was restored by disconnecting the tube from the

wall socket, thereby letting room air flow into the tube. A second tube

connected to the mouth piece was used for directing the exhaled air out-

side the scanner bore. Inhaled and exhaled gases were prevented from

mixing via valves placed in the interior of the mouth piece. Heart beat

and respiration timecourses were recorded using the scanner's physio-

logical monitoring unit (pulse sensor and respiratory belt). The end-tidal

partial pressures of CO2 (PETCO2) and O2 (PETO2) were recorded using

an MP150 system (BIOPAC Systems, Goleta, CA). Written verbal

instructions were projected onto a screen, which could be viewed by the

participant via a mirror mounted on the RF coil. In case of visual deficien-

cies, MRI-compatible glasses were provided to the participant.

2.1.3 | Functional paradigm

The paradigm consisted of two sessions, each 15 min long. The first ses-

sion was a block-design hypercapnia task, followed by a resting-state

session. The hypercapnia task consisted of an alternation of breathing

room air and the CO2-enriched gas mixture. After an initial 2-min block

of room air, the gas mixture was administered for two 3-min blocks, sep-

arated by an equally long block of room air. A final 4-min block of room

air breathing was added for baseline localization. For the resting-state

scan, a fixation image was projected onto the screen, and the partici-

pants were asked either to fixate it or to stay with the eyes closed for

the whole duration of the experiment and not to fall asleep.

2.1.4 | Imaging pulse sequence

Previously acquired MP2RAGE (magnetization prepared two rapid

gradient echoes) (Marques et al., 2010) images were inspected in
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order to localize the primary motor cortex (M1) of each individual par-

ticipant. Positioning the three-dimensional (3D) slab for fMRI followed

previously established procedures (Guidi, Huber, Lampe, Gauthier, &

Möller, 2016; Huber et al., 2015; Huber et al., 2018). In particular, a

slice orientation perpendicular to the cortical surface achieves a suffi-

ciently high resolution along the cortical depth while the slice thick-

ness can be increased depending on the individual anatomy to

improve the SNR. However, even with a sufficiently wide slab, it is

typically not possible to align the slices perpendicularly to M1 on both

sides at the same time. Therefore, slice positioning was always opti-

mized for the hand knob area of the left M1, which was exclusively

selected for the subsequent data analysis. A slice-saturation slab-

inversion (SS-SI) VASO sequence (Huber et al., 2014b) with a hybrid

3D EPI readout (Poser, Koopmans, Witzel, Wald, & Barth, 2010) was

used for the acquisition. Previous work has shown that the 3D read-

out is beneficial for sub-millimeter applications (Huber et al., 2018).

The pulse sequence parameters included an inversion time,

TI = 900 ms; an effective repetition time, TR = 1,648 ms; an echo

time, TE = 24 ms; a bandwidth of 1,042 Hz/px; a GRAPPA (general-

ized autocalibrating partially parallel acquisition) (Griswold et al.,

2002) acceleration factor of 2; a partial Fourier factor of 6/8; and an

asymmetric field of view (FOV) with a matrix size of 132 × 44 × 10

yielding a nominal voxel size of 0.8 × 0.8 × 1.8 mm3. Variable flip

angles were used to minimize T1-related blurring along the slice direc-

tion (Huber et al., 2018).

2.1.5 | Image preprocessing and layering

All timeseries were corrected for rigid-body motion using the function

“Realign: Estimate and Reslice” in SPM12 (http://www.fil.ion.ucl.ac.

uk/spm/). The recorded respiratory and cardiac traces were used for

denoising the resting-state timecourses using the Analysis of Func-

tional NeuroImages (AFNI) (Cox, 1996) implementation of RETRO-

ICOR (Glover, Li, & Ress, 2000). All fMRI timeseries were linearly

detrended to remove low-frequency signal drifts.

Anatomical references for layering were obtained from resized T1-

weighted EPI maps generated from the functional gas-manipulation

and resting-state timeseries. The T1-weighting was derived from the

original SS-SI-VASO timeseries consisting of alternating EPI slabs

acquired with and without a preceding inversion pulse, that is, prior to

the CBV/BOLD contrast splitting (Guidi et al., 2016). Since the signal

difference of the interleaved T1-weighted VASO and BOLD acquisitions

is dominated by longitudinal relaxation, this “anatomical” gray matter

(GM)/cerebrospinal fluid (CSF) contrast in EPI space is comparable to

the contrast on T1-weighted MP2RAGE uniform (“UNI”) images. A rep-

resentative example is shown in Figure 1.

For layering purposes, the original in-plane matrix size of

132 × 44 was resized to 528 × 176. Consistent with most segmenta-

tion software packages, this upsampling was done to obtain smooth

laminae without angularity limitations in voxel space. Gray matter/

CSF and GM/white matter (WM) borders were then manually drawn

on the slice with the best through-plane orientation. The region of

interest (ROI) was defined as the portion of GM that was (a) well

aligned to the slice orientation across the cortical depth and that

(b) additionally showed sufficient activation on BOLD and VASO

maps. In this ROI, 15 laminae were grown as in previous work (Guidi

et al., 2016; Huber et al., 2015) employing C++ and Object-oriented

Development Interface for NMR (ODIN) libraries (Jochimsen & von

Mengershausen, 2004). Briefly, the algorithm follows an equivolume

approach that preserves the volume fraction of each lamina in cortical

segments (Figure 1) and accurately resembles the arrangement of ana-

tomical layers (Waehnert et al., 2014). Throughout this work, we use

the term “laminae” rather than “layers” to stress the fact that they cor-

respond to certain depths from the cortical surface, whereas they do

not a priori correspond to single histological layers.

2.1.6 | Quantitative analyses

Following Kannurpatti, Rypma, and Biswal (2012), the resting-state

fluctuation amplitudes of the unfiltered timeseries (RSFAfull) as well

as of their low-frequency (RSFAlow) and high-frequency (RSFAhigh)

portions were taken to be the corresponding temporal standard

deviation (tSDrs). The low-frequency and high-frequency timeseries

included frequencies in the bands between 0.01 and 0.1 Hz and

F IGURE 1 Schematic illustrating the four steps involved in the
calculation of depth-dependent profiles. The slice with the best
through-plane orientation was chosen (1), and the gray matter (GM)/
cerebrospinal fluid (CSF) surface and the gray matter (GM)/white
matter (WM) surface were manually delineated (2). Equivolume
laminae were then generated between these two borders (3). Finally,
the quantities of interest were averaged along each individual lamina
and plotted as a function of depth (4). Here, the laminar profile of
tSDhc measured in a representative participant is shown as an
example
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between 0.1 and 0.15 Hz, respectively. The unfiltered timeseries

included frequencies in the entire range between 0.01 and 0.15 Hz

as defined by scan duration and TR. All RSFA values were calculated

for each lamina (Figure 2). Similarly, the amplitude of hypercapnia-

induced signal changes was taken to be the temporal standard

deviation of the corresponding timeseries (tSDhc) (Kannurpatti &

Biswal, 2008).

The calculation of the calibration factor, M, followed the approach

presented in previous work (Guidi et al., 2016). In brief, the Davis model

(Davis et al., 1998; Hoge et al., 1999) was modified to express BOLD

signal changes in terms of CBV and CMRO2 and to account for the CBF

term using Grubb's relationship (Grubb, Raichle, Eichling, & Ter-

Pogossian, 1974). The original Davis model can be written as

ΔS=M � 1− fαt −β � rβ� �
: ð1Þ

ΔS = (S − S0)/S0 is the relative BOLD signal change from the

baseline level (indicated by an index “0”); f = CBF/CBF0 and

r = CMRO2/CMRO2, 0 are the normalized cerebral blood flow and oxi-

dative metabolic rate, respectively; and αt = 0.38 is the Grubb expo-

nent relating the total blood volume (CBVt) to CBF. β is a magnetic

field-specific constant describing the coupling between the reversible

transverse relaxation rate, R0
2 , induced by inhomogeneous external

fields and [dHb]. In general, it depends on the vessel size but may be

approximated as β≈1 at 7 T, where intravascular signal contributions

become negligible at typical TE values (Bright, Croal, Blockley, & Bulte,

2019; Kida, Kennan, Rothman, Behar, & Hyder, 2000; Martindale,

Kennerley, Johnston, Zheng, & Mayhew, 2008). Consequently, the

change in R0
2 is approximately linear in [dHb]. M represents the maxi-

mum possible BOLD signal change and depends on TE and the base-

line levels of venous blood volume (CBVv) and [dHb] in addition to

further parameters (e.g., vessel size, brain region, magnetic field

strength), which may be lumped together into a proportionality con-

stant κ:

M= κ �TE �CBVv,0 � dHb½ �β0: ð2Þ

F IGURE 2 Schematic illustrating
the computation of resting-state
fluctuation amplitudes in one
representative participant. A high-pass
cutoff of 0.01 Hz is first applied to all
resting-state blood oxygenation level-
dependent (BOLD) signal timeseries.
The timeseries is additionally bandpass
filtered into a low-frequency band
(0.01–0.1 Hz) and a high-frequency
band (0.1–0.15 Hz). Resting-state
fluctuation amplitude (RSFA) values
are then computed as temporal SDs of
the corresponding timeseries for the
entire frequency band (a), the low-
frequency band (b), and the high-
frequency band (c)

F IGURE 3 Z-stat maps of
hypercapnia-induced blood
oxygenation level-dependent (BOLD)
(a) and vascular space occupancy
(VASO) (b) signal changes and
calculation of the calibration
parameterM (c). Error bars refer to the
SE of the mean. An region of interest
(ROI) encompassing the hand-knob
area of the left hemisphere with
significant BOLD (Z > 2.3; p < .01) and
VASO signal changes (Z > 1.8; p < .05)
was chosen for the calculation of M
using Equation (4)
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F IGURE 4 Example of linear
regression construction for one
representative participant. The laminar
values of tSDhc (a) and M (c) are
plotted against laminar RSFAfull (b).
The linear regression results for tSDhc

versus RSFAfull (d) and M versus
RSFAfull (e) are also shown. Each point
corresponds to a single lamina.

Corresponding Bland–Altman diagrams
of the same comparisons (f, g) indicate
proportional constant (i.e., linear)
behavior. Horizontal solid gray lines
indicate mean differences (in the
observed range), and horizontal
dashed gray lines indicate a range of
±1.96 SDs

TABLE 1 Individual correlation coefficients for linear regressions
of resting-state fluctuation amplitude (RSFA) and tSDhc

Participant

R2

tSDhc versus
RSFAfull

tSDhc versus
RSFAlow

tSDhc versus
RSFAhigh

1 0.79 0.81 0.86

2 0.87 0.95 0.98

3 0.90 0.89 0.83

4 0.89 0.92 0.89

5 0.92 0.98 0.78

6 0.98 0.99 0.98

7 0.96 0.96 0.98

8 0.99 0.99 0.99

9 0.96 0.95 0.98

Group 0.92 ± 0.06 0.94 ± 0.06 0.92 ± 0.08

Note: Frequency bands were 0.01–0.15, 0.01–0.1, and 0.1–0.15 Hz for

RSFAfull, RSFAlow, and RSFAhigh, respectively. Group mean values and SDs

across participants are also included.

TABLE 2 Individual correlation coefficients for linear regressions
of resting-state fluctuation amplitude (RSFA) and M

Participant

R2

M versus
RSFAfull

M versus
RSFAlow

M versus
RSFAhigh

1 0.48 0.57 0.62

2 0.61 0.28 0.23

3 0.82 0.80 0.75

4 0.38 0.19 0.14

5 0.70 0.93 0.50

6 0.46 0.50 0.51

7 0.74 0.74 0.84

8 0.92 0.90 0.92

9 0.44 0.46 0.46

Group 0.62 ± 0.19 0.60 ± 0.26 0.55 ± 0.26

Note: Frequency bands were 0.01–0.15, 0.01–0.1, and 0.1–0.15 Hz for

RSFAfull, RSFAlow, and RSFAhigh, respectively. Group mean values and SDs

across participants are also included.

6 GUIDI ET AL.



In the modified Davis model, the dependency on f in Equation (1)

is replaced by a dependency on vt = CBVt/CBVt, 0, yielding (Guidi et al.,

2016):

ΔS=M 1−v αv −βð Þ=αt
t � rβ

h i
: ð3Þ

Here, αv = 0.2 is a modified Grubb exponent relating CBVv to CBF

(Chen & Pike, 2009). For mild hypercapnia assumed to be

isometabolic, r ≈ 1, and the evoked BOLD signal change can be

expressed as:

ΔShc =M 1−v αv −βð Þ=αt
t

h i
: ð4Þ

If laminar BOLD and CBV changes are recorded during a hyper-

capnic challenge, M is easily obtained with Equation (4) for each lam-

ina (Figure 3).

The depth-dependent values ofM and tSDhc from individual partic-

ipants were correlated separately with each of the RSFA profiles. Scat-

ter plots of the obtained correlations were then constructed where

each point represents one lamina, and the squared Pearson correlation

coefficient (R2) for the linear regression was computed (Figure 4).

F IGURE 5 Comparison of resting-state
fluctuation amplitude (RSFA)-normalization of
blood oxygenation level-dependent (BOLD)

signal changes on a laminar level to results
from vascular space occupancy (VASO)-based
cerebral blood volume (CBV) measurements.
(a) Color-coded maps of BOLD (top left) and
VASO (top right) percent signal changes and
maps of RSFA extracted from resting-state
time series (bottom left) and from the residuals
of task-based time series (bottom right). The
gray-scale background corresponds to the
inherently T1-weighted signal of the functional
time series yielding excellent contrast between
gray matter (GM) and white matter (WM).
Note that comparable results are obtained with
both RSFA maps. (b) Corresponding laminar
profiles through M1 in the region of interest
(ROI) indicated in (a). (c) Laminar BOLD profiles
after RSFA-based normalization (shown in
green color) in comparison to the VASO profile
(shown in blue color). Solid and dashed green
lines indicate normalizations with RSFA from
the resting-state time series and from the
residuals of the task-based time series,
respectively. Similar results are obtained with
both RSFA-profiles
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2.2 | Comparison of RSFA-normalized BOLD and
CBV laminar profiles

Additional data were available from previous experiments at the

National Institutes of Health (NIH) investigating the cortical input and

output in human M1 (see https://layerfmri.page.link/RSFA_data). Full

details of these acquisitions and image-processing procedures have

been published by Huber et al. (2017). The data had been acquired

employing similar methods as in part 1 of this work under an NIH

Combined Neuroscience Institutional Review Board-approved proto-

col (93-M-0170, ClinicalTrials.gov identifier: NCT00001360) in

accordance with the Belmont Report and US Federal Regulations that

protect human subjects. In particular, SS-SI-VASO timeseries had

been obtained in 11 healthy, right-handed subjects (6 males; age

23–43 years) with TR = 1.5 s and a nominal voxel size of

0.71 × 0.71 × 1.5 mm3. Analysis of the performance of RSFA-based

normalization included a 24-min block of left-hand finger tapping

without touch and a 24-min resting-state block. Measures of low fre-

quency fluctuations were extracted from (a) the resting-state data and

(b) from the residuals of the tapping data, and RSFA was estimated in

FMRIB Software Library (FSL) (Jenkinson, Beckmann, Behrens,

Woolrich, & Smith, 2012) and AFNI (Cox, 1996). Subsequently,

F IGURE 6 The same type of comparison as
in Figure 5 in a participant without a clear
double-peak pattern in the laminar blood
oxygenation level-dependent (BOLD) response.
(a) Color-coded maps of BOLD (top left) and
vascular space occupancy (VASO) (top right)
percent signal changes and maps of resting-
state fluctuation amplitude (RSFA) extracted
from resting-state time series (bottom left) and
from the residuals of task-based time series
(bottom right). (b) Corresponding laminar
profiles through M1 in the region of interest
(ROI) indicated in (a). (c) Laminar BOLD profiles
(green lines) after RSFA-based normalization in
comparison to the VASO profile (blue solid line).
Solid and dashed green lines indicate
normalizations with RSFA from the resting-state
time series and from the residuals of the task-
based time series, respectively. Similar results
are obtained with both RSFA-profiles
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21 laminae were estimated with LAYNII (https://github.com/

layerfMRI/LAYNII) in M1.

3 | RESULTS

3.1 | Comparison of RSFA-based normalization
and gas calibration

All participants tolerated the breathing manipulation well. One partici-

pant was excluded from the final analysis due to excessive motion

(amplitude exceeding 1 mm) during the gas manipulation session.

Accommodation of up to 15 equivolume laminae within the cortical

ribbon of the hand-knob area was achieved in all participants. For the

hypercapnia challenge, the tSNR measured in the ROI was between

25 and 35 for the BOLD and between 15 and 25 for the VASO

timeseries.

All RSFA and tSDhc profiles showed larger values at the cortical

surface and gradually decreased towards the WM. The mean depth-

dependent profile of M showed a similar decreasing pattern (Figure 4),

however, with increased variation between participants.

All linear regression analyses yielded positive correlations. The cor-

relations of RSFA and tSDhc were significant (p < .01) in all participants,

with R2 = 0.92 ± 0.06 (mean ± 1 SD across participants) for RSFAfull,

0.94 ± 0.06 for RSFAlow, and 0.92 ± 0.08 for RSFAhigh (Table 1). For the

correlations of RSFA and M, R2 was 0.62 ± 0.19 (p < .05 in 8 out of

9 participants) for RSFAfull, 0.60 ± 0.26 (p < .05 in 7 out of 9 partici-

pants) for RSFAlow, and 0.55 ± 0.26 (p < .05 in 7 out of 9 participants)

for RSFAhigh (Table 2). Of note, applying RETROICOR correction did

not substantially affect these correlations. This is consistent with previ-

ous research demonstrating that corrections methods attempting to

minimize contributions of physiological noise become less relevant at

high (e.g., submillimeter) resolution, where noise is increasingly domi-

nated by thermal fluctuations (Hall et al., 2017; Murphy, Bodurka, &

Bandettini, 2007).

Additional Bland–Altman analyses of the correlations of tSDhc

and M with RSFA (Figure 4c) indicate proportional constant bias (lin-

ear slope) for both correlations with very subtle constant variability.

The linear behavior is expected if all measures depend on a common

physiological mechanism (i.e., the local intrinsic vascular sensitivity),

which is, however, assessed under different experimental conditions

yielding numerically different scaling variables. This is in line with

results from Kannurpatti and Biswal (2008) demonstrating different

extents of scaling but similar reductions in the variance of the BOLD

response upon hemodynamic scaling based on RSFA, a breath-holding

task, or a CO2 challenge.

3.2 | Comparison of RSFA-normalized BOLD and
CBV laminar profiles

Selected maps of tapping-induced percent BOLD and VASO signal

changes and of the RSFA extracted from the resting-state and from

the residuals of the tapping data as well as corresponding laminar pro-

files in M1 are shown in Figures 5 and 6. The laminar CBV profile in

Figure 5b shows a clear indication of a double-peak pattern, consis-

tent with previous reports (Huber et al., 2015; Huber et al., 2017).

The corresponding laminar BOLD profile demonstrates signal amplifi-

cation in superficial laminae due to venous drainage (Turner, 2002). A

pronounced amplitude increase towards the pial surface is also evi-

dent in both RSFA profiles. Figure 5c shows RSFA-normalized laminar

BOLD profiles in direct comparison to the CBV profile from Figure 5b

indicating a slightly improved depiction of the peak in upper layers.

We note, however, that laminar fMRI responses can be quite variable

across participants. As such, while the double peak was robustly visi-

ble in previous VASO data, only one third of the participants showed

the same feature in the BOLD response (Huber et al., 2017). To fur-

ther exemplify the working principle of the RSFA method, we illus-

trate a corresponding case without a double-peak BOLD pattern in

Figure 6. In this participant, VASO data show separable activity in

superficial and deeper layers of M1 (green arrows), whereas the BOLD

response yields one condensed “blob” (Figure 6a). As in Figure 5a, the

RSFA maps show strongest values in superficial layers and in the pial

vasculature (Figure 6b), and RSFA normalization reduces the slope of

the BOLD profiles. As a result, subtle slope variations across the corti-

cal depth in the original BOLD profile are enhanced indicating sepa-

rate peaks or shoulders (black arrows in Figure 6c).

4 | DISCUSSION

Nearly perfect correlations of RSFA and tSDhc were found for all

examined frequency bands. This confirms previous results obtained

on a voxel-wise level at standard fMRI resolution (Kannurpatti &

Biswal, 2008). Our correlation strengths were somewhat higher than

those reported by Kannurpatti et al. (2012). This may be attributed to

the fact that linear regression was performed on a laminar basis in our

work, that is, on more local level and with substantial blurring across

laminae due to the relatively high degree of interpolation in this direc-

tion. There were no significant differences in the correlation strengths

when comparing the high- and low-frequency bands, indicating similar

scaling along the cortical depth. This assumption is further corrobo-

rated by the good agreement of laminar RSFA-normalized BOLD pro-

files and VASO profiles (Figure 5c).

Significant positive correlations were also found between RSFA

and M. As for the correlations with tSDhc, similar correlation strengths

were obtained for the different frequency bands in the majority of the

participants. M can be considered in our work to be only modulated

by subject-specific parameters, since sequence-specific parameters

were identical in all acquisitions (see Equation (2)). This is not the case

for RSFA, which does not entirely depend on the baseline levels but

also on dynamic changes of CBF and CBV. Thus, we cannot exclude

that lower correlations (relative to the above results for tSDhc) might

be partially due to the different physiological modulators of RSFA

with respect to M. However, reduced correlations are also expected

due to the variability of the M parameter, which is computed by a
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division of relatively subtle BOLD and CBV changes and is, hence,

inherently noisier than a pure contrast.

The low- and high-frequency bands as defined here showed simi-

lar scaling as a function of depth. The low-frequency band

(0.01–0.1 Hz) is usually considered to be the one reflecting the rele-

vant neuronal activity (Biswal, Yetkin, Haughton, & Hyde, 1995; Mar-

gulies et al., 2010). However, it is obvious from our laminar profiles

(Figure 2) that even this band is dominated by contributions from the

superficial draining vasculature, which does not correspond to the

precise location of neuronal activity (Turner, 2002). While this does

not rule out the possibility that the neuronal component is present in

this band, it is likely to add some confounds to it (Markuerkiaga et al.,

2016). The high frequency band (0.1–0.15 Hz) selected in our analysis

is narrower than the traditional high-frequency band (0.1–0.25 Hz),

whose definition is based on typical fMRI studies with TR ≈ 2 s. Simi-

lar to the results observed for the low-frequency band, the high-

frequency band is also dominated by the pial surface, therefore, yield-

ing almost identical correlations. Given the spatial nature of pial vein

contaminations, it is reasonable to expect that the correlation would

be disrupted as soon as its relative contribution becomes negligible,

and the shape of the depth-dependent RSFA starts flattening out. This

effect was visible at frequencies above 0.15 Hz (Guidi et al., 2017)

and is also consistent with the profiles shown in Figures 5b and 6b.

Based on our results, RSFA seems to provide a good substitute for

the amplitude of hypercapnia-induced signal changes to scale the BOLD

response. Regarding the assumption of an isometabolic hypercapnia

challenge, RSFA and tSDhc are likely to be similarly driven by reactivity

features of the underlying vasculature (both following a relation similar

to Equation (1)) and, therefore, look like scaled versions of each other.

Despite the good agreement of RSFA and M, a similar statement

cannot be made in this case. This is due to their different physiological

origins, with M depending solely on baseline parameters as long as it

is accurately measured (Griffeth & Buxton, 2011). In fact, a strict cor-

relation of RSFA and M might be not as straightforward as it seems

(Lu, Hutchison, Xu, & Rypma, 2011). The calculation of M relies on

several assumptions, whose validity is called into question, especially

at high resolution. Such potential pitfalls include (among others) the

validity of a Grubb-like relation between CBF and CBV with a suitable

coupling exponent α, the assumption of an isometabolic hypercapnia

challenge, or the validity of Fick's principle on a laminar basis. More

extended discussions of these issues have been published recently

(Guidi et al., 2016; Hua et al., 2019; Huber et al., 2019). For example,

simulations assuming different values for α and β indicate that these

variations primarily produce a scaling effect, whereas the laminar pro-

files were largely preserved (see Supplementary Information in [Guidi

et al., 2016]). This seems to indicate that these factors should not crit-

ically affect our main conclusions.

The application of fMRI signal normalization along the cortical

depth may further be associated with limited interpretability in a more

general way:

• We have shown in earlier work (Huber et al., 2015) that—in the

process of normalization using depth-dependent physiological

parameters—activity in some cortical layers may be undesirably

underestimated. In particular, higher values of, for example, cere-

brovascular reactivity (CVR), CBV0, or CBVv,0 in upper cortical

layers may lead to artificially reduced normalized fMRI signal

changes in these layers, despite the fact that the microvascular-

related response has a similar magnitude (see also figure 8 from

Huber et al. (2015)).

• When the fMRI signal is normalized, the resulting activity measure

depends on a number of estimated parameters as opposed to non-

normalized activity measures. Due to nonlinear error propagation

of multiple parameters during the normalization, this might result

in a noisier normalized activity measure.

• In the current work, we investigated the possibility of fMRI signal

normalization by means of dividing fMRI responses by various

measures of signal variability. Such divisions are nonlinear opera-

tions and may reshape the cortical profiles, potentially generating

unfamiliar profiles, which may be harder to interpret. As such, in

voxels where the CVR is very low and, hence, noisy (e.g., for large

partial voluming with WM), the denominator can become very

small, which may lead to an unphysiologically large normalized

fMRI signal.

Scaling approaches, such as measures of the CVR Liu et al., 2013;

Liu et al., 2017, which rely on normalization with BOLD-based

perfusion-sensitive scans but without additional CBF or CBV record-

ings cannot deliver estimates of CMRO2 changes. This also applies to

normalization with RSFA as investigated here. For certain applications,

however, including studies at submillimeter resolution or high field

(i.e., 7 T and beyond), the traditional way for extracting information

about CMRO2 with a separate measurement of CBF changes might be

difficult to achieve with a sufficient tSNR. Such applications may not

be compromised by a missing possibility to quantify CMRO2 but would

still benefit from calibrations employing RSFA maps.

To further evaluate the quality of laminar profiles obtained after

RFSA-based scaling, we used results obtained with VASO (i.e., a mea-

sure of the CBV response) as a reference of high spatial specificity. In

general, the RFSA-normalized laminar BOLD profiles agreed well with

the VASO results achieving a subtle improvement in the depiction of

the expected double-peak contour (Figures 5c and 6c). This suggests

that the normalization accounts for venous bias inherent to the BOLD

response with respect to signal amplification. It is to note that quite

similar results were obtained with both RSFA estimates (i.e., from the

task-based time series and from an additional resting-state time

series) indicating that sufficient information can be extracted directly

from the task-based fMRI time series. However, some deviation

remained, which was most pronounced at the pial surface pointing to

the fact that voxel-wise RSFA-normalization does not account for

local signal leakage.

Recent modeling results indicate that the baseline CBV variation

due to the arrangement of ascending veins rather than venous

draining alone contributes to the amplitude increase of the laminar

BOLD response (Havlicek & Uluda�g, 2020; Markuerkiaga et al., 2016).

The RSFA normalization as described here is a linear scaling approach
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that may be considered to correct—at first order—for local signal

amplification in layers with higher CVR, However, such scaling does

not account for signal leakage due to venous drainage from the loca-

tion of distant layers. In particular, the laminar point-spread function

of the BOLD response is not entirely defined by the local baseline

CBV but depends nonlinearly on multiple physiological factors and on

the level of activity (Havlicek & Uluda�g, 2020; Huber et al., 2014a).

Future development will be necessary to incorporate higher-order

normalization of signal leakage. As such, an integration of RSFA factors

as proposed here into laminar-deconvolution models (Havlicek & Uluda�g,

2020; Heinzle, Koopmans, den Ouden, Raman, & Stephan, 2016; Mar-

kuerkiaga et al., 2016; Merola & Weiskopf, 2018) might be an interesting

topic of future research. Such models currently rely on assumptions on

cortical depth-dependent fMRI reactivity (e.g., from ex-vivo data), which

are not easily generalizable across brain areas beyond the primary visual

cortex (V1) (Marquardt, Schneider, Gulban, Ivanov, & Uluda�g, 2018). In

this context, the RSFA method might provide a data-driven means for

venous bias correction in laminar fMRI across brain areas and participants.

Other researchers tried to account for venous bias through linear

postprocessing strategies, for example, by regressing out a linear slope

of the laminar GRE-BOLD profile as a zeroth-order correction

(Fracasso, Petridou, & Dumoulin, 2014) or by a decomposition of the

profile into a constant and a linear term (Gau, Bazin, Trampel,

Turner, & Noppeney, 2020). Similar to the RSFA method, these con-

cepts are based on some form of linear scaling. Unlike the RSFA

method, however, they are limited by the fact that the correction fac-

tors are not determined form a temporally orthogonal fMRI signal,

which might introduce some level of circularity into the analysis.

Moreover, these methods cannot account for scaling effects that have

nonconstant slopes. We may, therefore, speculate that the RSFA

approach could be useful for accounting for additional sources of

venous scaling compared to linear slope methods.

As another strategy, Muckli et al. (2015) proposed to account for

venous scaling bias by means of constraining the fMRI activity interpre-

tation to statistical measures of “classification accuracy.” Unlike the

BOLD signal magnitude, this measure is inversely proportional to the

signal variance, which in turn is dependent on CVR. Thus, the measure

of ‘classification accuracy’ should be inherently weighted by a CBV-

dependent scale factor, which is comparable to RSFA-based normaliza-

tion. Lawrence et al. (2018) used a similar statistical scaling by means of

layer-dependent t-scoring. It is argued that this normalizes the BOLD

signal change by the vein-dependent signal variance (similar to assump-

tions underlying RSFA normalization). However, these methods are not

exclusively specific to CVR-related signal variance but might be also

affected by high-frequency signal fluctuations, including variance from

thermal noise and CSF motion. In this sense, the RSFA approach might

be a more accurate measure of vasculature-driven signal variance.

5 | CONCLUSIONS

We have shown that the laminar amplitude of spontaneous brain fluc-

tuations resembles almost perfectly the scaling of the laminar

amplitude of hypercapnia-induced signal changes, which are fre-

quently used as a biomarker of CVR. This result points to the fact that

RSFA measures can be used to replace tSDhc as a scaling factor for

normalizing the BOLD response. Despite its different physiological

origin, the calibration parameterM also showed remarkable similarities

with the RSFA profile. The shape of laminar BOLD signal changes

reflects spatial variations in baseline CBVv, which explains the similari-

ties observed for the laminar profiles of M, tSDhc, and RSFA, and the

consequently strong correlations.
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