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1. Introduction

Let K = K(n, �) denote a totally real number field that is cyclic over Q with odd 
prime degree n such that the class number of K is odd, 2 is inert, and every totally 
positive unit is a square. Let � denote the conductor of K and let OK denote the ring of 
integers of K.

Let σ ∈ Gal(K/Q), σ �= 1. Given an odd principal ideal a, following [FIMR13], we 
define the spin of a (with respect to σ) to be

spin(a, σ) =
( α

aσ

)

where a = (α), α is totally positive, and 
( ·
·
)

denotes the quadratic residue symbol in K.
The main results of this paper give a formula for the density of rational primes that 

exhibit the spin relation

spin(p, σ) = spin(p, σ−1) for all σ �= 1 ∈ Gal(K/Q)

where p is a prime of K above p. The formula is given in terms of n = [K : Q] and mK , 
a computable and bounded invariant of the number field K. Define

M4 := (OK/4OK)×/
(
(OK/4OK)×

)2
where OK denotes the ring of integers of K. We define the Starlight invariant of the 
number field K (denoted mK) to be the number of non-trivial Gal(K/Q)-orbits of M4
with representative α ∈ OK such that the Hilbert symbol (α, ασ)2 = 1 for all non-trivial 
σ ∈ Gal(K/Q).

The main results of this paper are motivated by the following conjecture, which gives 
a computable and bounded formula for the density of rational primes with constant spin 
equal to 1.

Conjecture 1.1. Fix K := K(n, �). The density of rational primes p such that 
spin(p, σ) = 1 for all non-trivial σ ∈ Gal(K/Q) is given by

CK := 2n−1(n− 1) + mKn + 1(√
2
)3n−1

n
.

Restricting to rational primes that split completely in K/Q, the corresponding conditional 
density is given by

CK,S := mKn + 1(√
2
)3n−1 .
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The reasoning behind Conjecture 1.1 is as follows. We break up the density CK into 
a product of two densities as though one might break up a probability into a product 
of conditional probabilities. Then CK is the product of two densities; the first is DK , 
the density of rational primes satisfying the spin relation given in Theorem 1.2, and 
the second is the conditional density of rational primes p with spin(p, σ) = 1 for all 
non-trivial σ ∈ Gal(K/Q), assuming that p satisfies the spin relation. Conjecture 1.1
then asserts that

CK = DK

(
1
2

)(
n−1

2
)
.

Note that the condition that p satisfies the spin relation is a Cebotarev condition so 
by Theorems 1.1 and 1.2 in [FIMR13], if spin(p, σ) and spin(p, τ) are independent for 
σ, τ ∈ Gal(K/Q) with σ �= τ, τ−1, then we arrive at Conjecture 1.1.

A corollary of Conjecture 1.1 is a family of number fields {FK(p)}p depending on p
such that p is always ramified in FK(p)/Q and the density of rational primes that split 
as completely as possible in FK(p)/Q (given the ramification) is

CK,S

n
.

Theorem 1.2. Let K := K(n, �). The density of rational primes p that satisfy the spin 
relation

spin(p, σ) = spin(p, σ−1) for all σ �= 1 ∈ Gal(K/Q)

where p is a prime of K above p is given by

DK = 2n−1(n− 1) + mKn + 1
2nn .

Theorem 1.3. Let K := K(n, �). Then

0 <
2n−1(n− 1) + 1

2nn ≤ DK ≤ 1
2 .

Table 1 gives examples of computed Starlight invariants for cyclic number fields of de-
gree n over Q and conductor � for the given n and � values and it gives the corresponding 
density of primes satisfying the spin relation. These values of mK were computed using 
magma [BCP97]; the code can be found in Appendix B of [McM18].

We remark that we can simplify the restrictions on K in the cubic case. For n = 3, 
the assumption that the class number of K is odd is sufficient to imply that every totally 
positive unit is a square due to results of Armitage and Fröhlich [AF67].
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Table 1
Computed Starlight invariants and densities of the prime spin relation using Theorem 1.2.

n 3 5 7 11 13 17 19
� 7 11 43 23 53 103 191
mK 1 1 3 3 5 17 27
DK

1
2

7
16

29
64

467
1024

1893
4096

30849
65536

124187
262144

Theorem 1.4 ([AF67]). Let K be a cyclic cubic number field with odd class number. Then 
every totally positive unit is a square.

Proof. Let U := O×
K denote the group of units, UT the totally positive units, and U2

the square units. Observe U2 ⊆ UT ⊆ U . Then we have a surjective homomorphism

φ : U

U2 → U

UT
.

If none of the nontrivial class representatives of U/U2 are totally positive then φ is 
injective. By Theorem V in [AF67], all signatures are represented by units. Square units 
are always totally positive and there are 8 signatures and 8 classes of units mod squares, 
so each class of U/U2 must have a different signature. Therefore UT = U2. �
2. The spin of prime ideals

Let K := K(n, �) and let h(K) denote the class number of K.

Definition 2.1 ([FIMR13]). Let σ �= 1 ∈ Gal(K/Q). Given an odd principal ideal a, we 
define the spin of a (with respect to σ) to be

spin(a, σ) =
( α

aσ

)

where ah(K) = (α), α is totally positive, and 
( ·
·
)

denotes the quadratic residue symbol 
in K.

Spin is well-defined; since every totally positive unit is a square, the choice of totally 
positive generator α does not affect the quadratic residue and Lemma 3.1 asserts the 
existence of a totally positive generator.

Lemma 11.1 in [FIMR13] states that the product spin(p, σ)spin(p, σ−1) is a product 
of Hilbert symbols at places dividing 2. We restate this more explicitly in Lemma 2.2.

For a place v of K, let K(v) denote the completion of K at v. For a, b ∈ K co-prime 
to v, the Hilbert Symbol is defined such that (a, b)v := 1 if the equation ax2 + by2 = z2

has a solution x, y, z ∈ K(v) where at least one of x, y, or z is nonzero and (a, b)v := −1
otherwise.
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Lemma 2.2 ([FIMR13]). Let K := K(n, �). Let α be a totally positive generator of the 
odd prime ideal p ⊆ OK . Then

spin(p, σ)spin(p, σ−1) =
∏
v|2

(α, ασ)v.

In particular, if α ≡ 1 mod 4 then 
∏

v|2(α, ασ)v = 1. Since 2 is inert in K/Q,

spin(p, σ)spin(p, σ−1) = (α, ασ)2.

Proof. See Lemma 11.1 in [FIMR13] or use the standard fact of Hilbert symbols that ∏
v(α, ασ)v = 1. �

3. Some class field theory

We now diverge momentarily from the spin of prime ideals to discuss some class field 
theory in the case when every totally positive unit is a square. We say a modulus is narrow
whenever it is divisible by all infinite places. We say a modulus is wide whenever it is 
not divisible by any infinite place. We say a ray class group or ray class field is narrow or 
wide whenever its defining modulus is narrow or wide respectively. Let U := O×

K denote 
the group of units of K, let UT denote the totally positive units, and let U2 denote the 
square units. The following lemma is an exercise in class field theory.

Lemma 3.1. Let K be a totally real number field. The following are equivalent.

(1) UT = U2.
(2) The narrow and wide Hilbert class groups of K coincide.
(3) Every principal ideal of K has a totally positive generator.

Proof. To show the equivalence of (1) and (2), apply Theorem V.1.7 in [Mil13] using the 
modulus given by the product of all infinite places. Statements (3) and (2) are equivalent 
by the definitions of narrow and wide class groups. �
Definition 3.2. Let K := K(n, �). For q a power of 2, we define the group

Mq := (OK/qOK)× /
(
(OK/qOK)×

)2
.

The Galois group Gal(K/Q) acts on Mq in the natural way.

We will primarily be interested in M4. We will see in Lemma 3.5 that Mq is canonically 
isomorphic to a quotient of the narrow ray class group over K of conductor q modulo 
squares.
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Lemma 3.3 ([Mun]). Let K be a cyclic number field of odd degree n over Q such that 2
is inert in K. Then as vector spaces

M4 ∼= (Z/2)n.

Furthermore, the invariants of the action of Gal(K/Q) are exactly ±1 ∈ M4.

Proof. This proof is due to Sam Mundy [Mun]. Consider the exact sequence

0 → 1 + 2(OK/4) → (OK/4)× → (OK/2)× → 1. (1)

Note that OK/2 ∼= F2n because K is cyclic of odd degree and 2 is inert in K. Also, 
G ∼= Gal(F2n/F2).

Viewing F2n as an additive group with Galois action by G ∼= Gal(F2n/F2), there is an 
isomorphism of Galois modules given by

ψ : F2n ∼= OK/2 → 1 + 2(OK/4)

ψ : x 
→ 1 + 2x.

This map is easily seen to be a Galois equivariant homomorphism. Injectivity and sur-
jectivity follow from considering 2-adic expansions of elements in OK/4. Since ψ is an 
isomorphism we can rewrite the exact sequence of Galois modules in equation 1 as

0 → F2n → (OK/4)× → F×
2n → 1. (2)

Next consider the diagram of exact sequences below.

0 F2n (OK/4)× F×
2n 1

0 F2n (OK/4)× F×
2n 1

2(·) (·)2 (·)2

The first vertical map is multiplication by 2, which is the zero map. The next two 
vertical maps are squaring. The third vertical map is an isomorphism because F×

2n is 
cyclic of odd order. Recall that

M4 := (OK/4OK)× /squares.

Then we apply the snake lemma to the diagram below.
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1

0 F2n (OK/4)× F×
2n 1

0 F2n (OK/4)× F×
2n 1

F2n M4 1

0 (·)2 (·)2

The snake lemma gives us the exact sequence of G-modules

0 → F2n → M4 → 1.

Therefore M4 ∼= F2n as G-modules. The invariants of F2n are F2. Tracing through the 
isomorphism we see that this corresponds to the invariants {±1} in M4. �

Let Mq,G denote the set of Gal(K/Q)-orbits of Mq for q a power of 2. Recall that we 
say a modulus of K is narrow whenever m∞ divides the modulus where m∞ is the product 
of all infinite places of K. Letting m denote a narrow modulus with finite part m0, let 
Jm
K = Jm0

K denote the group of fractional ideals of K prime to m0 and let Pm
K = Pm0

K

denote the subgroup of Jm
K formed by the principal ideals with generator α ∈ K× such 

that ord2(q) ≤ ord2(α) and α � 0. We let Pm
K = Pm0

K denote the set of prime ideals of 
OK co-prime to m0 so that Jm

K is generated by Pm
K .

Definition 3.4. Let K := K(n, �). Let q ≥ 4 be a power of 2.

(1) Define the map

r0 :P2
K → Mq

p 
→ α

where α ∈ OK is a totally positive generator for the principal ideal ph(K).
(2) Define the map

r :P2
Q → Mq,G

p 
→ [r0(p)]

where p is any prime in K above p. Here [α] denotes the Gal(K/Q)-orbit of α ∈ M4
considered in Mq,G.
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The map r0 is well-defined out of P2
K ; recall that by Lemma 3.1, UT = U2 is equivalent 

to the coincidence of the narrow and wide Hilbert class groups so UT = U2 if and only if 
all principal ideals have a totally positive generator. Since squares are trivial in Mq by 
definition and UT = U2, the map r0 is well-defined.

The map r is well-defined out of P2
Q because Mq,G is the quotient of Mq by the 

Gal(K/Q)-action so different choices of primes p of K above p give the same result; 
r0(pσ) = r0(p)σ for σ ∈ Gal(K/Q) and p an odd prime of K.

Since Jq
K is generated by Pq

K = P2
K , the map r0 induces a homomorphism

ϕ0 : Jq
K → Mq.

Lemma 3.5. Let K := K(n, �). The homomorphism ϕ0 : Jq
K → Mq induces a canonical 

surjective homomorphism

ϕ : nClqK → Mq.

Proof. We first show the induced homomorphism is well-defined. By Proposition V.1.6 
in [Mil13], every element of nClq is represented by an integral ideal. Let a and b be 
two integral ideals representing the same element of nClq. Then by Proposition V.1.6 
in [Mil13], there exist nonzero a, b ∈ OK such that

ba = ab,

a ≡ b ≡ 1 mod q, and

ab � 0.

Since ϕ0 : Jq
K → Mq is a homomorphism,

ϕ0(bOK)ϕ0(a) = ϕ0(aOK)ϕ0(b).

Noting that h(K) is odd and squares are trivial in Mq by definition, ϕ0 maps any 
principal integral ideal (α) to the class in Mq containing the representative α ∈ OK

where α is a totally positive generator.
Since UT = U2, every principal ideal of OK has a totally positive generator so there 

exists a unit u ∈ O×
K such that ua � 0 and ϕ0(a) = ua. Since ab � 0, then u−1b � 0 so 

ϕ0(b) = u−1b. We know that a ≡ b ≡ 1 mod q. Since squares are trivial in Mq by the 
definition of Mq, this implies

u2a ≡ b in Mq

=⇒ ua ≡ u−1b in Mq

=⇒ ϕ0(aOK) = ϕ0(bOK)

=⇒ ϕ0(a) = ϕ0(b).

Therefore the homomorphism ϕ0 induces a well-defined homomorphism from nClqK .



C. McMeekin / Journal of Number Theory 200 (2019) 407–426 415
We now show the homomorphism is a canonical surjective homomorphism. Let m be 
the narrow modulus with finite part q. Let

Km := {a ∈ K× : ord2(a) = 0},
Km,1 := {a ∈ K× : ord2(a− 1) ≥ ord2(q), a � 0},
Um,1 := Km,1 ∩ U.

Let X ∈ Mq. Consider the exact sequence from Theorem V.1.7 in [Mil13];

1 → U/Um,1 → Km/Km,1 → nClmK → C → 1

and the canonical isomorphism

Km/Km,1 ∼= (±)n × (OK/q)× . (3)

Consider only the 2-part of each group. Then since h(K) is odd, we have the short 
exact sequence

1 → (U/Um,1)[2∞] → (Km/Km,1)[2∞] → (nClmK)[2∞] → 1.

Note that since squaring sends all signatures to the trivial signature, the canoni-
cal isomorphism in equation 3 induces a canonical isomorphism on the 2-part modulo 
squares;

(Km/Km,1)[2∞]/(Km/Km,1)[2∞]2 ∼= (±)n × Mq.

Consider the squaring map and apply the snake lemma to get the following commu-
tative diagram of exact sequences;

1 (U/Um,1)[2∞] (Km/Km,1)[2∞] (nClqK)[2∞] 1

1 (U/Um,1)[2∞] (Km/Km,1)[2∞] (nClqK)[2∞] 1

U/U2 (±)n × Mq nClqK/(nClqK)2 1

1 1 1

ψ

(·)2 (·)2 (·)2

Then ψ induces an isomorphism

ψ : ((±)n × Mq)� 2 −→ nClqK� q 2.
image(U/U ) (nClK)
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Tracing through the definitions of the maps, ϕ ◦ ψ is surjective (it is essentially the 
identity). Therefore ϕ is surjective. �
4. An equidistribution lemma

Definition 4.1. Let S be a set of primes and let R ⊆ S. If the limit exists, then the 
restricted density of R (restricted to S) is defined as

d(R|S) := lim
N→∞

#RN

#SN

where SN and RN denote the set of primes in S and R respectively of absolute norm 
less than N ∈ Z+.

Recall that Pm
Q denotes the set of rational primes not dividing m and Pm

K denotes 
the set of primes of K not dividing m. Letting p be a prime of K above a rational prime p, 
denote the corresponding inertia degree fK/Q(p) = fK/Q(p) (well-defined because K is 
Galois over Q). That is,

fK/Q(p) = fK/Q(p) = #D

#E

where D is the decomposition group of p for the extension K/Q and E is the inertia 
group.

Definition 4.2. Let K = K(n, �). Define the following sets of rational primes.

S := {p ∈ P2�
Q : fK/Q(p) = 1} and I := {p ∈ P2�

Q : fK/Q(p) = n}.

Define the following sets of primes of K.

S′ := {p ∈ P2�
K : fK/Q(p) = 1} and I ′ := {p ∈ P2�

K : fK/Q(p) = n}.

That is, S ⊆ P2�
Q is the set of odd rational primes that split completely in K/Q and 

I ⊆ P2�
Q is the set of odd rational primes that are inert in K/Q. Furthermore, S′ is the 

set of primes of K laying above the primes in S and I ′ is the set of primes of K laying 
above the primes in I.

Since K/Q is cyclic of prime degree n, then fK/Q(p) = 1 or n for all p ∈ P2�
Q so 

in this case, P2�
Q is the disjoint union of S and I. The next Lemma asserts that for 

K := K(n, �), the primes are equidistributed in M4 via the map r0.
Although the equidistribution generalizes to Mq, note that the number of elements 

of M8 for example is different than the number of elements of M4 so the generalized 
statement would need to be adjusted accordingly.
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Lemma 4.3. Let K := K(n, �).

(1) For any α ∈ M4, the density of p ∈ P2�
K such that ϕ(p) = α is 1

2n . That is,

d(r−1
0 (α)|P2�

K ) = 1
#M4

= 1
2n .

(2) Furthermore, the density does not change when we restrict to primes of K that split 
completely in K/Q. That is,

d(r−1
0 (α) ∩ S′|S′) = 1

#M4
= 1

2n .

Proof. Recall that nR4 = nR4
K denotes the narrow ray class field over K of conduc-

tor 4m∞. Let G := Gal(nR4 /K). Define H ≤ G to be

H := Art(ker(ϕ))

where Art denotes the Artin isomorphism. In other words, we define H by the following 
commutative diagram of exact sequences

1 ker(ϕ) nCl4 M4 1

1 H G M4 1

ϕ

Art Art id.

where surjectivity of ϕ is proven in Lemma 3.5. Let L be the fixed field of H so that 
Gal(L/K) ∼= G/H.

nR4

L

K

G

H

This induces a canonical isomorphism

M4 ∼= G/H ∼= Gal(L/K).

For α ∈ M4, define P (α) to be the set of odd unramified prime ideals of K which map 
to α via ϕ. Let σ ∈ G/H corresponding to α. Then

P (α) = {p ∈ P2�
K : ArtL|K(p) = σ}
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where P2�
K is the set of odd unramified prime ideals of K and ArtL|K denotes the Artin 

map for the extension L|K.
Theorem 4 in [Ser81] asserts Cebotarev’s Density Theorem for natural density, (or see 

[Neu99] Theorem VII.13.4 for a simpler proof using Dirichlet density). By the special 
case of Cebotarev’s Density Theorem in which L/K is cyclic, P (α) has a density and it 
is given by

1
# Gal(L/K) = 1

#M4
.

The first asserted equality of part (1) is proved. The second equality of part (1) is 
true by Lemma 3.3.

To prove part (2), observe that

d(r−1
0 (α)|P2�

K ) = d(r−1
0 (α) ∩ S′|S′)d(S′|P2�

K ) + d(r−1
0 (α) ∩ I ′|I ′)d(I ′|P2�

K ).

Since d(S′|P2�
K ) = 1, d(I ′|P2�

K ) = 0, and 0 ≤ d(r−1
0 (α) ∩ I ′|I ′) ≤ 1,

d(r−1
0 (α)|P2�

K ) = d(r−1
0 (α) ∩ S′|S′). �

5. Property star and the starlight invariant

Let K := K(n, �). Recall that M4,G denotes the set of Gal(K/Q)-orbits of M4 and 
recall the statement of Lemma 2.2, which motivates the following.

Theorem 5.1. Let K := K(n, �). Let α ∈ OK denote a representative of [α] ∈ M4,G. 
Define the map

	 : M4,G → {±1}

[α] 
→
{

1 if (α, ασ)2 = 1 for all non-trivial σ ∈ Gal(K/Q)
−1 otherwise.

Then 	 is a well-defined map.

Note that by Lemma 2.2, a rational prime p satisfies the spin relation

spin(p, σ) = spin(p, σ−1) for all σ �= 1 ∈ Gal(K/Q),

where p is a prime of K above p exactly when 	 ◦ r(p) = 1 where r is as defined in 
Definition 3.4.

Proof. We will show that 	 is well-defined out of M4. Then because 	 is a property of 
the full Galois orbit, 	 is well-defined out of M4,G.
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Let α, β ∈ OK be two representatives of the same class in M4 so

α ≡ βγ2 mod 4OK for some γ ∈ OK .

If α ≡ βγ2 mod 8OK then we can apply Lemma 2.3 from [FIMR13] to see that 
(α, ασ)2 = (β, βσ)2 for all σ ∈ Gal(K/Q). Therefore, we may assume

α ≡ 5βγ2 mod 8OK .

Suppose (α, ασ)2 = 1. Then by Lemma 2.3 in [FIMR13], since α ≡ 5βγ2 mod 8OK ,
(
5βγ2,

(
5βγ2)σ)

2
= 1

=⇒ (5β, (5β)σ)2 = 1 by a property of Hilbert symbols.

Using bimultiplicativity of the Hilbert symbol,

(5β, (5β)σ)2 = (5, 5)2(β, 5)2(5, βσ)2(β, βσ)2.

Notice that since 2 is inert in K/Q and since 5 is invariant under the action of 
Gal(K/Q), applying the Galois action to the quadratic form for (β, 5)2 yields the form 
for (5, βσ)2 so the cross terms cancel one another. Therefore

(5β, (5β)σ)2 = (5, 5)2(β, βσ)2.

Since 5 × 22 + 5 × 12 = 52, (5, 5)2 = 1. Therefore

(5β, (5β)σ)2 = (β, βσ)2

so

(α, ασ)2 = 1 =⇒ (β, βσ)2 = 1.

Therefore 	 is a well-defined map from M4.
We now prove that if α, β ∈ M4 are the in same Galois orbit, then 	(α) = 	(β). Let 

τ ∈ Gal(K/Q) such that ατ = β for α, β ∈ M4.
Suppose (α, ασ)2 = 1 for all σ �= 1 in Gal(K/Q). Then in K(2), the completion of K

at 2OK , there is a nontrivial solution x, y, z to

αx2 + ασy2 = z2.

Applying the action of τ yields a nontrivial solution to

βx2 + βσy2 = z2

so (β, βσ)2 = 1 for all σ �= 1. �
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Recall that by Lemma 3.3, the elements of M4 that are invariant under the 
Gal(K/Q)-action are exactly ±1. The following lemma fully describes 	 on these in-
variants.

Lemma 5.2. Let K := K(n, �).

(1) 	(1) = 1.
(2) 	(−1) = −1.

Proof. Observe that (1, 1)2 = 1 because x2 +y2 = z2 has the solution (x, y, z) = (1, 0, 1).
If (−1, −1)2 = 1, there would be a non-trivial solution to x2 + y2 + z2 ≡ 0 mod 4. 

Since there is no such solution, (−1, −1)2 = −1. �
Definition 5.3. Let K := K(n, �). Define the starlight invariant, mK to be the number 
of Gal(K/Q)-orbits X of M4 of non-trivial size such that 	(X) = 1. That is, for σ a 
generator of Gal(K/Q),

mK := #{X ∈ M4,G : #X = n and 	 (X) = 1}.

Remark 5.4. By Lemma 5.2, it is equivalent to define the starlight invariant of K, as

mK = # ker(	) − 1.

Here 	 refers to the map 	 : M4,G → ±1 given in Theorem 5.1.

We now define

	 : P2
K → {±1} and 	 : P2

Q → {±1}

to be the composition of 	 as defined in Theorem 5.1 with r0 and r respectively as defined 
in Definition 3.4.

Definition 5.5. Let p ∈ P2
Q and let p ∈ P2

K . Define 	(p) := 	 ◦ r0 and 	(p) := 	 ◦ r, the 
composition of the maps r0 and r respectively with the map 	 from Definition 3.4.

We say that a prime p ∈ P2
K (respectively p ∈ P2

Q) has property 	 or that 	 is true 
for p (respectively p) whenever 	(p) = 1 (respectively 	(p) = 1).

Theorem 6.2 and Theorem 1.2 give formulas in terms of n and mK for the density of 
rational primes (assumed to split completely in Theorem 6.2) that satisfy property 	.

6. Density theorems

We first state and prove Theorem 6.2 which gives a formula describing the restricted 
density of rational primes that satisfy the spin relation, the restriction being to primes 
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that split completely in K/Q. Handling the inert case separately, we then apply Theo-
rem 6.2 to obtain Theorem 1.2 which gives a formula for the overall density of rational 
primes that satisfy the given spin relation. Lastly, we prove Theorems 6.5 and 1.3 which 
give bounds on the densities given in Theorems 6.2 and 1.2 respectively.

Recall the definitions of S, S′, I, and I ′ from Definition 4.2.

Definition 6.1. Let K := K(n, �). Define the following sets of rational primes.

B := {p ∈ P2�
Q : 	(p) = 1}

R := B ∩ S.

Note that by Lemma 2.2, B is exactly the set of rational primes in p ∈ P2�
Q such that

spin(p, σ) = spin(p, σ−1) for all σ ∈ Gal(K/Q)

where p is a prime of K above p.
Recall from Definition 4.1 that d(R|S) denotes the restricted density of primes p ∈ R

restricted to S.

Theorem 6.2. Let K := K(n, �). Then

d(R|S) = 1 + mKn

2n .

Proof. Let N ∈ Z+. Let RN and SN denote the sets of primes in R and S respectively 
of norm less than N . We will show that

lim
N→∞

#RN

#SN
= #{X ∈ M4 : 	(X) = 1}

#M4
= 1 + mKn

2n . (4)

Let R′
N ⊆ P2�

K denote the set of primes of K that lay above rational primes in 
RN ⊆ P2�

Q and define S′
N similarly with respect to SN ⊆ P2�

Q . Let r0,N denote the 
restriction of r0 to S′

N ⊆ P2�
K . Since we have restricted to primes that split completely 

in K/Q,

#RN

#SN
= #R′

N

#S′
N

and

R′
N =

⋃
r−1
0,N (α)
�(α)=1
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where the above is a disjoint union over elements α ∈ M4 such that 	(α) = 1. Therefore

#R′
N

#S′
N

= 1
#S′

N

∑
�(α)=1

#r−1
0,N (α).

By Lemma 4.3, this implies

lim
N→∞

#R′
N

#S′
N

=
∑

�(α)=1

lim
N→∞

#r−1
0,N (X)
#S′

N

=
∑

�(α)=1

1
2n

= #{α ∈ M4 : 	(α) = 1}
2n .

This proves the first equality in equation 4. Let σ be a generator of Gal(K/Q). By 
Lemma 3.3, the elements of α ∈ M4 such that ασ = α are α = ±1 and we know that 
	(1) = 1 and 	(−1) = −1 by Lemma 5.2. Recalling that mK = #{[α] ∈ M4,G : ασ �=
α, 	(α) = 1}, this implies

#{α ∈ M4 : 	(α) = 1} = mKn + 1,

since n = [K : Q] is prime so Galois orbits X ∈ M4,G such that Xσ �= X each contain n
elements. �

We now state an extended version of Lemma 4.3 which handles the inert case allowing 
us to give a formula in Theorem 1.2 for d(B|P2�

Q ), the overall density of rational primes 
that satisfy 	.

Lemma 6.3. Let K := K(n, �).

(1) For any α ∈ M4, the density of p ∈ P2�
K such that ϕ(p) = α is 1

2n . That is,

d(r−1
0 (α)|P2�

K ) = 1
#M4

= 1
2n .

(2) Restricting to primes of K that split completely in K/Q,

d(r−1
0 (α) ∩ S′|S′) = 1

#M4
= 1

2n .

(3) Restricting to inert primes of K,

d(r−1
0 (α) ∩ I ′|I ′) =

{
1
2 if α = ±1
0 otherwise.
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Proof. Part (a) and part (b) were proven in Lemma 4.3.
If α �= ±1 (for α ∈ M4) then r−1

0 (α) ∩ I ′ = ∅ since ±1 are the only invariants of the 
Gal(K/Q)-action on M4 by Lemma 3.3. Therefore d(r−1

0 (α) ∩ I ′|I ′) = 0 if α �= ±1.
Now fix s = ±1. Then

r−1
0 (s) ∩ I ′ =

{
p ∈ I ′ :

(α
4

)
K

= s
}

where 
(
α
4
)
K

denotes the quadratic residue symbol in OK for α ∈ OK a totally positive 
generator of ph(K). The quadratic residue condition is a congruence condition modulo 4
and being inert is a congruence condition with an odd modulus so the Chinese remainder 
theorem together with the cyclic case of Cebotarev’s Density Theorem implies

d(r−1
0 (s) ∩ I ′|I ′) = 1

2 .

Theorem 4 in [Ser81] asserts Cebotarev’s Density Theorem for natural density, or see 
[Neu99] Theorem VII.13.4 for an simpler proof using Dirichlet density. �

We now prove the main results.

Theorem 1.2. Let K := K(n, �). The density of rational primes p that satisfy the spin 
relation

spin(p, σ) = spin(p, σ−1) for all σ �= 1 ∈ Gal(K/Q)

where p is a prime of K above p is given by

DK = 2n−1(n− 1) + mKn + 1
2nn .

Proof. Recall Definition 6.1. Note that by Lemma 2.2, B is the set of rational primes 
not dividing 2� that satisfy the given spin relation. Therefore

DK = d(B|P2�
Q ).

Let N ∈ Z+. Let IN and SN denote the sets of (rational) primes in I and S respectively 
with positive generator less than N . Let I ′N ⊆ P2�

K denote the set of primes of K
which lay above rational primes in IN ⊆ P2�

Q and define S′
N similarly with respect to 

SN ⊆ P2�
Q . Note that while S′

N = {p ∈ S′ : NormK/Q(p) < N},

I ′N = {p ∈ I ′ : NormK/Q(p) < Nn}.

Since we have restricted to primes that are inert in K/Q,

#B ∩ IN = #B′ ∩ I ′N
′
#IN #IN
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where B′ := {p ∈ P2�
K : 	(p) = 1} = {p ∈ P2�

K : p lays above some p ∈ B}.
Let r0,N denote the restriction of r0 to I ′N ⊆ P2�

K . Observe that p ∈ I ′ implies 
pσ = p so r0(p) = ±1 for all p ∈ I ′ by Lemma 3.3. Lemma 5.2 states that 	(1) = 1 and 
	(−1) = −1. Therefore

B′ ∩ I ′N = r−1
0 (1) ∩ I ′N .

Therefore d(B′ ∩ I ′|I ′) = 1
2 by part (c) of Lemma 6.3. Then since #B∩IN

#IN
= #B′∩I′

N

#I′
N

, we 
have proven that

d(B ∩ I|I) = 1
2 . (5)

Note that since K/Q is cyclic, P2�
Q is the disjoint union of S and I.

Cebotarev’s Density Theorem is true for natural density by Theorem 4 in [Ser81]. 
(Theorem VII.13.4 in [Neu99] gives a simpler proof using Dirichlet density.)

By Cebotarev’s Density Theorem, d(S|P2�
Q ) = 1

n and d(I|P2�
Q ) = n−1

n . Therefore

d(B|P2�
Q ) = lim

N→∞

#BN

#P2�
Q,N

= lim
N→∞

(
#B ∩ IN

#IN

#IN
#P2�

Q,N

+ #B ∩ SN

#SN

#SN

#P2�
Q,N

)

=
(

1
2

)(
n− 1
n

)
+

(
mKn + 1

2n

)(
1
n

)
by Theorem 6.2

= 2n−1(n− 1) + mKn + 1
2nn . �

Lemma 6.4. Let K := K(n, �). For all α ∈ M4, if 	(α) = 1 then 	(−α) = −1.

Proof. By Lemma 5.2, (−1, −1)2 = −1.
Next note that (a, b)2 = (aσ, bσ)2 for all σ ∈ Gal(K/Q) since 2 is inert in K.
Assume 	(α) = 1. Then (α, ασ)2 = 1 for all nontrivial σ ∈ Gal(K/Q). Let σ ∈

Gal(K/Q) be nontrivial. By bimultiplicativity of Hilbert symbols,

(−α,−ασ)2 = (−α,−1)2(−α, ασ)2
= (−1,−1)2(α,−1)2(−1, ασ)2(α, ασ)2.

Next observe (α, −1)2 = (−1, α)2 = (−1, ασ)2, the second equality coming from the 
Galois-invariance shown earlier in this proof. Therefore (α, −1)2(−1, ασ)2 = 1. Then 
since (α, ασ)2 = 1 and (−1, −1)2 = −1, we get that

(−α,−ασ)2 = −1.

Therefore 	(−α) = −1. �
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Recall the Definitions 4.2 and 6.1 defining S and R.

Theorem 6.5. Let K := K(n, �).

1
2n ≤ d(R|S) ≤ 1

2 .

Proof. By Theorem 6.2,

d(R|S) = 1 + mKn

2n = #{α ∈ M4 : 	(α) = 1}
2n .

Lemma 6.4 implies the upper bound; α �= −α in M4 because −1 is not a square 
modulo 4OK .

The lower bound is true because 	(1) = 1 by Lemma 5.2 so

#{α ∈ M4 : 	(α) = 1} ≥ 1. �
Theorem 1.3 is a Corollary of Theorem 6.5 obtained from the fact that

DK = n− 1
2n +

(
1
n

)
d(R|S)

as in the proof of Theorem 1.2.

Theorem 1.3. Let K := K(n, �). Then

0 <
2n−1(n− 1) + 1

2nn ≤ DK ≤ 1
2 .
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