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COHOMOLOGICALLY INDUCED DISTINGUISHED

REPRESENTATIONS AND COHOMOLOGICAL TEST VECTORS

BINYONG SUN

Abstract. Let G be a real reductive group, and let χ be a character of a
reductive subgroup H of G. We construct χ-invariant linear functionals on
certain cohomologically induced representations of G, and show that these linear
functionals do not vanish on the bottom layers. Applying this construction,
we prove two Archimedean non-vanishing hypotheses, which are vital to the
arithmetic study of special values of certain L-functions via modular symbols.

1. Introduction

1.1. Distinguished representations. Let G be a real reductive group, namely,
it is a Lie group with the following properties:

• g is reductive;
• G has only finitely many connected components;
• there is a connected closed subgroup of G with finite center whose com-
plexified Lie algebra equals [g, g].

Here and henceforth, we use the corresponding lower case Gothic letter to indicate
the complexified Lie algebra of a Lie group. In particular, g denotes the complex-
ified Lie algebra of G. For applications to the theory of automorphic forms, we
are interested in Casselman-Wallach representations of G. Recall that a (complex)
representation of a real reductive group is said to be Casselman-Wallach if it is
Fréchet, smooth, of moderate growth, and its underlying Harish-Chandra module
is admissible and finitely generated. The reader may consult [Cas], [Wa2, Chapter
11] or [BK] for more details about Casselman-Wallach representations. To ease no-
tation, we do not distinguish a representation with its underlying vector space, or
a character of a Lie group with its corresponding one-dimensional representation.

Let H be a closed subgroup of G, and let χ : H → C× be a character. By a
χ-distinguished representation of G, we mean a Casselman-Wallach representation
π of G, together with an H-equivariant continuous linear functional ϕ : π → χ.
Distinguished representations are ubiquitous in representation theory and in the
theory of automorphic forms.
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Fix a Cartan involution θ of G. From now on we assume that H has only finitely
many connected components, and that θ(H) = H . Then H is also a real reductive
group, and θ restricts to a Cartan involution of H . Write

K := Gθ (the fixed point group) and Hc := H ∩K,
which are respectively maximal compact subgroups of G and H .

Recall that Casselman-Wallach globalizations establish an equivalence between
the category of finitely generated admissible (g, K)-modules and the category of
Casselman-Wallach representations of G. In particular, every Casselman-Wallach
representation π of G equals the Casselman-Wallach globalization of its underlying
(g, K)-module π[K]. The restriction induces an injective linear map

(1) HomH(π, χ) →֒ Homh,Hc(π[K], χ).

We say that the quadruple (G, θ,H, χ) has the automatic continuity property
if the map (1) is surjective for all Casselman-Wallach representations π of G. At
least when this is the case, one may study χ-distinguished representations in the
purely algebraic setting of (g, K)-modules. The reader is referred to [BK] for more
discussions on the automatic continuity property. It holds at least for symmetric
subgroups as in the following theorem.

Theorem 1.1. ([BaD, Theorem 1] and [BrD, Theorem 1]) If there is an involutive
automorphism σ of G which commutes with θ such that H is an open subgroup of
Gσ, then (G, θ,H, χ) has the automatic continuity property.

Remark. The proof of Theorem 1.1 by van den Ban-Delorme and Brylinski-Delorme
is carried out for trivial χ, but the same proof works in general. The author thanks
Patrick Delorme for confirming this.

Example 1.2. Let (G,H) := (GL2n(R), Sp2n(R)) (n ≥ 1). For every g ∈ G, let

(2) θ(g) := g−t (the inverse transpose)

and

σ(g) :=

[
0 1n

−1n 0

]
g−t

[
0 −1n
1n 0

]
(1n is the identity matrix of size n).

Then θ is a Cartan involution of G stabilizing H , and σ is an involutive automor-
phism of G which commutes with θ such that Gσ = H .

The original motivation of this paper is to settle two non-vanishing hypotheses
which are vital to the arithmetic study of special values of certain L-functions
(Theorems 4.5 and 5.5 in this paper). For this purpose, we will also consider the
following two examples of (G,H, θ, σ).

Example 1.3. Let (G,H) := (GLn(K),GLn(R)) (n ≥ 1), where K is a topological
field which is topologically isomorphic to C. For every g ∈ G, let

θ(g) := ḡ−t (the inverse of the conjugate transpose)
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and

σ(g) := ḡ (the complex conjugate).

Example 1.4. Let (G,H) := (GL2n(R),GLn(R) × GLn(R)) (n ≥ 1). For every
g ∈ G, let θ(g) be as in (2), and

σ(g) :=

[
1n 0
0 −1n

]
g

[
1n 0
0 −1n

]
.

Like Example 1.2, in the above two examples, θ is a Cartan involution of G
stabilizing H , and σ is an involutive automorphism of G which commutes with θ
such that Gσ = H . Hence Theorem 1.1 applies to all of the above three examples.
We remark that in all these three examples, (G,H) is a Gelfand pair, namely (see
[AGS, AiS])

dimHomH(π,C) ≤ 1 (C stands for the trivial representation)

for every irreducible Casselman-Wallach representation π of G.

1.2. Cohomologically induced distinguished representations. The main theme
of this paper is an algebraic construction of distinguished representations via co-
homological induction.

To be precise, let q be a parabolic subalgebra of g which is θ-stable, namely,
θ(q) = q. Here θ : g → g denotes the complexified differential of θ : G → G. We
use “ ¯ ” to indicate the complex conjugation in various contexts. In particular,
¯ : g → g denotes the complex conjugation with respect to the real form Lie(G)
of g. Note that the parabolic subalgebras q and q̄ are opposite to each other. Put

L := NG(q) = NG(q̄) (the normalizers),

and put Lc := L ∩ K. Then L is a θ-stable real reductive group, and Lc is a
maximal compact subgroup of it.

Denote by n the nilpotent radical of q ∩ [g, g]. Then the parabolic subalgebras
q and q̄ respectively have Levi decompositions

(3) q = l⊕ n and q̄ = l⊕ n̄.

Put nc := n ∩ k.
Write Πg,K

q̄,Lc
for the (dim nc)-th left derived functor of the functor

R(g, K)⊗R(q̄,Lc) ( · )

from the category of (q̄, Lc)-modules to the category of (g, K)-modules. Here “R ”
indicates the Hecke algebra of a pair (see [KV, Chapter I, Section 5]). Let X be an
(l, Lc)-module, to be viewed as a (q̄, Lc)-module via the trivial action of n̄. Then

we get the cohomologically induced (g, K)-module Πg,K
q̄,Lc

(X).
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Note that L∩H is a θ-stable real reductive group in L, and Lc∩Hc = L∩H∩K
is a maximal compact subgroup of it. The adjoint representation of the compact
group Lc ∩Hc on the one-dimensional space

∧top(hc/(lc ∩ hc)) (the top degree wedge product)

preserves a real form. Thus it corresponds to a quadratic character of Lc ∩ Hc.
Consequently, it is also an (l ∩ h, Lc ∩ Hc)-module with the trivial (l ∩ h)-action.
This (l∩h, Lc∩Hc)-module further corresponds to a quadratic character of L∩H ,
which we denote by εL∩H. Using this character, we define a character on L∩H by

(4) χL∩H := εL∩H · χ|L∩H .
Under the assumptions

(5) q+ h = g and q ∩ h = q̄ ∩ h,

in Section 2, we will construct χ-invariant linear functionals on Πg,K
q̄,Lc

(X) from
χL∩H-invariant linear functionals on X , in other words, we will define a linear map

(6) Πg,K
q̄,Lc

: Homl∩h,Lc∩Hc(X,χL∩H) → Homh,Hc(Π
g,K
q̄,Lc

(X), χ).

Example 1.5. Let G1 be a real reductive group with a Cartan involution θ1. Sup-
pose G = G1×G1 and θ = θ1×θ1. Suppose H is the groupG1 diagonally embedded
in G. Let q1 be a θ1-stable parabolic subalgebra of g1. Then q := q1 ⊕ q1 satisfies
(5).

Remark. By using the pair (G,H) of Example 1.5, our construction in (6) recovers
the construction of Shapovalov forms (cf. [KV, Section VI.4]) which are used to
prove the unitarity of certain cohomologically induced representations.

Example 1.6. Suppose σ is as in Theorem 1.1 so that H is a symmetric subgroup.
Let x be an element of the Lie algebra of K such that σ(x) = −x (here σ : g → g

denotes the complexified differential of σ : G→ G). Suppose q = qx is the sum of
the eigenspaces with non-negative eigenvalues of the operator [x/

√
−1, · ] : g → g.

Then q is a θ-stable parabolic subalgebra satisfying (5). In this case, σ(L) = L,
and L ∩H is a symmetric subgroup of L.

Remark. Let the notation and the assumptions be as in Example 1.6. Flensted-
Jensen [FJ] and Oshima-Matsuki [OM] classify the discrete series representations of
G on G/H , namely the irreducible subrepresentations of L2(G/H). In particular,
they show that such a representation exists if and only if the symmetric spaces
G/H and K/Hc have equal rank. Assume that G is connected. Schlichtkrull
[Sch1] and Vogan [Vog2] prove that all these discrete series representations have

the form Πg,K
q̄,Lc

(X), where q = qx for an appropriate x as in Example 1.6, and X

is an appropriate character of L. The embedding Πg,K
q̄,Lc

(X) →֒ L2(G/H) provided
by the works of Flensted-Jensen and Oshima-Matsuki, followed by the evaluating
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map at 1 ∈ G/H , yields an invariant linear functional on Πg,K
q̄,Lc

(X), namely an
element of

Homh,Hc(Π
g,K
q̄,Lc

(X),C) (C stands for the trivial representation).

We expect that our construction (6) also produces this invariant linear functional.

Besides the symmetric subgroup case of the above two examples, there are some
other interesting cases of q satisfying (5). See [Sun, Section 2.2] for an example of
the Gross-Prasad case.

Remarks. (a) Assume that the (l, Lc)-module X is finitely generated and admis-
sible, and ϕ ∈ Homl∩h,Lc∩Hc(X,χL∩H) continuously extends to the Casselman-
Wallach globalization of X . It is natural to ask the following question: does the
linear functional Πg,K

q̄,Lc
(ϕ) continuously extend to the Casselman-Wallach globaliza-

tion of Πg,K
q̄,Lc

(X)? By Theorem 1.1, the answer is yes in the symmetric subgroup
case. Due to the lack of a theory of cohomological inductions in the setting of
Casselman-Wallach representations, not much is known beyond this case.

(b) With the notation as in (a), assume that Πg,K
q̄,Lc

(ϕ) continuously extends

to the Casselman-Wallach globalization (Πg,K
q̄,Lc

(E))∞ of Πg,K
q̄,Lc

(E). Then we get a
G-intertwining linear map

(Πg,K
q̄,Lc

(E))∞ → IndG
Hχ := {f ∈ C∞(G) | f(hg) = χ(h)f(g), h ∈ H, g ∈ G},

v 7→ (g 7→ (Πg,K
q̄,Lc

(ϕ))(g.v)).

For unitary χ, it is interesting to know in which cases the image of the above map
is contained in the space of square integrable sections. See [Sch1] for a relevant
work in the symmetric subgroup case.

If G is compact, then both H and L are compact, and the linear map (6) is also
written as

(7) Πg,G
q̄,L : HomL∩H(X,χL∩H) → HomH(Π

g,G
q̄,L(X), χ).

The following theorem will be proved in Section 3. It asserts that, when G is
compact and connected, our construction produces all the χ-invariant linear func-
tionals.

Theorem 1.7. Suppose G is compact and connected. Let X be an L-module
(namely an (l, L)-module). Assume (5) holds so that the linear map (7) is defined.
Then the linear map (7) is surjective.

In many interesting cases, the two spaces in (7) are both one-dimensional. When
this is the case, the surjectivity of the linear map (7) implies that it is also injec-
tive. In general, the following example shows that the linear map (7) may not be
injective.
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Example 1.8. Suppose G = SU(2), H = SO(2) and χ = χk (k ∈ Z) is the character
of H given by [

cos t sin t
− sin t cos t

]
7→ cos(kt) +

√
−1 sin(kt).

Suppose q is the Borel subalgebra of g consisting of the upper triangular matrices
so that (5) is satisfied. Then

L =

{[
a 0
0 a−1

]
| a ∈ U(1)

}
= U(1).

Suppose X = Xm is a one-dimensional representation of L of weight m ≥ 2. Then
Πg,G

q̄,L(Xm) is an irreducible representation of G of highest weight m− 2.
Note that L∩H = {±1} and the character εL∩H is trivial. If k and m have the

same parity, then

dimHomL∩H(Xm, χk) = 1.

On the other hand,

dimHomH(Π
g,G
q̄,L (Xm), χk) = 0

unless 2 − m ≤ k ≤ m − 2. Therefore, if k and m have the same parity, and
|k| > m−2, then (7) is a linear map from a one-dimensional space to a zero space.
Thus it is not injective.

1.3. Test vectors in the bottom layers. Now we return to the general case
when Gmay or may not be compact. Given a χ-distinguished representation (π, ϕ)
of G, it is an important (and often hard) problem to find an explicit vector v0 ∈ π
such that ϕ(v0) 6= 0. Such a vector is called a test vector of the χ-distinguished
representation. For arithmetic applications, we are particularly interested in the
case when π is an irreducible unitarizable representation with nonzero cohomology,
and we hope to find a test vector in π which supports the cohomology.

Recall that all irreducible unitary representations with nonzero cohomology are
obtained by cohomological induction. At least for these representations, the bot-
tom layers coincide with the minimal K-types (in the sense of Vogan), and they
have non-trivial contributions to the cohomologies (see [VZ] and [BW]). In this
sense, we refer test vectors in the bottom layers as cohomological test vectors. In
Theorem A.3 of Appendix A, we will show that the non-vanishing on the bottom
layers implies the non-vanishing of certain restriction maps of cohomology spaces.
These restriction maps capture the Archimedean behaviors of modular symbols,
and we call them modular symbols at infinity. The modular symbols are non-
trivial and of arithmetic interest only when the corresponding modular symbols
at infinity are nonzero (see [AG, GR, AsS, GHL, KMS] for examples). In Sections
4 and 5, we will give two examples of nonzero modular symbols at infinity, which
are respectively used in the arithmetic study of the Asai L-functions [GHL] and
the standard L-functions for GSpin(2n+ 1) [AG, GR].
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Recall from [KV, Lemma 5.10] that if G is connected, then so is L. To be a little
more general, we now assume that L is connected, but allow G to be disconnected.
This includes the cases of (G,L) = (GL2n(R),GLn(C)) or (GL2n(R), (C

×)n) which
we are considering in this paper. We use a superscript “ ◦ ” to indicate the identity
connected component of a Lie group. The connectedness of L implies that L◦

c =
Lc ⊂ K◦.

Similar to (3), we have Levi decompositions

qc = lc ⊕ nc and qc = lc ⊕ nc,

where qc := q ∩ k is a parabolic subalgebra of k, and nc := n ∩ k is the nilpotent
radical of qc ∩ [k, k]. Let E be an Lc-module, namely an (lc, Lc)-module. Similar

to the (g, K)-module Πg,K
q̄,Lc

(X), we have a cohomologically induced K◦-module

Πk,K◦

qc,Lc
(E).

We say that an irreducible Lc-module is dominant (with respect to qc) if it is
isomorphic to τ nc for an irreducible K◦-module τ . Here and as usual, a superscript
Lie algebra indicates the vectors annihilated by the Lie algebra action. If E is
irreducible, then the algebraic version of the Bott-Borel-Weil Theorem (cf. [KV,
Corollary 4.160 and Proposition 4.173]) implies that

(8) Πk,K◦

qc,Lc
(E) ∼=

{
τ, if E ⊗ ∧dim ncnc ∼= τ nc is dominant;
{0}, if E ⊗ ∧dim ncnc is not dominant.

Note that (5) implies that

(9) qc + hc = k and qc ∩ hc = qc ∩ hc.

Similar to (6), the equalities in (9) enable us to define a linear map

(10) Πk,K◦

qc,Lc
: HomLc∩Hc(E, χL∩H) → HomK◦∩Hc(Π

k,K◦

qc,Lc
(E), χ).

By Theorem 1.7, this map is surjective.
Recall that X is an (l, Lc)-module. Fix a homomorphism φ ∈ HomLc(E,X).

Then we have the bottom layer map (see Section 2.4)

β(φ) ∈ HomK◦(Πk,K◦

qc,Lc
(E),Πg,K

q̄,Lc
(X)).

The following proposition asserts that our construction of invariant functionals
is compatible with the bottom layer map.

Proposition 1.9. (see Proposition 2.7) Suppose (5) is satisfied and L is connected.
Let X be an (l, Lc)-module and let E be an Lc-module. Then the diagram

(11)

Πk,K◦

qc,Lc
(E)

β(φ)−−−→ Πg,K
q̄,Lc

(X)yΠk,K◦

qc,Lc
(ϕ◦φ)

yΠg,K
q̄,Lc

(ϕ)

χ χ

commutes, for all φ ∈ HomLc(E,X) and ϕ ∈ Homl∩h,Lc∩Hc(X,χL∩H).
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As mentioned earlier, we hope to find test vectors in the bottom layers. More
precisely, at least in some interesting cases, we want to show that the χ-invariant
linear functional Πg,K

q̄,Lc
(ϕ) does not vanish on the bottom layers. Proposition 1.9

reduces this problem to the case of compact connected groups. Consequently, we
may apply Theorem 1.7 to get the following result.

Theorem 1.10. Suppose (5) is satisfied and L is connected. Let X be an (l, Lc)-
module, and let E be an irreducible Lc-submodule of X such that

dimHomLc∩Hc(E, χL∩H) = dimHomK◦∩Hc(Π
k,K◦

qc,Lc
(E), χ).

If there is a χL∩H-invariant linear functional on X which does not vanish on E,
then there is a χ-invariant linear functional on Πg,K

q,Lc
(X) which does not vanish on

Πk,K◦

qc,Lc
(E).

Note that the assumptions of Theorem 1.10 imply that the K◦-module Πk,K◦

qc,Lc
(E)

is nonzero, and hence irreducible. It is viewed as a K◦-submodule of Πg,K
q,Lc

(X) via
the bottom layer map which is injective (see [KV, Chapter V, Section 6]).

Example 1.11. Let (G,H, θ, σ) be as in Example 1.2 so that G = GL2n(R) and
H = Sp2n(R). Combining [GOSS, Theorem A] and [AOS, Theorem 1.1], the set of
H-distinguished unitarizable irreducible Casselman-Wallach representations of G
is determined (see also [GSS]). Here an irreducible Casselman-Wallach representa-
tion of G is said to be H-distinguished if there is a nonzero H-invariant continuous
linear functional on it. A major step in the determination is to show that if n is
even, then every Speh representation of G is H-distinguished. This is done in
[GOSS, Proposition 4.0.2] by global method, and in [GSS, Theorem A] by analytic
method. This also follows from Theorem 1.10 as explained in what follows.

For k ≥ 1, denote by Dk the unique (up to isomorphism) irreducible Cassleman-
Wallach representation of GL2(R) in the relative discrete series which has the same

infinitesimal character as that of Sk−1(C2) ⊗ |det|− k−1
2 . Here C2 stands for the

standard representation of GL2(R), and “Sk−1” indicates the (k−1)-th symmetric
power. The Speh representation J2n,k of GL2n(R) is the unique irreducible quotient
of

IndG
P2,2,··· ,2

((Dk ⊗ |det|n−1
2 )⊗̂(Dk ⊗ |det|n−3

2 )⊗̂ · · · ⊗̂(Dk ⊗ |det| 1−n
2 )).

Here and henceforth, P2,2,··· ,2 denotes the upper triangular parabolic subgroup of
type (2, 2, · · · , 2), “⊗̂” stands for the completed projective tensor product, and
“Ind” stands for the normalized smooth induction. Let y be a skew-symmetric
matrix in gl2n(R) such that y2 = −12n. Define qy as in Example 1.6 and suppose
q = qy. Define a unitary character

(12) κn : GLn(C) → C×, z 7→ det(z)

|det(z)| .
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View y as a complex structure so that R2n is viewed as an n-dimensional complex
vector space. Then L ∼= GLn(C) and we view κn as a character on L via this
isomorphism. It is known that the underlying (g, K)-module of J2n,k is isomorphic

to Πg,K
q̄,Lc

(κk+n
n ) (see [Sp, Section 4]).

Now suppose n = 2m is even and

y =




0 1m 0 0
−1m 0 0 0
0 0 0 −1m
0 0 1m 0


 .

Then σ(y) = −y and q satisfies (5). Note that

K◦ = SO(2n), Hc
∼= U(n), Lc

∼= U(n), L∩H ∼= Sp2m(C), Lc∩Hc
∼= Sp(m).

By (8), τ := Πk,K◦

qc,Lc
(κk+n

n ) is an irreducible representation of SO(2n) of highest
weight (k + 1, k + 1, · · · , k + 1). Cartan-Helgason Theorem (cf. [Hel, Chapter V,
Theorem 4.1]) implies that

dimHomHc(τ,C) = 1.

Then it is clear from Theorem 1.10 and Theorem 1.1 that there is an H-invariant
continuous linear functional on J2n,k which does not vanish on τ . We remark that
neither the global method of [GOSS] nor the analytic method of [GSS] proves the
non-vanishing of the invariant linear functional on the minimal K-type.

In Section 2, we will explain the general construction of cohomologically induced
distinguished representations. Section 3 is devoted to a proof of Theorem 1.7. In
Section 4 and Section 5, we will give two arithmetically interesting applications
of our construction. In Appendix A, a general non-vanishing result is proved for
modular symbols at infinity, which contains Theorem 4.5 and Theorem 5.5 as
special cases.
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on the non-vanishing hypothesis for Asai L-functions (Theorem 4.5), and thanks
Dihua Jiang for the suggestion to work on the non-vanishing hypothesis for L-
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firming the automatic continuity theorem in the twisted case (Theorem 1.1), and
thanks Wee Teck Gan for the suggestion to write down a general criterion (as in
Theorem A.3) for the non-vanishing of modular symbols at infinity. He also thanks
Hongyu He, Fabian Januszewski and Chen-Bo Zhu for helpful discussions. Part of
the work was done when the author participated in the “Analysis on Lie groups”
program at Max Planck Institute for Mathematics, in 2011. The author thanks the
organizers for the invitation and thanks Max Planck Institute for Mathematics for
their hospitality. He also thanks the referees for helpful suggestions which resulted
in the improvement of the paper, in particular, for the suggestion to consider the
pair (GL2n(R), Sp2n(R)) of Example 1.11. The work was supported in part by the
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2. Cohomologically induced distinguished representations

2.1. Bernstein functors and Zuckerman functors. We begin with recalling
some basic facts concerning Bernstein functors and Zuckerman functors. Let (g, K)
be a pair as in [KV, Section I.4], namely,

• g is a finite-dimensional Lie algebra over C;
• K is a compact Lie group whose complexified Lie algebra k is identified
with a Lie subalgebra of g;

• there is given an action Ad of K on g by automorphisms which extends
the adjoint representation of K;

• the differential of the action Ad equals the adjoint action of k on g.

Let Lc be a closed subgroup of K. Denote by B the Bernstein functor

R(g, K)⊗R(g,Lc) ( · )
from the category of (g, Lc)-modules to the category of (g, K)-modules. Write Bj

for its j-th left derived functor (j ∈ Z). Likewise, denote by Z the Zuckerman
functor

HomR(g,Lc)(R(g, K), ( · ))K-finite

from the category of (g, Lc)-modules to the category of (g, K)-modules, where
“K-finite” indicates the space of K-finite vectors. Write Zj for its j-th right
derived functor (j ∈ Z).

As in [DV], in order to describe the functor Bj more explicitly, for each (g, Lc)-
module V0, we introduce a linear action

(13) (k, Lc)× (g, K) y R(K)⊗ V0 (R(K) := R(k, K)),

as follows:

• the pair (k, Lc) acts by the tensor product of the right translation on R(K)
and the restriction of the (g, Lc)-action on V0;

• the group K acts on R(K)⊗ V0 through the left translation on R(K);
• the Lie algebra g acts on R(K)⊗ V0 such that

(14)

∫

K

f(k) d(X.(µ ⊗ v))(k) =

∫

K

f(k)(Adk−1X).v dµ(k),

for all X ∈ g, µ ∈ R(K), v ∈ V0, and f ∈ C[K].

Here C[K] denotes the space of all left K-finite (or equivalently, right K-finite)
smooth functions on K. (Similar notation will be used for other compact Lie
groups.) In the left hand side of (14), we view R(K)⊗ V0 as a space of V0-valued
measures on K.
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Under these actions, R(K) ⊗ V0 becomes a (k, Lc)-module as well as a weak
(g, K)-module (see [KV, Chapter I, Section 5] for the notion of weak (g, K)-
modules). Furthermore, the (k, Lc)-action and the (g, K)-action commute with
each other, and

(15) Bj(V0) = Hj(k, Lc; R(K)⊗ V0), j ∈ Z,

as (g, K)-modules (cf. [KV, Section III.3]). In particular the homology space
Hj(k, Lc; R(K)⊗ V0) is not only a weak (g, K)-module, but also a (g, K)-module.
The reader is referred to [KV, (2.126)] and [KV, (2.127)] for the explicit com-
plexes which respectively compute the relative Lie algebra homology spaces and
the relative Lie algebra cohomology spaces.

Similarly, in order to describe the functor Zj more explicitly, for each (g, Lc)-
module V , we introduce a linear action

(16) (k, Lc)× (g, K) y C[K]⊗ V,

as follows:

• the pair (k, Lc) acts by the tensor product of the left translation on C[K]
and the restriction of the (g, Lc)-action on V ;

• the group K acts on C[K]⊗ V through the right translation on C[K];
• the Lie algebra g acts by

(17) (X.f)(k) := (AdkX).f(k), k ∈ K, f ∈ C[K]⊗ V.

Here and as usual, C[K] ⊗ V is identified with a space of V -valued functions on
K. Then similar to (15), we have that

(18) Zj(V ) = Hj(k, Lc;C[K]⊗ V ), j ∈ Z,

as (g, K)-modules.
Recall the following Zuckerman Duality Theorem.

Theorem 2.1. (see [KV, Corollary 3.7]) For every (g, Lc)-module V0 and every
j ∈ Z, there is a canonical isomorphism

(19) Bj(V0) ∼= Zm−j(∧mk/lc ⊗ V0) (m := dim k/lc)

of (g, K)-modules. Here ∧mk/lc is viewed as a (g, Lc)-module such that g acts
trivially, and Lc acts through the adjoint representation.

Proof. One checks that the linear isomorphism

Ij : ∧j(k/lc)⊗ R(K)⊗ V0 → HomC(∧m−j(k/lc),C[K]⊗ ∧mk/lc ⊗ V0),
ω ⊗ fµK ⊗ v 7→ (ω′ 7→ f∨ ⊗ (ω ∧ ω′)⊗ v)

is Lc-equivariant and (g, K)-equivariant, and {(−1)
j(j+1)

2 Ij}j∈Z restricts to a mor-
phism of the chain complexes which compute (15) and (18). Here µK denotes the
Haar measure on K such that K◦ has volume 1, and f∨ is the function on K such
that f∨(x) = f(x−1) for all x ∈ K. Therefore Ij induces an isomorphism (19). See
[KV, Chapter III] for more details. �
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2.2. Some one-dimensional modules. Now we retain the notation of the In-
troduction. Recall that we have the Lie groups

L

❍❍
❍❍

❍❍
❍❍

❍❍

L ∩H

rrrrrrrrrrr

❑❑
❑❑

❑❑
❑❑

❑❑
Lc

✈✈
✈✈
✈✈
✈✈
✈

Lc ∩Hc

⊂

G

❈❈
❈❈

❈❈
❈❈

H

⑥⑥⑥⑥⑥⑥⑥⑥

❆❆
❆❆

❆❆
❆❆

K ,

⑤⑤
⑤⑤
⑤⑤
⑤⑤

Hc

and the Lie algebras q = l⊕n and qc = lc⊕nc. We first allow L to be disconnected.
Recall from (5) that

(20) q+ h = g and q ∩ h = q̄ ∩ h.

Lemma 2.2. One has that

(21) g = q+ h = q̄+ h, q ∩ h = q̄ ∩ h = l ∩ h,

and

(22) k = qc + hc = qc + hc, qc ∩ hc = qc ∩ hc = lc ∩ hc.

Proof. The equalities of (21) is an obvious consequence of the assumption (20).
The equalities of (22) is implied by (21) since h, q, q̄ and l are all θ-stable. �

Lemma 2.3. As representations of Lc ∩Hc,

(23) hc/(lc ∩ hc) ∼= nc ∼= nc ∼= k/(lc + hc),

and they are all self-dual.

Proof. By (22), we have that

(24) hc/(lc ∩ hc) = hc/(qc ∩ hc) ∼= k/qc ∼= nc ∼= qc/lc ∼= k/(lc + hc).

Similarly,

(25) hc/(lc ∩ hc) ∼= nc ∼= k/(lc + hc).

Note that nc and nc are dual to each other under the Killing form of k. Therefore
the lemma follows. �

Write S := dim nc for simplicity. One important consequence of our main as-
sumption (20) is the following “degree match”:

dim(hc/(lc ∩ hc)) = S (this follows from (23)).

Recall from the Introduction that χ is a character of H . View ∧Shc/(lc ∩ hc)
as an (h, Lc ∩Hc)-module such that h acts trivially and Lc ∩Hc acts through the
adjoint representation. Define a one-dimensional (h, Lc ∩Hc)-module

ξ := (∧Shc/(lc ∩ hc))⊗ χ|(h,Lc∩Hc).
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Note that the adjoint action of Lc on ∧2Sk/lc is trivial. We view ∧2Sk/lc as
a trivial (g, Lc)-module, and likewise view ∧2S(k/lc)

∨ as a trivial (g, Lc)-module.
Here and henceforth, a superscript “ ∨ ” indicates the dual module. Put

ξ0 := (∧2S(k/lc)
∨)⊗ ξ.

Then the one-dimensional module (ξ0)|(l∩h,Lc∩Hc) corresponds to the character χL∩H

of L∩H (which is defined in the Introduction). We identify ξ0 with χL∩H in what
follows.

2.3. The construction. Let X be an (l, Lc)-module, and let

ϕ ∈ Homl∩h,Lc∩Hc(X,χL∩H).

View X as a (q̄, Lc)-module such that n̄ acts trivially on it. Put

V0 := U(g)⊗U(q̄) X (“U” indicates the universal enveloping algebra).

This is a (g, Lc)-module with g acts by the left multiplication, and Lc acts by the
tensor product of its adjoint action on U(g) and its given action on X .

Lemma 2.4. There is a unique (h, Lc ∩Hc)-equivariant linear map

(26) ψ0 : V0 → ξ0

which extends ϕ.

Proof. By (21), we have that

V0 = U(g)⊗U(q̄) X = U(h)⊗U(l∩h) X

as an (h, Lc∩Hc)-module. Therefore the lemma is a form of Frobenious reciprocity.
�

Define a (g, Lc)-module
V := ∧2Sk/lc ⊗ V0.

The linear functional ψ0 of (26) induces an (h, Lc∩Hc)-equivariant linear functional

(27) ψ := 1∧2Sk/lc ⊗ ψ0 : V → ξ.

Similar to the action

(28) (k, Lc)× (g, K) y C[K]⊗ V

of (16), based on the (h, Lc ∩Hc)-action on ξ, we define an action

(29) (hc, Lc ∩Hc)× (h, Hc) y C[Hc]⊗ ξ.

Note that there is a component-wise inclusion

(hc, Lc ∩Hc)× (h, Hc) ⊂ (k, Lc)× (g, K),

and the map

(30) rK,Hc ⊗ ψ : C[K]⊗ V → C[Hc]⊗ ξ

is (hc, Lc ∩Hc)× (h, Hc)-equivariant, where rK,Hc denotes the restriction map.
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Write ξ̃ for the module

(31) (hc, Lc ∩Hc)× (h, Hc) y (∧Shc/(lc ∩ hc))|(hc,Lc∩Hc) ⊗ χ|(h,Hc).

It equals ξ as a vector space.

Lemma 2.5. The linear map

(32)
C[Hc]⊗ ξ → ξ̃,

f 7→
∫
Hc
χ(c)−1 f(c) dc

is (hc, Lc ∩ Hc) × (h, Hc)-equivariant, where dc is the Haar measure on Hc such
that K◦∩Hc has volume 1, and as usual, C[Hc]⊗ξ is viewed as a space of ξ-valued
functions on Hc.

Proof. This is routine to check. �

Lemma 2.6. One has an identification

(33) HS(hc, Lc ∩Hc; ξ̃) = χ

of (h, Hc)-modules.

Proof. Poincaré duality (cf. [KV, Corollary 3.6]) implies that

HS(hc, Lc ∩Hc;∧Shc/(lc ∩ hc)) = C.

Thus

HS(hc, Lc ∩Hc; ξ̃) = HS(hc, Lc ∩Hc;∧Shc/(lc ∩ hc))⊗ χ = C⊗ χ = χ.

�

Finally, we define the (h, Hc)-equivariant linear functional

(34) Πg,K
q̄,Lc

(ϕ) : Πg,K
q̄,Lc

(X) → χ

to be the composition of the following maps:

Πg,K
q̄,Lc

(X) = HS(k, Lc; R(K)⊗ V0)(35)

→ HS(k, Lc; C[K]⊗ V )

→ HS(hc, Lc ∩Hc; C[Hc]⊗ ξ)

→ HS(hc, Lc ∩Hc; ξ̃) = χ.

Here the first arrow is the Zuckerman duality isomorphism as in Theorem 2.1, the
second arrow is the restriction of cohomology induced by the map (30), and the
third arrow is the linear map induced by the map (32).

It is clear that (34) yields a linear map

(36) Πg,K
q̄,Lc

: Homl∩h,Lc∩Hc(X,χL∩H) → Homh,Hc(Π
g,K
q̄,Lc

(X), χ).
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Remark. The construction of Πg,K
q̄,Lc

(ϕ) is functorial in the following sense: for all
commutative diagram

X1
η−−−→ X2yϕ1

yϕ2

χL∩H χL∩H ,

where Xi is an (l, Lc)-module, ϕi ∈ Homl∩h,Lc∩Hc(Xi, χL∩H) (i = 1, 2), and η ∈
Homl,Lc(X1, X2), the diagram

Πg,K
q̄,Lc

(X1)
Πg,K

q̄,Lc
(η)

−−−−−→ Πg,K
q̄,Lc

(X2)yΠg,K
q̄,Lc

(ϕ1)

yΠg,K
q̄,Lc

(ϕ2)

χ χ

commutes.

2.4. Bottom layers. Now assume that L is connected so that Lc = L◦
c ⊂ K◦.

Recall from the Introduction that E is an Lc-module and φ ∈ HomLc(E,X). The
homomorphism φ induces a (k, Lc)× (k, K◦)-equivariant linear map

R(K◦)⊗ (U(k)⊗U(qc) E) → R(K◦)⊗ (U(g)⊗U(q̄) X),
µ⊗X ⊗ v 7→ µ⊗X ⊗ φ(v).

Taking the relative Lie algebra cohomologies, we get the bottom layer map

Πk,K◦

qc,Lc
(E) = HS(k, Lc; R(K

◦)⊗ (U(k)⊗U(qc) E))

→ Πg,K◦

q̄,Lc
(X) = HS(k, Lc; R(K

◦)⊗ (U(g)⊗U(q̄) X)).(37)

The extension by zero map

R(K◦) → R(K)

induces an injective linear map

Πg,K◦

q̄,Lc
(X) = HS(k, Lc; R(K

◦)⊗ (U(g)⊗U(q̄) X))

→֒ Πg,K
q̄,Lc

(X) = HS(k, Lc; R(K)⊗ (U(g)⊗U(q̄) X)).(38)

Now the composition of (37) and (38) yields the following bottom layer map:

β(φ) : Πk,K◦

qc,Lc
(E) → Πg,K

q̄,Lc
(X).

Similar to (36) and using (22), we have a linear map

(39) Πk,K◦

qc,Lc
: HomLc∩Hc(E, χL∩H) → HomK◦∩H(Π

k,K◦

qc,Lc
(E), χ).
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Proposition 2.7. Assume (20) holds and L is connected. Then the diagram

(40)

Πk,K◦

qc,Lc
(E)

β(φ)−−−→ Πg,K
q̄,Lc

(X)yΠk,K◦

qc,Lc
(ϕ◦φ)

yΠg,K
q̄,Lc

(ϕ)

χ χ

commutes for all φ ∈ HomLc(E,X), and ϕ ∈ Homl∩h,Lc∩Hc(X,χL∩H).

Proof. This is routine to check. We omit the details. �

3. A proof of Theorem 1.7

In this section, suppose G is connected and compact. Then K = G, Hc = H ,
qc = q, nc = n and L = Lc = L◦

c .
Recall that we assume

(41) q+ h = g and q ∩ h = q̄ ∩ h.

Our goal is to prove the following Theorem (Theorem 1.7 of the Introduction).

Theorem 3.1. If G is connected and compact, then the linear map

(42) Πg,G
q̄,L : HomL∩H(X,χL∩H) → HomH(Π

g,G
q̄,L (X), χ)

is surjective for every L-module X.

3.1. The G-module Πg,G
q̄,L (X). Recall the (g, L)-module

V = ∧2Sg/l⊗ (U(g)⊗U(q̄) X),

and write
Π̃g,G

q̄,L (X) := HS(g, L; C[G]⊗ V ).

It is isomorphic to Πg,G
q̄,L(X) by the Zuckerman duality isomorphism. The last two

arrows of (35) yield a linear map

(43) Π̃g,G
q̄,L : HomL∩H(X,χL∩H) → HomH(Π̃

g,G
q̄,L (X), χ).

It is clear that the map (42) is surjective if and only if so is the map (43).
Without loss of generality, assume that the L-module X is irreducible. If

Π̃g,G
q̄,L(X) is zero, then Theorem 3.1 is trivial. So we assume it is nonzero. Then by

(8), Π̃g,G
q̄,L (X) is isomorphic to an irreducible G-module τ such that

τ n ∼= X ⊗ ∧Sn.

View C[G] as a G × G-module such that the first factor acts through the left
translation, and the second factor acts through the right translation. View τ∨ ⊗ τ
as a G×G-submodule of C[G] via the linear embedding

τ∨ ⊗ τ →֒ C[G],
λ⊗ u 7→ (g 7→ 〈λ, g.u〉).
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Since HS(g, L; C[G] ⊗ V ) ∼= τ is irreducible, Peter-Weyl’s Theorem implies that
we have an identification

(44) HS(g, L; τ∨ ⊗ τ ⊗ V ) = HS(g, L; C[G]⊗ V ).

Lemma 3.2. There is an identification

(45) HomL(∧Sg/q̄, (τ∨)n̄ ⊗ (∧2Sg/l)⊗X) = HS(g, L; τ∨ ⊗ V )

of one-dimensional vector spaces.

Proof. This is known to experts. We sketch a proof for the convenience of the
reader. Fix an element x0 in the center of l such that all the eigenvalues of the
operator [x0, · ] : n → n are positive real numbers. By considering the action of
x0, we know that

HomL(∧jg/l, τ∨ ⊗ V ) =

{
{0}, if j 6= S,
HomL(∧Sg/q̄, (τ∨)n̄ ⊗ (∧2Sg/l)⊗X), if j = S.

Hence the lemma follows.
�

By (44) and (45), we have identifications

Π̃g,G
q̄,L (X) = HomL(∧Sg/q̄, (τ∨)n̄ ⊗ (∧2Sg/l)⊗X)⊗ τ(46)

= HomL(∧Sg/q̄, (τ∨)n̄ ⊗ (∧2Sg/l)⊗X ⊗ τ)

of G-modules. Here we let L act trivially on the G-module τ .

3.2. The linear functional Π̃g,G
q̄,L (ϕ). Recall that

ϕ ∈ HomL∩H(X,χL∩H),

where
χL∩H = ∧2S(g/l)∨ ⊗ ∧Sh/(l ∩ h)⊗ χ,

to be viewed as an (L∩H)-module. By tensoring with ∧2Sg/l, it obviously induces
an (L ∩H)-equivariant linear map

(47) ϕ′ : (∧2Sg/l)⊗X → ∧Sh/(l ∩ h)⊗ χ.

Define a linear map

ϕ̃ : (τ∨)n̄ ⊗ (∧2Sg/l)⊗X ⊗ τ → ∧Sh/(l ∩ h)⊗ χ,

λ⊗ ω ⊗ x⊗ u 7→ ϕ′(ω ⊗ x)
∫
H
χ−1(h) 〈λ, h.u〉 dh,

where dh is the Haar measure on H with total volume 1.
Write

(48) χ = HomL∩H(∧Sh/(l ∩ h),∧Sh/(l ∩ h)⊗ χ).

Here we let L ∩H act trivially on the H-module χ. Write

ιh : ∧Sh/(l ∩ h) → ∧Sg/q̄
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for the obvious linear map. This is a linear isomorphism by (41). The following
lemma is routine to check.

Lemma 3.3. Under the identifications (46) and (48), the linear map

Π̃g,G
q̄,L (ϕ) : Π̃

g,G
q̄,L (X) → χ

is identical to the following linear map:

HomL(∧Sg/q̄, (τ∨)n̄ ⊗ (∧2Sg/l)⊗X ⊗ τ) → HomL∩H(∧Sh/(l ∩ h),∧Sh/(l ∩ h)⊗ χ),

f 7→ ϕ̃ ◦ f ◦ ιh.
Fix an isomorphism X ∼= τ n ⊗ ∧Sg/q̄. Identify ∧Sh/(l ∩ h) with ∧Sg/q̄ via ιh.

Then the linear map ϕ′ of (47) obviously induces an (L ∩ H)-equivariant linear
map

ϕ′′ : (∧2Sg/l)⊗ τ n → χ.

It is easy to see that the latter map in Lemma 3.3 is identical to the following
linear map:

((τ∨)n̄ ⊗ (∧2Sg/l)⊗ τ n)L ⊗ τ → χ,

λ⊗ ω ⊗ y ⊗ u 7→ ϕ′′(ω ⊗ y)
∫
H
χ−1(h) 〈λ, h.u〉 dh.

Here and as usual, a superscript group indicates the fixed vectors of the group
action.

Note that ∧2Sg/l is a trivial L-module. Thus in order to finish the proof of
Theorem 3.1, it suffices to prove the following proposition.

Proposition 3.4. The linear map

HomL∩H(τ
n, χ) → HomH(((τ

∨)n̄ ⊗ τ n)L ⊗ τ, χ),

φ 7→
(
λ⊗ y ⊗ u 7→ φ(y)

∫
H
χ−1(h) 〈λ, h.u〉 dh

)

is surjective.

3.3. A proof of Proposition 3.4. Write τ(χ) for the χ-isotypic subspace of τ ,
and write pχ : τ → τ(χ) for the H-equivariant projection map. Then the linear
map in Proposition 3.4 equals the following one:

(49)
HomL∩H(τ

n, χ) → HomH(((τ
∨)n̄ ⊗ τ n)L ⊗ τ, χ)

φ 7→ (λ⊗ y ⊗ u 7→ φ(y)〈λ, pχ(u)〉) .
Take a basis (λ1, λ2, · · · , λr) of (τ∨)n̄ and (y1, y2, · · · , yr) of τ n which are dual to

each other. Then ((τ∨)n̄ ⊗ τ n)L is spanned by
∑r

i=1 λi ⊗ ui. Using this generator
we identify ((τ∨)n̄ ⊗ τ n)L with C so that

((τ∨)n̄ ⊗ τ n)L ⊗ τ = τ.

Then the linear map (49) equals the composition of the linear map

(50)
HomL∩H(τ

n, χ) → χ⊗ (τ∨)n̄,

φ 7→ ∑r
i=1 φ(yi)⊗ λi
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and the linear map

(51)
χ⊗ (τ∨)n̄ → HomH(τ, χ),

a⊗ λ 7→ (u 7→ a〈λ, pχ(u)〉) .
Thus Proposition 3.4 follows from the following Lemma 3.5 and Lemma 3.6.

Lemma 3.5. The image of the linear map (50) equals (χ⊗ (τ∨)n̄)L∩H .

Proof. Note that (50) is a restriction of the obvious linear isomorphism

HomC(τ
n, χ)

∼=−→ χ⊗ (τ∨)n̄.

This linear isomorphism is H-equivariant, and hence the lemma follows. �

Lemma 3.6. The restriction of the linear map (51) to (χ⊗(τ∨)n̄)L∩H is surjective.

Proof. By the (L ∩ H)-invariance of the linear map (51), it suffices to show that
the map (51) itself is surjective.

Note that
HomH(τ, χ) = HomC(τ(χ), χ) = χ⊗ (τ(χ))∨,

and (51) is identical to the following linear map:

(52)
χ⊗ (τ∨)n̄ → χ⊗ (τ(χ))∨,

a⊗ λ 7→ a⊗ λ|τ(χ).
Using the first equality of (41), we have that

U(g).(τ(χ) ∩ (n̄.τ)) = U(q̄).(U(h).(τ(χ) ∩ (n̄.τ)))

= U(q̄).(τ(χ) ∩ (n̄.τ))

⊂ n̄.τ ( τ.

Thus the irreducibility of τ implies that τ(χ) ∩ (n̄.τ) = {0}. Consequently, the
natural map

τ(χ) → τ/(n̄.τ)

is injective. Taking the transpose, we know that the map

(τ∨)n̄ → (τ(χ))∨,
λ 7→ λ|τ(χ)

is surjective. Thus the map (52) is also surjective and the lemma is proved.
�

4. The first application

In this section and the next one, we retain the notation of the Introduction. As
applications of our construction, we give two arithmetically interesting examples
of cohomological test vectors. For the first one, suppose (G,H, θ, σ) and K are as
in Example 1.3 so that

G = GLn(K), H = GLn(R), K = U(n) and Hc = O(n).

Write ι1, ι2 : K → C for the two distinct isomorphisms.
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4.1. Cohomological test vectors. Fix a sequence

(53) µ = (µ1 ≥ µ2 ≥ · · · ≥ µn; µn+1 ≥ µn+2 ≥ · · · ≥ µ2n) ∈ Z2n

such that

(54) µ1 + µ2n = µ2 + µ2n−1 = · · · = µn + µn+1 = 0.

Write κ : K× → C× for the unitary character whose square equals
(ι1)|K×

(ι2)|K×
. Define

the principal series representation

(55) πµ := Ind
GLn(K)
Bn(K)

(
κ2µ1+n−1 ⊗ κ2µ2+n−3 ⊗ · · · ⊗ κ2µn+1−n

)
,

where Bn(K) denotes the Borel subgroup of the upper-triangular matrices. This is
an irreducible Casselman-Wallach representation of GLn(K) ([Vog1], see also [Bar,
Theorem 1.2]).

Denote by Fµ the irreducible algebraic representation of GLn(C) × GLn(C) of
highest weight µ. It is also viewed as an irreducible representation of GLn(K) by
restricting through the complexification map

(56) GLn(K) → GLn(C)×GLn(C), g 7→ (ι1(g), ι2(g)).

By Vogan-Zuckerman theory of cohomological representations [VZ], πµ is the
unique (up to isomorphism) irreducible Casselman-Wallach representation of GLn(K)
which is unitarizable and tempered, and whose total relative Lie algebra cohomol-
ogy is nonzero (see [Clo, Section 3]):

(57) H∗(gln(C)× gln(C),U(n);F
∨
µ ⊗ πµ) 6= 0.

Here gln(C)× gln(C) is identified with g through the differential of (56).
Recall that a result of Vogan [Vog1, Theorem 4.9] asserts that every irreducible

Casselman-Wallach representation of GLn(K) has a unique minimal U(n)-type,
and it occurs with multiplicity one. Likewise, every irreducible Casselman-Wallach
representation of GLn(R) has a unique minimal O(n)-type, and it occurs with
multiplicity one.

Whenever a Lie group has exactly two connected components, we use sgn to
denote the unique non-trivial quadratic character of it. We will prove the following
Theorem in the next subsection.

Theorem 4.1. The space HomGLn(R)(πµ, sgn
n−1) is one-dimensional, and a nonzero

element of it does not vanish on the minimal U(n)-type of πµ.

Remarks. (a) Using the explicit description of πµ in (55), the analytic method of
meromorphic continuations also produces a nonzero element of HomGLn(R)(πµ, sgn

n−1)
(cf. [Osh, Theorem 6], [Ola, Theorem 5.1] and [Ban, Theorem 5.10]). But it seems
hard to show the non-vanishing on the minimal U(n)-type by this analytic method.

(b) When n ≥ 2, some matrix coefficients of πµ are not integrable on SLn(R).
Thus the method of [Sun, Lemma 4.5], which proves a similar result in the Gross-
Prasad case by matrix coefficient integrals, does not apply to Theorem 4.1.
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4.2. A proof of Theorem 4.1. Note that g = gln(C)× gln(C) and the complex-
ified differential of θ : G→ G equals

θ : gln(C)× gln(C) → gln(C)× gln(C), (x, y) 7→ (−yt,−xt).
Suppose

q = bn × btn ⊂ g = gln(C)× gln(C),

where bn denotes the Lie algebra of all upper-triangular matrices in gln(C). Then
q is a θ-stable parabolic subalgebra of g satisfying (5), and

(L, Lc, L ∩H, Lc ∩Hc) = ((K×)n, (U(1))n, (R×)n, {±1}n).
Using the isomorphisms ι1, ι2 : K → C, we also have an identification

l = Cn × Cn.

Denote by λµ the unitary character of L whose complexified differential equals

(µ1+n−1, µ2+n−3, · · · , µn+1−n;µ2n+1−n, µ2n−1+3−n, · · · , µn+1+n−1).

Then by Vogan-Zuckerman theory [VZ], Πg,K
q̄,Lc

(λµ) is isomorphic to the (g, K)-

module ofK-finite vectors in πµ, and the irreducible representation τµ := Πk,K
qc,Lc

(λµ)
of K occurs with multiplicity one in πµ (it is the unique minimal K-type of πµ).
Identify K with C via ι1, then τµ has highest weight

(2µ1 + n− 1, 2µ2 + n− 3, · · · , 2µn + 1− n).

Lemma 4.2. One has that

dimHomHc(τµ, sgn
n−1) = 1.

Proof. This is an instance of Cartan-Helgason Theorem (cf. [Hel, Chapter V, The-
orem 4.1]). �

Lemma 4.3. There is an element of Homh,Hc(Π
g,K
q̄,Lc

(λµ), sgn
n−1) which does not

vanish on the minimal K-type τµ of Πg,K
q̄,Lc

(λµ).

Proof. Note that the one-dimensional representations

(λµ)|L∩H and χL∩H
∼= sgnn−1|L∩H ⊗ ∧top(hc/(lc ∩ hc))

of L ∩H are both trivial. Thus Lemma 4.2 implies that

dimHomLc∩Hc(λµ, χL∩H) = dimHomHc(τµ, sgn
n−1).

Since
Homl∩h,Lc∩Hc(λµ, χL∩H) 6= {0},

the lemma follows by Theorem 1.10. �

Lemma 4.4. For every irreducible Casselman-Wallach representation π of GLn(K),
and every character χ0 of GLn(R), one has that

dimHomGLn(R)(π, χ0) ≤ 1.
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Proof. When χ0 is trivial, the lemma is proved in [AGS, Theorem 8.2.5]. In general,
since χ0 extends to a character of GLn(K), the lemma reduces to the case when
χ0 is trivial. �

Now Theorem 4.1 follows by combining Theorem 1.1, Lemma 4.3 and Lemma
4.4.

4.3. The non-vanishing hypothesis for Asai L-functions. Write

GLn(K) = GL1
n(K)× R×

+,

where GL1
n(K) := {g ∈ GLn(K) | ι1(det g) · ι2(det g) = 1}, and the group R×

+

of positive real numbers is viewed as a subgroup of GLn(K) via the diagonal
embedding. Following [GHL], writemG for the complexified Lie algebra of GL1

n(K).

Put tn := (n−1)(n+2)
2

. Recall that [Clo, Lemma 3.14]

dimHtn(mG,U(n);F
∨
µ ⊗ πµ) = 1,

and

Hj(mG,U(n);F
∨
µ ⊗ πµ) = {0} for all j > tn.

Note that

dimHomGLn(R)(F
∨
µ ,C) = 1 and dimHtn(sln(C),O(n); sgnn−1) = 1.

Theorem 4.5. Let ϕ be a nonzero element of HomGLn(R)(πµ, sgn
n−1), and let ψ be

a nonzero element of HomGLn(R)(F
∨
µ ,C). Then by restriction of cohomology, the

linear functional ψ ⊗ ϕ : F∨
µ ⊗ πµ → sgnn−1 induces a nonzero linear map

Htn(mG,U(n);F
∨
µ ⊗ πµ) → Htn(sln(C),O(n); sgnn−1)

of one-dimensional vector spaces.

Theorem 4.5 is a representation theoretic reformulation of the non-vanishing
hypothesis of Grobner-Harris-Lapid in the study of non-critical values of the Asai
L-function (see [GHL, Section 6.2]).

In view of Theorem 4.1, Theorem 4.5 follows by applying Theorem A.3 of Ap-
pendix A to the group GL1

n(K).

5. The second application

For the second application, suppose (G,H, θ, σ) is as in Example 1.4 so that

G = GL2n(R), H = GLn(R)×GLn(R), K = O(2n) and Hc = O(n)×O(n).
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5.1. Cohomological test vectors. Fix a sequence

ν = (ν1 ≥ ν2 ≥ · · · ≥ ν2n) ∈ Z2n (n ≥ 1)

such that

(58) ν1 + ν2n = ν2 + ν2n−1 = · · · = νn + νn+1 = w

for some w ∈ Z. Define

πν := |det|w2 ⊗ IndG
P2,2,··· ,2

(
Dν1−ν2n+2n−1⊗̂Dν2−ν2n−1+2n−3⊗̂ · · · ⊗̂Dνn−νn+1+1

)
,

where Dk (k ≥ 1) is a relative discrete series representation as in Example 1.11.
Similar to (55), πν is an irreducible Casselman-Wallach representation of GL2n(R).

Denote by F ν the irreducible algebraic representation of GL2n(C) of highest
weight ν. It is also viewed as an irreducible representation of GL2n(R) by re-
striction. Similar to Section 4.1, πν is the unique (up to isomorphism) irreducible
Casselman-Wallach representation of GL2n(R) such that [Clo, Section 3]

• πν |SL±

2n(R)
is unitarizable and tempered, and

• the total relative Lie algebra cohomology

(59) H∗(gl2n(C), SO(2n); (F ν)∨ ⊗ πν) 6= 0,

where
SL±

2n(R) := {g ∈ GL2n(R) | det(g) = ±1}.
Suppose

(60) χ = χ1 ⊗ χ2 : GLn(R)×GLn(R) → C×

is a character such that
χ1 · χ2 = detw.

For each s ∈ C, let |det|s,−s denotes the character |det|s ⊗ |det|−s of GLn(R) ×
GLn(R). The following Theorem will be proved in the next subsection.

Theorem 5.1. Up to scalar multiplication, there exists a unique nonzero element
ϕ ∈ HomGLn(R)×GLn(R)(π

ν , χ) which extends to a holomorphic family in the follow-
ing sense: there exists a map

ζ : πν × C → C

such that

• ζ( · , s) ∈ HomGLn(R)×GLn(R)(π
ν , χ · |det|s,−s), for all s ∈ C;

• ζ(v, · ) is an entire function, for all O(2n)-finite vector v ∈ πν;
• ζ( · , 0) = ϕ.

Moreover, ϕ does not vanish on the minimal O(2n)-type of πν.

Similar to Theorem 4.1, a nonzero χ-invariant continuous linear functional on
πν may also be constructed by the analytic method of meromorphic continuations.
But the non-vanishing on the minimal O(2n)-type is not easy to show by that
method.
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5.2. A proof of Theorem 5.1. Fix an embedding

(61) γ2n : (C×)2n →֒ GL2n(C)

of algebraic groups which sends (a1, a2, · · · , a2n) to the matrix



a1+a2n
2

0 · · · 0 0 · · · 0 a1−a2n
2i

0 a2+a2n−1

2
· · · 0 0 · · · a2−a2n−1

2i
0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · an+an+1

2
an−an+1

2i
· · · 0 0

0 0 · · · an+1−an
2i

an+1+an
2

· · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 a2n−1−a2

2i
· · · 0 0 · · · a2n−1+a2

2
0

a2n−a1
2i

0 · · · 0 0 · · · a2n+a1
2




,

where i =
√
−1 ∈ C is the fixed square root of −1. View (C×)2n as a Cartan

subgroup of GL2n(C) via the embedding (61). Then the corresponding root system
is

(62) {±(ei − ej) | 1 ≤ i < j ≤ 2n} ⊂ Z2n.

Here e1, e2, · · · , e2n denote the standard basis of Z2n. Suppose q is the Borel
subalgebra of g which corresponds to the positive system

(63) {ei − ej | 1 ≤ i < j ≤ 2n} ⊂ Z2n

of (62). Then q is a θ-stable parabolic subalgebra of g satisfying (5), and

(L, Lc, L ∩H, Lc ∩Hc) = ((C×)n, (S1)n, (R×)n, {±1}n),
where S1 denotes the group of complex numbers of modulus one. Here L is viewed
as a subgroup of G via the embedding

(C×)n → GL2n(R),
(a1, a2, · · · , an) 7→ γ2n(a1, a2, · · · , an, ān, · · · , ā2, ā1).

Denote by λν the restriction to L of the character

(ν1 + 2n− 1, ν2 + 2n− 3, · · · , ν2n + 1− 2n)

of (C×)2n, through the embedding

L = (C×)n → (C×)2n,
(a1, a2, · · · , an) 7→ (a1, a2, · · · , an, ān, · · · , ā2, ā1).

Then by Vogan-Zuckerman theory [VZ], we know that Πg,K
q̄,Lc

(λν) is isomorphic to
the (g, K)-module of K-finite vectors in πν . Moreover, the irreducible K◦-module

τ ν := Πk,K◦

qc,Lc
(λν) occurs with multiplicity one in πν (it is contained in the unique

minimal K-type of πν).
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Note that Lc is a Cartan subgroup of K◦, and qc is a Borel subalgebra of k which
corresponds to the positive system

{ei ± ej | 1 ≤ i < j ≤ n} ⊂ Zn = Hom(Lc,C
×)

of the root system of K◦. The highest weight of τ ν is

(ν1 − ν2n + 2n, ν2 − ν2n−1 + 2(n− 1), · · · , νn − νn+1 + 2).

Note that H ∩K◦ equals

O(n)×{±1} O(n) (the fiber product over the determinant homomorphisms).

Thus it has exactly two connected components. Recall the integer w from (58).

Lemma 5.2. One has that

dimHomH∩K◦(τ ν , sgnw) = 1.

Proof. This is also an instance of Cartan-Helgason Theorem (cf. [Hel, Chapter V,
Theorem 4.1]). �

Lemma 5.3. There is a map

(64) ζ0 : Π
g,K
q̄,Lc

(λν)× C → C

with the following properties:

• ζ0( · , s) ∈ Homh,Hc(Π
g,K
q̄,Lc

(λν), χ · |det|s,−s), for all s ∈ C;

• ζ0(v, · ) is a polynomial function, for all v ∈ Πg,K
q̄,Lc

(λν);

• ζ0( · , s) does not vanish on τ ν ⊂ Πg,K
q̄,Lc

(λν), for all s ∈ C.

Proof. Note that the (Lc∩Hc)-action on ∧Shc/(lc∩hc) is trivial, and the character
λν |L∩H and (χ · |det|s,−s)|L∩H (s ∈ C) are both equals to the following one:

(a1, a2, · · · , an) 7→ (a1a2 · · · · · an)w.
Fix a nonzero element

ϕ ∈ HomL∩H(λ
ν ,∧2S(k/lc)

∨ ⊗ ∧Shc/(lc ∩ hc)⊗ χ).

For all s ∈ C, let

ϕs ∈ HomL∩H(λ
ν ,∧2S(k/lc)

∨ ⊗ ∧Shc/(lc ∩ hc)⊗ (χ · |det|s,−s))

be the element which is identical to ϕ when both χ and χ · |det|s,−s are identified
with C as vector spaces. Now we define a map

ζ0 : Π
g,K
q̄,Lc

(λν)× C → C, (v, s) 7→ (Πg,K
q̄,Lc

(ϕs))(v).

Then the first two properties of the lemma hold by the construction of Πg,K
q̄,Lc

(ϕs).
The third property holds by Proposition 1.9, Lemma 5.2, and Theorem 1.7. �
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Identify πν with the Casselman-Wallach globalization of Πg,K
q̄,Lc

(λν). By the au-
tomatic continuity theorem (Theorem 1.1), the map ζ0 of (64) extends to a map

ζ : πν × C → C

such that

• ζ( · , s) ∈ HomGLn(R)×GLn(R)(π
ν , χ · |det|s,−s), for all s ∈ C;

• ζ(v, · ) is a polynomial function, for all O(2n)-finite vectors v ∈ πν ;

• ζ( · , s) does not vanish on τ ν ⊂ Πg,K
q̄,Lc

(λν), for all s ∈ C.

Then ϕ := ζ( · , 0) satisfies the conditions of Theorem 5.1. Moreover, ϕ does not
vanish on the minimal K-type of πν .

To prove the uniqueness of ϕ, recall the following multiplicity one result.

Lemma 5.4. ([CS, Theorem B]) Let π be an irreducible Casselman-Wallach repre-
sentation of GL2n(R). Then for all but countably many characters χ′ of GLn(R)×
GLn(R), the space HomGLn(R)×GLn(R)(π, χ

′) is at most one-dimensional.

Now let ζ ′ : πν × C → C be a map such that

• ζ ′( · , s) ∈ HomGLn(R)×GLn(R)(π
ν , χ · |det|s,−s), for all s ∈ C;

• ζ ′(v, · ) is an entire function, for all O(2n)-finite vectors v ∈ πν .

Pick a vector v0 ∈ τ ν ⊂ πν which does not vanish under a nonzero element of
HomH∩K◦(τ ν , sgnw). Then ζ(v0, ·) is a nowhere vanishing polynomial function,
and is thus a nonzero constant. Put

γ(s) :=
ζ ′(v0, s)

ζ(v0, s)
, s ∈ C.

Then Lemma 5.4 implies that

(65) ζ ′(·, s) = γ(s)ζ(·, s),

for all but countably many s ∈ C. Therefore for all v ∈ πν which is K-finite, the
continuity of the both sides of (65) on the variable s ∈ C implies that

(66) ζ ′(v, s) = γ(s)ζ(v, s) for all s ∈ C.

Finally, the continuity of the both sides of the equality (66) on the variable v ∈ πν

implies that

(67) ζ ′(·, s) = γ(s)ζ(·, s) for all s ∈ C.

In particular, ζ ′(·, 0) is a scalar multiple of ϕ = ζ(·, 0). This proves the uniqueness
of ϕ, and finishes the proof of Theorem 5.1.
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5.3. The non-vanishing hypothesis for L-functions for GSpin(2n+ 1). Put
t′n := n2 + n− 1. Then [Clo, Lemma 3.14]

Hν := Ht′n(sl2n(C), SO(2n); (F ν)∨ ⊗ πν) 6= 0,

and

Hj(sl2n(C), SO(2n); (F ν)∨ ⊗ πν) = 0 for all j > t′n.

The natural actions of the group O(2n) on sl2n(C), SO(2n) and (F ν)∨⊗πν induce a
representation of O(2n)/SO(2n) = {±1} on Hν . It turns out that [Mah, Equation
(3.2)]

(68) Hν ∼= C⊕ sgn (as representations of the group {±1}),
where “C ” stands for the trivial representation.

Recall from (60) the character χ = χ1⊗χ2 with χ1 ·χ2 = detw. Now we assume
that

(69) (χi)|(GLn(R))◦ = (detwi)|(GLn(R))◦ , i = 1, 2,

for two integers w1, w2 such that

(70) w1 + w2 = w and νn ≥ wi ≥ νn+1 (i = 1, 2).

Then the space

Hχ := Ht′n(sl2n(C) ∩ (gln(C)× gln(C)),O(n)×{±1} O(n); det−w1,−w2 · χ)
is one-dimensional, and naturally carries a representation of

(O(n)×O(n))/(O(n)×{±1} O(n)) = {±1}.
Here det−w1,−w2 denotes the character det−w1⊗det−w2 of GLn(C)×GLn(C). Using
(68), we conclude that

dimHom{±1}(H
ν ,Hχ) = 1.

As an instance of H. Schlichtkrull’s generalization of Cartan-Helgason Theorem
([Sch2, Theorem 7.2], see also [Kna, Theorem 2.1]), (70) implies that

dimHomGLn(C)×GLn(C)((F
ν)∨, det−w1,−w2) = 1.

Theorem 5.5. Assume that (69) and (70) hold. Let ϕ be as in Theorem 5.1. Let ψ
be a nonzero element of HomGLn(C)×GLn(C)((F

ν)∨, det−w1,−w2). Then by restriction
of cohomology, the linear functional ψ ⊗ ϕ : (F ν)∨ ⊗ πν → det−w1,−w2 · χ induces
a nonzero element of Hom{±1}(H

ν ,Hχ).

Theorem 5.5 is a representation theoretic reformulation of the non-vanishing
hypothesis in the study of p-adic L-functions and critical values of L-functions for
GSpin(2n + 1), using the Langlands lift to GL(2n) and Shalika models (see [AG,
assumption (A2)], [GR, Section 6.6] and [AsS]).
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Now we come to the proof of Theorem 5.5. Denote by πν
◦ the Casselman-Wallach

globalization of Πg,K◦

q̄,Lc
(λν). It is an irreducible representation of (GL2n(R))

◦ with
minimal K◦-type τ ν . Moreover, we have a natural inclusion πν

◦ ⊂ πν , and

Hν
◦ := Ht′n(sl2n(C), SO(2n); (F ν)∨ ⊗ πν

◦ )

is a one-dimensional subspace of the two-dimensional space

Hν := Ht′n(sl2n(C), SO(2n); (F ν)∨ ⊗ πν).

Denote by ϕ◦ the restriction of ϕ to πν
◦ , which does not vanish on the minimal

K◦-type τ ν . Let ψ : (F ν)∨ → det−w1,−w2 be as in Theorem 5.5. By restriction of
cohomology, the linear functionals

ψ ⊗ ϕ◦ : (F
ν)∨ ⊗ πν

◦ → det−w1,−w2 · χ and ψ ⊗ ϕ : (F ν)∨ ⊗ πν → det−w1,−w2 · χ
respectively induce linear functionals

η◦ : H
ν
◦ → Hχ and η : Hν → Hχ .

Applying Theorem A.3 of Appendix A to the group SL2n(R), we know that η◦
is nonzero. Therefore η is nonzero since it extends η◦. This finishes the proof of
Theorem 5.5.

Appendix A. Modular symbols at infinity

As mentioned in the Introduction, the Archimedean behaviors of modular sym-
bols are captured by certain restriction maps of relative Lie algebra cohomologies.
We call these restriction maps modular symbols at infinity. In this appendix, we
show (in Theorem A.3) that the non-vanishing on the bottom layers implies the
non-vanishing of certain modular symbols at infinity.

A.1. Unitary representations with nonzero cohomology. We first review
some basic facts concerning unitary representations with nonzero cohomology. Let
G be a real reductive group (as in Section 1.1). For simplicity, assume it is con-
nected and its center is compact. Fix a Cartan involution θ of G. Put K := Gθ,
which is a maximal compact subgroup of G.

As usual, we use the corresponding lower case Gothic letter to indicate the
complexified Lie algebra of a Lie group. Let F be an irreducible finite-dimensional
representation of G, and let V be a unitarizable irreducible (g, K)-module such
that the total relative Lie algebra cohomology

H∗(g, K;F∨ ⊗ V ) 6= 0.

Then by [VZ], there is a θ-stable parabolic subalgebra q of g with the following
properties:

• the representation F n|L is one-dimensional and unitarizable;
• V ∼= ΠS(F

n ⊗ ∧dim nn).



DISTINGUISHED REPRESENTATIONS 29

Here 



n := the nilpotent radical of q ∩ [g, g],
L := NG(q) = NG(q̄),
S := dim(n ∩ k),

and ΠS denotes the S-th left derived functor of the functor

R(g, K)⊗R(q̄,Lc) ( · ) (Lc := L ∩K)

from the category of (q̄, Lc)-modules to the category of (g, K)-modules.
Put

qc := q ∩ k, nc := n ∩ k,

and define two vector spaces

qn := q/qc, nn := n/nc.

Note that L and Lc are connected [KV, Lemma 5.10]. We introduce three irre-
ducible representations τV , τF and τn of K such that

(71) (τV )
nc ∼= F n|Lc ⊗ ∧dim nnnn, (τF )

nc ∼= F n|Lc, and (τn)
nc ∼= ∧dim nnnn

as representations of Lc. Then τV occurs with multiplicity one in V (this is the
bottom layer of the cohomological induction, and is the unique minimal K-type
of V , in the sense of Vogan); τF occurs with multiplicity one in F ; and τn occurs
with multiplicity one in both ∧dim nng/k and ∧dim qng/k.

Lemma A.1. One has that

dimHomK(τn, τ
∨
F ⊗ τV ) = 1.

Proof. Note that τV is the Cartan product of τF and τn. (For details on Cartan
products, see [Ea] for example.) Hence

dimHomK(τn, τ
∨
F ⊗ τV ) = dimHomK(τn ⊗ τF , τV ) = 1.

�

Theorem A.2. (a) For all j ∈ Z, Hj(g, K;F∨ ⊗ V ) = HomK(∧jg/k, F∨ ⊗ V ).
(b) The space Hj(g, K;F∨ ⊗ V ) is zero unless dim nn ≤ j ≤ dim qn, and both

Hdim nn(g, K;F∨ ⊗ V ) and Hdim qn(g, K;F∨ ⊗ V ) are one-dimensional.

Proof. Part (a) is proved in [Wa1, Proposition 9.4.3], and part (b) is implied by
[Wa1, Theorem 9.6.6].

�

Theorem A.2 and Lemma A.1 imply that we have identifications

(72) Hj(g, K;F∨ ⊗ V ) = HomK(τn, τ
∨
F ⊗ τV ), for j = dim nn or dim qn.



30 B. SUN

A.2. Non-vanishing of modular symbols at infinity. Let H be a θ-stable
closed subgroup of G with finitely many connected components. Put Hc := H∩K.
Let χF and χV be two characters of H such that

(73) (χF · χV )|(h,Hc)
∼= ∧dim h/hch/hc,

where ∧dim h/hch/hc carries the trivial representation of h and the adjoint represen-
tation of Hc. Suppose we have two nonzero elements

λF ∈ HomH(F
∨, χF ) and λV ∈ Homh,Hc(V, χV ).

By restriction of cohomology, the functional λF ⊗λV : F∨⊗V → χF ⊗χV induces
a linear map

(74) Hdim h/hc(g, K;F∨ ⊗ V ) → Hdim h/hc(h, Hc;χF ⊗ χV ) ∼= C.

The functional (74) reflects the Archimedean behaviors of various types of modular
symbols which are used in the arithmetic study of special values of L-functions. We
call it a modular symbol at infinity. In the literature, authors concentrate on the
cases when dim h/hc = dim nn or dim qn. See [AG, Har, GHL, KMS] for examples.
The modular symbol is interesting only when the functional (74) is nonzero.

Recall the parabolic subalgebra q from Section A.1.

Theorem A.3. Assume that h + q = g and λV does not vanish on the K-
subrepresentation τV of V . If either

(75) dim h/hc = dim nn and h ∩ q ⊂ k,

or

(76) dim h/hc = dim qn and h ∩ n ⊂ k,

then the linear functional (74) is nonzero.

We remark that the condition h ∩ q = h ∩ q̄ implies that h ∩ n = 0 and hence
h ∩ n ⊂ k. The condition (75) holds, for example, in the case of Rankin-Selberg
convolutions for GL(n)×GL(n− 1) (see [Sun]).

The rest of this appendix is devoted to a proof of Theorem A.3.

Lemma A.4. If (75) or (76) holds, then every nonzero element of the one-
dimensional space HomK(∧dim h/hcg/k, τn) does not vanish on the one-dimensional
subspace ∧dim h/hch/hc of ∧dim h/hcg/k.

Proof. We give a proof under the assumption that (75) holds, which is similar to
that of [Sun, Lemma 2.10]. The same proof works when (76) holds. Fix a K-
invariant Hermitian inner product 〈 , 〉 on g/k. It induces a K-invariant Hermitian
inner product 〈 , 〉∧ on ∧dim h/hcg/k.

View τn as aK-submodule of ∧dim h/hcg/k. It is generated by the one-dimensional
space ∧dim h/hcn/nc. Note that every nonzero element of

HomK(∧dim h/hcg/k, τn)
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is a scalar multiple of the orthogonal projection ∧dim h/hcg/k → τn. Therefore in
order the prove the lemma, it suffices to show that the one-dimensional spaces
∧dim h/hch/hc and ∧dim h/hcn/nc are not perpendicular to each other under the form
〈 , 〉∧. This is equivalent to saying that the pairing

〈 , 〉 : h/hc × n/nc → C

is non-degenerate. Note that

{x ∈ g/k | 〈x, n/nc〉 = 0} = q̄/q̄c,

and by (75), h/hc ∩ q̄/q̄c = {0}. This proves the lemma. �

Lemma A.5. Let u be a nonzero element of τn and v a nonzero element of τF .
Then every nonzero element of HomK(τn ⊗ τF , τV ) does not vanish on u⊗ v.

Proof. The lemma holds since τV is the Cartan product of τn and τF (cf. [Ya,
Section 2.1]). �

Lemma A.6. If h+ q = g, then

(77) dimHomHc(τV , χV ) ≤ 1.

Proof. Recall from (71) that dim τ ncV = 1. Note that h+ q = g implies hc + qc = k.
Then we have that

(78) τV = U(k).τ ncV = U(hc).(U(qc).τ
nc
V ) = U(hc).τ

nc
V

Therefore every element of HomHc(τV , χV ) is determined by its restriction to the
one-dimensional space τ ncV . Hence (77) holds. �

Lemma A.7. Assume that h+q = g and λV does not vanish on τV . Then (χV )|Hc

occurs with multiplicity one in (τV )|Hc, and λV does not vanish on (χV )|Hc ⊂
(τV )|Hc.

Proof. This is obviously implied by Lemma A.6. �

Lemma A.8. View τ∨F as a K-submodule of F∨. If h + q = g, then λF does not
vanish on τ∨F .

Proof. Similar to (78), we have that

F∨ = U(h).(F∨)n̄.

Since τ∨F is generated by (F∨)n̄, the lemma follows. �

We are now ready to prove Theorem A.3. By (72), the map (74) is identified
with the linear map

(79) HomK(τn, τ
∨
F ⊗ τV ) → HomC(∧dim h/hch/hc, χF ⊗ χV )

which is induce by the linear functional

(λF )|τ∨F ⊗ (λV )|τV : τ∨F ⊗ τV → χF ⊗ χV
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and the restriction to ∧dim h/hch/hc of the K-equivaraint projection map

pn : ∧dim h/hcg/k → τn.

The map (79) is identified with the obvious linear map

(80) HomK(τn ⊗ τF , τV ) → HomC(∧dim h/hch/hc ⊗ χ∨
F , χV ).

The non-vanishing of the map (80) is equivalent to saying that the following com-
position map is nonzero:

(81) ∧dim h/hch/hc ⊗ χ∨
F → τn ⊗ τF → τV

(λV )|τV−→ χV .

Here the first arrow is the tensor product of (pn)|∧dimh/hch/hc and the transpose of
(λF )|τ∨F , and the second arrow is a nonzero K-equivariant linear map. The first
arrow is nonzero by Lemma A.4 and Lemma A.8. By Lemma A.5, the composition
of the first two arrows of (81) is nonzero, and hence by (73), its image is a one-
dimensional submodule of (τV )|Hc which is isomorphic to (χV )|Hc. Finally, by
Lemma A.7, the composition of (81) is nonzero. This finishes the proof of Theorem
A.3.
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