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Abstract

In this paper we study regularized Petersson products between
a holomorphic theta series associated to a positive definite binary
quadratic form and a weakly holomorphic weight 1 modular form with
integral Fourier coefficients. In our recent work [I5] motivated by the
conjecture of B. Gross and D. Zagier on the CM values of higher
Green’s functions we have discovered that such a Petersson product
is equal to the logarithm of a certain algebraic number lying in a ring
class field associated to the binary quadratic form. A similar result
was obtained independently by W. Duke and Y. Li [5], whose interest
in this problem arose from the theory of mock modular forms. The
methods of the proof used in [I5] and [5] are quite different. More-
over, the approach here gives an explicit factorization formula for the
algebraic number obtained (except for the valuation at the ramified
prime).

1 Introduction

In this paper we study arithmetic properties of the regularized Petersson
product between the following two modular forms of weight one: a holo-
morphic binary theta series and a weakly holomorphic modular form with
integral Fourier coefficients.

More precisely, consider an imaginary quadratic field K := Q(v/—D). For
simplicity we assume that D is a prime congruent to 3 modulo 4. Let B be
an element of the ideal class group CLg of K. Denote by r5(t) the number
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of integral ideals of norm ¢ in the ideal class B. We consider the vector space
C%/PZ with the canonical basis {e,|v € Z/DZ}. The theta function

(1) = Y W Y (tarse( )

v€Z/DZ t=v? (mod D)

is a holomorphic vector valued modular form of weight 1 and a representation
p defined in Section [l Here we use the standard notation e(z) := >,

First, consider the classical Petersson inner product between O and the
cusp form g, = ZCGCLK X(C)O¢ associated to a character x : CLx — C*.
Recall that this product is defined as

(0. Or) = /(%W@MWMWM%

SL2(Z)\%

where ) = {7 € C| S(r) > 0}, 7 = = + 1y, and (e,,e,) = J,,,. Applying
the Rankin-Selberg method to this integral one can see that the Peterson
product can be expressed in terms of Artin L-function as

1

_X(B_l) L(XD> 1) ress:lLK(X2a S)’

@ (9:08) =

where h is the class number of K and xp(-) = (5) Thus, Stark’s theorem
implies

(3) (90:08) = D X*(C)logec|

CeCL(K)

for certain units ¢ in the Hilbert class field of K.

The theory of regularized theta lifts developed by Borcherds, Bruinier,
Kudla and others motivates us to generalize the classical identity (3]) by re-
placing the cusp form g, with a weakly holomorphic modular form. More
precisely, we call f a weakly holomorphic cusp form if it is a weakly holomor-
phic (vector valued) modular form and has zero constant term. We denote
by S{(p) the space of weakly holomorphic cusp forms of weight 1 and repre-
sentation p. For f € S/(p) we define a regularized Petersson product by

@) (7,08)% = lim [ ((r),85(r)) y drdy,
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where
Fri={ren|-1/2<R(r) <1/2, |r| > 1, and (r) < T}

is the truncated fundamental domain of SLy(Z). We are interested in the
arithmetic properties of the number (4]) when f has integral Fourier coeffi-
cients. In our recent work [15] inspired by the conjecture of B. Gross and D.
Zagier on the CM values of higher Green’s functions we have found that

(5) (f,©5)"® =log|al

for some algebraic number « lying in an abelian extension of K. A similar
result was obtained independently by W. Duke and Y. Li [5], however their
interest in this problem arose from the theory of mock modular forms. The
relation between regularized Petersson products and mock modular forms is
also studied in [6]. The main result of the present paper is an explicit factor-
ization formula for the algebraic number « in (Hl) (except for the valuation
at ramified primes).

Before we can state the factorization formula we need to introduce some
notations. Recall that K denotes the imaginary quadratic field Qv/—D, h
be the class number and H be the Hilbert class field of K. For a rational
prime p with (&) = —1 let P, = {3}/, be the set of prime ideals of H
lying above p. After fixing an embedding 5 : H — C complex conjugation
acts on H and also on the set P,. Since the class number % is odd, there
exists a unique prime ideal in P, say P, with 3, = ;. For a prime ideal
B € P, there exists a unique element o € Gal(H/K) such that

(6) P7 =P

Denote by A = A(B) the ideal class of K that corresponds to ¢ under the
Artin isomorphism.

Theorem 1. Let B be an ideal class of K and let f € S}(p) be a weakly
holomorphic modular form with the Fourier expansion

f= Z ey Z cy(t)e<%7>

vEL/DZ teZ

satisfying co(0) = 0 and ¢,(m) € Z for all v € Z/DZ. Then there exists an
algebraic number a € H such that

(f,©p5)"® = log|al.
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Moreover, for a rational prime p and a prime B lying above p in the Hilbert
class field H we have

(7) ordy(o Z Z e (t TBA2< pt> ord,(t) in the case (%) = -1,

t<0 vez/DZ.

(8) ordg(a) =0 in the case <%) =1

Here rgq2 is defined as in ().

Remark 1. Theorem [1l is compatible with, but stronger than the result of J.
Schofer [14]. More precisely, Theorem 4.1 of [14] states that the sum over all
ideal classes B € CLg of Petersson products (f, ©5)™¢ is the logarithm of a
rational number and gives a precise factorization formula for this number. In
particular, this theorem says and the sum over all ideal classes of the identity
(@) as well as the identity (&) is true.

Remark 2. Theorem 1 is stated in a conjectural form in [5].

Remark 3. We don’t consider the primes p with (%) equal to 0. Note that
under the assumptions of Theorem 1 the only such prime is p = D. Theo-
retical and numerical evidence suggest that

(9) ordgp(a Z Z e, (t T3A2< pt> ord,(t) in the case (%) =0,

t<0 veZ/DZ

where ‘B is a prime of H lying above (v/—D), P, is the unique prime above
(v —D) with PB; = P, the ideal class A satisfies P74 = P;.

Remark 4. The space of vector valued modular forms M;(p) is canonically iso-
morphic to the space M (Ty(D), xp) of scalar valued modular forms, see [3].

The idea of the proof of Theorem [I] is to use the embedding argument
of Theorem 5 in [15] and reduce the computation of the regularized integral
(f,05)" to the computation of the local height pairings between certain
Heegner points on the modular curve Xo(D).

The paper is organized as follows. In Section 2] we recall the definition
and basic properties of vector valued modular forms. In Sections [3] and @
we collect necessary facts from the theory of the Borcherds lift. Also we
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give a brief review of height theory on the curves in Section In Sec-
tion [6] we construct a certain meromorphic function ¥ on the modular curve
Xo(D). This function has zeroes and poles at the Heegner points and sat-
isfies (f,Op)"® = log|¥(3)| for some CM-point 3. In Section [7] we use the
computations of the local height pairing made by B.Gross and D. Zagier in
[11] and find the local pairings between 3 and div(¥) over the finite places of
H. This gives as the valuation of a = W(3) at the primes of H and finishes
the proof of Theorem [Il In the last section we illustrate Theorem [I] with the
following numerical example.

Example. Consider the prime discriminant D := —23. Recall that the ideal
class group of the imaginary quadratic field K := Q(1/—23) has order 3 and
it can be written as CLx = {J,J 1, O}, where O denotes the principal
ideal class. Consider the modular form

E,E
(10) fi=23[=5% 04,
A
where Ej denotes the Eisenstein series of weight £, A is Ramanujan’s Delta
function and [-, -] denotes the Rankin-Cohen brackets. The modular form f

belongs to S;(p) and has integral Fourier coefficients.
Consider the following numbers in the Hilbert class field H of Q(y/—23).
Let o be the real root of the polynomial X® — X — 1. Define

(11) ms=2-p0, m=0+2, mu=20—1, m7=30+2, m9 =30+ 1,
Wy =3 =0, M5 =20" — 0+ 1, mg = 0" —20+3,
where each 7, has norm ¢. One finds numerically that

(12) (f,©0)"® =log|al,

where

23 18 42 36 _—48 4 __—22

- _ - 30 207
Wog =Ty To5 N7 Tyg Ti11Ty7 T19 O -

In the last section we will prove this identity using Theorem [IL

2 Lattices and vector valued modular forms

Recall that the group SLy(Z) has a double cover Mp,(Z), called the meta-
plectic group, whose elements can be written in the form

((23)v77)
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of 7 in the upper half-plane whose square is ¢ + d. The multiplication is
defined so that the usual formulas for the transformation of modular forms
of half integral weight work, i. e.

(A, f(1))(B, g(7)) = (AB, f(B(7))g(7))

for A, B € SLy(Z) and f,g are square roots of ca7 + d4 and cpT + dp,
respectively.

Let (V,q) be a rational quadratic space over Q, that is a rational vector
space V' equipped with the quadratic form q : V' — Q. The corresponding
bilinear form on V' x V' is defined by (z,y) = 2q(z+y) — 2q(z —y). Suppose
that V has signature (b™,b7). Let L C V be a lattice. The dual lattice of L
is defined as L' = {x € V|(x, L) C Z}. We say that L is even if q(¢) € Z for
all ¢ € L. In this case L is contained in L' and L'/L is a finite abelian group.

We let the elements e, for v € L’/L be the standard basis of the vector
space CI'/L | so that e e, = e,,. The complex conjugation acts on CL'/* by
e, = e¢,. Consider the scalar product on CH'/ given by

(13) <e/m 6,,) = 5u,u

where ( ab ) € SLy(Z) and v er + d is one of the two holomorphic functions

and extended to C¥'/* by linearity. Recall that there is a unitary represen-
tation py, of Mpy(Z) on C¥/% defined by

(14) pr(T)(e,) =e(q(v)) e,

(15) pr(S)(e,) =i PL LT N e~ (1, v)) e
uweLl’'/L

where

w 1 (1)) 5 (37

are the standard generators of Mp,(Z).

For an integer n € Z we denote by L(n) the lattice L equipped with a
quadratic form q,(¢) := nq(¢). In the case n = —1 the lattices L'(—1) and
(L(—1))" coincide and hence the groups L'/L and L(—1)"/L(—1) are equal.



Both representations p;, and pr—1) act on CL'/L and for v € Mp,(Z) we have
pL(—l)(V) =pr(7).

A vector valued modular form of half-integral weight k£ and representation
pr, is a function f :  — CL'/L that satisfies the following transformation law

) f<m+b):m%m<<z

cT+d

Z) m) £,

We will use the notation 9 (py) for the space of real analytic, My (pr) for
the space of holomorphic, and M}(pr) for the space of weakly holomorphic
modular forms of weight k& and representation py. We denote by S} (pz) the
space of weakly holomorphic modular forms of weight k and representation
pr, with zero constant term at infinity.

Now we recall some standard maps between the spaces of vector-valued
modular forms associated to different lattices.

If M C L is a sublattice of finite index, then a vector-valued modular
form f € My (pr) can be naturally viewed as a vector-valued modular form
in My (prs). Indeed, we have the inclusions

McLcL cM

and therefore
L/McL'/JMc M'/M.

We have the natural map L'/M — L'/L, p — p. The following lemma is
proved in [4].

Lemma 1. For M =9, M or M' there are two natural maps

resz/ar - Mi(pr) — Mi(par),

and
troa : Mi(par) = M, (pr),
given by
(18)
fa, ifpel’/M ,
(reseiD), =1 7 e (f € Mi(pr), p € M'/M),



and
(19) (trome(9)) = Z Gy (9 € My(pm), AeL'/L).
WEL! [M: im)

Now suppose that M and N are two even lattices and L = M & N. Then
we have
L'/JL = (M'/M)& (N'/N).

Moreover
CL’/L ~ CM’/M ® CN’/N

as unitary vector spaces and naturally

pPL = pm @ PN.

The following lemma can be easily deduced from the unicity of the represen-
tation py; and the fact that pyr—1) = Py,

Lemma 2. For two modular forms [ € My(pr) and g € Mi(par(-1)) the

function
h = <fag>(cM’/M: Z €y Z Jusv 9u

vEN'/N  peM’'/M

belongs to Myii(pN)-

3 Theta functions and Theta lifts

In this section we recall the definition of regularized theta lift given by
Borcherds in the paper [2].

We let L be an even lattice of signature (2,b7) and let L' be its dual
lattice. The positive Grassmannian Gr*(L) is the set of positive definite
two-dimensional subspaces vt of L ® R. We write v~ for the orthogonal
complement of v, so that L ® R is the orthogonal direct sum of the positive
definite subspace v* and the negative definite subspace v~. The projections
of a vector £ € L ® R into the subspaces vt and v~ are denoted by /,+ and
l,—, respectively, so that £ = l,+ + £,-.

The vector-valued Siegel theta function Oy, : $ x Gr™ (L) — CY/% of L is
defined by

200 Oulro) =y S e 3 efa(ly)r + a(l,)7).

XeL'/L  LeL+X

8



Theorem 4.1 in [2] says that © (7, v") is a real-analytic vector-valued mod-
ular form of weight 1 — b~ /2 and representation p; with respect to the vari-
able 7.

For f € M_y2(pr) we define the regularized theta integral by

(21) Cr(v", f) = /mg (f(r),0L(r,07))y™ 7" 2 dudy
SLa(Z\9

(here the product (,) is defined by (e,,e,) = 0,.,).

The integral is often divergent and has to be regularized. In this paper we
consider regularized lifts of weakly holomorphic cusp forms. In this case the
regularization is simpler than in the general situation. For f € S|, so(pr) we
set

Op(vt, f) = lim [ (f(7),0r(r,0%))y " P dudy,
T—o0 Fr
where Fr is a truncated fundamental domain introduced in Section [Il.

Denote by Aut(L) the group of those isometries of L ® R that fix each
coset of L in I'. The action of Aut(L) on f is given by action on L’/L. The
regularized integral ®;(v™, f) is a function on the Grassmannian Gr™(L)
that is invariant under Aut(L).

In the case when L has signature (2,b7) the Grassmanian Gr™ (L) carries
the structure of a Hermitian symmetric space. If X and Y are an oriented
orthogonal base of some element v™ of Gr (L), then we map v™ to the point
of the complex projective space P(L®C) represented by Z = X +iY € L&C.
The fact that Z = X +¢Y has norm 0 is equivalent to saying that X and
Y are orthogonal and have the same norm. This identifies Gr™ (L) with an
open subset of the norm 0 vectors of P(L ® C) in a canonical way, and gives
Gr (L) a complex structure invariant under the subgroup O (L&R) of index
2 of O(L ® R) of elements preserving the orientation on the 2 dimensional
positive definite subspaces. Thus, the open subset

P={[Z] e P(L&C)|(Z,7)=0and (Z,Z) > 0}

is isomorphic to Gr* (L) by mapping [Z] to the subspace RR(Z) + R3(Z).

The following theorem of Borcherds relates the regularized theta lifts asso-
ciated to the lattice L of signature (2, b) with the infinite products introduced
in his earlier paper [1J.



Theorem 2. ([2], Theorem 13.3) Suppose that f € Sf_b/g(PL) has the
Fourier expansion

f(r) = Z Z cx(n)e(nt) ey

AeL/ /L n>—00

and the Fourier coefficients cx(n) are integers for n < 0. Then there is a
meromorphic function Y (Z, f) on P with the following properties.

1. V¥ is an automorphic function for the group Aut(L, f) with respect to
some unitary character of Aut(L, f)

2. The only zeros and poles of Wy, lie on the rational quadratic divisors (+
for 0 € L, q(f) < 0 the order of I+ is equal to

Z Cxl (Q(f’fl))

z€RT:
zleLl’

®L(Z, f) = —4log|VL(Z, f)]-

4. One can write an explicit infinite product erpansion converging in a
neighborhood of each cusp of Gr™(L).

Remark 5. Theorem 13.3 in [2] is formulated in more general settings and an
explicit infinite product expansion is given there.

At the end of this section let us consider the lattices of signature (2,0)
in more detail. Recall that there is a one-to-one correspondence between
equivalence classes of even lattices of fundamental discriminant —D and ideal
classes of the imaginary quadratic field K = Q(v/—D). Fix an ideal class
B. For a fractional ideal b € B consider an even lattice N = (b, q), where
the quadratic form q is defined as q(z) = W Ng/g(x) for € b. Up to
isometry, the lattice N depends only on B and not on the particular choice
of b. Hence, we denote this lattice by Nz. Moreover, the representation py
defined in Section Pl depends only on the genus of N. Thus, for D prime the
representation py is the same for all fractional ideals of K and we denote this
representation by p. The theta function Oz defined in Section 1 coincides
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with the theta function ©y defined by (20)). It follows from the definition of
theta lift that for f € S/(p)

On(f) = (f,O8)"*.

Thus, the regularized Petersson product () can be seen as a theta lift of f to
a zero-dimensional Grassmanian Gr™ (). From this point of view Theorem
[ is an “arithmetic analog” of Theorem [2l This approach is studied in the
upcoming work of S. Ehlen [7].

4 A see-saw identity

In the paper [13] S. Kudla introduced the notion of a “see-saw dual reductive
pair”. It gives rise to a family of identities between inner products of au-
tomorphic forms on different groups, thus clarifying the source of identities
of this type which appear in many places in the literature, often obtained
from complicated manipulations. Here we prove a see-saw identity for the
regularized theta integrals described in the previous section. This identity
will play a central role in our proof of Theorem [Il

Suppose that (V,q) is a rational quadratic space of signature (2,b) and
L C V is an even lattice. Let V' = V; @V, be the rational orthogonal splitting
of (V, q) such that the space V; has the signature (2,b — d) and the space V5
has the signature (0, d). Consider two lattices N := LNV; and M := LN V5.
We have two orthogonal projections

pry; :LOR - M®R and pry:LQR = N®R.
Let M" and N’ be the dual lattices of M and N. We have the following

inclusions
McL NcCL MeNCLCL CMaoN,
and equalities of the sets
pry (L) =M, pry(L)=N"
Consider the rectangular |L'/L| x |N'/N| dimensional matrix 77, x with

entries
ho(m) = Y. e(—am)7),

meM’:
m+veEN+L

11



where A € L'/L,v € N'/N,7 € $. This sum is well defined since N C L.
Note that the lattice M is negative definite and hence the series converges
absolutely.

For a function f = (fa)xerr/z € Miyas2(pn) we define g = (g,)veny/n by

(22) gV(T): Z 19)\,1/(7-) .f)\(T)'

MeL'/L

In other words

(23> g = TL,va
where f and g are considered as column vectors.

Theorem 3. Suppose that the lattices L, M and N and the functions f,
g are defined as above. Then the function g belongs to My q/2(pn). Thus,
there is a map T, N : My(pr) = Miya2(pn) defined by (23).

Proof. Consider the function

Oucn(n) =0u(r) = Y e > e(—qm)r),

peM’'/M  meM+pu

which belongs to My2(pa(—1y). It follows from (22) and (18] that

Tin(f) = (respyman(f), Onr=1)) crr -
Thus, from Lemma 2 we deduce that Ty, y(f) is in Myyas2(pn)- O

Theorem 4. Let L, M, N be as above. Denote byi : Gr™(N) — Grt(L) the
natural embedding induced by the inclusion N C L. Then for vt € Grt(N)
and the theta lift of a function f € Ml!_b/2 (pr) the following holds

(24) Pp(i(v"), f) = Py (v, TN (f)).

Proof. For a vector ¢ € L' denote m = pr,,(¢) and n = pry(¢). Recall that
m € M" and n € N'. Since v is an element of Gr™(N) it is orthogonal to
M. We have

a(ly+) = a(ne+),  q(l-) = a(m) + q(n,-).

12



Thus for A € L'/L we obtain

@)\+L(T, U+) = Z e(Q(£v+)T + qu*)f)

lex+L

- Z e(q(ny+ )T + q(ny-)7 4+ q(m)7).

meM'’,neN’:
m+neX+L

Since N C L we can rewrite this sum as

Ornir(mvt) = D Oun(r,vh)ua(r).

vEN'/N

Thus, we see that for f = (fa)acr//r the following scalar products are equal

(f;0L(r,0%)) = (TLn(f), On(T,0")).

Therefore, the regularized integrals (21) of both sides of the equality are also
equal. O

5 Local and global heights on curves

In this section we review the basic ideas of Néron’s theory. A more detailed
overview of this topic is given in [10]. Let X be a non-singular, complete, ge-
ometrically connected curve over the locally compact field k,. We normalize
the valuation map | |, : ki — R} so that for any Haar measure dz on k, we
have the formula o*(dz) = |a/, - dx.

Let a and b denote divisors of degree zero on X over k, with disjoint
support. Then Néron defines a local symbol (a,b), in R which is

i) bi-additive,
ii) symmetric,
iii) continuous,

vi) satisfies the property (> m.(x), (f)), =log|[] f(z)™|,, when b = (f)
is principal.

(
(
(
(
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These properties characterize the local symbol completely.

When v is archimedean, one can compute the Néron symbol as follows.
Associated to b is a Green’s function G, on the Riemann surface X (k,) — |b|
which satisfies 990G}, = 0 and has logarithmic singularities at the points in |b|.
More precisely, the function Gy, — ord, (b) log |7|,, is regular at every point z,
where 7 is a uniformizing parameter at z. These conditions characterize G,
up to the addition of a constant, as the difference of any two such functions

would be globally harmonic. The local formula for a = > m,(x) is then

(a,0)y = Y _m, Gy(x).

This is well-defined since Y m, = 0 and satisfies the required properties since
if b = (f) we could take Gy, = log |f].

If v is a non-archimedean place, let 0, denote the valuation ring of k, and
¢, the cardinality of the residue field. Let X be a regular model for X over
0, and extend the divisors a and b to divisors A and B of degree zero on X.
These extensions are not unique, but if we insist that A has zero intersection
with each fibral component of X over the residue field, then the intersection
product (A - B) is well defined. We have the formula

<CL, b)v = _(A . B) lquv.

Finally, if X, a, and b are defined over the global field k& we have (a, b), = 0
for almost all completions k, and the sum

(25) <CL, b) = Z <CL, b)v

places v

depends only on the classes of a and b in the Jacobian. This is equal to the
global height pairing of Néron and Tate.

It is desirable to have an extension of the local pairing to divisors a and
b of degree 0 on X which are not relatively prime. At the loss of some
functoriality, this is done in [10] as follows.

At each point x in the common support, choose a basis % for the tangent
space and let m be a uniformizing parameter with %—j = 1. Any function
f € ky(X)* then has a well-defined “value” at x:

fle) = L (@) ik,

z
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5;» not on 7. Clearly we have

where m = ord, f. This depends only on

To pair a with b we may find a function f on X such that b = div(f) + ¥/,
where b’ is relatively prime to a. We then define

(26) (a,b), = log|fla]l, + {a, V).

This definition is independent of the choice of f used to move b away from
a. The same decomposition formula (25 into local symbols can be used
even when the divisors ¢ and b have a common support provided that the
uniformizing parameter 7 at each point of their common support is chosen
over k.

6 Embedding argument

Recall that K denotes the imaginary quadratic field Q(/—D). In this section
we construct, for each B € CLg and each f € S{(p), a meromorphic function
U on the modular curve Xy(D) that satisfies the following two properties:
the divisor of this function is supported on Heegner points; the identity

(27) (f,©p)"® = log [¥(3)]

holds for some CM-point 3. The main tools we use in this section are
Borcherds lifts and see-saw identities introduced in Section [3l

Our first goal is to find a convenient lattice of signature (2, 1) that contains
the positive definite lattice associated to the ideal class B as a lower rank
sublattice. To this end we consider the lattice

(28) L:{(AéD B)‘A,B,CEZ}

C
equipped with the quadratic form q(z) := —D det(z). Its dual lattice L' is
given by
A'/D B'/2D
(2) L= / / ‘A’,B’,C’ cz\.
B/2D

15



For ¢ € L' with q(¢) < 0 denote by 3, the point in § corresponding to the
positive definite subspace ¢+ via ([@3]). More explicitly, for the vector

v B2
“(—ﬁ/? 0 )

the point 3, is a root of the quadratic equation
(30) az; + B30+ =0.
Let us recall the following standard facts about lattices and fractional ideals.

Lemma 3. Suppose that —D < 0 is a square-free discriminant and [a, b, ]
is a primitive quadratic form of disctiminant —D. Let 3 be a solution of the
equation az® + by +c = 0. Then the lattice

¢ =7+ 37

is a fractional ideal of the imaginary quadratic field K = Q(v/—D). More-
over, this ideal satisfies

(31) ¢ = (a)™".

Lemma 4. Let ¢ C K be a fractional ideal. Consider the quadratic form q(-)
on K given by q(B) = Nk o(B). Then the dual lattice of ¢ with respect to this
quadratic form is equal to (N g(c))~' 0™t Here 0 denotes the different of
ok, i. e. the principal ideal (v/—D).

The following two lemmas are crucial to show that for each ideal class
B the associated positive definite lattice is contained in L as a lower rank
sublattice.

Lemma 5. For each ideal class C € CLg there exists a vector m € L' such
that q(m) = —1/4 and 3,Z + Z C K is a fractional ideal in C.

Proof. The classical correspondence between fractional ideals of 0x and bi-
nary quadratic forms of discriminant —D implies that for each ideal class
C € CLg there exist A, B,C € Z such that

B?—4AC = -D

16



and for 3 € H satisfying
A+ B3 +C =0

the subset 3Z+7Z of K is a fractional ideal in the ideal class C. Or equivalently,
there exists a half-integral matrix

( C —B/2>
[ =
~B/2 A

3lZ+Z€C

For each = € SLy(Z) the fractional ideal 3,,¢:Z + Z is equivalent to 3,Z + Z.
It is easy to see, that the matrix [ is SLy(Z)-equivalent to some matrix of the
form

with

- C  —-B)2 . N .
[ = . R , AeDZ,Be DZ,C eZ.
-B/2 A
Then the matrix m =: {/D belongs to L', has norm —1/4, and since 3,, = 3;
the fractional ideal 3,,Z+Z belongs to the ideal class C. Lemma is proved. [

Lemma 6. Let m € L' be a vector of the norm —1/4. Set N := LN m™ .
Denote by ¢ the fractional ideal 3,,Z + Z. Then the following holds
(1) the lattice N is isomorphic to the fractional ideal ¢* equipped with the

quadratic form q(y) = WNK/Q(V);
(ii)) L = N @& 2mZ.

Proof. First we prove part (i). Each element of L' can be written as

1 c —b/2
=D —b/2 a

for some a € DZ,b € Z, ¢ € Z. The condition 4Dq(m) = b* — 4ac = —D
implies that b € DZ. Set
2
a 3m 3m
/= = .

This element of L ® C satisfies
A(Z2)=q(Z)=0 and (Z,Z)=1.
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Moreover, the elements Z and Z are both orthogonal to m. Consider the
map

1 K- N®Q

defined by
s =37+ sZ.

This map is an isometry, assuming that the quadratic form on K is given
by a(8) = Nk/o(B) and the quadratic form on N ® Q is given by q(¢) =
—D det(f). We have

o) =& St I dmtIn ) _ 1 (P =D)/2 —ab
D 3m+3_m 2 D —ab 2a2 ’

Aazy) =& [ 3m3m(am & 3m) O P N | —be  (*—D)/2
MID\ 2wt setm ) D\®-D2 a )

ag2) =& Smdm. dmdmmtim) | _ 1 (28 —be
"D\ GdmGm +3m) 3w D\ —bc (¥ — D)/2

Using that a,b € DZ and b = D(mod 2), we see that
(32) (aZ+a3mZ+aj32,Z) C N.
On the other hand

(33) (a)¢® = aZ + a3 Z + a3’ Z.

Lemma [3 implies that the ideal (a)c? has norm 1. Hence, by Lemma [H] the
dual lattice of (a)c? in K is equal to 97*(a)c?. Since 1 is an isometry, the dual
of 2((a)c?) is (07 (a)c?). We have the inclusions

(34) 1((a)e?) C N C N Ca(d(a)?).

Since (07'(a)c?)/((a)e?) & Z/DZ we find that |[N'/N| is a divisor of D.
Since a positive definite 2-dimensional even lattice can not be unimodular,
we deduce that |[N'/N| = D. Thus the symbols “C” in (34) should be
replaced by “=”. Part (i) of Lemma [@l is proved.

Now we prove (ii). The condition q(m) = —1/4 implies that b € DZ.
Hence, the element 2m belongs to L. Set M := 2mZ. We have the following

inclusions
MaoN CL cLCM®N.
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Observe that
|L'/L| =2D, |M'/M|=2, |N'/N|=D.
Thus, L=M &® N and L' = M' & N'. O
We combine the previous two lemmas in the following theorem.

Theorem 5. For each ideal class B of K there exists a vector m € L' such
that

(i) a(m) = —1/4;

(ii) the lattice N := L N'm" is isomorphic to the lattice Ng defined in Sec-
tion [3;

(iii) L = N @ 2mZ.

Proof. Since D is prime, the class number of K is odd. Thus, each ideal class
B is equal to C2 for some C € CLg. Let m € L' be the vector constructed in
Lemma [5] which satisfies 3,,Z + Z € C. Then Lemma [0l readily implies that
m satisfies the conditions of the theorem. O

Our next goal is to find a preimage of a function f € M (py) under the
map 17, n defined in Theorem 4l To this end we show that the map 77 n :
M{/z(pL) — Mj(py) is surjective. Moreover, the kernel of T}, y is infinite
dimensional and using its elements we can find a preimage of f that satisfies
additional conditions on Fourier coefficients. This additional conditions are
needed to simplify the computation of CM-values of the theta lift ®(z, f),
which we will make in Section [l

Before we proceed with the proof let as recall some properties of the
Fourier coefficients of elements in M} (py) and M;(pr). Recall that N'/N =
7Z)/DZ and L'/L = Z/2DZ. Moreover, we can choose isomorphisms iy :
Z/DZ — N'/N and 1y, : Z/2DZ — L'/ L such that q(1x(v)) = v*/D(mod Z)
for each v € Z/DZ and q(i1,(\)) = A\?/4D(mod Z) for each A\ € Z/2DZ.
Suppose that f = (f,),enr/n belongs to M (py) for some odd k. Then, the

transformation property (7)) for the elements R = (( _01 _01) ,i) and

T = ((é } ) ,1) of Mpy(Z) implies that

f,=f. veZ/DL
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and f, has the Fourier expansion of the form
t
L, = c(t e<—7>.
f >, cdbe(g
t=v2(mod D)
Therefore, since D is prime the Fourier expansion of f can be written as

S X ene(5).

v€Z/DZ  t=v2(mod D)

Similarly, we see that for [ € 1/2 + 2Z each modular form h € M;'(p;) has
the Fourier expansion of the form

d
o= Y e Y b(d)e(ET).
AE€Z/2DZ  d=X2(mod D)

Theorem 6. Let the lattices L, N, and the vector m be as in Theorem [3.
Suppose that f € M/ (pn) is a modular form with zero constant term and

rational Fourier coefficients. Then there exists a function h € Sl!/2(pL) such
that:

(i) the function h(T) = 3 )\ 2902 €X 2 od=x2(mod ap) V() e(;57) has rational
Fourier coefficients;

(i) the Fourier coefficients of h satisfy b(—Ds?) = 0 for all s € Z;

(11i) Ty n(h) = f.

Proof. Denote by S the lattice Z equipped with the quadratic form q(x) :=
—x%. For this lattice we have S’/S = Z/27. LemmaBlimplies that L = N®S.
Note that L'/L = 5"/S x N'/N and p;, = ps ® pn. Set

Oo(m,2) =Y e(n’t+2nz), Oi(r,2)= Y  e(n’r+2nz)

nez nei+z

and

0.(1) =0.(7,0), k=0,1.
It follows from the definition of 77, y that

TLN Z h(nzx K+

KES'/S
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Let gz~$_271, gz~5071 be the weak Jacobi forms defined in the book [8] p.108. These
functions can be written as

$_21(7,2) = 1ho(7) Oo(T, 2) + ¥1(7) 01 (7, 2),
G0.1(T, 2) = @o(T) Oo(7, 2) + 01(7) O1(, 2)
where

(35) Yo = —2 — 12g — 56¢% — 208¢> + - - -,
¢l — q_1/4 + 8q3/4 + 39q7/4 + 152q11/4 4.

o = 10 + 108¢ + 808¢* + 4016¢° + - - - ,
p1 = q—1/4 o 64q3/4 _ 513q7/4 o 2752q11/4 4.

The vector-valued functions (¢, 11) and (¢, 1) belong to the spaces M' . 12(ps)
and M, /2 (ps) respectively, and they satisfy

(36) G_2,1(7,0) = Yo (7) Oo(T) + ¥1(7) 61 (7) = 0,
G0.1(7,0) = ¢o(7) bo(7) + 1(7) 61 (7) = 12.

First, we construct a function g € M 12(p1) that satisfies conditions (i)
and (iii). Define

1

(37) I(rp) = E(p,@fl,, (k,v) € §'/S x N'/N.
This function satisfies
1
Tr.n(9) ~12 Z ev (90.)0% + 9(1.)01)
veN'/N
1
=13 > e fulobo + 161)
veN'/N
:f,

Next, we will add a correction term to g and construct a function that
satisfies also (ii). Fix an integer s > 0. Our next goal is to construct a sup-

plementary function g(7) = ZAeZ/2DZ Zdz)\z(mod 4D) a(d)e(dr) € Ml!/2(pL)
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with the following properties:

(38) a(—Ds?*) # 0 and a(—Dr?) = 0 for all r > s,
(39) Trn(g) =0
(40) g has rational Fourier coefficients.

To this end we consider the following theta function
0= Z e, Z (a® + @) e(aar).
vEZ/DZ aco+v/v/—D

By Theorem 4.1 in [2] his theta function belongs to S3(p). We define

~ 2

(41) Ginw) = Ve ©, 5T (k,v) € §/S x N'/N,

where
L {O if s =0 mod 2,

1 otherwise,

and j is the j-invariant. First we check that the function g satisfies condition
B8). For D # 3 we have

O =4¢+O0(¢%), q=e(7).
Hence, from (1)) we find that for s even
g(0,0) — 8q—52/4 + ()(q—52/4—|—1)7
§(1,0) :4q—52/4—1/4 + O(q_32/4+3/4),
and for s odd
§(0 0 =— 8q—s2/4+1/4 + O(q_52/4+5/4),
- _ 2 g2
J(1,0) =4q 4 O(g=/+ .

This proves ([B8). The function g satisfies

Ty n(9) = Z ey (G0 + §1,0)01)

veN'/N

= Y O T (Yol + 1161)

vEN'/N
=0.
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This proves (39). The property (@0) is obvious.
By subtracting from ¢ a suitable linear combination of functions ¢ for
different s we find a function

o= 3 e Y b(d)e(%T>€Mf/2(pL)

X\€Z/DZ  d=X2(mod 4D)

such that

(42) b(—Dr?) =0 for all r € Z\0,

(43) Tin(h) = f,

(44) h(7) has rational Fourier coefficients.

The final step is to show that b(0) = 0. Identity (43) implies that
h0,0000 + h(1,001 = fo.

Hence, the constant terms of these functions are equal. By the assumptions
of the theorem
CT(fy) =0.

On the other hand
CT(h(Qp)eo + h(170)91) = Z b(—D32) = b(O)

SEZL

Thus, the function h satisfies the conditions (i)-(iii) of the theorem. This
finishes the proof. O

We observe that the Grassmanian Gr'(L) is isomorphic to the upper
half-plane §). There is a map  — Gr™ (L) given by

(45) z = U+(Z)ZI§R(Z2T)R+%<22i)RCL@R.

z z

The group I'y(D) acts on L’ and fixes all the elements of L'/L. Denote by

Xo(D) the modular curve I'y(D)\$.
Suppose that the vector m € L', the lattice N and the point 3,, € ) are
defined as in Theorem il Let h be the modular form h € S} /o (pr) satisfying

(46) Trn(h) = f,
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that was constructed in the previous theorem. It follows from (46 and
Theorem [ that

(I)L(h'vﬁm) = (I)N(f)
Recall that by definition

Oy (f) = (f, O8)"®.

Without loss of generality we assume that h has integral negative Fourier
coefficients. The infinite product ¥(z) := W (h, z) introduced in Section Bl
defines a meromorphic function on Xo(D). Theorem [2in Section [B] implies

(47) (f,©5)"® = log |UL(h, 3m)].

It also follows from Theorem 2lthat the divisor of ¥, is supported at Heegner
points.

7 Heights of Heegner points

In this section we compute the local height pairing between Heegner divisors.
These calculations are carried out in the celebrated series of papers [11], [12].
For the convenience of the reader we recall the main steps of the computation
in what follows.

First, let as recall the definition of Heegner points and the way they can
be indexed by the vectors of the lattice L'.

For ¢ € L' with q(¢) < 0 denote by x, the divisor (3,) — (c0) on the
modular curve Xy(D). The divisor x, is defined over the Hilbert class field
of Q(+/Dq(?)).

For any integer d > 0 such that —d is congruent to a square modulo 4D,
choose a residue 8( mod 2D) with —d = 3%( mod 4D) and consider the set

a/D b/2D ,
Lag = {g: (b/QD c ) L

on which I'g(D) acts. Define the Heegner divisor

ydg = Z Xg.

Lelo(D)\Lq,p

q?) = — %, b= [( mod 2D)}
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The Fricke involution acts on L’ by

1 0 1 0 -D
(= — 4
~D (—D o) (1 0 )
and maps Lgg to Lg_g. Set

(48) Ya=Ydp+ Y5

The divisor yj is defined over Q ([12] p. 499.)

Now we would like to compute the local height pairings between the
divisor x, and a Heegner divisor. The definition of the local height pairing is
given in Section bl The divisors x; and y}; have the point oo at their common
support. In order to define the height pairing between these divisors we
must fix a uniformizing parameter 7w at this cusp. We let m denote the Tate
parameter ¢ on the family of degenerating elliptic curves near co. This is
defined over Q. Over C we have ¢ = e(z) on X (D) = I'}(D)\$, where
z € ) with (z) sufficiently large. The following theorem can be deduced
from the computations in Section IV.4 in [12].

Theorem 7. Let dy, dy > 0 be two integers and (1, P2 be two elements of
Z/2DZ with —dy = $?( mod 4D) and —dy = f3( mod 4D). Suppose that d;
is fundamental and dy/d; is not a full square. Fiz a vector { € Lg, g,. Let
p be a prime with ged(p, D) = 1. Choose a prime ideal P lying above p in
the Hilbert class field of Q(v/—dy). Then the following formula for the local
height holds:

in the case (C%) =1 we have

(49) (X6, va, )9 =0,
i the case (d%) = —1 we have
didy —1? dydy — 12
(50) <X€> ng lOg Z 5d1 (W) OI'dp (T .
r= 5152 mod 2

Here ¢ = Z3y + 7, n = ZD + Zﬁl% V=di g 4s any ideal in the ideal class A
defined by (@), and

2 forr =0 mod d;
5d(7’) = .
1  otherwise.
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Proof. The curve Xy(D) may be described over Q as the compactification
of the space of moduli of elliptic curves with a cyclic subgroup of order D
[TT]. Over a field k of characteristic zero, the points y of X,(D) correspond
to diagrams

W F— F,

where F' and F’ are (generalized) elliptic curves over k and 1) is an isogeny
over k whose kernel is isomorphic to Z/DZ over an algebraic closure k.

The point 3, € $) defines the point x € Xo(D). Then x = (¢ : E — E')
and over C this diagram is isomorphic to

C/C&C/cn.

Following the calculations in [I1I] we reduce the computation of local
heights to a problem in arithmetic intersection theory. Let us set up some
notations. Denote by v the place of Hy,, the Hilbert class field of Q(+/—d;),
corresponding to prime ideal 8. Denote by A, the ring of integers in the
completion Hy, , and let ™ be an uniformizing parameter in A,. Let W be the
completion of the maximal unramified extension extension of A,. Let X be a
regular model for X over A, and x, y be the sections of X ® A, corresponding
to the points x and y. A model that has a modular interpretation is described
n [I1] Section III.3). The general theory of local height pairing [10] implies

<Xa Y>v = _(X : X) lng

The intersection product is unchanged if we extend scalars to W. By Propo-
sition 6.1 in [11]

1
(K . X)W — 5 Z CardHomW/w'” (§7 X)dogl-

n>1

Denote by R the ring Homyy/x(x¢). On p. 550 of [12] the following formula
for the intersection number is obtained

(51)
1
(x¢ Y_rlz)W =7 Z Card{S[dhgr,dﬂ — R mod Rx}ordp<

T’2<d1d2
r=p182(mod 2D)

d1d2 — 7’2
4D ’
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where S|4, 274, is the Clifford order

1+4+e 1+e 1+e)(l+e
Sldy 2rds) = L+ 7 5 iz 5 2—|—Z( 11( 2)’

= —dl, 62 dg, €169 + €€ = 2r.

In the case (dﬂ) = 1 the ring R is isomorphic to an order in 04,. Since

dy/dy is not a full square the ring R can not contain the Clifford order
Siay 2ra5)- Hence, (x¢ - yy, )w = 0 and this proves ({@J).

Now we consider the case (C%) = —1. Formula (9.3) in [11I] gives us a

convenient description of the ring R. Namely, for a,b € Q(v/—d;) denote

a b
la,b] = <pb )

and consider the quaternion algebra over QQ

B ={[a.t)]a.b € Qv/=d)}.

Then R is an Eichler order of index D in this quaternion algebra and it is
given by

R= {[a, b] }a cd !, bedv naca e a = bmod odl},

where 0 is the different of Q(+/—d;).
By the same computations as in Lemma 3.5 of [9] we find that the number
of embeddings of Si4, 2,4, into R, normalized so that the image of e; is

[v/—dy,0], is equal to
d1d2 —7’2 dldg —7“2
(5d1 (T) The2q2 (W) Ol'dp (T .

This finishes the proof of the theorem. O

8 Proof of Theorem 1.

Proof of Theorem [1. Since the discriminant —D is prime, the class number

of K is odd and there exists an ideal class C such that B = 52 in the ideal
class group. The class C contains an ideal of the form

(52) ¢ =3Z+7Z,
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where 3 is a CM point of discriminant —D. Property (52]) is preserved when
we act on 3 by elements of SLy(Z). As we have explained in the proof of
Theorem [B] we may assume that 3 satisfies the quadratic equation

a3 +by+c=0

for a € DZ,b € DZ,c € Z and b* — 4ac = —D. The matrix

1 c  —b/2
=D -b/2 a

belongs to the lattice L’ and has the norm —1/4. Lemma [l implies that the
lattice N := L N m™* corresponds to the fractional ideal ¢? as explained in
Section [B] and moreover, the lattice L splits as L = N @& 2mZ.

Next, by Theorem [ we find a weak cusp form h € S| /o (pr) satisfying

(53) Trn(h) = f,

where 77, x is defined as in Theorem [l Function h has the Fourier expansion

of the form p
=3 e Y b(d)e(ET).

BEZ/2DZ  d=B2(mod 4D)

It follows from (B3)) and Theorem @ that

Oy (f) = Dr(h,3).

From Theorem [2]in Section B we know that

(54) (I)L(haﬁ) = log |\DL(ha5)|>

where U(z) = U (h, z) is a meromorphic function. Theorem 2] also implies
that

[e.e]

(55) div(¥) =) " b(—d) y5,

d=0

where y} is the Heegner divisor defined in (48]).
Set x = (3) — (00). The condition (ii) of Theorem [6] implies that the
function ®y(h,-) is real analytic at point 3. Thus, the only point in the
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common support of x and div(¥) is co. Recall, that we have fixed the
uniformizing parameter 7 at this cusp to be the Tate parameter ¢ on the
family of degenerating elliptic curves near oco.

Recall that the divisors x and div(V) are defined over H. The axioms
of local height (listed in Section []) together with the refined definition (20])
imply that for each prime P of H

(56) ordy (¥ (3)) log p — ordy (¥[oo]) logp = (x, Z b(—d) y[’§>$.
d=1

From the infinite product of Theorem 13.3 in [2] we find that ¥[oc] = 1
for the choice of the uniformizing parameter at co as above. Theorem
part (ii) implies that d/D is not a full square provided b(—d) # 0. Thus,
by Theorem [1] for each prime B of H lying above a rational prime p with
(%) # 0 we obtain

(x,ya)p =0

in the case (%) =1, and

i d — Dn? d — Dn?
(57) <X7 Yd>q3 = log(p) Z T62A2 (T) Ol"dp (T)

nEdT(Lri%d 2)

in the case (%) = —1. We observe that the sum

- d — Dn? d — Dn?

Z b(_d> Z T62A2 (T) Ol"dp (T)

d=0 nez

n=d(mod 2)

is equal to the constant term with respect to e(7) of the following series
P ((ranto-+ht) Y rsa(p)orhine(57) )
The equation (53) implies

(58) fv = hownbo+hanb, veZ/DL.

Hence, combining the equations (57)) and (G58)) we arrive at

<X, i_o:b(—d) y2>q3 = logp Z f:c,,(—t) TBA2 (%) ord,(1).

veZ/DZ t=0
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Finally, the equations (54]) and (56]) imply

ordss() = ordy(Wy(h3)) = 10;9 (x> b(-d) y;;>m _
d=0

= Y S at-trme (o

veZ/DZ t=0

This finishes the proof of Theorem [Il O

9 Numerical example

In this section we illustrate the Theorem [0 with the following numerical
example coming from the evaluation of higher Green’s functions at CM-
points. In particular, we prove identity (I2) stated in the introduction.

Recall that the higher Green’s functions are real-valued functions of two
variables on the upper half-plane which are bi-invariant under the action
of SLy(Z), have a logarithmic singularity along the diagonal and satisfy
Af = k(1 — k)f, where k is a positive integer. The precise definition of
these functions can be found in [I5]. We denote higher Green’s functions by
Gr(z1, 22). In our recent work [15] we have related the CM-values of higher
Green’s functions and regularized products of weight one modular forms. Let
us explain this relation on the following concrete example.

We consider the pair of CM points

14723
T

 —1+v-23

31 1

32

lying in the imaginary quadratic field K = Q(v/—23). In the last section of
[T1] B. Gross and D. Zagier have conjectured that higher Green’s functions
have ”algebraic” CM values. In particular, Conjecture (4.4) of [I1] predicts
that for k =2,3,4,5 and 7

(59) Gr(31,32) = 23" log | ay|,

where o, are some algebraic numbers lying at the Hilbert class field of K.
The connection between the CM values (59) and regularized Petersson
products is as follows. Note that the space Sy of cusp forms of weight 2k
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on SLy(Z) is zero precisely when k& = 1,2,3,4,5 and 7. For these values of
k the Serre duality implies that there exists the unique modular form g in
the space M} _,, of weakly holomorphic modular forms of weight 2 — 2k on
SLy(Z) with the Fourier expansion gy = ¢~ + O(1). Denote by B and C,
respectively, the ideal classes of K containing the fractional ideals Z3; + Z
and Zj3s + Z, respectively. Theorem 4 in [I5] implies that

Gr(31.32) = ([gr Oueli—1.Onc) ",

where |-, -]z—1 denotes the (k — 1)-st Rankin-Cohen brackets. Thus, Theo-
rem 1 implies the Conjecture (4.4) formulated in [II] and, moreover, gives
the factorization formula for the CM-values of higher Greens functions.

At the rest of this section we will compute the regularized integral (I2),
which is equal to the CM-value G(31,32). The function f defined by (I0)
has the Fourier expansion of the form

f(r)= Z €y Z c(t)e<%7>.

veZ/D7Z t=v?(mod D)
t>—00

The negative Fourier coefficients of f are given in the following table:

t o | 7 |11 |14 | 15 | 17 19 20 21 23
e(—t) 26|18 2 | -5 |-=7|—-11|—=15| =17 | =19 | —23

Denote by N an even lattice (0, q), where the quadratic form q is defined
as q(z) = Ng/g(x) for x € ok.
Consider the lattice

(60) L:{(Ag3g)L&RCeZ}

equipped with the quadratic form q(¢) := —23det(¢). Choose the vector

6/23 1/2
m = :
1/2 1
The vector m has the norm q(m) = —1/4 and by Lemma [0 its orthogonal

complement L Nm* is isomorphic to N. Moreover, L splits into a direct sum
L =2mZ & N. From (B0) we find

23+ v—23
T
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Note that the fractional ideal
¢:=7Z+ j3mZ = (vV—23)7"

is principal.

Recall that the group I'j(23) acts on L by isometries and the map (43
gives an isomorphism between I';(23)\Gr™ (L) and T}(23)\$. We denote by
X(23) the modular curve '(23)\Gr™(L).

Let ¢, 1, © and J be as in the proof of Theorem [6l By Theorem [6] we find
that the vector valued function h given componentwise by

7416

Eméy;, (k,v) € §'/S x N'/N,

10 ~ .
hwy = Oty + @%@@u ]2 -

belongs to S} ,(pr) and satisfies conditions (i)-(iii). Moreover, the function
12 - 23% . h has integral Fourier coefficients. By Theorem [ these conditions
imply that

(f,00)"® = @r(h, v (3m))-

Function h has the Fourier expansion

1 d
h(T) = 593 Z ex Z b(d)e(@7‘>.

AEZJ/A6Z  d=A2(mod 92)

The negative Fourier coefficients of 12-232- h are given in the following table

d| b(—d) d | b(—d) d | b(—d) d | b(—d)
7 | —3126678 | [60 | 616 99 | 36 152 70

11| 1455 63 | 431 103 | 111 159 | 5

15| 2497 67 | 68 107 | 87 160 | 110
19| —783263 | | 68| 968 | | 111 | —156 | | 168 | —40
20| —884 76 | —352 | | 112 | —130 | | 171| 45

28 | —1228 79| 426 | |115| —276 | | 175 | —35
40 | =790 80 | —630 | | 120 | —160 | | 180 | —10
43| 884 83| —462 | |135| 65 183 | —55
4|  —68 84| =630 | [136| —10 | | 191 | 20

511 990 88| 332 | [143| 80 203| 5

56 | —792 o1 | =726 | | 148 | —90
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Since the function 12-232- h has integral negative Fourier coefficients, the
infinite product ¥(z) := Wy (12- 232 - h, z) introduced in Section 3] defines a
meromorphic function on X (23) with the only zeroes and poles at Heegner
points. Theorem P]in Section Bl implies

re, 1

The curve X{(23) has genus 0 and only one cusp. Let ji;(z) be the
Hauptmodul for T(23) having the Fourier expansion j3;(z) = ¢~ + O(q),
where ¢ = e(z). This function is given explicitly by

TN P e((a*+a Hz2) —
]23(2)_ 7](2)77(23Z> meeZ (( + b+6b) ) 3

=q ' +4q+7¢° + 13¢° + 19¢* + 33¢° + 47¢° + T4dq" + - - .

For any integer d > 0 such that —d is congruent to a square modulo 92,
choose an integer 3( mod 46) with —d = 3%( mod 92) and consider the set

a/23 b/46
Lig=<:/(= el
0 { ( b/46 ¢ )

on which I'y(23) acts. The Fricke involution acts on L’ by

1 0 1 0 —23
_)2_3<—23 o)p(1 0 )
and maps Lgp to Lg _g.

We define a polynomial H423(X) by

Haos(X) = H (X — jis(30))Y/Bt2001,

ZELd,g

q(f) = —d/92,b = B( mod 46)}

X

It follows from Theorem B3 part 2 that
W(2,12-28%-h) = [ Hazs(i5s(2)",
d<oo

and the numbers b(—d) are given in the above table.
Recall that K denotes the imaginary quadratic field Q(v/—23) and H
denotes its Hilbert class field. Let the algebraic numbers o, 7, w; € H be
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defined as in ([[T)). The value of the Hauptmodul j}; at the point 3, = 222

is equal to —p — 2. The values of H, 23< (23+\/ )) for small values of d
are given in the following table.

d | Haz(X) Haz2(—2— o)
7 (X +2)? 0?

11 | (X +1)? 0"

15 | (X? 43X +3)? o'

19 | (X +3)? o8

20 | (X?+4X +5)? 72 o0
28 | X3(X +2)? 72 o
40 | (X2+2X +3)? a5 0°
13 | (X -1 i o19
44 | (X 4+ 1) XP+7X2+17X +13)? 72, 00
51 | (X2 +4X 47)? N
56 | (X1 44X3 —16X — 17)? T3y 02
60 | (X?2+3X +3)*(X?+7X +13)? T2

63 | (X +2)*(X*+5X°+12X2 + 20X + 19)? s 0°
67 | (X —3)? 1 0°
68 | (X*+4 10X+ 34X? 4 46X + 25)? w3 070
76 | (X +3)%(X3—X?-9X —9)? T2y 0t
79 | (XP+10X* +43X7 4+ 90X? + 90X + 27)3 Te 010
80 | (X?+4X +5)*(X*+6X3 +20X? + 30X +17)? 7r§7r§5g
83 | (X?—X?%—-13X —19)? T 0°
84 | (X*+2X3 +6X%+14X + 13)? 72y 0%6
91 | (X2 —4X —9)? iy 07 °
99 | (X +1)*(X?+8X +19)? o0 ®
103 (X +4X* 4+ 7X3 +33X?% 4+ 99X + 81)? Ta s 0
107 | (X3 +5X%2+ 19X + 31)2 Ty 08
115 | (X +5)? w3,

Using this values of polynomials Hg23(X) together with values for those d
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which are not included in the table, we finally we arrive at

3,
127

23+ +/—23
_ 18 _—42 36 _—48 4 _-22 30 _-23 —9.23
g “I’P<77 h) ‘ = log ‘Ws Mo Tq Tyg T11Ty7 Tig Waz 0O .

46

This proves the result (I]) obtained by numerical integration.
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