
ar
X

iv
:1

21
1.

47
15

v2
  [

m
at

h.
N

T
] 

 2
2 

M
ar

 2
01

3 Petersson inner products of weight one

modular forms

Maryna S. Viazovska

May 9, 2019

Abstract

In this paper we study regularized Petersson products between
a holomorphic theta series associated to a positive definite binary
quadratic form and a weakly holomorphic weight 1 modular form with
integral Fourier coefficients. In our recent work [15] motivated by the
conjecture of B. Gross and D. Zagier on the CM values of higher
Green’s functions we have discovered that such a Petersson product
is equal to the logarithm of a certain algebraic number lying in a ring
class field associated to the binary quadratic form. A similar result
was obtained independently by W. Duke and Y. Li [5], whose interest
in this problem arose from the theory of mock modular forms. The
methods of the proof used in [15] and [5] are quite different. More-
over, the approach here gives an explicit factorization formula for the
algebraic number obtained (except for the valuation at the ramified
prime).

1 Introduction

In this paper we study arithmetic properties of the regularized Petersson
product between the following two modular forms of weight one: a holo-
morphic binary theta series and a weakly holomorphic modular form with
integral Fourier coefficients.

More precisely, consider an imaginary quadratic field K := Q(
√
−D). For

simplicity we assume that D is a prime congruent to 3 modulo 4. Let B be
an element of the ideal class group CLK of K. Denote by rB(t) the number
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of integral ideals of norm t in the ideal class B. We consider the vector space
CZ/DZ with the canonical basis {eν | ν ∈ Z/DZ}. The theta function

(1) ΘB(τ) =
∑

ν∈Z/DZ

eν
∑

t≡ν2 (mod D)

(1 + δ0,ν) rB(t) e
( t
D
τ
)

is a holomorphic vector valued modular form of weight 1 and a representation
ρ defined in Section 3. Here we use the standard notation e(x) := e2πix.

First, consider the classical Petersson inner product between ΘB and the
cusp form gχ :=

∑
C∈CLK

χ(C)ΘC associated to a character χ : CLK → C×.
Recall that this product is defined as

(gχ,ΘB) :=

∫

SL2(Z)\H

〈gχ(τ),ΘB(τ)〉 y−1 dx dy,

where H = {τ ∈ C | ℑ(τ) > 0}, τ = x + iy, and 〈eµ, eν〉 = δµ,ν . Applying
the Rankin-Selberg method to this integral one can see that the Peterson
product can be expressed in terms of Artin L-function as

(2) (gχ,ΘB) =
1

h
χ(B−1)L(χD, 1) ress=1LK(χ

2, s),

where h is the class number of K and χD(·) =
( ·
D

)
. Thus, Stark’s theorem

implies

(3) (gχ,ΘB) =
∑

C∈CL(K)

χ2(C) log |εC|

for certain units εC in the Hilbert class field of K.
The theory of regularized theta lifts developed by Borcherds, Bruinier,

Kudla and others motivates us to generalize the classical identity (3) by re-
placing the cusp form gχ with a weakly holomorphic modular form. More
precisely, we call f a weakly holomorphic cusp form if it is a weakly holomor-
phic (vector valued) modular form and has zero constant term. We denote
by S !

1(ρ) the space of weakly holomorphic cusp forms of weight 1 and repre-
sentation ρ. For f ∈ S !

1(ρ) we define a regularized Petersson product by

(4) (f,ΘB)
reg := lim

T→∞

∫

FT

〈f(τ),ΘB(τ)〉 y−1 dx dy,
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where

FT :=
{
τ ∈ H

∣∣− 1/2 < ℜ(τ) < 1/2, |τ | > 1, and ℑ(τ) < T
}

is the truncated fundamental domain of SL2(Z). We are interested in the
arithmetic properties of the number (4) when f has integral Fourier coeffi-
cients. In our recent work [15] inspired by the conjecture of B. Gross and D.
Zagier on the CM values of higher Green’s functions we have found that

(5) (f,ΘB)
reg = log |α|

for some algebraic number α lying in an abelian extension of K. A similar
result was obtained independently by W. Duke and Y. Li [5], however their
interest in this problem arose from the theory of mock modular forms. The
relation between regularized Petersson products and mock modular forms is
also studied in [6]. The main result of the present paper is an explicit factor-
ization formula for the algebraic number α in (5) (except for the valuation
at ramified primes).

Before we can state the factorization formula we need to introduce some
notations. Recall that K denotes the imaginary quadratic field Q

√
−D, h

be the class number and H be the Hilbert class field of K. For a rational
prime p with

(
p
D

)
= −1 let Pp = {Pi}hi=0 be the set of prime ideals of H

lying above p. After fixing an embedding  : H → C complex conjugation
acts on H and also on the set Pp. Since the class number h is odd, there
exists a unique prime ideal in Pp, say P1, with P1 = P1. For a prime ideal
P ∈ Pp there exists a unique element σ ∈ Gal(H/K) such that

(6) Pσ = P1.

Denote by A = A(P) the ideal class of K that corresponds to σ under the
Artin isomorphism.

Theorem 1. Let B be an ideal class of K and let f ∈ S !
1(ρ) be a weakly

holomorphic modular form with the Fourier expansion

f =
∑

ν∈Z/DZ

eν
∑

t∈Z
t≫−∞

cν(t) e
( t
D
τ
)

satisfying c0(0) = 0 and cν(m) ∈ Z for all ν ∈ Z/DZ. Then there exists an
algebraic number α ∈ H such that

(f,ΘB)
reg = log |α|.
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Moreover, for a rational prime p and a prime P lying above p in the Hilbert
class field H we have

(7) ordP(α) =
∑

t<0

∑

ν∈Z/DZ

cν(t) rBA2

(−t
p

)
ordp(t) in the case

( p
D

)
= −1,

(8) ordP(α) = 0 in the case
( p
D

)
= 1.

Here rBA2 is defined as in (1).

Remark 1. Theorem 1 is compatible with, but stronger than the result of J.
Schofer [14]. More precisely, Theorem 4.1 of [14] states that the sum over all
ideal classes B ∈ CLK of Petersson products (f,ΘB)

reg is the logarithm of a
rational number and gives a precise factorization formula for this number. In
particular, this theorem says and the sum over all ideal classes of the identity
(7) as well as the identity (8) is true.

Remark 2. Theorem 1 is stated in a conjectural form in [5].

Remark 3. We don’t consider the primes p with
(

p
D

)
equal to 0. Note that

under the assumptions of Theorem 1 the only such prime is p = D. Theo-
retical and numerical evidence suggest that

(9) ordP(α) =
∑

t<0

∑

ν∈Z/DZ

cν(t) rBA2

(−t
p

)
ordp(t) in the case

( p
D

)
= 0,

where P is a prime of H lying above (
√
−D), P1 is the unique prime above

(
√
−D) with P1 = P1, the ideal class A satisfies PσA = P1.

Remark 4. The space of vector valued modular formsM1(ρ) is canonically iso-
morphic to the spaceM+

1 (Γ0(D), χD) of scalar valued modular forms, see [3].

The idea of the proof of Theorem 1 is to use the embedding argument
of Theorem 5 in [15] and reduce the computation of the regularized integral
(f,ΘB)

reg to the computation of the local height pairings between certain
Heegner points on the modular curve X0(D).

The paper is organized as follows. In Section 2 we recall the definition
and basic properties of vector valued modular forms. In Sections 3 and 4
we collect necessary facts from the theory of the Borcherds lift. Also we
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give a brief review of height theory on the curves in Section 5. In Sec-
tion 6 we construct a certain meromorphic function Ψ on the modular curve
X0(D). This function has zeroes and poles at the Heegner points and sat-
isfies (f,ΘB)

reg = log |Ψ(z)| for some CM-point z. In Section 7 we use the
computations of the local height pairing made by B.Gross and D. Zagier in
[11] and find the local pairings between z and div(Ψ) over the finite places of
H . This gives as the valuation of α = Ψ(z) at the primes of H and finishes
the proof of Theorem 1. In the last section we illustrate Theorem 1 with the
following numerical example.
Example. Consider the prime discriminant D := −23. Recall that the ideal
class group of the imaginary quadratic field K := Q(

√
−23) has order 3 and

it can be written as CLK = {J ,J −1,O}, where O denotes the principal
ideal class. Consider the modular form

(10) f := 23
[E4E6

∆
,ΘJ

]
,

where Ek denotes the Eisenstein series of weight k, ∆ is Ramanujan’s Delta
function and [·, ·] denotes the Rankin-Cohen brackets. The modular form f
belongs to S !

1(ρ) and has integral Fourier coefficients.
Consider the following numbers in the Hilbert class field H of Q(

√
−23).

Let ̺ be the real root of the polynomial X3 −X − 1. Define

(11) π5 = 2− ̺, π7 = ̺+ 2, π11 = 2̺− 1, π17 = 3̺+ 2, π19 = 3̺+ 1,

̟23 = 3− ̺, π25 = 2̺2 − ̺+ 1, π49 = ̺2 − 2̺+ 3,

where each πq has norm q. One finds numerically that

(12) (f,ΘO)
reg = log |α|,

where
̟−23

23 α = π 18
5 π−42

25 π 36
7 π−48

49 π 4
11 π

−22
17 π−30

19 ̺ 207.

In the last section we will prove this identity using Theorem 1.

2 Lattices and vector valued modular forms

Recall that the group SL2(Z) has a double cover Mp2(Z), called the meta-
plectic group, whose elements can be written in the form

((
a b
c d

)
,
√
cτ + d

)

5



where

(
a b
c d

)
∈ SL2(Z) and

√
cτ + d is one of the two holomorphic functions

of τ in the upper half-plane whose square is cτ + d. The multiplication is
defined so that the usual formulas for the transformation of modular forms
of half integral weight work, i. e.

(A, f(τ))(B, g(τ)) = (AB, f(B(τ))g(τ))

for A,B ∈ SL2(Z) and f, g are square roots of cAτ + dA and cBτ + dB,
respectively.

Let (V, q) be a rational quadratic space over Q, that is a rational vector
space V equipped with the quadratic form q : V → Q. The corresponding
bilinear form on V ×V is defined by (x, y) = 1

2
q(x+ y)− 1

2
q(x− y). Suppose

that V has signature (b+, b−). Let L ⊂ V be a lattice. The dual lattice of L
is defined as L′ = {x ∈ V |(x, L) ⊂ Z}. We say that L is even if q(ℓ) ∈ Z for
all ℓ ∈ L. In this case L is contained in L′ and L′/L is a finite abelian group.

We let the elements eν for ν ∈ L′/L be the standard basis of the vector
space CL′/L, so that eµeν = eµ+ν . The complex conjugation acts on CL′/L by
eµ = eµ. Consider the scalar product on CL′/L given by

(13) 〈eµ, eν〉 = δµ,ν

and extended to CL′/L by linearity. Recall that there is a unitary represen-
tation ρL of Mp2(Z) on CL′/L defined by

ρL(T̃ )(eν) = e
(
q(ν)

)
eν(14)

ρL(S̃)(eν) = i(b
−/2−b+/2) |L′/L|−1/2

∑

µ∈L′/L

e
(
−(µ, ν)

)
eµ,(15)

where

(16) T̃ =

((
1 1
0 1

)
, 1

)
and S̃ =

((
0 −1
1 0

)
,
√
τ

)

are the standard generators of Mp2(Z).
For an integer n ∈ Z we denote by L(n) the lattice L equipped with a

quadratic form qn(ℓ) := nq(ℓ). In the case n = −1 the lattices L′(−1) and
(L(−1))′ coincide and hence the groups L′/L and L(−1)′/L(−1) are equal.
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Both representations ρL and ρL(−1) act on CL′/L and for γ ∈ Mp2(Z) we have

ρL(−1)(γ) = ρL(γ).
A vector valued modular form of half-integral weight k and representation

ρL is a function f : H → CL′/L that satisfies the following transformation law

(17) f

(
aτ + b

cτ + d

)
=

√
cτ + d

2k
ρL

((
a b
c d

)
,
√
cτ + d

)
f(τ).

We will use the notationMk(ρL) for the space of real analytic,Mk(ρL) for
the space of holomorphic, and M !

k(ρL) for the space of weakly holomorphic
modular forms of weight k and representation ρL. We denote by S !

k(ρL) the
space of weakly holomorphic modular forms of weight k and representation
ρL with zero constant term at infinity.

Now we recall some standard maps between the spaces of vector-valued
modular forms associated to different lattices.

If M ⊂ L is a sublattice of finite index, then a vector-valued modular
form f ∈ Mk(ρL) can be naturally viewed as a vector-valued modular form
in Mk(ρM). Indeed, we have the inclusions

M ⊂ L ⊂ L′ ⊂M ′

and therefore
L/M ⊂ L′/M ⊂M ′/M.

We have the natural map L′/M → L′/L, µ → µ̄. The following lemma is
proved in [4].

Lemma 1. For M = M,M or M ! there are two natural maps

resL/M : Mk(ρL) → Mk(ρM),

and
trL/M : Mk(ρM ) → Mk, (ρL),

given by
(18)

(
resL/M (f)

)
µ
=





fµ̄, if µ ∈ L′/M

0 if µ /∈ L′/M

(
f ∈ Mk(ρL), µ ∈M ′/M

)
,
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and

(19)
(
trL/M (g)

)
λ
=

∑

µ∈L′/M : µ̄=λ

gµ
(
g ∈ Mk(ρM), λ ∈ L′/L

)
.

Now suppose thatM and N are two even lattices and L =M ⊕N . Then
we have

L′/L ∼= (M ′/M)⊕ (N ′/N).

Moreover
CL′/L ∼= CM ′/M ⊗ CN ′/N

as unitary vector spaces and naturally

ρL = ρM ⊗ ρN .

The following lemma can be easily deduced from the unicity of the represen-
tation ρM and the fact that ρM(−1) = ρM .

Lemma 2. For two modular forms f ∈ Mk(ρL) and g ∈ Ml(ρM(−1)) the
function

h := 〈f, g〉CM′/M =
∑

ν∈N ′/N

eν
∑

µ∈M ′/M

fµ⊕ν gµ

belongs to Mk+l(ρN).

3 Theta functions and Theta lifts

In this section we recall the definition of regularized theta lift given by
Borcherds in the paper [2].

We let L be an even lattice of signature (2, b−) and let L′ be its dual
lattice. The positive Grassmannian Gr+(L) is the set of positive definite
two-dimensional subspaces v+ of L ⊗ R. We write v− for the orthogonal
complement of v+, so that L⊗R is the orthogonal direct sum of the positive
definite subspace v+ and the negative definite subspace v−. The projections
of a vector ℓ ∈ L ⊗ R into the subspaces v+ and v− are denoted by ℓv+ and
ℓv− , respectively, so that ℓ = ℓv+ + ℓv− .

The vector-valued Siegel theta function ΘL : H×Gr+(L) → CL′/L of L is
defined by

(20) ΘL(τ, v
+) = yb

−/2
∑

λ∈L′/L

eλ
∑

ℓ∈L+λ

e
(
q(ℓv+)τ + q(ℓv−)τ̄

)
.
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Theorem 4.1 in [2] says that ΘL(τ, v
+) is a real-analytic vector-valued mod-

ular form of weight 1− b−/2 and representation ρL with respect to the vari-
able τ .

For f ∈ M1−b/2(ρL) we define the regularized theta integral by

(21) ΦL(v
+, f) :=

∫ reg

SL2(Z)\H

〈f(τ),ΘL(τ, v+)〉 y−1−b−/2 dx dy

(here the product 〈, 〉 is defined by 〈eµ, eν〉 = δµ,ν).
The integral is often divergent and has to be regularized. In this paper we

consider regularized lifts of weakly holomorphic cusp forms. In this case the
regularization is simpler than in the general situation. For f ∈ S !

1−b/2(ρL) we
set

ΦL(v
+, f) := lim

T→∞

∫

FT

〈f(τ),ΘL(τ, v+)〉 y−1−b−/2 dx dy,

where FT is a truncated fundamental domain introduced in Section 1.
Denote by Aut(L) the group of those isometries of L ⊗ R that fix each

coset of L in L′. The action of Aut(L) on f is given by action on L′/L. The
regularized integral ΦL(v

+, f) is a function on the Grassmannian Gr+(L)
that is invariant under Aut(L).

In the case when L has signature (2, b−) the Grassmanian Gr+(L) carries
the structure of a Hermitian symmetric space. If X and Y are an oriented
orthogonal base of some element v+ of Gr+(L), then we map v+ to the point
of the complex projective space P(L⊗C) represented by Z = X+iY ∈ L⊗C.
The fact that Z = X + iY has norm 0 is equivalent to saying that X and
Y are orthogonal and have the same norm. This identifies Gr+(L) with an
open subset of the norm 0 vectors of P(L⊗C) in a canonical way, and gives
Gr+(L) a complex structure invariant under the subgroup O+(L⊗R) of index
2 of O(L ⊗ R) of elements preserving the orientation on the 2 dimensional
positive definite subspaces. Thus, the open subset

P =
{
[Z] ∈ P(L⊗ C)

∣∣(Z,Z) = 0 and (Z,Z) > 0
}

is isomorphic to Gr+(L) by mapping [Z] to the subspace Rℜ(Z) + Rℑ(Z).
The following theorem of Borcherds relates the regularized theta lifts asso-

ciated to the lattice L of signature (2, b) with the infinite products introduced
in his earlier paper [1].

9



Theorem 2. ([2], Theorem 13.3) Suppose that f ∈ S !
1−b/2(ρL) has the

Fourier expansion

f(τ) =
∑

λ∈L′/L

∑

n≫−∞
cλ(n) e(nτ) eλ

and the Fourier coefficients cλ(n) are integers for n ≤ 0. Then there is a
meromorphic function ΨL(Z, f) on P with the following properties.

1. Ψ is an automorphic function for the group Aut(L, f) with respect to
some unitary character of Aut(L, f)

2. The only zeros and poles of ΨL lie on the rational quadratic divisors ℓ⊥

for ℓ ∈ L, q(ℓ) < 0 the order of l⊥ is equal to

∑

x∈R+ :
xl∈L′

cxl
(
q(xl)

)

3.
ΦL(Z, f) = −4 log |ΨL(Z, f)|.

4. One can write an explicit infinite product expansion converging in a
neighborhood of each cusp of Gr+(L).

Remark 5. Theorem 13.3 in [2] is formulated in more general settings and an
explicit infinite product expansion is given there.

At the end of this section let us consider the lattices of signature (2, 0)
in more detail. Recall that there is a one-to-one correspondence between
equivalence classes of even lattices of fundamental discriminant −D and ideal
classes of the imaginary quadratic field K = Q(

√
−D). Fix an ideal class

B. For a fractional ideal b ∈ B consider an even lattice N = (b, q), where
the quadratic form q is defined as q(x) = 1

NK/Q(B) NK/Q(x) for x ∈ b. Up to

isometry, the lattice N depends only on B and not on the particular choice
of b. Hence, we denote this lattice by NB. Moreover, the representation ρN
defined in Section 2 depends only on the genus of N . Thus, for D prime the
representation ρN is the same for all fractional ideals of K and we denote this
representation by ρ. The theta function ΘB defined in Section 1 coincides
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with the theta function ΘN defined by (20). It follows from the definition of
theta lift that for f ∈ S !

1(ρ)

ΦN (f) = (f,ΘB)
reg.

Thus, the regularized Petersson product (4) can be seen as a theta lift of f to
a zero-dimensional Grassmanian Gr+(N). From this point of view Theorem
1 is an “arithmetic analog” of Theorem 2. This approach is studied in the
upcoming work of S. Ehlen [7].

4 A see-saw identity

In the paper [13] S. Kudla introduced the notion of a “see-saw dual reductive
pair”. It gives rise to a family of identities between inner products of au-
tomorphic forms on different groups, thus clarifying the source of identities
of this type which appear in many places in the literature, often obtained
from complicated manipulations. Here we prove a see-saw identity for the
regularized theta integrals described in the previous section. This identity
will play a central role in our proof of Theorem 1.

Suppose that (V, q) is a rational quadratic space of signature (2, b) and
L ⊂ V is an even lattice. Let V = V1⊕V2 be the rational orthogonal splitting
of (V, q) such that the space V1 has the signature (2, b− d) and the space V2
has the signature (0, d). Consider two lattices N := L∩V1 and M := L∩V2.
We have two orthogonal projections

prM : L⊗ R → M ⊗ R and prN : L⊗ R → N ⊗ R.

Let M ′ and N ′ be the dual lattices of M and N . We have the following
inclusions

M ⊂ L, N ⊂ L, M ⊕N ⊆ L ⊆ L′ ⊆M ′ ⊕N ′,

and equalities of the sets

prM(L′) =M ′, prN(L
′) = N ′.

Consider the rectangular |L′/L| × |N ′/N | dimensional matrix TL,N with
entries

ϑλ,ν(τ) =
∑

m∈M ′:
m+ν∈λ+L

e
(
−q(m)τ

)
,

11



where λ ∈ L′/L, ν ∈ N ′/N, τ ∈ H. This sum is well defined since N ⊂ L.
Note that the lattice M is negative definite and hence the series converges
absolutely.

For a function f = (fλ)λ∈L′/L ∈Mk+d/2(ρN ) we define g = (gν)ν∈N ′/N by

(22) gν(τ) =
∑

λ∈L′/L

ϑλ,ν(τ) fλ(τ).

In other words

(23) g = TL,Nf,

where f and g are considered as column vectors.

Theorem 3. Suppose that the lattices L, M and N and the functions f ,
g are defined as above. Then the function g belongs to Mk+d/2(ρN). Thus,
there is a map TL,N :Mk(ρL) →Mk+d/2(ρN) defined by (23).

Proof. Consider the function

ΘM(−1)(τ) = ΘM(τ) =
∑

µ∈M ′/M

eµ
∑

m∈M+µ

e(−q(m)τ),

which belongs to Md/2(ρM(−1)). It follows from (22) and (18) that

TL,N(f) =
〈
resL/M⊕N(f),ΘM(−1)

〉
CM′/M .

Thus, from Lemma 2 we deduce that TL,N(f) is in Mk+d/2(ρN).

Theorem 4. Let L, M , N be as above. Denote by i : Gr+(N) → Gr+(L) the
natural embedding induced by the inclusion N ⊂ L. Then for v+ ∈ Gr+(N)
and the theta lift of a function f ∈M !

1−b/2(ρL) the following holds

(24) ΦL(i(v
+), f) = ΦN (v

+, TL,N(f)).

Proof. For a vector ℓ ∈ L′ denote m = prM(ℓ) and n = prN(ℓ). Recall that
m ∈ M ′ and n ∈ N ′. Since v+ is an element of Gr+(N) it is orthogonal to
M . We have

q(ℓv+) = q(nv+), q(ℓv−) = q(m) + q(nv−).

12



Thus for λ ∈ L′/L we obtain

Θλ+L(τ, v
+) =

∑

ℓ∈λ+L

e
(
q(ℓv+)τ + q(ℓv−

)
τ̄ )

=
∑

m∈M ′, n∈N ′:
m+n∈λ+L

e
(
q(nv+)τ + q(nv−)τ̄ + q(m)τ̄

)
.

Since N ⊂ L we can rewrite this sum as

Θλ+L(τ, v
+) =

∑

ν∈N ′/N

Θν+N(τ, v
+)ϑν,λ(τ).

Thus, we see that for f = (fλ)λ∈L′/L the following scalar products are equal

〈f,ΘL(τ, v+)〉 = 〈TL,N(f),ΘN(τ, v+)〉.

Therefore, the regularized integrals (21) of both sides of the equality are also
equal.

5 Local and global heights on curves

In this section we review the basic ideas of Néron’s theory. A more detailed
overview of this topic is given in [10]. Let X be a non-singular, complete, ge-
ometrically connected curve over the locally compact field kv. We normalize
the valuation map | |v : k∗v → R×

+ so that for any Haar measure dx on kv we
have the formula α∗(dx) = |α|v · dx.

Let a and b denote divisors of degree zero on X over kv with disjoint
support. Then Néron defines a local symbol 〈a, b〉v in R which is

(i) bi-additive,

(ii) symmetric,

(iii) continuous,

(vi) satisfies the property 〈
∑
mx(x), (f)〉v = log |

∏
f(x)mx |v, when b = (f)

is principal.

13



These properties characterize the local symbol completely.
When v is archimedean, one can compute the Néron symbol as follows.

Associated to b is a Green’s function Gb on the Riemann surface X(kv)− |b|
which satisfies ∂∂Gb = 0 and has logarithmic singularities at the points in |b|.
More precisely, the function Gb − ordz(b) log |π|v, is regular at every point z,
where π is a uniformizing parameter at z. These conditions characterize Gb

up to the addition of a constant, as the difference of any two such functions
would be globally harmonic. The local formula for a =

∑
mx(x) is then

(a, b)v =
∑

mxGb(x).

This is well-defined since
∑
mx = 0 and satisfies the required properties since

if b = (f) we could take Gb = log |f |.
If v is a non-archimedean place, let ov denote the valuation ring of kv and

qv the cardinality of the residue field. Let X be a regular model for X over
ov and extend the divisors a and b to divisors A and B of degree zero on X .
These extensions are not unique, but if we insist that A has zero intersection
with each fibral component of X over the residue field, then the intersection
product (A · B) is well defined. We have the formula

〈a, b〉v = −(A · B) log qv.

Finally, ifX , a, and b are defined over the global field k we have (a, b)v = 0
for almost all completions kv and the sum

(25) 〈a, b〉 =
∑

places v

〈a, b〉v

depends only on the classes of a and b in the Jacobian. This is equal to the
global height pairing of Néron and Tate.

It is desirable to have an extension of the local pairing to divisors a and
b of degree 0 on X which are not relatively prime. At the loss of some
functoriality, this is done in [10] as follows.

At each point x in the common support, choose a basis ∂
∂t

for the tangent
space and let π be a uniformizing parameter with ∂π

∂t
= 1. Any function

f ∈ kv(X)∗ then has a well-defined “value” at x:

f [x] =
f

zm
(x) in k∗v ,
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where m = ordxf . This depends only on ∂
∂t
, not on π. Clearly we have

fg[x] = f [x] g[x].

To pair a with b we may find a function f on X such that b = div(f) + b′,
where b′ is relatively prime to a. We then define

(26) 〈a, b〉v = log |f [a]|v + 〈a, b′〉.

This definition is independent of the choice of f used to move b away from
a. The same decomposition formula (25) into local symbols can be used
even when the divisors a and b have a common support provided that the
uniformizing parameter π at each point of their common support is chosen
over k.

6 Embedding argument

Recall thatK denotes the imaginary quadratic field Q(
√
−D). In this section

we construct, for each B ∈ CLK and each f ∈ S !
1(ρ), a meromorphic function

Ψ on the modular curve X0(D) that satisfies the following two properties:
the divisor of this function is supported on Heegner points; the identity

(27) (f,ΘB)
reg = log |Ψ(z)|

holds for some CM-point z. The main tools we use in this section are
Borcherds lifts and see-saw identities introduced in Section 3.

Our first goal is to find a convenient lattice of signature (2, 1) that contains
the positive definite lattice associated to the ideal class B as a lower rank
sublattice. To this end we consider the lattice

(28) L =

{(
A/D B

B C

) ∣∣∣A,B,C ∈ Z

}

equipped with the quadratic form q(x) := −D det(x). Its dual lattice L′ is
given by

(29) L′ =

{(
A′/D B′/2D

B′/2D C ′

) ∣∣∣A′, B′, C ′ ∈ Z

}
.
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For ℓ ∈ L′ with q(ℓ) < 0 denote by zℓ the point in H corresponding to the
positive definite subspace ℓ⊥ via (45). More explicitly, for the vector

ℓ =

(
γ −β/2

−β/2 α

)

the point zℓ is a root of the quadratic equation

(30) αz2ℓ + βzℓ + γ = 0.

Let us recall the following standard facts about lattices and fractional ideals.

Lemma 3. Suppose that −D < 0 is a square-free discriminant and [a, b, c]
is a primitive quadratic form of disctiminant −D. Let z be a solution of the
equation az2 + bz + c = 0. Then the lattice

c = Z+ zZ

is a fractional ideal of the imaginary quadratic field K = Q(
√
−D). More-

over, this ideal satisfies

(31) cc = (a)−1.

Lemma 4. Let c ⊂ K be a fractional ideal. Consider the quadratic form q(·)
on K given by q(β) = NK/Q(β). Then the dual lattice of c with respect to this
quadratic form is equal to (NK/Q(c))

−1 c d−1. Here d denotes the different of
oK, i. e. the principal ideal (

√
−D).

The following two lemmas are crucial to show that for each ideal class
B the associated positive definite lattice is contained in L as a lower rank
sublattice.

Lemma 5. For each ideal class C ∈ CLK there exists a vector m ∈ L′ such
that q(m) = −1/4 and zmZ+ Z ⊂ K is a fractional ideal in C.

Proof. The classical correspondence between fractional ideals of oK and bi-
nary quadratic forms of discriminant −D implies that for each ideal class
C ∈ CLK there exist A,B,C ∈ Z such that

B2 − 4AC = −D

16



and for z ∈ H satisfying
Az2 +Bz+ C = 0

the subset zZ+Z ofK is a fractional ideal in the ideal class C. Or equivalently,
there exists a half-integral matrix

l =

(
C −B/2

−B/2 A

)

with
zlZ+ Z ∈ C.

For each x ∈ SL2(Z) the fractional ideal zxlxtZ+ Z is equivalent to zlZ+ Z.
It is easy to see, that the matrix l is SL2(Z)-equivalent to some matrix of the
form

l̃ =



 C̃ −B̃/2
−B̃/2 Ã



 , Ã ∈ DZ, B̃ ∈ DZ, C̃ ∈ Z.

Then the matrix m =: l̃/D belongs to L′, has norm −1/4, and since zm = zl̃
the fractional ideal zmZ+Z belongs to the ideal class C. Lemma is proved.

Lemma 6. Let m ∈ L′ be a vector of the norm −1/4. Set N := L ∩ m⊥.
Denote by c the fractional ideal zmZ+ Z. Then the following holds
(i) the lattice N is isomorphic to the fractional ideal c2 equipped with the
quadratic form q(γ) = 1

NK/Q(c2)
NK/Q(γ);

(ii) L = N ⊕ 2mZ.

Proof. First we prove part (i). Each element of L′ can be written as

m =
1

D

(
c −b/2

−b/2 a

)

for some a ∈ DZ, b ∈ Z, c ∈ Z. The condition 4Dq(m) = b2 − 4ac = −D
implies that b ∈ DZ. Set

Z :=
a

D

(
z2m zm

zm 1

)
.

This element of L⊗ C satisfies

q(Z) = q(Z) = 0 and (Z,Z) = 1.

17



Moreover, the elements Z and Z are both orthogonal to m. Consider the
map

ı : K → N ⊗Q

defined by
s→ sZ + sZ.

This map is an isometry, assuming that the quadratic form on K is given
by q(β) = NK/Q(β) and the quadratic form on N ⊗ Q is given by q(ℓ) =
−D det(ℓ). We have

ı(a) =
a

D

(
z2m + zm

2 zm + zm

zm + zm 2

)
=

1

D

(
(b2 −D)/2 −ab

−ab 2a2

)
,

ı(azm) =
a

D

(
zmzm(zm + zm) z2m + zm

2

z2m + zm
2 zm + zm

)
=

1

D

(
−bc (b2 −D)/2

(b2 −D)/2 ab

)
,

ı(az2m) =
a

D

(
z2mzm

2 zmzm(zm + zm)

zmzm(zm + zm) z2m + zm
2

)
=

1

D

(
2c2 −bc
−bc (b2 −D)/2

)
.

Using that a, b ∈ DZ and b ≡ D(mod 2), we see that

(32) ı(aZ+ a zm Z+ a z2mZ) ⊆ N.

On the other hand

(33) (a)c2 = aZ+ azmZ+ az2mZ.

Lemma 3 implies that the ideal (a)c2 has norm 1. Hence, by Lemma 4 the
dual lattice of (a)c2 in K is equal to d−1(a)c2. Since ı is an isometry, the dual
of ı((a)c2) is ı(d−1(a)c2). We have the inclusions

(34) ı((a)c2) ⊆ N ⊂ N ′ ⊆ ı(d−1(a)c2).

Since (d−1(a)c2)/((a)c2) ∼= Z/DZ we find that |N ′/N | is a divisor of D.
Since a positive definite 2-dimensional even lattice can not be unimodular,
we deduce that |N ′/N | = D. Thus the symbols “⊆” in (34) should be
replaced by “=”. Part (i) of Lemma 6 is proved.

Now we prove (ii). The condition q(m) = −1/4 implies that b ∈ DZ.
Hence, the element 2m belongs to L. Set M := 2mZ. We have the following
inclusions

M ′ ⊕N ′ ⊆ L′ ⊂ L ⊆M ⊕N.
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Observe that

|L′/L| = 2D, |M ′/M | = 2, |N ′/N | = D.

Thus, L =M ⊕N and L′ =M ′ ⊕N ′.

We combine the previous two lemmas in the following theorem.

Theorem 5. For each ideal class B of K there exists a vector m ∈ L′ such
that
(i) q(m) = −1/4;
(ii) the lattice N := L ∩m⊥ is isomorphic to the lattice NB defined in Sec-
tion 3;
(iii) L = N ⊕ 2mZ.

Proof. Since D is prime, the class number of K is odd. Thus, each ideal class
B is equal to C2 for some C ∈ CLK . Let m ∈ L′ be the vector constructed in
Lemma 5, which satisfies zmZ+ Z ∈ C. Then Lemma 6 readily implies that
m satisfies the conditions of the theorem.

Our next goal is to find a preimage of a function f ∈ M !
1(ρN ) under the

map TL,N defined in Theorem 4. To this end we show that the map TL,N :
M !

1/2(ρL) → M !
1(ρN ) is surjective. Moreover, the kernel of TL,N is infinite

dimensional and using its elements we can find a preimage of f that satisfies
additional conditions on Fourier coefficients. This additional conditions are
needed to simplify the computation of CM-values of the theta lift ΦL(z, f),
which we will make in Section 8.

Before we proceed with the proof let as recall some properties of the
Fourier coefficients of elements in M !

k(ρN ) and M
!
k(ρL). Recall that N

′/N ∼=
Z/DZ and L′/L ∼= Z/2DZ. Moreover, we can choose isomorphisms ıN :
Z/DZ → N ′/N and ıL : Z/2DZ → L′/L such that q(ıN (ν)) ≡ ν2/D(mod Z)
for each ν ∈ Z/DZ and q(ıL(λ)) ≡ λ2/4D(mod Z) for each λ ∈ Z/2DZ.
Suppose that f = (fν)ν∈N ′/N belongs to M !

k(ρN) for some odd k. Then, the

transformation property (17) for the elements R̃ =

((
−1 0
0 −1

)
, i

)
and

T̃ =

((
1 1
0 1

)
, 1

)
of Mp2(Z) implies that

fν = f−ν , ν ∈ Z/DZ
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and fν has the Fourier expansion of the form

fν =
∑

t≡ν2(mod D)

c(t) e
( t
D
τ
)
.

Therefore, since D is prime the Fourier expansion of f can be written as

f(τ) =
∑

ν∈Z/DZ

eν
∑

t≡ν2(mod D)

c(t) e
( t
D
τ
)
.

Similarly, we see that for l ∈ 1/2 + 2Z each modular form h ∈ M !
l (ρL) has

the Fourier expansion of the form

h(τ) =
∑

λ∈Z/2DZ

eλ
∑

d≡λ2(mod D)

b(d) e
( d

4D
τ
)
.

Theorem 6. Let the lattices L, N , and the vector m be as in Theorem 5.
Suppose that f ∈ M !

1 (ρN) is a modular form with zero constant term and
rational Fourier coefficients. Then there exists a function h ∈ S !

1/2(ρL) such
that:

(i) the function h(τ) =
∑

λ∈Z/2DZ eλ
∑

d≡λ2(mod 4D) b(d) e(
d
4D
τ) has rational

Fourier coefficients;

(ii) the Fourier coefficients of h satisfy b(−Ds2) = 0 for all s ∈ Z;

(iii) TL,N(h) = f .

Proof. Denote by S the lattice Z equipped with the quadratic form q(x) :=
−x2. For this lattice we have S ′/S ∼= Z/2Z. Lemma 6 implies that L ∼= N⊕S.
Note that L′/L ∼= S ′/S ×N ′/N and ρL = ρS ⊗ ρN . Set

θ0(τ, z) =
∑

n∈Z
e(n2τ + 2nz), θ1(τ, z) =

∑

n∈ 1

2
+Z

e(n2τ + 2nz)

and
θκ(τ) = θκ(τ, 0), κ = 0, 1.

It follows from the definition of TL,N that

(TL,N(h))ν =
∑

κ∈S′/S

h(κ,ν)θκ.
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Let φ̃−2,1, φ̃0,1 be the weak Jacobi forms defined in the book [8] p.108. These
functions can be written as

φ̃−2,1(τ, z) = ψ0(τ) θ0(τ, z) + ψ1(τ) θ1(τ, z),

φ̃0,1(τ, z) = ϕ0(τ) θ0(τ, z) + ϕ1(τ) θ1(τ, z)

where

ψ0 = −2− 12q − 56q2 − 208q3 + · · · ,(35)

ψ1 = q−1/4 + 8q3/4 + 39q7/4 + 152q11/4 + · · ·

ϕ0 = 10 + 108q + 808q2 + 4016q3 + · · · ,
ϕ1 = q−1/4 − 64q3/4 − 513q7/4 − 2752q11/4 + · · · .

The vector-valued functions (ψ0, ψ1) and (ϕ0, ϕ1) belong to the spacesM
!
−5/2(ρS)

and M !
−1/2(ρS) respectively, and they satisfy

φ̃−2,1(τ, 0) = ψ0(τ) θ0(τ) + ψ1(τ) θ1(τ) = 0,(36)

φ̃0,1(τ, 0) = ϕ0(τ) θ0(τ) + ϕ1(τ) θ1(τ) = 12.

First, we construct a function g ∈ M !
1/2(ρL) that satisfies conditions (i)

and (iii). Define

(37) g(κ,ν) :=
1

12
ϕκfν , (κ, ν) ∈ S ′/S ×N ′/N.

This function satisfies

TL,N(g) =
1

12

∑

ν∈N ′/N

eν (g(0,ν)θ0 + g(1,ν)θ1)

=
1

12

∑

ν∈N ′/N

eν fν(ϕ0θ0 + ϕ1θ1)

=f.

Next, we will add a correction term to g and construct a function that
satisfies also (ii). Fix an integer s > 0. Our next goal is to construct a sup-
plementary function g̃(τ) =

∑
λ∈Z/2DZ

∑
d≡λ2(mod 4D) ã(d) e(dτ) ∈ M !

1/2(ρL)
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with the following properties:

ã(−Ds2) 6= 0 and ã(−Dr2) = 0 for all r > s,(38)

TL,N(g̃) = 0(39)

g̃ has rational Fourier coefficients.(40)

To this end we consider the following theta function

Θ̃ :=
∑

ν∈Z/DZ

eν
∑

a∈o+ν/
√
−D

(a2 + a2) e(aaτ).

By Theorem 4.1 in [2] his theta function belongs to S3(ρ). We define

(41) g̃(κ,ν) := ψκ Θ̃ν j
s2−t

4
+1, (κ, ν) ∈ S ′/S ×N ′/N,

where

t =

{
0 if s ≡ 0 mod 2,

1 otherwise,

and j is the j-invariant. First we check that the function g̃ satisfies condition
(38). For D 6= 3 we have

Θ0 = 4q +O(q2), q = e(τ).

Hence, from (41) we find that for s even

g̃(0,0) =− 8q−s2/4 +O(q−s2/4+1),

g̃(1,0) =4q−s2/4−1/4 +O(q−s2/4+3/4),

and for s odd

g̃(0,0) =− 8q−s2/4+1/4 +O(q−s2/4+5/4),

g̃(1,0) =4q−s2/4 +O(q−s2/4+1).

This proves (38). The function g̃ satisfies

TL,N(g̃) =
∑

ν∈N ′/N

eν (g̃(0,ν)θ0 + g̃(1,ν)θ1)

=
∑

ν∈N ′/N

eν Θ̃o+ν j
s2−t

4
+1 (ψ0θ0 + ψ1θ1)

= 0.
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This proves (39). The property (40) is obvious.
By subtracting from g a suitable linear combination of functions g̃ for

different s we find a function

h(τ) =
∑

λ∈Z/DZ

eλ
∑

d≡λ2(mod 4D)

b(d) e
( d

4D
τ
)
∈M !

1/2(ρL)

such that

b(−Dr2) = 0 for all r ∈ Z\0,(42)

TL,N(h) = f,(43)

h(τ) has rational Fourier coefficients.(44)

The final step is to show that b(0) = 0. Identity (43) implies that

h(0,0)θ0 + h(1,0)θ1 = f0.

Hence, the constant terms of these functions are equal. By the assumptions
of the theorem

CT(f0) = 0.

On the other hand

CT(h(0,0)θ0 + h(1,0)θ1) =
∑

s∈Z
b(−Ds2) = b(0).

Thus, the function h satisfies the conditions (i)-(iii) of the theorem. This
finishes the proof.

We observe that the Grassmanian Gr+(L) is isomorphic to the upper
half-plane H. There is a map H → Gr+(L) given by

(45) z → v+(z) := ℜ
(
z2 z
z 1

)
R + ℑ

(
z2 z
z 1

)
R ⊂ L⊗ R.

The group Γ0(D) acts on L′ and fixes all the elements of L′/L. Denote by
X0(D) the modular curve Γ0(D)\H.

Suppose that the vector m ∈ L′, the lattice N and the point zm ∈ H are
defined as in Theorem 5. Let h be the modular form h ∈ S !

1/2(ρL) satisfying

(46) TL,N(h) = f,
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that was constructed in the previous theorem. It follows from (46) and
Theorem 4 that

ΦL(h, zm) = ΦN(f).

Recall that by definition

ΦN (f) = (f,ΘB)
reg.

Without loss of generality we assume that h has integral negative Fourier
coefficients. The infinite product Ψ(z) := ΨL(h, z) introduced in Section 3
defines a meromorphic function on X0(D). Theorem 2 in Section 3 implies

(47) (f,ΘB)
reg = log |ΨL(h, zm)|.

It also follows from Theorem 2 that the divisor of ΨL is supported at Heegner
points.

7 Heights of Heegner points

In this section we compute the local height pairing between Heegner divisors.
These calculations are carried out in the celebrated series of papers [11], [12].
For the convenience of the reader we recall the main steps of the computation
in what follows.

First, let as recall the definition of Heegner points and the way they can
be indexed by the vectors of the lattice L′.

For ℓ ∈ L′ with q(ℓ) < 0 denote by xℓ the divisor (zℓ) − (∞) on the
modular curve X0(D). The divisor xℓ is defined over the Hilbert class field
of Q(

√
Dq(ℓ)).

For any integer d > 0 such that −d is congruent to a square modulo 4D,
choose a residue β( mod 2D) with −d ≡ β2( mod 4D) and consider the set

Ld,β =

{
ℓ =

(
a/D b/2D

b/2D c

)
∈ L′

∣∣∣ q(ℓ) = − d

4D
, b ≡ β( mod 2D)

}

on which Γ0(D) acts. Define the Heegner divisor

yd,β =
∑

ℓ∈Γ0(D)\Ld,β

xℓ.
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The Fricke involution acts on L′ by

ℓ→ 1

D

(
0 1

−D 0

)
ℓ

(
0 −D
1 0

)

and maps Ld,β to Ld,−β. Set

(48) y∗d = yd,β + yd,−β.

The divisor y∗d is defined over Q ([12] p. 499.)
Now we would like to compute the local height pairings between the

divisor xℓ and a Heegner divisor. The definition of the local height pairing is
given in Section 5. The divisors xℓ and y∗d have the point ∞ at their common
support. In order to define the height pairing between these divisors we
must fix a uniformizing parameter π at this cusp. We let π denote the Tate
parameter q on the family of degenerating elliptic curves near ∞. This is
defined over Q. Over C we have q = e(z) on X∗

0 (D) = Γ∗
0(D)\H, where

z ∈ H with ℑ(z) sufficiently large. The following theorem can be deduced
from the computations in Section IV.4 in [12].

Theorem 7. Let d1, d2 > 0 be two integers and β1, β2 be two elements of
Z/2DZ with −d1 ≡ β2

1( mod 4D) and −d2 ≡ β2
2( mod 4D). Suppose that d1

is fundamental and d2/d1 is not a full square. Fix a vector ℓ ∈ Ld1,β1
. Let

p be a prime with gcd(p,D) = 1. Choose a prime ideal P lying above p in
the Hilbert class field of Q(

√
−d1). Then the following formula for the local

height holds:
in the case

(
p
d1

)
= 1 we have

(49) 〈xℓ, y∗d2〉P = 0,

in the case
(

p
d1

)
= −1 we have

(50) 〈xℓ, y∗d2〉P = log(p)
∑

r∈Z
r≡β1β2 mod 2

δd1(r) rnc2a2

(
d1d2 − r2

4Dp

)
ordp

(
d1d2 − r2

4D

)
.

Here c = Zzℓ + Z, n = ZD + Zβ1+
√
−d1

2
, a is any ideal in the ideal class A

defined by (6), and

δd(r) =

{
2 for r ≡ 0 mod d;

1 otherwise.
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Proof. The curve X0(D) may be described over Q as the compactification
of the space of moduli of elliptic curves with a cyclic subgroup of order D
[11]. Over a field k of characteristic zero, the points y of X0(D) correspond
to diagrams

ψ : F → F ′,

where F and F ′ are (generalized) elliptic curves over k and ψ is an isogeny
over k whose kernel is isomorphic to Z/DZ over an algebraic closure k.

The point zℓ ∈ H defines the point x ∈ X0(D). Then x = (φ : E → E ′)
and over C this diagram is isomorphic to

C/c
idC

// C/cn .

Following the calculations in [11] we reduce the computation of local
heights to a problem in arithmetic intersection theory. Let us set up some
notations. Denote by v the place of Hd1 , the Hilbert class field of Q(

√
−d1),

corresponding to prime ideal P. Denote by Λv the ring of integers in the
completion Hd1,v and let π be an uniformizing parameter in Λv. LetW be the
completion of the maximal unramified extension extension of Λv. Let X be a
regular model for X over Λv and x, y be the sections of X⊗Λv corresponding
to the points x and y. A model that has a modular interpretation is described
in [11] Section III.3). The general theory of local height pairing [10] implies

〈x, y〉v = −(x · y) log p.

The intersection product is unchanged if we extend scalars to W . By Propo-
sition 6.1 in [11]

(x · y)W =
1

2

∑

n≥1

CardHomW/πn(x, y)deg1.

Denote by R the ring HomW/π(xℓ). On p. 550 of [12] the following formula
for the intersection number is obtained
(51)

(xℓ · y∗d2)W =
1

4

∑

r2<d1d2

r≡β1β2(mod 2D)

Card
{
S[d1,2r,d2] → R mod R×} ordp

(
d1d2 − r2

4D

)
,
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where S[d1,2r,d2] is the Clifford order

S[d1,2r,d2] = Z+ Z
1 + e1

2
+ Z

1 + e2
2

+ Z
(1 + e1)(1 + e2)

4
,

e21 = −d1, e22 = −d2, e1e2 + e2e1 = 2r.

In the case
(

p
d1

)
= 1 the ring R is isomorphic to an order in od1 . Since

d1/d2 is not a full square the ring R can not contain the Clifford order
S[d1,2r,d2]. Hence, (xℓ · y∗d2)W = 0 and this proves (49).

Now we consider the case
(

p
d1

)
= −1. Formula (9.3) in [11] gives us a

convenient description of the ring R. Namely, for a, b ∈ Q(
√
−d1) denote

[a, b] =

(
a b

pb a

)

and consider the quaternion algebra over Q

B =
{
[a, b]

∣∣∣ a, b ∈ Q(
√

−d1)
}
.

Then R is an Eichler order of index D in this quaternion algebra and it is
given by

R =
{
[a, b]

∣∣∣ a ∈ d−1, b ∈ d−1naca−1c−1, a ≡ b mod od1

}
,

where d is the different of Q(
√
−d1).

By the same computations as in Lemma 3.5 of [9] we find that the number
of embeddings of S[d1,2r,d2] into R, normalized so that the image of e1 is
[
√
−d1, 0], is equal to

δd1(r) rnc2a2

(
d1d2 − r2

4Dp

)
ordp

(
d1d2 − r2

4D

)
.

This finishes the proof of the theorem.

8 Proof of Theorem 1.

Proof of Theorem 1. Since the discriminant −D is prime, the class number

of K is odd and there exists an ideal class C such that B = C2
in the ideal

class group. The class C contains an ideal of the form

(52) c = zZ+ Z,
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where z is a CM point of discriminant −D. Property (52) is preserved when
we act on z by elements of SL2(Z). As we have explained in the proof of
Theorem 5, we may assume that z satisfies the quadratic equation

az2 + bz + c = 0

for a ∈ DZ, b ∈ DZ, c ∈ Z and b2 − 4ac = −D. The matrix

m =
1

D

(
c −b/2

−b/2 a

)

belongs to the lattice L′ and has the norm −1/4. Lemma 6 implies that the
lattice N := L ∩ m⊥ corresponds to the fractional ideal c2 as explained in
Section 3 and moreover, the lattice L splits as L = N ⊕ 2mZ.

Next, by Theorem 6 we find a weak cusp form h ∈ S !
1/2(ρL) satisfying

(53) TL,N(h) = f,

where TL,N is defined as in Theorem 4. Function h has the Fourier expansion
of the form

h(τ) =
∑

β∈Z/2DZ

eβ
∑

d≡β2( mod 4D)

b(d) e
( d

4D
τ
)
.

It follows from (53) and Theorem 4 that

ΦN(f) = ΦL(h, z).

From Theorem 2 in Section 3 we know that

(54) ΦL(h, z) = log |ΨL(h, z)|,

where Ψ(z) = ΨL(h, z) is a meromorphic function. Theorem 2 also implies
that

(55) div(Ψ) =

∞∑

d=0

b(−d) y∗d,

where y∗d is the Heegner divisor defined in (48).
Set x = (z) − (∞). The condition (ii) of Theorem 6 implies that the

function ΦL(h, ·) is real analytic at point z. Thus, the only point in the
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common support of x and div(Ψ) is ∞. Recall, that we have fixed the
uniformizing parameter π at this cusp to be the Tate parameter q on the
family of degenerating elliptic curves near ∞.

Recall that the divisors x and div(Ψ) are defined over H . The axioms
of local height (listed in Section 5) together with the refined definition (26)
imply that for each prime P of H

(56) ordP

(
Ψ(z)

)
log p− ordP

(
Ψ[∞]

)
log p =

〈
x,

∞∑

d=1

b(−d) y∗d
〉
P
.

From the infinite product of Theorem 13.3 in [2] we find that Ψ[∞] = 1
for the choice of the uniformizing parameter at ∞ as above. Theorem 6
part (ii) implies that d/D is not a full square provided b(−d) 6= 0. Thus,
by Theorem 7 for each prime P of H lying above a rational prime p with(

p
D

)
6= 0 we obtain

〈x, y∗d〉P = 0

in the case
(

p
D

)
= 1, and

(57) 〈x, y∗d〉P = log(p)
∑

n∈Z
n≡d(mod 2)

rC2A2

(
d−Dn2

4p

)
ordp

(
d−Dn2

4

)

in the case
(

p
D

)
= −1. We observe that the sum

∞∑

d=0

b(−d)
∑

n∈Z
n≡d(mod 2)

rC2A2

(
d−Dn2

4p

)
ordp

(
d−Dn2

4

)

is equal to the constant term with respect to e(τ) of the following series

∑

ν∈Z/DZ

((
h(0,ν)θ0 + h(1,ν)θ1

) ∑

t≡ν mod D

rBA2

( t
p

)
ordp(t) e

( t
D
τ
) )

.

The equation (53) implies

(58) fν = h(0,ν)θ0 + h(1,ν)θ1, ν ∈ Z/DZ.

Hence, combining the equations (57) and (58) we arrive at

〈
x,

∞∑

d=0

b(−d) y∗d
〉
P
= log p

∑

ν∈Z/DZ

∞∑

t=0

cν(−t) rBA2

( t
p

)
ordp(t).
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Finally, the equations (54) and (56) imply

ordP(α) = ordP(ΨL(h, z)) =
1

log p

〈
x,

∞∑

d=0

b(−d) y∗d
〉

P
=

=
∑

ν∈Z/DZ

∞∑

t=0

cν(−t) rBA2

( t
p

)
ordp(t).

This finishes the proof of Theorem 1. ✷

9 Numerical example

In this section we illustrate the Theorem 1 with the following numerical
example coming from the evaluation of higher Green’s functions at CM-
points. In particular, we prove identity (12) stated in the introduction.

Recall that the higher Green’s functions are real-valued functions of two
variables on the upper half-plane which are bi-invariant under the action
of SL2(Z), have a logarithmic singularity along the diagonal and satisfy
∆f = k(1 − k)f , where k is a positive integer. The precise definition of
these functions can be found in [15]. We denote higher Green’s functions by
Gk(z1, z2). In our recent work [15] we have related the CM-values of higher
Green’s functions and regularized products of weight one modular forms. Let
us explain this relation on the following concrete example.

We consider the pair of CM points

z1 =
1 +

√
−23

4
, z2 =

−1 +
√
−23

4

lying in the imaginary quadratic field K = Q(
√
−23). In the last section of

[11] B. Gross and D. Zagier have conjectured that higher Green’s functions
have ”algebraic” CM values. In particular, Conjecture (4.4) of [11] predicts
that for k = 2, 3, 4, 5 and 7

(59) Gk(z1, z2) = 231−k log |αk|,

where αk are some algebraic numbers lying at the Hilbert class field of K.
The connection between the CM values (59) and regularized Petersson

products is as follows. Note that the space S2k of cusp forms of weight 2k
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on SL2(Z) is zero precisely when k = 1, 2, 3, 4, 5 and 7. For these values of
k the Serre duality implies that there exists the unique modular form gk in
the space M !

2−2k of weakly holomorphic modular forms of weight 2 − 2k on
SL2(Z) with the Fourier expansion gk = q−1 + O(1). Denote by B and C,
respectively, the ideal classes of K containing the fractional ideals Zz1 + Z

and Zz2 + Z, respectively. Theorem 4 in [15] implies that

Gk(z1, z2) =
(
[gk,ΘBC]k−1,ΘBC

)reg
,

where [·, ·]k−1 denotes the (k − 1)-st Rankin-Cohen brackets. Thus, Theo-
rem 1 implies the Conjecture (4.4) formulated in [11] and, moreover, gives
the factorization formula for the CM-values of higher Greens functions.

At the rest of this section we will compute the regularized integral (12),
which is equal to the CM-value G2(z1, z2). The function f defined by (10)
has the Fourier expansion of the form

f(τ) =
∑

ν∈Z/DZ

eν
∑

t≡ν2(mod D)
t≫−∞

c(t) e
( t
D
τ
)
.

The negative Fourier coefficients of f are given in the following table:

t 5 7 11 14 15 17 19 20 21 23

c(−t) 26 18 2 −5 −7 −11 −15 −17 −19 −23

Denote by N an even lattice (oK , q), where the quadratic form q is defined
as q(x) = NK/Q(x) for x ∈ oK .

Consider the lattice

(60) L =

{(
A/23 B

B C

) ∣∣∣A,B,C ∈ Z

}

equipped with the quadratic form q(ℓ) := −23 det(ℓ). Choose the vector

m =

(
6/23 1/2

1/2 1

)
.

The vector m has the norm q(m) = −1/4 and by Lemma 6 its orthogonal
complement L∩m⊥ is isomorphic to N . Moreover, L splits into a direct sum
L ∼= 2mZ⊕N. From (30) we find

zm =
23 +

√
−23

46
.
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Note that the fractional ideal

c := Z+ zmZ = (
√
−23)−1

is principal.
Recall that the group Γ∗

0(23) acts on L by isometries and the map (45)
gives an isomorphism between Γ∗

0(23)\Gr+(L) and Γ∗
0(23)\H. We denote by

X∗
0 (23) the modular curve Γ∗

0(23)\Gr+(L).

Let φ, ψ, Θ̃ and j be as in the proof of Theorem 6. By Theorem 6 we find
that the vector valued function h given componentwise by

h(ν,κ) = ϕκfν +
10

92
ψκΘ̃ν j

2 − 7416

46
ψκΘ̃ν j, (κ, ν) ∈ S ′/S ×N ′/N,

belongs to S !
1/2(ρL) and satisfies conditions (i)-(iii). Moreover, the function

12 · 232 · h has integral Fourier coefficients. By Theorem 4 these conditions
imply that

(f,ΘO)
reg = ΦL(h, v

+(zm)).

Function h has the Fourier expansion

h(τ) =
1

12 · 232
∑

λ∈Z/46Z
eλ

∑

d≡λ2(mod 92)

b(d) e
( d
92
τ
)
.

The negative Fourier coefficients of 12 ·232 ·h are given in the following table

d b(−d)
7 −3126678
11 1455
15 2497
19 −783263
20 −884
28 −1228
40 −790
43 884
44 −68
51 990
56 −792

d b(−d)
60 616
63 431
67 68
68 968
76 −352
79 426
80 −630
83 −462
84 −630
88 332
91 −726

d b(−d)
99 36
103 111
107 87
111 −156
112 −130
115 −276
120 −160
135 65
136 −10
143 80
148 −90

d b(−d)
152 70
159 5
160 110
168 −40
171 45
175 −35
180 −10
183 −55
191 20
203 5
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Since the function 12 ·232 ·h has integral negative Fourier coefficients, the
infinite product Ψ(z) := ΨL(12 · 232 · h, z) introduced in Section 3 defines a
meromorphic function on X∗

0 (23) with the only zeroes and poles at Heegner
points. Theorem 2 in Section 3 implies

(61) (f,ΘO)
reg =

1

12 · 232 log |ΨL(12 · 232 · h, zm)|.

The curve X∗
0 (23) has genus 0 and only one cusp. Let j∗23(z) be the

Hauptmodul for Γ∗
0(23) having the Fourier expansion j∗23(z) = q−1 + O(q),

where q = e(z). This function is given explicitly by

j∗23(z) =
1

η(z)η(23z)

∑

a,b∈Z
e((a2 + ab+ 6b2)z)− 3

= q−1 + 4q + 7q2 + 13q3 + 19q4 + 33q5 + 47q6 + 74q7 + · · · .

For any integer d > 0 such that −d is congruent to a square modulo 92,
choose an integer β( mod 46) with −d ≡ β2( mod 92) and consider the set

Ld,β =

{
ℓ =

(
a/23 b/46

b/46 c

)
∈ L′

∣∣∣ q(ℓ) = −d/92, b ≡ β( mod 46)

}

on which Γ0(23) acts. The Fricke involution acts on L′ by

x→ 1

23

(
0 1

−23 0

)
p

(
0 −23
1 0

)

and maps Ld,β to Ld,−β.
We define a polynomial Hd,23(X) by

Hd,23(X) =
∏

ℓ∈Ld,β

(X − j∗23(zℓ))
1/|Stab(ℓ)|.

It follows from Theorem B3 part 2 that

Ψ(z, 12 · 232 · h) =
∏

d≪∞
Hd,23(j

∗
23(z))

b(−d),

and the numbers b(−d) are given in the above table.
Recall that K denotes the imaginary quadratic field Q(

√
−23) and H

denotes its Hilbert class field. Let the algebraic numbers ̺, πl, ̟l ∈ H be
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defined as in (11). The value of the Hauptmodul j∗23 at the point zm = 23+
√
−23

46

is equal to −̺ − 2. The values of Hd,23

(
j∗
(
23+

√
−23

46

))
for small values of d

are given in the following table.

d Hd,23(X) Hd,23(−2 − ̺)

7 (X + 2)2 ̺2

11 (X + 1)2 ̺6

15 (X2 + 3X + 3)2 ̺10

19 (X + 3)2 ̺−8

20 (X2 + 4X + 5)2 π2
5 ̺

10

28 X2(X + 2)2 π2
7 ̺

2

40 (X2 + 2X + 3)2 π2
25 ̺

6

43 (X − 1)2 π4
5 ̺

16

44 (X + 1)2(X3 + 7X2 + 17X + 13)2 π2
11 ̺

10

51 (X2 + 4X + 7)2 π4
7 ̺

−6

56 (X4 + 4X3 − 16X − 17)2 π2
49 ̺

12

60 (X2 + 3X + 3)2(X2 + 7X + 13)2 π2
25

63 (X + 2)2(X4 + 5X3 + 12X2 + 20X + 19)2 π4
25 ̺

8

67 (X − 3)2 π4
11 ̺

6

68 (X4 + 10X3 + 34X2 + 46X + 25)2 π2
17 ̺

−6

76 (X + 3)2(X3 −X2 − 9X − 9)2 π2
19 ̺

4

79 (X5 + 10X4 + 43X3 + 90X2 + 90X + 27)2 π4
49 ̺

16

80 (X2 + 4X + 5)2(X4 + 6X3 + 20X2 + 30X + 17)2 π2
5 π

2
25 ̺

28

83 (X3 −X2 − 13X − 19)2 π4
25 ̺

6

84 (X4 + 2X3 + 6X2 + 14X + 13)2 π2
49 ̺

26

91 (X2 − 4X − 9)2 π4
17 ̺

−6

99 (X + 1)2(X2 + 8X + 19)2 π4
19 ̺

−8

103 (X5 + 4X4 + 7X3 + 33X2 + 99X + 81)2 π4
5 π

4
25 ̺

18

107 (X3 + 5X2 + 19X + 31)2 π4
49 ̺

8

115 (X + 5)2 ̟2
23

Using this values of polynomials Hd,23(X) together with values for those d
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which are not included in the table, we finally we arrive at

23

12
log
∣∣∣ΨP

(23 +
√
−23

46
, h
)∣∣∣ = log

∣∣π 18
5 π−42

25 π36
7 π−48

49 π4
11 π

−22
17 π−30

19 ̟−23
23 ̺−9·23∣∣.

This proves the result (1) obtained by numerical integration.
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