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DUBROVIN’S SUPERPOTENTIAL AS A GLOBAL SPECTRAL

CURVE

P. DUNIN-BARKOWSKI, P. NORBURY, N. ORANTIN, A. POPOLITOV, AND S. SHADRIN

Abstract. We apply the spectral curve topological recursion to Dubrovin’s
universal Landau-Ginzburg superpotential associated to a semi-simple point of
any conformal Frobenius manifold. We show that under some conditions the
expansion of the correlation differentials reproduces the cohomological field
theory associated with the same point of the initial Frobenius manifold.
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1. Introduction

1.1. Goal of the paper. A semi-simple (conformal) Frobenius manifold is an
important algebro-geometric structure, introduced by Dubrovin, that appears nat-
urally in a circle of questions related to classical mirror symmetry. Closely related
to a semi-simple conformal Frobenius manifold is a cohomological field theory, that
is, a system of cohomology classes on the moduli space of stables curves intro-
duced by Kontsevich and Manin in order to capture the main universal properties
of Gromov-Witten theory. Via Givental-Teleman theory, these two concepts (semi-
simple conformal Frobenius manifolds and semi-simple homogeneous cohomological
field theories) are essentially equivalent.

The theory of Landau-Ginzburg superpotentials associates to a Riemann surface
(or a family of Riemann surfaces) equipped with a meromorphic function and a
meromorphic differential 1-form (or a meromorphic function whose differential is
this 1-form) structure that is essentially equivalent to the concept of a semi-simple
Frobenius manifold, after work of Dubrovin [6]. It is part of a more general theory of
Landau-Ginzburg models that exists in any dimension, not necessarily on a curve.

The theory of spectral curve topological recursion, initially developed for com-
putation of the correlation differentials of matrix models, uses a very similar input:
a Riemann surface (or a family of Riemann surfaces) equipped with a meromor-
phic function, a meromorphic differential 1-form (or a meromorphic function, whose
differential is this 1-form), and a symmetric bi-differential. It produces a system
of symmetric differentials on the cartesian powers of the underlying Riemann sur-
face. Under some extra conditions these symmetric differentials can be expressed
in terms of the correlators of a cohomological field theory.

To summarize, we have the following system of relations:

(1-1)

semi-simple conformal ↔ Landau-Ginzburg
Frobenius manifolds (FM) superpotentials (LG)

m
semi-simple homogeneous spectral curve

cohomological field theories (CohFT) ↔ topological recursion (TR)

We give precise definitions of all geometric structures involved in this diagram
and explain the precise statements about their relations in Section 2. In all cases
the rigorous formulation of these correspondences requires extra conditions and is
not a one-to-one correspondence or an equivalence of categories. It is more like a
dictionary that allows one to translate from one language to another under various
extra assumptions.

The theory of Landau-Ginzburg superpotentials and spectral curve topological
recursion use almost the same input data, namely a Riemann surface equipped with
a meromorphic function and a meromorphic differential 1-form. This input data is
used in a completely different way in these two theories, nevertheless the natural
question is whether one can add a vertical arrow so that the diagram commutes.
More explicitly, if a Landau-Ginzburg superpotential and spectral curve topological
recursion produce the same Frobenius manifold/CohFT structure on the left hand
side of this diagram, do we expect that the input data for the LG model and TR
to be the same?

This paper is devoted to an affirmative answer to this question. As in the case of
all other correspondences in this diagram, it is not an equivalence of categories or
one-to-one correspondence, but rather a system of general statements that allows
one to connect the input data of LG and TR in a large class of examples.

1.2. Description of the main results. A Landau-Ginzburg superpotential de-
termines a structure of a semi-simple conformal Frobenius manifold. However, a



DUBROVIN’S SUPERPOTENTIAL AS A GLOBAL SPECTRAL CURVE 3

particular semi-simple Frobenius structure can have several different superpoten-
tials, and it is not at all clear that it always has a superpotential. The latter prob-
lem was addressed by Dubrovin in [7], where he proposed a general construction
that under some mild extra assumptions associates a superpotential to a Frobenius
manifold. This construction is called Dubrovin’s superpotential in this paper. It
is a family of curves Dτ = D(τ) parametrized by the semi-simple points τ of the
underlying Frobenius manifold, equipped with two meromorphic functions, λτ and
pτ (in fact, the differential form dpτ would be sufficient for the definition). This
construction depends on some choices, which are an important part of the LG-TR
correspondence presented in this paper.

For the spectral curve topological recursion we need a Riemann surface Σ with
two meromorphic functions, x and y (in fact, the differential forms dx and dy are
sufficient for the construction), and a symmetric bi-differential B on Σ × Σ with
double pole with bi-residue 1 on the diagonal [16, 17, 15].

To every point of the Frobenius manifold we associate a cohomological field
theory ατ , using the Givental-Teleman theory (see [21, 30, 29, 13, 28]). Under
some conditions one can also associate a CohFT to the spectral curve topological
recursion [10] (see also [25], where an approach using singularity theory is given,
and [14], where a more general framework for this correspondence is discussed).

The mains results of this paper, Theorems 5.1 and 6.1, are devoted to proving
that topological recursion applied to

Σ = Dτ , x = λτ , y = pτ ,

and some choice of B gives, under the correspondence from [10], exactly the CohFT
ατ .

One main tool in the proofs of Theorems 5.1 and 6.1 is the result of [10] which
associates a CohFT to topological recursion applied to a spectral curve satisfying
a set of conditions. These conditions give a close relation between x, y and B.
Our main task is to show that λτ , pτ and an appropriately chosen B satisfy these
relations. Here we give a brief outline of the proof.

The identification of x and λ up to some topological properties is the starting
point since the CohFT is based on a vector space formally spanned by the zeros
of dx, respectively the zeros of dλ. On the side of topological recursion there is
one requirement that we need, namely we have to assume that there is exactly one
critical point on Dτ over each critical value of x = λτ

1. This gives a restriction on
the possible choices of analytic continuation in Dubrovin’s superpotential.

The relation of y with structure constants in the Frobenius manifold required
in [10] leads to an identification of y = pτ . This theorem (Theorem 3.1) is heavily
based on the computations done by Dubrovin in [7]. Next we need to find a good
choice of B that will make either theorem work. In genus zero we find that the
unique possible Bergman kernel B satisfies the conditions required by [10] which
we present in a form that can be checked (or used as a condition) for the super-
potentials. This is Theorem 4.1 and its corollaries. It allows us to conclude that
topological recursion applied to the superpotential produces a CohFT and it re-
mains to prove that this CohFT is the one associated to the Frobenius manifold
defined by the superpotential. We show that in fact it is sufficient to know that
we get homogeneous CohFT from the Bergman kernel – then the correct CohFT
ατ is reproduced automatically. This leads to a general theorem on the LG-TR
correspondence in genus 0 (Theorem 5.1). This theorem is key to several important
examples that we discuss in this paper as well (we mention these examples in the
list of applications in Section 1.3).

1We release this constraint in section 10.
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In higher genera, the Bergman kernel is not canonical and we need to choose
the correct one. In order to have a suitable shape of the Laplace transform of the
Bergman kernel (required for correspondence with Givental graphs), we have to
use the Bergman kernel normalized on a basis of A-cycles for some Torelli marking,
using results of Eynard [14]. We show, using the Rauch variational formulae, that
the homogeneity property is also satisfied in this case, and this allows us to make
a general statement for the LG-TR correspondence in any genus (Theorem 6.1).
This is a conditional statement requiring Theorem 4.1 that needs to be checked in
particular examples. Still there are interesting examples, in particular, we work out
an elliptic example in detail (Theorem 9.2).

Finally, we develop a theory for the case when the extra assumptions on the
choice of analytic continuation of Dubrovin’s superpotential are dropped. In this
case we have to generalize the set-up of topological recursion in order to take into
account the action of the reflection group associated with Frobenius manifold. The
correspondence that we obtain in this case (Theorem 10.6) is parallel to the ideas
of Milanov [26].

1.3. Contributions to the theory of topological recursion. In order to es-
tablish a correspondence with the Landau-Ginzburg theory and to work out several
basic examples, we obtain a number of results that are of independent interest for
the theory of topological recursion, and here we collect them all.

1.3.1. Global spectral curve for the CohFT-TR correspondence. One way to present
our main result is the following. The correspondence between CohFT and TR
obtained in [10] uses a local version of topological recursion, that is when the
spectral curve is just a union of disks. An important open question is whether we
can glue all these open disks into a global spectral curve. This would allow one to
use a variety of analytical methods developed in the theory of topological recursion
that are applicable only in the case of a global curve [16, 17]. The main result
of our paper is an affirmative answer to this question, that is, for a large class of
CohFTs we can indeed claim the existence of a global spectral curve. In this form
this question was also considered by Milanov for singularity theory [26].

1.3.2. Bouchard-Eynard recursion locally. Topological recursion requires the spec-
tral curve to have simple critical points. There is an extension of the theory of topo-
logical recursion for the curves with higher order critical points, due to Bouchard
and Eynard [3]. A fundamental question is to identify the correlation functions
of their generalized recursion in the elementary case of one point of order r + 1.
Bouchard and Eynard have announced [4] a theorem that in this case the correlators
are expanded in terms of the string tau-function of the r-Gelfand-Dickey hierarchy
(or, equivalently, in terms of the intersection theory of the Witten top Chern class
on the moduli space of r-spin structures, [31, 18]).

An application of the main theorem of this paper, i.e. where topological recursion
applied to Dubrovin’s construction of a superpotential produces the same CohFT
is the case of the An singularity. Careful analysis of this example in its limit at the
zero point implies immediately the theorem of Bouchard and Eynard.

1.3.3. Enumeration of hypermaps. Each time a particular combinatorial problem
is solved in terms of topological recursion, there occurs a natural question whether
this leads to an interesting CohFT inside this combinatorial problem, and, as a
consequence, to an interesting ELSV-type formula for it. This logic is explained
in detail in [12, Introduction]. In particular, the topological recursion was proved
in [11] for the enumeration of hypermaps, see also [5].
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In the case of hypermaps the correspondence between LG and TR gives us
immediately a full description of the Frobenius manifold structure behind this
combinatorial problem; it is a particular simple example of a so-called Hurwitz
Frobenius manifold. In the simplest case one can say that the Frobenius mani-
fold with the prepotential t21t2/2 + t22 log t2 resolves, via its associated CohFT and
the ELSV-type formula, the combinatorial problem known, in different versions, as
generalized Catalan numbers, discrete volumes of moduli spaces, or discrete sur-
faces [1, 9, 17, 27]. This explains, in a conceptual way, some observations already
made in [2, 19].

1.3.4. Bergman kernel and Torelli marking. Another important application of this
paper is to prove a form of independence of the output of topological recursion from
the choice of the bidifferential B for a global spectral curve. Topological recursion
depends on B and there are many ways to normalize B depending on a choice of
Torelli marking on the Riemann surface. We show that for a global spectral curve
satisfying a compatibility condition, topological recursion gives rise to a so-called
homogeneous CohFT with flat identity independent of the choice of normalisation
of B.

1.4. Guide to the paper. In Section 2 we give a full description of all concepts
mentioned in Diagram (1-1) and explain the known relations between them.

In Section 3 we prove that Dubrovin’s superpotential always gives the right y-
function for the topological recursion. Then in Section 4 we revisit in geometric
terms the necessary compatibility conditions between y and B on the spectral curve
from [10]. This allows us to prove the two main theorems of this paper. Namely, in
Section 5 we prove the LG-TR correspondence in the genus 0 case, and in Section 6
we generalize this result to higher genera.

Then we discuss several important series of examples, where Dubrovin’s super-
potential can be computed explicitly. In Section 7 we discuss An singularities,
with an application to the Bouchard-Eynard generalisation of topological recur-
sion. In Section 8 we present in detail a computation for a special class of Hurwitz
Frobenius manifolds, corresponding to the case of meromorphic functions on the
Riemann sphere with two poles, one of which is of order 1. In this case the corre-
sponding topological recursion resolves enumeration of hypermaps. In Section 9 we
describe a higher genera case, namely, we consider the case of elliptic curve, where
the superpotential is given by the Weierstrass function.

Section 10 is devoted to a general theory where we use a universal construction
of analytic continuation instead of the rather particular constructions of Sections 7,
8, and 9. This essentially reproduces, in our context, the main ideas of the work of
Milanov [26] initially applied by him to the case of simple singularities.

In the appendix we explicitly construct global spectral curves for two rank 2
CohFTs. We need to vary the construction slightly due to degeneracy of the Gauss-
Manin system. These examples satisfy the conditions of Theorem 6.1 and hence
topological recursion produces the CohFT associated to the Frobenius manifold.
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Dubrovin for suggesting the connection between superpotentials and topological
recursion.
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2. Recollection of basic facts

The purpose of this Section is to recall all necessary definitions and facts on
Frobenius manifold, moduli spaces of curves, cohomological field theories, Dubrovin’s
universal construction of Landau-Ginburg superpotentials, and topological recur-
sion.

2.1. Frobenius manifolds. In this Section we recall, following [6, 7], the definition
of Frobenius manifold and recollect some basic facts about its structures.

Consider a function F (t1, . . . , tn) defined on a ball B ⊂ Cn and a constant inner
product ηαβ such that the triple derivatives of F with one shifted index,

(2-1) Cγ
αβ :=

∂3F

∂tα∂tβ∂tλ
ηλγ ,

are the structure constants of a commutative associative Frobenius algebra with
the scalar product given by ηαβ . We can think about this structure as defined on
the tangent bundle of B ⊂ Cn (and we denote the corresponding multiplication of
vector field by ·), and we require that ∂t1 is the unit of the algebra in each fiber.

Consider a vector field E :=
∑n

α=1((1− qα)tα + rα)∂tα , here qα and rα are some
constants, α = 1, . . . , n. We require that q1 = 0 and rα 6= 0 only in the case
1− qα = 0. We require that there exists a constant d such that E.F − (3− d)F is
a polynomial of order at most 2 in t1, . . . , tn.

The triple (F, η, E) that satisfies all conditions above gives us the structure of a
(conformal) Frobenius manifold of rank n and conformal dimension d. The function
F is called the prepotential; the vector field E is called the Euler vector field. Of
course, there are coordinate-free descriptions of this structure as well, we refer
to [6, 7] for details.

Two important structures associated to Frobenius manifolds are the second met-
ric η′ on TB and the extended flat connection ∇̃ on B × C. The second metric η′

on TB is defined in the following way. The first metric η can be considered as an
isomorphism between η : TB → T ∗B. For any two vector fields ∂′ and ∂′′ we define
η′(∂′, ∂′′) to be E ⊢ η(∂′ · ∂′′). The extended connection ∇̃ is defined as

∇̃∂′∂′′ := ∇η
∂′∂

′′ + z∂′ · ∂′′;(2-2)

∇̃∂′∂z := 0;(2-3)

∇̃∂z
∂z := 0;(2-4)

∇̃∂z
∂′ := ∂z(∂

′) + E · ∂′ − 1

z
µ∂′,(2-5)

where ∇η is the Levi-Civita connection of η, and the endomorphism µ : TB → TB
is defined by

(2-6) µ(v) := (1 − d/2)v −∇η
vE.

In the flat basis, µ = diag(µ1, . . . , µn) for constants µα = qα − d/2.
In this paper we only consider semi-simple Frobenius manifolds, that is, we

require that the algebra structure on an open subset Bss ⊂ B is semi-simple. In
a neighborhood of a semi-simple point we have a system of canonical coordinates
u1, . . . , un, defined up to permutations, such that the vector fields ∂ui

, i = 1, . . . , n,
are the idempotents of the algebra product, and the Euler vector field has the form
E =

∑n
i=1 ui∂ui

.
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The geometric structure that is equivalent to the notion of conformal Frobenius
manifolds can be described in canonical coordinates [6]. The canonical coordinate
vector fields ∂ui

are orthogonal but not orthonormal. We can normalize them to
produce a so-called normalized canonical frame in each tangent space, that is, if

∆−1
i = η(∂ui

, ∂ui
), then the orthonormal basis is given by ∆

1/2
i ∂ui

, i = 1, . . . , n. By
Ψ we denote the transition matrix from the flat basis to the normalized canonical
one. Hence the columns of Ψ are given by the coordinates of the flat vectors ∂tα in

the basis ∆
1/2
i ∂ui

, with first column Ψi1 = ∆
−1/2
i representing the unit vector. We

have the relation

E ·Ψ = Ψµ

where E· is differentiation with respect to E.
Define the matrix V to be the endomorphism µ with respect to the normalized

canonical basis, hence V = Ψ · diag(µ1, ..., µn) · Ψ−1 and V + V T = 0. Covariant
constancy of µ implies that V satisfies

dV = [V, dΨ ·Ψ−1].

Define Vi = ∂ui
Ψ ·Ψ−1 so

∑

i uiVi = V .

Remark 2.1. Note that Givental [21] (and [10]) uses a different convention for ma-
trices than what is used here. Givental’s convention uses a right action of matrices
on vectors which is the transpose of the convention we use here.

2.2. Superpotential. A convenient way to describe a Frobenius structure is in
terms of a so-called Landau-Ginzburg superpotential. We recall the definition
from [6, 7]. A superpotential is a function λ(p, u1, . . . , un) of a variable p ∈ D
in some domain D that depends on points (u1, . . . , un) ∈ B0 ⊂ Bss in a ball in the
semisimple part of the Frobenius manifold, and satisfies the following properties:

(1) The critical values of λ as a function on D are u1, . . . , un.
(2) The critical points are non-degenerate.
(3) If there are several critical points in the inverse image λ−1(ui), then the

Hessians of λ at these points must coincide.
(4) For any choice p1, . . . , pn ∈ D of the critical preimages of u1, . . . , un (that

is, λ(pi, u1, . . . , un) = ui) and for any choice of the vector fields ∂′, ∂′′, and
∂′′′ on B0 we have:

η(∂′, ∂′′) = −
n
∑

i=1

Res
p→pi

∂′(λdp)∂′′(λdp)

dpλ
;(2-7)

η′(∂′, ∂′′) = −
n
∑

i=1

Res
p→pi

∂′(logλdp)∂′′(logλdp)

dp logλ
;(2-8)

η(∂′ · ∂′′, ∂′′′) = −
n
∑

i=1

Res
p→pi

∂′(λdp)∂′′(λdp)∂′′′(λdp)

dp dpλ
(2-9)

where ∂′(λdp) gives the action of the vector field by derivation in the pa-
rameters ui. In particular, the map ∂′ 7→ ∂′(λdp) from vector fields on B
to meromorphic differentials on D quotiented out by dpλ is injective.

(5) There exist some cycles Z1, . . . , Zn in D such that the integrals

(2-10)
1√
z

∫

Zα

ezλdp, α = 1, . . . , n

converge and give a non-degenerate system of flat coordinates for ∇̃.
In these terms, the identity vector field ∂0 of the Frobenius manifold is represented
by dp, i.e. ∂0(λdp) = dp. Indeed, since η(∂0 · ∂, ∂′) = η(∂, ∂′) for all vector fields
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∂, ∂′, then non-degeneracy of η implies that ∂0 · ∂ = ∂ for all ∂. The Euler vector
field is represented in these terms by λdp, i.e. E(λdp) = λdp.

2.3. Cohomological field theories. In this Section we recall all basic definitions
that are necessary to introduce the concept of a cohomological field theory. It is
an algebraic structure on a given vector space that captures the main properties of
Gromov-Witten theories, and there is a natural group action on these structures,
due to Givental. The main sources for this Section are [23, 30, 21, 29, 28].

A stable curve of genus g with k marked points is a possible reducible curve with
nodal singularities, of arithmetic genus g and k non-singular marked points, such
that the group of its automorphisms is finite. ByMg,k we denote the moduli space
of stable curves of genus g with k ordered marked points. There are natural line
bundles Li →Mg,k, i = 1, . . . , k, whose fiber of the point [(Cg , x1, . . . , xk)] ∈Mg,k

represented by the curve Cg with the marked points x1, . . . , xk ∈ Cg is given by

T ∗
xi
Cg. The first Chern class of Li is denoted by ψi ∈ H2(Mg,k,C).

There are a number of natural maps between the moduli spaces. By π :Mg,k+1 →
Mg,k we denote the map that forgets the last marked point and stabilizes the curve.

By σ :Mg1,k1+1×Mg2,k2+1 →Mg,k we denote the map that sews the last marked
points on the source curves into a node on the target curve, g = g1+g2, k = k1+k2.
By ρ :Mg−1,k+2 →Mg,k we denote the map that sews the two last marked points
on the source curve into a node on the target curve.

Consider a vector space V = C〈e1, . . . , en〉 with a scalar product η. A co-
homological field theory with the target (V, η) is a system of cohomology classes
αg,k : V

⊗k → H∗(Mg,k,C) satisfying the following conditions:

(1) The form αg,k, g ≥ 0, k ≥ 0, 2g − 2 + k > 0, is invariant under the action
of Sk that simultaneously reshuffle V ⊗k and relabel the marked points on
the curves inMg,k.

(2) We have:

π∗αg,k = e1 ⊢ αg,k+1;(2-11)

σ∗αg,k+1 = ηαβeα ⊗ eβ ⊢ αg1,k1+1αg2,k2+1;(2-12)

ρ∗αg,k = ηαβeα ⊗ eβ ⊢ αg−1,k+2.(2-13)

Here by ⊢ we denote the substitution of the vector e1 at the (k + 1)-st
argument in the first equation, and the substitution of the bivector corre-
sponding to the scalar product at the marked points that are sewed into
the nodes under the maps σ and ρ.

Note that if all classes {αg,k} are of degree 0, then the structure that we get is
called a topological field theory (TFT), and it is equivalent to a Frobenius algebra
structure on (V, η).

Correlators, or ancestor invariants, of the CohFT are defined by:

(2-14)

∫

Mg,k

αg,k(eν1 , ..., eνk) ·
k
∏

j=1

ψ
mj

j

for mi ∈ N, {eν, ν=1,...,N } ⊂ H .
There is a group action on CohFTs with a fixed target space (V, η). The group

is the group of matrices R(z) ∈ End(V ) ⊗ C[[z]] such that R = I + O(z) and
R(z)R∗(−z) = I. The action is defined as follows. The classes {α′

g,k} = R.{αg,k}
are defined as the sums over so-called stable graphs.

A stable graph is a graph with a set of vertices V , a set of edge E, and a set of
unbounded edges (leaves) L⊔D. The vertices are labeled by non-negative integers,
that is, we have a map V → Z≥0, v 7→ g(v). The stability condition means that
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for each vertex v of valency k(v) we require 2g(v)− 2 + k(v) > 0. We say that the
stable graph Γ has genus g and k leaves if b1(Γ) +

∑

v∈V g(v) = g and |L| = k.
So, we allow an arbitrary number of unbounded leaves in D (these leaves are called
dilaton leaves), that is, the set of stable graphs of genus g with k leaves is infinite.
The leaves in L are labeled from 1 to k.

A stable graph Γ gives us a map fΓ from the Cartesian product of the spaces
Mg(v),k(v), v ∈ V , to Mg,k. Namely, we associate to each vertex v a curve of
genus g(v), and to all attached half-edges we associate the marked points on the
curve. Then we first apply the maps π on each space Mg(v),k(v), v ∈ V , in order
to forget all marked points corresponding to the dilaton leaves, and then we apply
a sequence of maps σ and ρ, indexed by the edges E of the graph, such that each
edge determines the sewing of the corresponding curves.

We associate to a stable graph Γ a map from V ⊗k to ⊗v∈VH
∗(Mg(v),k(v),C).

That is, a map from eα1⊗· · ·⊗eαk
to the following class. We decorate by R−1(ψ)eαi

the leaf labeled by i. We decorate each dilaton leaf by −ψ(I − R−1(ψ))e1. We
decorate each edge by

(2-15)

(

I⊗ I−R−1(ψ′)⊗R−1(ψ′′)

ψ′ + ψ′′

)

ηαβeα ⊗ eβ ,

where by ψ′ and ψ′′ we denote the ψ-classes associated with the marked points
that correspond to the ends of the edge. Each vertex v is decorated by αg(v),k(v)

considered as an element of (V ∗)⊗k(v) ⊗H∗(Mg(v),k(v),C). We contract the tensor
product of the vectors corresponding to edges and leaves with the tensor product
of covectors corresponding to the vertices according to the graph. This gives us a
class αΓ in ⊗v∈VH

∗(Mg(v),k(v),C).
By definition, the class α′

g,k is given by
∑

Γ(fΓ)∗αΓ, where the sum is taken over
all stable graphs of genus g with k leaves. Though there is an infinite number of
graphs like that, one can check that only a finite number of them can contribute
to this sum for dimensional reasons. It is indeed a group action on CohFTs, see
e. g. [28].

There is a canonical way to associate a CohFT to a semi-simple point of a Frobe-
nius manifold. Namely, we associate to a point b ∈ Bss of a Frobenius manifold the
topological field theory {αg,k} with values in (TbB, η|b). The equations for the flat

sections of the connection ∇̃ has essential singularity at z = ∞. The asymptotic
fundamental solution near z = ∞ can be represented in a neighborhood of b as
Ψ−1R(z−1)ezU , where all involved matrices are functions on Bss, and the matrix
R satisfies all properties required in the definition of the group action. We can con-
struct a CohFT applying the group element R(z)|b to the topological field theory
on (TbB, η|b).

2.4. Dubrovin’s superpotential. In this Section we recall a construction of a
particular Landau-Ginzburg superpotential due to Dubrovin [7].

Given a manifold M equipped with a flat metric, a locally defined function t is
a flat coordinate at p ∈M , if

(i) dt(p) 6= 0 and
(ii) dt is covariantly constant with respect to to the Levi-Civita connection.

Condition (i) guarantees that t is a local coordinate, i.e. we can find a coordinate
system (t1, ..., tn) with t1 = t and an open neighbourhood B ⊂ M of p such that
(t1, ..., tn) : B → B0 ⊂ Rn is a homeomorphism onto an open set B0 of Rn. Con-
dition (ii), which uses the induced connection on the cotangent bundle, guarantees
that (t1, ..., tn) can be chosen so that the metric is represented by a constant matrix
with respect to (t1, ..., tn).
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We now consider a flat coordinate ρ(λ, u) with respect to the pencil of metrics
η′ − λη. We study covariant constancy of dρ via its gradient vector field φ(λ, u) =
∇ρ(λ, u) defined by

(η′ − λη) (φ, ·) = dρ.

The Levi-Civita connection of η′ with respect to flat coordinates (for η) is given
in [7, Equation (5.5)]). This leads to the following system of equations for vector
fields φ expressed in canonical coordinates on a Frobenius manifold (the extended
Gauss-Manin system [7, Equations (5.31) and (5.32)]):

(2-16) dφ = −(U − λ)−1d(U − λ)
(

1

2
+ V

)

φ+ dΨ ·Ψ−1φ.

Here d = dλ + du is the total de Rham differential; U = diag(u1, ..., un) and V
and Ψ are naturally associated to a Frobenius manifold as defined in Section 2.1.
Abusing notation, we use λ for the matrix of multiplication by λ. So (2-16) encodes
the system of PDEs giving covariant constancy of φ(λ, u) = ∇ρ(λ, u) in directions
∂/∂λ, ∂/∂ui.

One can retrieve ρ from its gradient vector field via

(2-17) ρ(λ, u) =

√
2

1− dφ
T (U − λ)Ψ11.

This is proved in [8, Section 2].
This equation has poles at λ = u1, . . . , un on the λ-plane, so we choose parallel

cuts L1, . . . , Ln from the points ui to infinity (we assume that uj 6∈ Li for i 6= j).
On C \ ∪ni=1Li we choose branches of functions

√
ui − λ, i = 1, . . . , n. We denote

by Ri the monodromy of the space of solutions of Equation (2-16) corresponding
to following a small loop around u1.

Dubrovin proves that there exist a unique system of solutions φ(1), . . . , φ(n) to
equation (2-16) satisfying the following properties:

Rjφ
(j) = −φ(j), j = 1, . . . , n;(2-18)

φ
(j)
j =

1
√

uj − λ
+O(

√

uj − λ) for λ→ uj , j = 1, . . . , n;(2-19)

φ(j)a =
√

uj − λ · O(1) for λ→ uj, a 6= j; a, j = 1, . . . , n;(2-20)

Rjφ
(i) = φ(i) − 2Gijφ(j), i, j = 1, . . . , n;(2-21)

where Gij := (φ(i))T (U − λ)φ(j) is a bilinear form that doesn’t depend on λ and
u1, . . . , un.

Assume that Gij is non-degenerate and denote by Gij the inverse matrix. Note
that non-degeneracy of Gij is a property of the Frobenius manifold M which holds
generically. In fact the proof of Theorem 3.1 does not require the non-degeneracy
of Gij—see Remark 3.2. Consider a special solution of Equation (2-16) given by
φ :=

∑n
i,j=1 Gijφ

(j). The main property of this solution is that φ has the local
behavior

φj =
1

√

uj − λ
+O(1) for λ→ uj, j = 1, . . . , n;(2-22)

φa =
√

uj − λ ·O(1) for λ→ uj , a 6= j; a, j = 1, . . . , n.(2-23)

We consider the function p = p(λ, u) given by the formula

(2-24) p(λ, u) :=

√
2

1− dφ
T (U − λ)Ψ11.
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This function is analytic in C \ ∪ni=1Li, with a regular singularity at infinity, and
its local behavior for λ→ ui is given by

(2-25) p(λ, u) = p(ui, u) + Ψi,11

√

2(ui − λ) +O(ui − λ), i = 1, . . . , n.

The 1-form dλp has at most a finite number of zeros. We denote them by
r1, . . . , rN and we assume that they do not belong to the cuts Li, i = 1, . . . , n. Let
D be the image of C \ ∪ni=1Li under the map p(λ, u). This domain has a boundary
given by the unfolding of the cuts Li, i = 1, . . . , n. The inverse function λ = λ(p, u)
is a multivalued function on D. Consider the points p(rc, u), c = 1, . . . , N . We glue
a finite number of copies of D along the cuts from the points p(rc, u) to infinity,

c = 1, . . . , N . In this way we obtain a domain D̂, where the function λ is single-
valued.

We analytically continue the function λ on D̂ beyond the boundary. This proce-
dure is not unique; for instance, we can glue several copies of D̂ along the boundaries
that are the images of the same cuts on the λ-plane. In any case, we can perform
this construction uniformly over a small ball in the space of parameters u1, . . . , un.
This way we obtain a (not necessarily compact) Riemann surface D, with a function
λ = λ(p̃, u) : D → C (by p̃ we denote some local coordinate on D).

Dubrovin proves in [7] that the family of functions λ(p̃, u) defined this way is a
superpotential of the Frobenius manifold which was the input of this construction.

2.5. Spectral curve topological recursion. In this Section, we recall the basic
set-up of the topological recursion procedure, which originated in the computation
of the correlation functions of matrix models [16, 15].

Consider a Riemann surface Σ with meromorphic functions x, y : Σ → C such
that x has a finite number of critical points, c1, . . . , cn, and y is holomorphic near
these points with a non-vanishing derivative. Let B be a symmetric bi-differential
on Σ × Σ, with a double pole on the diagonal, the double residue equal to 1, and
no further singularities.

We define a sequence of symmetric n-forms ωg,k(z1, . . . , zk) on Σ×k, known as
correlation differentials for the spectral curve, by the following recursion:

ω0,1(z) := y(z)dx(z);(2-26)

ω0,2(z1, z2) := B(z1, z2);(2-27)

ωg,k+1(z0, z1, . . . , zk) :=(2-28)

n
∑

i=1

Res
z→ci

∫ σi(z)

z ω0,2(•, z0)
2(ω0,1(σi(z))− ω0,1(z))

ω̃g,2|k(z, σi(z)|z1, . . . , zk),

where σi is the deck transformation for the function x near the point ci, i = 1, . . . , n,
and ω̃g,2|k is defined by the following formula:

ω̃g,2|k(z
′, z′′|z1, . . . , zk) :=ωg−1,n+2(z

′, z′′, z1, . . . , zk)+(2-29)
∑

g1+g2=g
I1⊔I2={1,...,k}
2g1−1+|I1|≥0
2g2−1+|I2|≥0

ωg1,|I1|+1(z
′, zI1)ωg2,|I2|+1(z

′′, zI2).

Here we denote by zI the sequence zi1 , . . . , zi|I| for I = {i1, . . . , i|I|}.
Remark 2.2. In the global recursion we also allow y to be the (multivalued) primitive
of a differential ω on Σ. The ambiguity in y consists of periods and residues of ω
and hence the ambiguity is locally constant. Since y appears in the recursion only
via y(σi(z)) − y(z) (and there are no poles of ω at the zeros of dx) the locally
constant ambiguity disappears and the recursion is well-defined.
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Remark 2.3. A local version of the recursion was defined in [14] as follows. Consider
some small neighborhoods Ui ⊂ Σ of the points ci. If we look at just the restrictions
of ωg,k to the products of these disks, Ui1 × · · · × Uik , we can still proceed by
topological recursion, using as an input the restrictions of ω0,1 to Ui, i = 1, . . . , n,
and ω0,2 to Ui × Uj, i, j = 1, . . . , n. Indeed, Equation (2-28) uses only local data
for the recursion.

Remark 2.4. There is a variation of the usual (global) topological recursion that
will also be important in this paper, especially in Section 10. Namely, we can
assume that there is more than one critical point in the fiber of the function x over
a critical value ui. Then we require that the local behavior of the function x near
these points is the same (that is, the Hessians are the same), and in this case it
is still possible to define a version of topological recursion, see Section 10. Note
that this more general critical behavior of the function x is exactly the one that is
allowed for the function λ in the definition of the Landau-Ginzburg superpotential
of a Frobenius manifold in Section 2.1.

2.6. Spectral curve topological recursion via CohFTs. In this Section we
recall a relation of the (local version of) spectral curve topological recursion to
the Givental formulae for cohomological field theories obtained in [10]. A more
convenient exposition is given in [24], so we follow the presentation given there.

We choose the local coordinates wi in the domains Ui such that x|Ui
= −w2

i /2+
x(ci), i = 1, . . . , n. The identification with the data of a CohFT then goes as
follows:

∆
− 1

2

i =
dy

dwi
(0);(2-30)

R−1(ζ−1)ji = −
1√
2πζ

∫ ∞

−∞

B(wi, wj)

dwi

∣

∣

∣

∣

wi=0

· e(x(wj)−x(cj))ζ ;(2-31)

n
∑

k=1

(R−1(ζ−1))ik∆
− 1

2

k =

√
ζ√
2π

∫ ∞

−∞
dy(wi) · e(x(wi)−x(ci))ζ .(2-32)

Note that Equation (2-30) is in fact a consequence of Equation (2-32).
There is an extra condition on the bi-differential B that can be formulated as a

requirement on decomposition of its Laplace transform as
√
ζ1ζ2
2π

∫ ∞

−∞

∫ ∞

−∞
B(wi, wj)e

(x(wi)−x(ci))ζ1+(x(wj)−x(cj))ζ2(2-33)

=

∑n
k=1 R

−1(ζ−1
1 )ikR

−1(ζ−1
2 )jk

ζ−1
1 + ζ−1

2

.

This assumption is always satisfied if the curve is compact and the differential dx
is meromorphic. This uses a general finite decomposition for B(p, q) proven by
Eynard in Appendix B of [14] together with (2-31).

This data (the constants ∆
− 1

2

i and the matrix R−1(ζ−1)ji ) determine for us a
semi-simple CohFT {αg,k} with an n-dimensional space of primary fields V :=
〈e1, . . . , en〉. The differentials ωg,k can be written in terms of the auxiliary functions

(2-34) ξi(z) :=

∫ z B(wi, •)
dwi

∣

∣

∣

∣

wi=0

as

(2-35) ωg,k =
∑

i1,...,ik
d1,...,dk

∫

Mg,k

αg,k(ei1 , . . . , eik)

k
∏

j=1

ψ
dj

j d

(

(

d

dx

)dj

ξij

)

.
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(These kind of formulas are typically of ELSV-type, see [12] for explanation.) In
terms of the underlying Frobenius manifold structure, the basis e1, . . . , en corre-
sponds to the normalized canonical basis.

3. Superpotential and function y

The goal of this Section is to prove that Dubrovin’s superpotential provides us
with a Riemann surface with two functions, x := λ and y := p, such that the local
expansion of y near the critical points of x reproduces the unit vector at the point
(u1, . . . , un) of the underlying Frobenius manifold as well as the value of the matrix
R−1 on the unit vector. These two local properties of y are precisely equivalent to
the equations (2-30) and (2-32).

Consider Dubrovin’s construction of a superpotential on the Riemann surface
D described in Section 2.4. It is associated to a Frobenius manifold with given

constants ∆
− 1

2

i and the matrix R−1(ζ−1)ji at the point with canonical coordinates
u1, . . . , un. Consider the points ci = p(ui, u) ∈ D. These points are the critical
points of the function x := λ.

Theorem 3.1. Given a semi-simple Frobenius manifold M , and Dubrovin’s con-
struction of a superpotential D for M , define spectral curve data by Σ = D, x := λ,
y := p (with B yet to be defined). Then equations (2-30) and (2-32) are satisfied

for the constants ∆
− 1

2

i and the matrix R−1(ζ−1)ji associated to M .

Proof. Let us prove the first statement, namely, Equation (2-30) (though it is a
corollary of Equation (2-32), it is convenient to check it directly). Indeed, Equa-
tion (2-25) states that near the points ci the function p looks like

p = ci +Ψi,11(u)
√

2(uj − λ) +O(uj − λ).

Therefore, the derivative of p with respect to the local coordinate wi =
√

2(ui − λ)
at the point ci is equal to Ψi,11(u) = ∆

− 1
2

i .
Now we prove Equation (2-32). We can assume that the contour of integration

on the right hand side in Equation (2-32) is the image of Li under the map p. Then,

(3-1)

√
ζ√
2π

∫

p(Li)

dp · e(λ−ui)ζ =

√
ζ√
2π

∫

p(Li)

dp

dλ
· e(λ−ui)ζdλ.

Here we treat dp and dλ as 1-forms defined on the surface D.
Observe that from equation (2-16) we have

(3-2)
dφT

dλ
= φT

(

1

2
− V

)

(U − λ)−1.

Therefore, using definition (2-24), we get

dp

dλ
=

d

dλ

√
2

1− dφ
T (U − λ)Ψ11 =

√
2

1− dφ
T

(

1

2
− V

)

Ψ11−
√
2

1− dφ
TΨ11(3-3)

=

√
2

1− dφ
TΨΨ−1

(

−1

2
− V

)

Ψ11 =

√
2

1− dφ
TΨ

(

−1

2
− µ

)

11

=

√
2

1− dφ
TΨ

(

−1

2
+
d

2

)

11 = − 1√
2
φTΨ11.

(In this computation we used the fact that µ11 = (−d/2)11.)
Equations (2-22) and (2-23) imply that on the contour p(Li) the vector φ is equal

to φ(i) + Ei, where Ei is some holomorphic function of (ui − λ). Recall also that
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(Ψ11)k = ∆
− 1

2

k . Therefore,

(3-4)

√
ζ√
2π

∫

p(Li)

dp

dλ
· e(λ−ui)ζdλ =

n
∑

k=1

∆
− 1

2

k · −
√
ζ

2
√
π

∫

p(Li)

φ
(i)
k · e(λ−ui)ζdλ.

Dubrovin shows in [7, Proof of Lemma 5.4] that the second factor in this expression
is (R−1(ζ−1))ik. Thus the right hand side of Equation (3-4) coincides with the left
hand side of Equation (2-32). This completes the proof of the Theorem. �

Remark 3.2. Note that we have not used the specific formula for φ in the proof.
We used only Equation (2-16) and the fact that the local expansion of φ for λ→ ui
coincides with the local expansion of φ(i) up to some holomorphic non-branching
term. Thus, if we have a solution for (2-16) satisfying this property, we can use it
directly in the formula for the superpotential (2-24), bypassing the requirement for
Gij to be non-degenerate. This will be important below in certain applications.

Remark 3.3. Flat identity. Topological recursion satisfies the string equation.

(3-5)

n
∑

i=1

Res
p=ci

y(p)ωg,k+1(p, p1, ..., pk) = −
k
∑

j=1

dpj
∂zj

(

ωg,k(p1, ..., pk)

dx(pj)

)

where the sum is over the zeros dx(ci) = 0 and dpj
is exterior derivative in the

variables pj . The operator ω 7→ ∑

iResp=ciy(p)ω(p) acts on differentials ω. It is
non-zero (and evaluates to 1) on the auxiliary differential

∑

j ajdξ
j corresponding

to the flat identity and annihilates all others. In particular

∑

i

Res
p=ci

d

(

(

d

dx

)dj

ξij

)

= 0, dj > 0.

This corresponds to insertion/removal of the identity vector in ancestor invariants.

4. Compatibility between B and y

In this section we discuss a necessary condition on a spectral curve to be able to
apply the inverse construction of [10], i.e. so that a CohFT can be reconstructed
from this spectral curve.

More precisely, for a given data of a spectral curve (Σ, x, y, B) (maybe, local)
Equations (2-31) and (2-32), (2-30) imply some relation for x, y, and B, and we
want to state this relation in a direct geometric way rather than in terms of the
Laplace transform.

The compatibility condition below is equivalent to differentiation of the potential
of a CohFT by t1 producing the string equation. In the language of [16], δ(ydx) =
∫

(dy/dx)(p′)B(p, p′) = d(dy/dx) gives rise to variations of ωg,k corresponding to
the string equation (3-5).

Recall that x defines a local involution σi near each zero ci of dx, i = 1, . . . , n.

Theorem 4.1. If a CohFT can be reconstructed from a spectral curve (Σ, x, y, B)
via the inverse construction of [10] described in Section 2.6, then the 1-form on Σ

(4-1) η(z) = d

(

dy

dx
(z)

)

+

n
∑

i=1

Res
z′=ci

dy

dx
(z′)B(z, z′).

is invariant under each local involution σi, i = 1, . . . , n.

Proof. The construction of [10] requires equations (2-30), (2-31), and (2-32) to
hold. We will prove that the 1-form (4-1) is invariant under each local involution
σi, i = 1, . . . , n if and only if equations (2-30), (2-31), and (2-32) are compatible

(as equations for the unknown variables R−1 and ∆
− 1

2

i , i = 1, . . . , n).
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Recall that x = x(ci)− w2
i /2 in a neighborhood of ci. Note that

Res
wi=ci

dy

dx
(wi)B(z, wi) = Res

wi=ci

dy

dwi
(wi) ·

dwi

dx
·B(z, wi)(4-2)

= − Res
wi=ci

dy

dwi
(wi) ·

dwi

wi
· B(z, wi)

dwi
=

dy

dwi
(0) · B(z, wi)

dwi

∣

∣

∣

∣

wi=0

.

An equivalent way to say that η is σi-invariant is to say that the following Laplace
transform of η is equal to zero:

(4-3)

∫ ∞

−∞
η(wi)e

(x(wi)−x(ci))ζ = 0.

On the other hand,

∫ ∞

−∞
η(wi)e

(x(wi)−x(ci))ζ =− ζ
∫ ∞

−∞

dy

dx
(wi)e

(x(wi)−x(ci))ζdx

(4-4)

−
n
∑

j=1

dy

dwj
(0)

∫ ∞

−∞

B(wi, wj)

dwj

∣

∣

∣

∣

wj=0

e(x(wi)−x(ci))ζ .

Thus, Equation (4-3) is satisfied if and only if
√
ζ√
2π

∫ ∞

−∞
dy(wi)e

(x(wi)−x(ci))ζ(4-5)

=

n
∑

j=1

dy

dwj
(0) · −1√

2πζ

∫ ∞

−∞

B(wi, wj)

dwj

∣

∣

∣

∣

wj=0

e(x(wi)−x(ci))ζ ,

which is precisely the compatibility condition for Equations (2-30), (2-31), and
(2-32). �

We can state (4-1) in simpler terms when the spectral curve is connected.

Corollary 4.2. For a connected spectral curve, equations (2-30), (2-31), and (2-32)
are compatible if and only if the 1-form defined in (4-1) is a pull-back of a 1-form
downstairs, i.e. η(z) = x∗ω.

Proof. If η(z) = x∗ω for ω a differential downstairs then it is invariant under local
involutions hence Theorem 4.1 applies. On a comnnected spectral curve Σ the
converse is also true. This follows from the more general fact that any η(z) which
is invariant under local involutions defined around simple ramification points of
x : Σ→ C is the pull-back of a differential downstairs. Take any regular point of x
p ∈ Σ and a path γ from p to a zero b of dx. Then x(γ) is covered by a path γ̃ ⊂ Σ
that contains p and p′ where x(p) = x(p′). The local involution defined by x in a
neighbourhood of b can be analytically continued along γ̃. Since η(z) is invariant
under the local involution at b, it is invariant under the continued involution above
a neighbourhood of x(γ). So η(z) agrees (via identification of cotangent bundles
using x ) around p and p′. Connectedness of Σ guarantees that the monodromy of
the cover defined by x is transitive and generated by local involutions. Hence we
can find paths γi that can be used to show that η(z) agrees around p and any point
in the fibre over x(p). Hence η(z) = x∗ω locally and this pieces together to give
the global result. The result isn’t true on disconnected curves, in particular local
curves, because monodromy is not transitive. �

Let us show how this compatibility test can be used.
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Proposition 4.3. The differential η ≡ 0, hence Equation (4-3) is satisfied, when
Σ is a global curve equipped with a canonical bidifferential B normalized so that
∫

p′∈αi
B(p, p′) = 0 for a choice of A-cycles αi, and one of the following holds:

(1) Σ is rational with global coordinate z chosen so that x(z =∞) =∞;

(2) dy is a meromorphic differential such that dy
dx has poles only at the zeros of

dx, for example dy is a holomorphic differential.

Note that in case (2) above, we take y to be the (multiply-defined) primitive
of a differential which is sufficient for the purposes of topological recursion—see
Remark (2.2).

Proof. Recall the property that for any function f on Σ, Resp′=pf(p
′)B(p, p′) =

df(p) (independent of the choice of A-cycles along which B is normalized). For

example, in the rational case B = dzdz′

(z−z′)2 and this property is the Cauchy integral

formula. Since dy
dx has poles only at the zeros of dx

n
∑

i=1

Res
p′=ci

dy

dx
(p′)B(p, p′) = − Res

p′=p

dy

dx
(p′)B(p, p′) = −d

(

dy

dx
(p)

)

hence η ≡ 0. �

Example 4.4. Consider x = z + 1/z, y = p(z) a polynomial. Then dy
dx = z2p′(z)

z2−1

has poles at z = ±1 and possibly z = ∞. Hence η(z) = dq(z) where q(z) is a
polynomial given by the principal part of dy/dx at z =∞. A non-trivial polynomial
has poles only at z =∞ so if η 6= 0 it cannot be the pull-back of a differential form
downstairs since it would necessarily require poles at x−1(∞) = {0,∞}. Hence this
fails the compatibility test, unless η(z) ≡ 0 i.e. deg p(z) ≤ 1. If deg p(z) = 1 then
Equation (4-3) is satisfied.

Example 4.5. Consider x = z + 1/z, y = ln z. Then dy
dx = z

z2−1 has poles only at

z = ±1 so Equation (4-3) is satisfied.

Example 4.6. Since the compatibility test is a linear condition in y, x = z + 1/z,
y = ln z + cz also satisfies the compatibility test and leads to a CohFT with a flat
unit. This was also observed in [19].

5. Superpotential as a global spectral curve in genus 0 case

In this Section we discuss a special case of Dubrovin’s superpotential defined in
Section 2.4 and show that it indeed gives a proper spectral curve for the correpond-
ing cohomological field theory.

More precisely, we start with a homogeneous cohomological field theory. Its
genus zero part without descendants defines a Frobenius manifold that we assume
to be semi-simple. Consider Dubrovin’s construction in Section 2.4. Assume that
this construction goes through in such a way that

(1) The form dλp has no zeros in C \ ∪ni=1Li ;
(2) λ(p =∞) =∞;
(3) The resulting curve D is a compact curve of genus 0 and p is a global

coordinate on it;
(4) There is exactly one critical point in each singular fiber of function λ.

Theorem 5.1. Under the conditions (1)-(4) above, the correlators of the CohFT
are related by Equation (2-35) to the correlator differentials obtained through spec-
tral curve topological recursion on a curve D with x = λ, y = p and B(p1, p2) =
dp1dp2/(p1 − p2)2.
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In other words, in this case the ancestor potential of CohFT is reproduced by
global topological recursion related to Dubrovin’s superpotential. Note that this
identification happens over an open ball in the underlying Frobenius manifold.

Proof. First of all, note that since p is a global coordinate and λ(p =∞) =∞, this
spectral curve satisfies the compatibility condition of Theorem 4.1, which means
that one can reconstruct a CohFT such that Equation (2-35) is satisfied. We only
need to prove that this CohFT is the same as the original one.

Theorem 3.1 implies that we have the right function y, so, in particular, the

functions ∆
− 1

2

i (u) are correctly reproduced on an open ball in the space of param-
eters u1, . . . , un. Note that these functions determine completely the structure of
Frobenius multiplication, so we can conclude that the CohFT reconstructed from
the spectral curve data coincides with the original one in genus zero.

Higher genera correlators of a semi-simple CohFT are determined uniquely by
genus 0 data in homogeneous cases [30]. Therefore, it is sufficient to prove that the
CohFT reconstructed from the spectral curve data is homogeneous. We do this by
proving the Euler equation for the corresponding R-matrix. Namely, a CohFT with
an R-matrix R(ξ) is homogeneous if and only if the R-matrix satisfies the Euler
equation [21]:

(5-1)

(

ξ
d

dξ
+

n
∑

i=1

ui
∂

∂ui

)

R(ξ, u) = 0

(or, equivalently, we can consider the same equation for R−1(ξ, u) = R(−ξ, u)T ).
Using Equation (2-33), the Euler equation for the R-matrix can be rewritten as

(5-2)

(

1 + ξ1
∂

∂ξ1
+ ξ2

∂

∂ξ2
+

n
∑

i=1

ui
∂

∂ui

)

B̌ = 0

for B̌ = B̌ij(ξ1, ξ2) given by

(5-3)
e−

ui
ξ1

−uj

ξ2

2π
√
ξ1ξ2

∫

p(Li)

∫

p(Lj)

B · e
λ1
ξ1

+
λ2
ξ2 .

Recall that we consider the case when dλp does not have zeros in C \ ∪ni=1Li,
and the Riemann surface D that we get through Dubrovin’s construction has genus
0. The Bergman kernel B(p1, p2) has the form dp1dp2/(p1 − p2)2.

Proposition 5.2. Under these conditions Equation (5-2) is satisfied.

We prove this proposition below. It implies that the R-matrix associated to
the Bergman kernel in this case satsifies the Euler equation, and, therefore, the
corresponding CohFT is homogeneous. This proposition completes the proof of
Theorem 5.1. �

For the proof of Proposition 5.2 we need the following technical lemma:

Lemma 5.3. We have:

(5-4)

(

λ
d

dλ
+

n
∑

i=1

ui
∂

∂ui

)

p(λ, u) =
1− d
2

p(λ, u).

Proof. Recall Equation (3-3):

(5-5) dλp(λ, u) = −
1√
2
φT dλΨ11.
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In the same way we prove that

(5-6) dup(λ, u) =
1√
2
φTdUΨ11

(this is [7, equation (5.66)]; note that there is a misprint in this equation in [7]).
Combining these equations, we get

(5-7)

(

λ
d

dλ
+

n
∑

i=1

ui
∂

∂ui

)

p(λ, u) =
1√
2
φT (U − λ)Ψ11 =

1− d
2

p(λ, u).

�

Proof of Proposition 5.2. We have:
(

1 + ξ1
∂

∂ξ1
+ ξ2

∂

∂ξ2
+

n
∑

i=1

ui
∂

∂ui

)

B̌(5-8)

=
e−

ui
ξ1

−uj
ξ2

2π
√
ξ1ξ2

∫∫

dλ1dλ2
(p(λ1)− p(λ2))2

dp

dλ
(λ1)

dp

dλ
(λ2) e

λ1
ξ1

+
λ2
ξ2 X,

where

X =− λ1
ξ1
− λ2
ξ2
− 2 ·

(

n
∑

i=1

ui
∂

∂ui

)

(p(λ1)− p(λ2))

p(λ1)− p(λ2)

+

(

n
∑

i=1

ui
∂

∂ui

)

dp

dλ
(λ1)

dp

dλ
(λ1)

+

(

n
∑

i=1

ui
∂

∂ui

)

dp

dλ
(λ2)

dp

dλ
(λ2)

.

Applying the integration by parts to the terms −λ1/ξ1 and −λ2/ξ2, we can rewrite
the right hand side of Equation (5-8) as

(5-9)
e
−ui

ξ1
−uj

ξ2

2π
√
ξ1ξ2

∫∫

dλ1dλ2
(p(λ1)− p(λ2))2

dp

dλ
(λ1)

dp

dλ
(λ2) e

λ1
ξ1

+
λ2
ξ2 Y,

where

Y = 2 +

(

λ1
d

dλ1
+

n
∑

i=1

ui
∂

∂ui

)

dp

dλ
(λ1)

dp

dλ
(λ1)

+

(

λ2
d

dλ2
+

n
∑

i=1

ui
∂

∂ui

)

dp

dλ
(λ2)

dp

dλ
(λ2)

−

− 2 ·

(

λ1
d

dλ1
+

n
∑

i=1

ui
∂

∂ui

)

p(λ1)−
(

λ2
d

dλ2
+

n
∑

i=1

ui
∂

∂ui

)

p(λ2)

p(λ1)− p(λ2)
.

Using Equation (5-4), we rewrite Y as

Y = 2 +

(

−1 + 1− d
2

)

dp

dλ
(λ1)

dp

dλ
(λ1)

+

(

−1 + 1− d
2

)

dp

dλ
(λ2)

dp

dλ
(λ2)

−

− 2 ·
1− d
2

p(λ1)−
1− d
2

p(λ2)

p(λ1)− p(λ2)

= 2 +

(

−1 + 1− d
2

)

+

(

−1 + 1− d
2

)

− 2 · 1− d
2

= 0,

which proves the proposition. �
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6. Superpotential as a global spectral curve for arbitrary genus

In this Section we extend the result of the previous section to the case of a
compact global curve of arbitrary genus.

Theorem 6.1. Given a conformal Frobenius manifold, construct a superpotential
p(λ;u) which defines the Riemann surface D according to Dubrovin’s construction
of Section 2.4. Assume the following:

• D is a compact curve of genus g;
• there is exactly one critical point in each singular fiber of λ : D → C.

Fix a symplectic basis (Ai,Bi)gi=1 of H1(D,Z) and define B(p1, p2) as the only
Bergman kernel on D normalized by

(6-1) ∀i = 1, . . . , g ,

∮

p1∈Ai

B(p1, p2) = 0.

Further assume that:

• the pair (p,B(p1, p2)) passes the compatibility test of Section 4 in any of its
possible forms (given by Theorem 4.1, Corollary 4.2, or Proposition 4.3).

Then the correlators of the CohFT associated to the Frobenius manifold are related
by Equation (2-35) to the correlator differentials obtained through spectral curve
topological recursion on the Riemann surface D with x = λ, y = p and B(p1, p2).

Remark 6.2. This result extends Theorem 5.1 to an arbitrary compact curve. The
new feature is that one needs to normalize the Bergman kernel on an arbitrary
basis of cycles. In particular, for each basis, we recover a total ancestor potential
for the same CohFT.

Proof. The proof is very similar to the proof of the genus 0 case presented in the
preceding section. However, it is important to remark that this proof only relies on
Rauch’s variational formula, i.e. it is valid for any compact curve presented as a
ramified cover of the Riemann sphere with simple branch points. It does not require
any knowledge about an auxiliary meromorphic form such as the super-potential.

Let us first show that the (0, 3) correlators are independent of choice of nor-
malisation cycles for B. ω0,3 depends on these choices, but when decomposed
into linear combinations of auxiliary differentials dξj = B/dsj (for sj defined by
x = (1/2)s2j + aj) the coefficients are independent of A-cycles. By reconstruction,
as in the proof of Theorem 5.1, this means that all correlators are the same. The
formula

ω0,3(z1, z2, z3) =

n
∑

i=1

Res
p=ci

B(p, z1)B(p, z2)B(p, z3)/dx(p)dy(p)

=

n
∑

i=1

B(ai, z1)B(ai, z2)B(ai, z3)/x
′′(ai)y

′(ai)

=

n
∑

i=1

〈....〉dξi(z1)dξi(z2)dξi(z3)

shows the independence of the coefficients 〈...〉 on the choice of B.
For the rest of the proof, the only part differing from the genus 0 case is the

proof of the homogeneity of the CohFT, i.e. the fact that the R-matrix satisfies
the Euler equation.

The first step consists in proving that there exist a R-matrix. This is due to a
lemma of Eynard [14]:
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Lemma 6.3. If dλ is a meromorphic form on D and B the Bergman kernel nor-
malized on a basis of A-cycles as above, then the Laplace transform of the Bergman
kernel satisfies Equation (2-33) .

The Euler equation for the R-matrix is then equivalent to the following equation
for the Laplace transform of B:

(6-2)

(

1 + ξ1
∂

∂ξ1
+ ξ2

∂

∂ξ2
+

n
∑

i=1

ui
∂

∂ui

)

B̌ = 0

for B̌ = B̌ij(ξ1, ξ2) given by

(6-3)
e
−ui

ξ1
−uj

ξ2

2π
√
ξ1ξ2

∫

p(Li)

∫

p(Lj)

B · e
λ1
ξ1

+
λ2
ξ2 .

By inverting the Laplace transform and integration by part, this is equivalent to

(6-4) d1

(

λ1 B(p1, p2)

dλ1

)

+ d2

(

λ2 B(p1, p2)

dλ2

)

+

n
∑

i=1

ui
∂

∂ui
B(p1, p2).

In order to prove this equation, we remind Rauch’s variational formula which
expresses the variations of the Bergman kernel under deformation of the spectral
curve. In particular

(6-5)
∂B(p1, p2)

∂ui
= Res

r→ai

B(p1, r)B(p2, r)

dλ(r)

which implies that

(6-6)

n
∑

i=1

ui
∂

∂ui
B(p1, p2) =

n
∑

i=1

Res
r→ai

λ(r)B(p1 , r)B(p2, r)

dλ(r)
.

Moving the integration contours around the other poles of the integrands and re-
minding that the A-periods of B(p, r) are vanishing, this reads
(6-7)

n
∑

i=1

ui
∂

∂ui
B(p1, p2) = − Res

r→p1,p2

λ(r)B(p1, r)B(p2, r)

dλ(r)
= −

(

d

dλ1
+

d

dλ2

)

B(p1, p2)

proving Equation 6-4.
�

7. Global curves for An singularities

In this Section we apply the results of Sections 3, 4, and 5 in order to construct
the spectral curve for the ancestor potential of An-singularities, n = 1, 2, . . . . The
structure of this Frobenius manifolds is described in terms of Saito’s theory on the
space of polynomials

(7-1) f(p, τ) = pn+1 + τ1p
n−1 + · · · τn.

We refer to [6, 22] for the detailed description of the structure of this Frobenius
manifold. In particular, it is enough to say that λ = f(p, τ) is a superpotential of
this Frobenius manifold.

The corresponding CohFT is well-studied. It was a subject of Witten’s con-
jecture [31] proved in [18]. We refer to [28] for an exposition of this CohFT that
includes an overview of its constructions; the CohFT whose correlators give the an-
cestor potential at the point τ of this Frobenius manifold is called there the shifted
Witten class of An singularity.
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Theorem 7.1. The correlation differentials of the global spectral curve data Σ :=
CP

1, y := p (the global coordinate), x := f(p, τ), B := dp1dp2/(p1 − p2)
2 are

expressed via Equation (2-35) in terms of the shifted Witten class of An singularity.

Proof. As we have already mentioned, the function λ = f(p, τ) is known to be a
superpotential of the corresponding Frobenius manifold. We have to show that this
superpotential can be obtained by Dubrovin’s construction in Section 2.4. Then it
is easy to see that all conditions of Theorem 5.1 are satisfied, which implies this
theorem.

We construct solutions of Equation (2-16) in terms of the integrals over the
vanishing cycles. Namely, consider the tangent bundle over the space of polynomials
parametrized by τ ∈ T . It is identified with the space C[p]/(dpf(p, τ)/dp) by the
map v 7→ (dτf(p, τ))(v) and equipped with a flat metric given by

(7-2) (v1, v2) := Res
p=∞

dτf(v1)dτf(v2)

dpf(p, τ)/dp
dp.

For a cycle β ∈ H0(f
−1(λ),C) we denote by Iβ(λ, τ) the section of the tangent

bundle specified by the following formula:

(7-3) (Iβ(λ, τ), v) :=

∫

β

dτf(v) ·
dp

dpf
.

In normalized canonical coordinates Iβ(λ, τ) is represented by the vector φβ(λ, τ)
with components given by

(7-4) φβi (λ, τ) :=

(

Iβ(λ, τ),
∆

1
2
i√
2

∂

∂ui

)

is a solution of Equation (2-16) (see [22]). Let us discuss the singularities of this
solution, depending on β.

Consider the λ-plane as the image of the map λ = f(p, τ). Let u1, . . . , un be the
critical values of f(p, τ). We can alway choose a system of cuts Li, i = 1, . . . , n,
from ui to infinity such that the preimage f−1(C\∪ni=1Li) is a union of n+1 disks,
D0, D1, . . . , Dn, glued along the boundary cuts in the following way:

– D0 is glued to Di along the boundary that is a double cover of Li; in
particular, their common boundary contains the critical preimage of ui;

– All other lifts of the cut Li are just cuts inside Dj , j 6= 0, i; the endpoints
of these cuts are non-critical preimages of ui.

For n = 1, 2, 3 we give the corresponding pictures for a real orientable blow-up at
infinity (that is, the boundary circle on the picture corresponds to the infinity point
of the source sphere). The domain D0 is shadowed there.

u1

(a) A1

u1
u1u2

u2

(b) A2

u1

u2

u3u3u2 u1u2

u3 u1

(c) A3

Figure 1. An-singularities, 1 ≤ n ≤ 3
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Consider the vanishing cycles βi ∈ H0(f
−1(λ),C) given by βi := p0 − pi, where

λ = f(p0, τ) = f(pi, τ), and p0 ∈ D0, pi ∈ Di. Then the system of solutions of
Equation (2-16) given by φ(i)(λ, τ) := φβi(λ, τ) satisfies the properties given by
Equations (2-18)–(2-21). In particular, Gij = 1/2 for i 6= j and Gii = 1. The
inverse matrix is given by Gii = 2n/(n + 1) and Gij = −2/(n + 1) for i 6= j.

Therefore, Dubrovin’s solution φ =
∑n

i,j=1Gijφ
(j) is equal to φβ0 for

(7-5) β0 =

n
∑

i=1

(

2n

n+ 1
− (n− 1)

2

n+ 1

)

βi = 2p0 −
2

n+ 1

n
∑

i=0

pi.

Recall that for the Frobenius structureAn, d = (n−1)/(n+1). Also we recall that
for the Euler vector field E =

∑n
i=1 ui

∂
∂ui

and the unit vector field e =
∑n

i=1
∂

∂ui

so that we have:

Ef(p, τ) = f(p, τ)− p

n+ 1

dpf(p, τ)

dp
,(7-6)

ef(p, τ) = 1.(7-7)

The formula φT (U − λ)Ψ11 can be written as
(

Iβ0(λ, τ), (E − λe)/
√
2
)

. Therefore,

√
2

1− dφ
T (U − λ)Ψ11 =

n+ 1

2

∫

β0

(E − λe)f(p, τ) · dp

dpf(p, τ)
(7-8)

=
n+ 1

2

∫

β0

(

f(p, τ)− p

n+ 1

dpf(p, τ)

dp
− λ
)

· dp

dpf(p, τ)
.

Since the cycle β0 lies in f−1(λ), then (f(p, τ) − λ)|β0 = 0. Therefore, the last
integral can be rewritten as

(7-9)
n+ 1

2

∫

β0

p

n+ 1
= p0(λ, τ) −

1

n+ 1

n
∑

i=0

pi(λ, τ).

Since
∑n

i=0 pi(λ, τ) = 0 (recall the form of the polynomial f(p, λ)), we conclude

that the function
√
2

1−dφ
T (U − λ)Ψ11 is equal to the branch D0 of p = f−1(λ, τ).

So, p(C\∪ni=1Li) = D0. It is obvious that dλp has no zeros in C\∪ni=1Li, so D̂ =
D, and one of the possible analytic continuation of the function λ = f(p, τ)|D0 is its
extension to the polynomial f(p, τ) defined on CP

1. All condition of Theorem 5.1
are satisfied, so we apply it here to complete the proof. �

Remark 7.2 (Relation to Milanov’s spectral curve). The global spectral curve that
we constructed differs from the one constructed by Milanov in [26]. Milanov gets
a spectral curve with the same local behavior as x = f(y, τ) near the critical
points, but, in our terms, he chooses a different analytic continuation of λ|D. He
constructs an analytic continuation using the action of the Weyl group (we revisit
his construction in our terms in Section 10), and obtains a curve where all preimages
of the critical points in the x-plane are critical. In our terms, this can be achieved
by gluing n! copies of the curve x = f(y, τ) along the cuts connecting the non-
critical preimages of the points ui, i = 1, . . . , n such that each point belongs to
exactly one cut. This makes all preimages of u1, . . . , un critical and will produce a

curve of genus 1 + n!
2 (

n2

2 − n
2 − 2) where the function x has degree (n+ 1)!, and it

has n! poles of degree (n+1) each (cf. computation in [26] and further explanation
in Section 10).



DUBROVIN’S SUPERPOTENTIAL AS A GLOBAL SPECTRAL CURVE 23

7.1. Bouchard-Eynard recursion. In this Section we discuss an application of
Theorem 7.1. There is a more general formulation of topological recursion that
works for functions x with higher order singular points [3]. Locally, a higher order
singularity is given by x = yn+1, B = dy1dy2/(y1 − y2)2. Bouchard and Eynard
announced a theorem [4] that identifies the coefficients of the local expansion in y
at y = 0 of the correlation differentials of this spectral curve with the coefficients of
the string solution of the (r+1)-Gelfand-Dickey hierarchy, also known as the total
descendant potential of the Ar singularity. The proof of Bouchard and Eynard
goes through analysis of matrix models. Here we give a new proof of their theorem,
namely, we derive it directly from Theorem 7.1.

Theorem 7.3. [4] The Bouchard-Eynard recursion applied to x = pn+1, y = p,
B = dp1dp2/(p1 − p2)2 produces differentials ωg,k, whose expansions near infinity
are given by

ωg,k(p1, . . . , pk) =
∑

0≤a1,...,ak≤n−1
d1,...,dk

〈τd1a1 · · · τdkak
〉g,k×(7-10)

k
∏

j=1

(

(aj + 1)(aj + 1 + (n+ 1)) · · · (aj + 1 + dj(n+ 1))

(−1)dj(n+ 1)dj+1

dpj

p
(n+1)dj+aj+2
j

)

,

where 〈τd1a1 · · · τdkak
〉g,k are the coefficients of the string solution of the (n + 1)-

Gelfand-Dickii hierarchy [31, 22, 18].

Note that we don’t recall and don’t use the definition of the Bouchard-Eynard
recursion. The only property that we are using here is that it is compatible with
the usual recursion on the curves with simple singularities and the limits [3]. In this
case, we know that in the neighborhood of infinity the correlation differentials of the
Bouchard-Eynard recursion are the limits for ǫ → 0 of the correlation differentials
of the usual recursion applied to x = yn+1 + ǫy.

Let us now prove theorem 7.3.

Proof. The flat coordinates t0 = t11, t1, . . . , tn−1 are given on the space of polyno-
mials f(p, τ) defined in Equation (7-1) by the following formula:

(7-11) f(p, τ)
1

n+1 = p+
1

n+ 1

(

tn−1

p
+
tn−2

p2
+ · · ·+ t0

pn

)

+O

(

1

pn+1

)

.

Recall that the canonical coordinates are the critical values u1, . . . , un of f(p, τ)
and it is obvious that ∂ui/∂t11 = 1. We denote by c1, . . . , cn the positions of the
critical points of function f(p, τ); so ui = f(ci, τ), i = 1, . . . , n.

We perform all computations only on a special curve in the space of polynomials,
namely, f(p, τ) = pr+1 + ǫp, and we are interested in all results only up O(ǫ) for
ǫ→ 0. In particular, we note that ta = O(ǫ), a = 0, . . . , n− 1.

The full Jacobian of the change from the canonical to flat coordinates is then
given by the following computation:

(7-12)
∂ui
∂ta

=
∂f(ci, τ)

∂ta
= f(ci, τ)

n
n+1

(

1

cn−a
i

+O(ǫ)

)

= cai
∂ui
∂t0

+O(ǫ) = cai +O(ǫ).

The correlation differentials, written in terms of a CohFT considered in normal-
ized canonical frame in Equation (2-35), can be rewritten in terms of the correlators
of the ancestor potential of Givental [22] At({td,α}) considered at the point t in flat
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coordinates td,α, d = 0, 1, 2, . . . ,, α = 0, . . . , n− 1 in the following way:

ωg,k =
∑

i1,...,ik
d1,...,dk

∫

Mg,k

αg,k

(

∆
1
2

i1

∂

∂ui1
, . . . ,∆

1
2

ik

∂

∂uik

) k
∏

j=1

ψ
dj

j d

(

(

d

dx

)dj

ξij

)

.

(7-13)

=
∑

α1,...,αk

d1,...,dk

〈τd1α1 · · · τdkαk
〉g,k(t)

k
∏

j=1

d

(

(

d

dx

)dj −1
pαj+1

)

+O(ǫ).

(by 〈τd1α1 · · · τdkαk
〉g,k(t) we denote the coefficients of the expansion of logAt).

Indeed, let us expand the vector
∑n

i=1 ξi(p)∆
1
2

i
∂

∂ui
near p = ∞. Recall that we

denote by c1, . . . , cn the positions of the critical points of function f(p, τ). We
have:

n
∑

i=1

ξi(p)∆
1
2

i

∂

∂ui
=

n
∑

i=1

(

1

z − p
dz

d
√

f(p, τ)− ui

)∣

∣

∣

∣

∣

z=ci

∆
1
2

i

∂

∂ui
(7-14)

= −
∞
∑

k=0

1

pk+1

n
∑

i=1

cki
∂

∂ui
= −

n−1
∑

k=0

1

pk+1

∂

∂tk
+O(ǫ).

(we use Equation (7-12) and the fact that cni = O(ǫ) for the last equality).
Recall [28] that the correlators of the ancestor potential At are represented in

terms of the correlators of the descendant potential (which is exactly the string
solution of the (n+ 1)-Gelfand-Dickey hierarchy) as

(7-15) 〈τd1α1 · · · τdkαk
〉g,k(t) = 〈τd1α1 · · · τdkαk

〉g,k +O(ǫ).

Thus we see that

ωg,k =
∑

α1,...,αk

d1,...,dk

〈τd1α1 · · · τdkαk
〉g,k

k
∏

j=1

d

(

(

d

dx

)dj −1
pαj+1

)

+O(ǫ).(7-16)

In the limit ǫ→ 0 we get exactly Equation (7-10). �

8. Frobenius manifolds for hypermaps

In this Section we construct a global spectral curve for the Frobenius manifold
given by the superpotential λ = f(p, a), where a = (a0, . . . , an+1), n ≥ 1, and

(8-1) f(p, a) = pn + a2p
n−2 + a3p

n−3 + · · ·+ an +
an+1

p− a1
.

This superpotential defines a semi-simple Frobenius manifold (this Frobenius man-
ifold is studied in [6, Section 5]). Furthermore the spectral curve

(Σ, x, y, B) =

(

CP
1, f(p, a), p,

dp1dp2
(p1 − p2)2

)

satisfies equations (2-30)-(2-33) hence it stores the correlators of a CohFT via Equa-
tion (2-35). The following theorem answers the question of whether these two
CohFTs coincide.

Theorem 8.1. The CohFT associated to the Frobenius manifold given by the su-
perpotential λ = f(p, a) coincides with the one reconstructed from the spectral curve
(CP1, f(p, a), p, dp1dp2/(p1 − p2)2).
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Remark 8.2. The correlation differentials for this spectral curve considered for the
particular values of the parameters a enumerate hypermaps on the curves. This is
proved in [11], see also [5], where some special case of that was conjectured.

So, Theorem 8.1 is to be used in the converse way: We start with a combinatorial
problem that is known to be solved by global topological recursion. It appears
that the correlators of this global topological recursion are expressed in terms of a
CohFT. This CohFT appears to be homogeneous, so it is associated to a Frobenius
manifold, and this Theorem describes precisely the underlying Frobenius manifold.

Proof. The proof is completely parallel to the proof of Theorem 7.1. Note that as
in the case of An-singularity, we claim that the spectral curve is the superpotential
itself. We use Theorem 5.1, so it is enough to show that we can reproduce the
superpotential λ = f(p, a) via Dubrovin’s construction from Section 2.4.

The canonical coordinates u1, . . . , un+1 of this Frobenius manifold are the critical
values of f(p, a); the Euler vector field is given by

(8-2) E =
n
∑

i=1

ui
∂

∂ui
=

n+1
∑

i=1

i

n
ai

∂

∂ai
;

the unit vector field is equal to

(8-3) e =

n
∑

i=1

∂

∂ui
=

∂

∂an
;

and the constant d is equal to (n− 2)/n. Note that

(8-4) Ef(p, a) = f(p, a)− p

n

df(p, a)

dp
.

As in the case of An singularity, the solutions to the Equation (2-16) are given
by the integrals over the cycles β ∈ H0(f

−1(λ),C), where the components of the
solutions are given by

(8-5) φβi :=

∫

β

∆
1
2

i√
2

∂f(p, a)

∂ui
·
(

df(p, a)

dp

)−1

.

Consider the λ-plane as the image of the map λ = f(p, τ). Recall that u1, . . . , un+1

are the critical values of f(p, τ). We can alway choose a system of cuts Li,
i = 1, . . . , n + 1, from ui to infinity such that the preimage f−1(C \ ∪ni=1Li) is
a union of n + 1 disks, D0, D1, . . . , Dn, glued along the boundary cuts in the fol-
lowing way:

– D0 is glued to Di, i = 2, . . . , n, along the boundary that is a double cover
of Li; in particular, their common boundary contains the critical preimage
of ui;

– D0 is glued to D1 along two components of the boundary that are double
covers of L1 and Ln+1 and these boundary components have common point
p = a1. In particular, these boundary components contain the critical
preimages of u1 and un+1;

– All other lifts of the cut Li are just cuts inside Dj, j 6= 0, i for i = 2, . . . , n
and j 6= 0, 1 for i = 1, n + 1; the endpoints of these cuts are non-critical
preimages of ui.

For n = 1, 2, 3 we give the corresponding pictures for a real orientable blow-up
at infinity (that is, the external boundary circle on the picture corresponds to the
infinity point of the source sphere, and the internal circle corresponds to p = a1).
The domain D0 is shadowed.

Consider the vanishing cycles βi ∈ H0(f
−1(λ),C) given by βi := pi − p0, where

λ = f(p0, τ) = f(pi, τ), and p0 ∈ D0, pi ∈ Di. Then the system of solutions
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u1u2

(a) n = 1

u1

u1u2

u2 u3

u3

(b) n = 2

u1

u2u3

u4

u1u4

u1u2 u3u4

u2u3

(c) n = 3

Figure 2. Hypermaps zn +
1

z
, 1 ≤ n ≤ 3

of Equation (2-16) given by φ(i)(λ, τ) := φβi(λ, τ), i = 1, . . . , n, φ(n+1) = φ(1),
satisfies the properties given by Equations (2-18)–(2-21). In particular, Gii = 1 for
i = 1, . . . , n + 1, G1,n+1 = Gn+1,1 = 1, and for all other i 6= j Gij = 1/2. So, this
matrix is degenerate.

However, Remark 3.2 specifies the properties of φ that are sufficient for Theo-
rems 3.1 and 5.1. Note that

(8-6) φ :=
2

n+ 1

n
∑

i=1

φ(i) = φβ0

for β0 := 2
n+1

∑n
i=0 pi − 2p0 satisfies all condition of Remark 3.2. With this choice

of φ and, therefore, β0, Dubrovin’s superpotential can be presented as
√
2

1− dφ
T (U − λ)Ψ11 =

n

2

∫

β0

(E − λe)f(p, a) ·
(

df(p, a)

dp

)−1

.(8-7)

Using Equation (8-4), we have:
√
2

1− dφ
T (U − λ)Ψ11 =

n

2

∫

β0

(

f(p, a)− p

n

df(p, a)

dp
− λ
)

·
(

df(p, a)

dp

)−1

(8-8)

=

∫

β0

−p
2
= p0 −

1

n+ 1

n
∑

i=0

pi =

{

p0 − λ+a1

2 n = 1;

p0 − a1

n+1 n > 1.

(in the last equality we used that we know the sum of all roots of the equation
f(p, a) = λ).

Let us now discuss the cases that we get. For n > 1 Dubrovin’s function pDub =
pDub(λ, a) is the branch D0 of the inverse function of λ = f(p, a) shifted by a
constant. Obviously, dλpDub has no zeros in C \ ∪n+1

i=1 Li, and we can choose as

the analytic extension of λ|D0 the function λ = f(p, a) defined on CP
1. Then

Theorem 5.1 is applied. We get, therefore, not precisely the statement that we
want to prove, but we have instead y = pDub = p− a1/(n+1) (the Bergman kernel
is still the same). However, it doesn’t change anything in topological recursion if
we shift y by a constant.

The case n = 1 is even more interesting. One can easily check by direct compu-
tation that Dubrovin’s function pDub = pDub(λ, a) is equal to

√

(λ− u1)(λ − u2)/2.
Further construction of the curve gives the following equation:

p2Dub −
1

4
(λ− a1)2 + a2 = 0
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It is a rational curve, and it has a global coordinate p = pDub + (λ+ a1)/2, which
is our original coordinate p, that is, λ = p + a2/(p − a1). Theorem 5.1 can not
be applied directly, but in this case we can just check by hand that we get the
statement that we want to prove. See Appendix A.2.

Note that Theorem 3.1 suggests that the right choice of function y is y = pDub =
p−(λ+a1)/2 rather than y = p. However, it doesn’t change anything in topological
recursion if we shift y by a function of x = λ, so there is no contradiction. �

Since in this example we rather start from a combinatorial problem of enumer-
ation of hypermaps and use Theorem 8.1 in order to clarify the structure of the
ELSV-type formula (2-35) for this combinatorial problem, it is interesting to have
a description of the underlying Frobenius manifolds (given by superpotentials) in
terms of their prepotentials. We know an algorithm which can produce this prepo-
tential for any given n (this algorithm follows from Dubrovin’s construction found in
[6]), but we do not know a general formula which would describe these prepotentials
for all n ≥ 1. Here we list the formulas for cases n = 1, 2, 3:

n = 1 :
a21a2
2

+
a22
2

log a2;

n = 2 :
a31
6

+ a1a2a3 +
a23
2

log a3 +
a31a3
6
− 3a23

4
;

n = 3 :
a21a4
2

+ a1a2a3 −
3a22
4

+
a22
2

log (a2) +
a2a

4
3

4
+

3a2a
2
3a4

2
+

3a2a
2
4

2
− 3a44

8
Note that in the case n = 1 the corresponding combinatorial problem has also

interpretation in terms of the discrete volumes of the moduli space of curves [27]
and discrete surfaces/generalized Catalan numbers [1, 9, 17]. The relation of these
combinatorial problems to a CohFT is also discussed in [2, 19], though it is not
mentioned there that the underlying Frobenius manifold is given by the prepotential
a21a2/2 + a22/2 · log a2.

9. Elliptic example

In this section we give an example of a superpotential that satisfies the conditions
of Theorem 6.1.

Consider the spectral curve defined by the Weierstrass ℘-function

(9-1) λ = ℘(z), p = z, B(z, z′) = (℘(z − z′) + b) dzdz′

where b ∈ C and p is only defined locally—it is the primitive of a holomorphic
differential on the curve—which is sufficient for topological recursion. The compat-
ibility condition (4-1) is satisfied by Proposition 4.3. It is equivalent to the elliptic
identity:

(9-2)
℘′′(z)

℘′(z)2
=

3
∑

i=1

℘(z − ωi)

℘′′(ωi)

where the sum is over the zeros ωi of ℘′(z). Hence the spectral curve defines a
CohFT.

Introduce three parameters ω, ω′ and c into the spectral curve to define the
following superpotential taken from [6]:

(9-3) λ = ℘(z;ω, ω′) + c, p =
z

ω
where

(9-4) ℘(z;ω, ω′) =
1

z2
+

∑

(m,n) 6=(0,0)

1

(z − 2mω − 2nω′)2
− 1

(2mω + 2nω′)2
.
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The Frobenius manifold structure on M = {(ω, ω′, c)} is given by the formulae
(2-7), (2-8), (2-9) where the vector fields ∂ on M are given by, for example ∂ω, ∂ω′ ,
∂c. Note that in (9-2), ω1 = ω, ω2 = ω′, ω3 = ω + ω′.

Remark 9.1. Note that we know that the superpotential (9-3) defines a Frobenius
manifold due to the existence of flat coordinates, proven in [6], and also given below.
The CohFT produced by topological recursion applied to (9-1) is homogeneous if
we choose b in (9-1) so that

∫

A
B(z, z′) = 0, i.e. b = η/ω where the A and B periods

are 2ω =
∮

A
dz, 2ω′ =

∮

B
dz and

η = −1

2

∮

A

℘(z)dz, η′ = −1

2

∮

B

℘(z)dz.

The periods satisfy Legendre’s relation

ηω′ − η′ω =
iπ

2
.

The homogeneous CohFT corresponds to a conformal Frobenius manifold which
gives rise to a superpotential via Dubrovin’s construction (actually, since d = 1
it is a variant of the construction). What needs to be proven is that the two
superpotentials agree.

Theorem 9.2. The superpotential (9-3) can be obtained via (a variant of) Dubrovin’s
construction described in Section 2.4 applied to the Frobenius manifold M . The
conditions of Theorem 6.1 are satisfied for this superpotential. Hence the two co-
homological field theories—obtained from the superpotential (9-3) and topological
recursion applied to the spectral curve (9-1) with b = η/ω—agree.

Proof. To apply Dubrovin’s construction toM we construct a solution of the Gauss-
Manin system as in the proof of Theorem 7.1.

The flat metric (2-7) for the superpotential (9-3) is given by

(9-5) (∂, ∂′) :=
3
∑

i=1

Res
z=ωi

∂λ · ∂′λ
℘′ dp.

We use this to construct a vector field Iβ(λ;u) onM for any cycle β ∈ H0(λ
−1(pt),C)

specified by:

(9-6) (Iβ(λ;u), ∂) :=

∫

β

∂(λ)

dpλ/dp
.

The elliptic curve (9-3) is built by gluing two copies of the disk D = C \ ∪3i=1Li

in the λ plane along Li. Choose β to be the cycle given by p0 − p1, for p0 and p1
the pre-images of λ in each of the two disks. In normalized canonical coordinates

Iβ(λ;u) is represented by a solution φβ(λ;u) =
∑

i φ
β
i (λ;u)∂vi of the Gauss-Manin

system (2-16) which has components given by

φβi (λ;u) =

(

Iβ(λ;u),
1√
2
∆

1
2

i ∂ui

)

=

∫

β

∆
1
2

i ∂ui
λ√

2 · dpλ/dp

=

√
2 ·∆

1
2

i ∂ui
λ

dpλ/dp

where the integral over β simply doubles the integrand since the integrand is skew
symmetric. Since d = 1, we cannot use the inversion formula (2-17) so we directly
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check that 1√
2
φβ = ∇up as follows.

∇up = η−1dup =
1

ω

3
∑

i=1

∆i ·
∂ui

λ

℘′(z)
∂ui

=
1

ω

3
∑

i=1

∆
1
2
i ∂ui

λ

℘′(z)
∂vi =

1√
2
φβ .

Using

∂ui
λ =

1

2℘′′(ωi)

℘′(z)2

℘(z)− ℘(ωi)
+
z℘(ωi) + ζ(z)

℘′′(ωi)
℘′(z)

which can be proven from the known variations
∑

i u
k
i ∂ui

, k = 0, 1, 2, we see that
the solution φβ(λ;u) satisfies

1√
2
φTΨ11 =

1

ω

3
∑

i=1

∂ui
λ

℘′(z)

=
1

ω

3
∑

i=1

1

2℘′′(ωi)

℘′(z)

℘(z)− ℘(ωi)
+
z℘(ωi) + ζ(z)

℘′′(ωi)

=
1

ω℘′(z)
=
dp

dλ

which is (3-3) and hence via Remark 3.2 we see that the properties of φ are sufficient
for Theorems 3.1 and 5.1. Hence the theorem follows. �

Theorem 9.2 states that we can study the CohFT obtained from the superpo-
tential (9-3) via topological recursion applied to the spectral curve (9-1). We will
need the three-point function of this CohFT in calculations below. We calculate it
in two ways to demonstrate the proof, although we know from the theorem that
they coincide.

9.1. Three-point function. Superpotential. Introduce the canonical coordinates

ui = ℘(ωi) + c, i = 1, 2, 3

where, as usual, ω1 = ω, ω2 = ω′, ω3 = ω + ω′. The three-point calculations take
place in the ring C[E]/℘′ = C[℘]/℘′ and we have

∂λ

∂u1
≡ (λ− u2)(λ− u3)

(u1 − u2)(u1 − u3)
,

∂λ

∂u1

∂λ

∂uj
≡ δ1j

∂λ

∂u1
, j = 2, 3.

and cyclic permutations of the above. This is quite general and also can be proven
via elliptic identities. Hence the three-point function for the superpotential is

〈

∂

∂ui
,
∂

∂ui
,
∂

∂ui

〉

=

〈

∂

∂ui
,
∂

∂ui

〉

=

〈

∂

∂ui

〉

=

3
∑

j=1

Res
z=ωj

∂λ
∂ui

℘′(z)

dz

ω2
=

1

ω2℘′′(ωi)
.

Thus

(9-7)

〈

∂

∂vi
,
∂

∂vi
,
∂

∂vi

〉

= ω
√

℘′′(ωi)

where ∂
∂vi

= ∆
1
2

i
∂

∂ui
for ∆−1

i =
〈

∂
∂ui

, ∂
∂ui

〉

= ω2 · ℘′′(ωi) give the normalized

canonical coordinates.
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Topological recursion. The three-point function obtained via topological recur-
sion is

ω0,3(z1, z2, z3) =

3
∑

j=1

Res
z=ωj

ωdz

℘′(z)

3
∏

i=1

(℘(zi − z) + b)dzi

=

3
∑

j=1

ω

℘′′(ωj)

3
∏

i=1

(℘(zi − ωj) + b)dzi

=

3
∑

j=1

ω
√

℘′′(ωj)V
j
0 (z1)V

j
0 (z2)V

j
0 (z3)

for

V j
0 (z) =

(℘(z − ωj) + b)dzdzj
dsj

∣

∣

∣

∣

sj=0

=
℘(z − ωj) + b
√

℘′′(ωi)
dz

where λ = ℘(z)+c = 1
2s

2
j+℘(ωj)+c defines the local coordinate sj . The coefficients

of V j
0 (zi) define the three-point function of the cohomological field theory which

agree with (9-7).

9.2. Flat coordinates. The cohomological field theory is defined on the three-
dimensional vector space C[℘]/℘′ equipped with its natural ring structure and gives
rise to a Frobenius manifold structure on the family M of such rings parametrized
by {ω, ω′, c}. It will be convenient to express the metric on M with respect to a
natural basis of vector fields on M corresponding to the basis {1, ℘, ℘2} of C[℘]/℘′

since the metric requires knowledge of the variation of ℘ under the action of vector
fields on the Frobenius manifold. We will see that {ω, ω′, c} are not flat coordinates
and find in Lemma 9.4 flat coordinates {t1, t2, t3} on M , i.e. so that the metric on
M is constant with respect to them.

Recall that correlation functions of the cohomological field theory arising from
topological recursion applied to a spectral curve appear as coefficents of auxiliary
differentials on the spectral curve. Proposition 9.6 gives the auxiliary differentials
that correspond to the flat basis for the metric.

In the following lemma we calculate the vector fields on M that correspond
to the basis elements 1, ℘, ℘2 of C[℘]/℘′. This uses g2 = g2(ω, ω

′) defined by
℘′(z)2 = 4℘(z)− g2℘− g3.

Lemma 9.3. Under the map TM → C[℘]/℘′ defined by ∂ 7→ ∂λ(mod ℘′) for
λ = ℘(z;ω, ω′) + c

(9-8) ∂c 7→ 1, − 1
2 (ω∂ω + ω′∂ω′) 7→ ℘, − 1

2 (η∂ω + η′∂ω′) + 1
6g2∂c 7→ ℘2.

Proof. The variation ∂cλ = 1 is obvious. The identity

(9-9) ω∂ω℘(z) + ω′∂ω′℘(z) + z℘′(z) = −2℘(z)
follows immediately from the expansion (9-4) of ℘ and yields − 1

2 (ω∂ω + ω′∂ω′) 7→
℘. The final identification uses the identity proven in [20]

(9-10) η∂ω℘(z) + η′∂ω′℘(z) + ζ(z)℘′(z) = −2℘(z)2 + 1
3g2

where ζ(z) is the Weierstrass ζ-function

ζ(z;ω, ω′) =
1

z
+

∑

(m,n) 6=(0,0)

1

z − 2mω − 2nω′ +
1

2mω + 2nω′ +
z

(2mω + 2nω′)2

which is not an elliptic function (C.63 in [6]). Note that η = ζ(ω), η′ = ζ(ω′). �



DUBROVIN’S SUPERPOTENTIAL AS A GLOBAL SPECTRAL CURVE 31

The metric

〈℘j , ℘k〉 =
3
∑

i=1

Res
z=ωi

℘j+k

℘′(z)

dz

ω2
= −Res

z=0

℘j+k

℘′(z)

dz

ω2

is given by

1 ℘ ℘2

1 0 0 1/2ω2

℘ 0 1/2ω2 0
℘2 1/2ω2 0 g2/8ω

2

Lemma 9.4 (Dubrovin [6]). Flat coordinates for the metric are given by

t1 = c− η

ω
, t2 =

1

ω
, t3 =

ω′

ω
.

Proof. This is (5.95) in [6]. We simply use change of coordinates given by (9-8)
and the metric calculated above. We have ∂c = ∂t1 . From the identity

(ω∂ω + ω′∂ω′)
η

ω
= −2 η

ω

which uses the fact that ω∂ω + ω′∂ω′ is the degree operator, η
ω is homogeneous of

degree -2 we have ω∂ω + ω′∂ω′ = 2η
ω ∂t1 − 1

ω∂t2 . The identity

(η∂ω + η′∂ω′)
η

ω
= − 1

12
g2 −

η2

ω2

appearing as (C.69) in [6] gives η∂ω + η′∂ω′ =
(

1
12g2 +

η2

ω2

)

∂t1 − η
ω2 ∂t2 − iπ

2ω2 ∂t3 .

Hence we have
(9-11)

∂t1 7→ 1, − η
ω
∂t1 +

1

2ω
∂t2 7→ ℘,

(

1
8g2 −

η2

2ω2

)

∂t1 +
η

2ω2
∂t2 +

iπ

4ω2
∂t3 7→ ℘2.

Hence the metric is given by:

∂t1 ∂t2 ∂t3
∂t1 0 0 2/iπ
∂t2 0 2 0
∂t3 2/iπ 0 0

which is constant so that {t1, t2, t3} are flat coordinates. �

Remark 9.5. As mentioned in Section 1.3.4 we can choose a different (0, 2) term
B(z, z′) on the spectral curve (9-1) which still satisfies the compatibility condition
(4-1) by varying b ∈ C. For each b it gives rise to a CohFT with the same genus 0
three-point function since ancestor invariants are coefficients of B-dependent differ-
entials. When b is chosen so that B(z, z′) is normalised along a choice of cycle, e.g.
b = η′/ω′ so

∫

B
B(z, z′) = 0, then the CohFT is homogeneous and hence the same

CohFT as for b = η/ω. Other choices of b gives rise to non-homogeneous CohFTs.

Proposition 9.6. The flat coordinates correspond to the following auxiliary differ-
entials:

dt1 ←→ T 1
0 = (ω℘+ b)dz − 2ωd

(

℘2

℘′

)

+ 2ηd

(

℘

℘′

)

+

(

ωg2
4

+
η2

ω

)

d

(

1

℘′

)

dt2 ←→ T 2
0 = −d

(

℘

℘′

)

− η

ω
d

(

1

℘′

)

dt3 ←→ T 3
0 = − iπ

2ω
d

(

1

℘′

)

.
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Proof. The auxiliary differentials on the spectral curve corresponding to the nor-
malized canonical basis are straighforward. They are given by V i

kdz where

V i
0 =

℘(z − ωi)
√

℘′′(ωi)

and for k > 0, V i
k is the principal part of the kth derivative of V i

0 with respect to
℘(z). We also have the canonical basis U i

0 = ω℘(z−ωi). The auxiliary differentials
T i
kdz corresponding to flat coordinates are linear combinations of V i

kdz

V i
k = Ψi

µ · T µ
k

where we recall that Ψi
µ is the transition matrix from flat coordinates labeled by µ

to normalized canonical coordinates labeled by i. We can calculate Ψ via




1 1 1
℘(ω1) ℘(ω2) ℘(ω3)
℘(ω1)

2 ℘(ω2)
2 ℘(ω3)

2









∂u1

∂u2

∂u3



 =





1 0 0
− η

ω
1
2ω 0

1
8g2 −

η2

2ω2
η

2ω2
iπ
4ω2









∂t1
∂t2
∂t3





which we write as M ∂
∂u = T ∂

∂t hence M−1T = ∆1/2ΨT . The auxiliary differentials

corresponding to 1, ℘, ℘2 in the Landau-Ginzburg model are:

[U1, U2, U3] ·M−1 =

2ωdz

[

℘(z − ω1) + b

℘′′(ω1)
,
℘(z − ω2) + b

℘′′(ω2)
,
℘(z − ω3) + b

℘′′(ω3)

]





℘(ω1)
2 − 1

4g2 ℘(ω1) 1
℘(ω2)

2 − 1
4g2 ℘(ω2) 1

℘(ω3)
2 − 1

4g2 ℘(ω3) 1





=

[

−2ωd
(

℘2

℘′

)

+(ω℘+ b)dz +
ωg2
2
d

(

1

℘′

)

,−2ωd
(

℘

℘′

)

,−2ωd
(

1

℘′

)]

which is proven using the elliptic identities

℘(z)k

℘′(z)2
=

3
∑

i=1

℘(ωi)
k℘(z − ωi)

℘′′(ωi)2
, k = 0, 1, 2

and slight generalisations for k > 2. Hence

[T 1, T 2, T 3] = [U1, U2, U3] ·M−1 · T

=
[

− 2ωd

(

℘2

℘′

)

+ (ω℘+ b)dz +

(

ωg2
4

+
η2

ω

)

d

(

1

℘′

)

+ 2ηd

(

℘

℘′

)

,

− d
(

℘+ η/ω

℘′

)

,− iπ
2ω
d

(

1

℘′

)

]

�

The following lemma allows us to apply equation (2-35) to obtain ancestor in-
variants for the CohFT.

Lemma 9.7. The following kernels Ki
0

K1
0 = y(z), K2

0 = −2ωζ(z)+2η, K3
0 =

4

iπ

(

ωz℘(z)2 −
(

η2

2ω
+
ω

8
g2

)

z + ηζ(z)

)

are dual (as linear functionals) to T i
0 for i = 1, 2, 3, i.e.

3
∑

j=1

Res
z=ωj

Kj
0(z)T

i
k(z) = δijδk0.
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Proof. Each kernel is analytic at z = ωi, i = 1, 2, 3 and hence annihilates differ-
entials analytic at z = ωi. Consider the action of each kernel on d(℘k/℘′) for
k = 0, 1, 2.

3
∑

j=1

Res
z=ωj

Ki
0(z)d

(

℘k

℘′

)

= −
3
∑

j=1

Res
z=ωj

dKi
0(z)

℘k

℘′ = Res
z=0

dKi
0(z)

℘k

℘′

so K1
0 = y(z) = z/ω annihilates d(℘k/℘′) for k = 0, 1 and sends d(℘2/℘′) to −1/2ω.

Similarly K2
0 = ζ(z) annihilates d(℘k/℘′) for k = 0, 2 and sends d(℘/℘′) to 1/2.

Apply the kernels to T i
0 given in Proposition 9.6 as linear combinations of d(℘k/℘′)

(and terms analytic at z = ωi) to achieve the result.
The kernels K1

0 and K2
0 annihilate exact differentials that vanish to order 2 at

z = 0, in particular T i
k for k > 0 by integration by parts. One can also check that

K3
0 annihilates T i

k for k > 0. �

Remark. One can also produce kernels Ki
j dual to each T i

j .
The 3-point function in flat coordinates leads to the prepotential given in [6]

(C.87):

F0 =
1

iπ
t21t3 + t1t

2
2 −

iπ

2
t42

(

1

24
−

∞
∑

n=1

nqn

1− qn

)

, q = e2πit3 .

Proposition 9.8.

expF1 = t
1/8
2 η(q)1/4, η(q) = q1/24

∞
∏

n=1

(1− qn).

Proof. Topological recursion—defined in Section 2.5—applied to the spectral curve
(9-1) uses the kernel

K(z1, z) =
ω

2

∫ z

σi(z)
(℘(z1 − w) + b)dwdz1

(z − σi(z))℘′(z)dz

=
ω

4

(ζ(z1 + z)− ζ(z1 − z) + 2ηi + 2b(z − ωi))dz1
(z − ωi)℘′(z)dz

where σi(z) = 2ωi − z. Hence

ω1,1(z1) =

3
∑

j=1

Res
z=ωj

K(z1, z)℘(2z) =

3
∑

j=1

Res
z=ωj

ω

4

(ζ(z1 + z)− ζ(z1 − z))
(z − ωi)℘′(z)

℘(2z)dzdz1

=
ω

8



2

3
∑

j=1

℘(ωi)℘(z0 − ωi)

℘′′(ωi)
−

3
∑

j=1

℘(z0 − ωi)
2

℘′′(ωi)



 dz1

=
ω

8

(

2℘℘′′

(℘′)2
− (℘′′)3

(℘′)4
+ 10g2

℘

(℘′)2
+ 15g3

1

(℘′)2
+ 11

)

dz1

where ηi ∈ C and b are annihilated by the residues. Integrate the kernelsKi
j against

ω1,1 to get

ω1,1 = 0 · T 1
0 +

ω

8
T 2
0 +

iηω

4π
T 3
0 +

1

8
T 1
1 +

η

4
T 2
1 +

g2ω
2 − 12η2

48iπ
T 3
1 .

The primary part uses only T k
0 and yields

F1 =
1

8
log t2 + f(t3), f ′(t3) =

iπ

2

(

1

24
−

∞
∑

n=1

nqn

1− qn

)
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which is obtained from ω1,1 since ∂F1

∂t2
= 1

8t2
= ω

8 agrees with the coefficient of T 2
0

and ∂F1

∂t3
= iπ

2

(

1
24 −

∑∞
n=1

nqn

1−qn

)

= iηω
4π agrees with the coefficient of T 2

0 .

�

10. General theory

In the preceding sections, we have investigated the construction of a global spec-
tral curve producing the ancestor potential of a Frobenius manifold by topological
recursion in some examples or assuming some additional properties of the curve
defined by Dubrovin’s superpotential. In the present section, we begin with the
data of a semi-simple Frobenius manifold, and produce a global curve in a general
setup not coming from the superpotential but rather from a family of curves built
out of the reflection group generated by the monodromies of the solutions of our
Fuchsian system. In particular, it explains how our setup is related to the spectral
curve built by Milanov in [26].

10.1. Spectral curves from reflection group. Here we define a family of spec-
tral curves associated to the reflection group defined by the monodromies of the
Fuchsian system given by Equation (2-16). The spectral curve defined by Dubrovin’s
superpotential is a particular point in this family.

Definition 10.1. For any γ = (γ1, . . . , γn) ∈ Cn, let us define a function φ[γ] :
C\{Li} → C by

(10-1) φ[γ](λ;u) :=

µ
∑

i=1

γiφ
(i)(λ;u)

where φ(i) are solutions to Equation 2-16 defined as in section 2.4.
We define the corresponding function p[γ] analytic on C\{Li} by

(10-2) p[γ](λ, u) :=

√
2

1− d
(

φ[γ]
)T

(U − λ)Ψ11.

Finally, let us define the pairing

(10-3) ∀(γ, γ′) ∈ C
2n , (γ|γ′) := −2

∑

i,j

γiG
ijγ′j .

The main property of these functions is that φ[γ] has the local behavior

φ
[γ]
j =

∑n
i=1 γiG

ij

√

uj − λ
+O(1) for λ→ uj, j = 1, . . . , n;(10-4)

φ[γ]a =

n
∑

i=1

γiG
ij
√

uj − λ ·O(1) for λ→ uj , a 6= j; a, j = 1, . . . , n(10-5)

and p[γ] has a local behavior for λ→ ui given by

(10-6) p[γ](λ, u) = p[γ](ui, u)+

n
∑

j=1

γjG
jiΨi,11

√

2(ui − λ)+O(ui−λ), i = 1, . . . , n.

Let e1, . . . , en be the standard basis of Cn. We have φ[ei](λ;u) = φ(i)(λ;u).

Remark 10.2. Dubrovin’s standard superpotential defined in Section 2.4 is obtained
by considering the particular case γj =

∑n
i=1Gij .

From now on, we assume that the reflections Ri generate a finite group W .
Infinite families of Frobenius manifolds with finite group W are given in [6].

For any γ ∈ Cn, one can define a Riemann surface D[γ] as a cover λ[γ] : D[γ] → C

where λ[γ](p̃[γ], u) is the inverse function to p̃[γ] defined out of p[γ] by resolving the
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zeroes of dp[γ] as in Section 2.4. It is important to remark that the construction of
D[γ] as a branched cover of C\{Li} does not depend on γ but rather on a choice of
gluing for the different sheets—see Remark 10.3 for a discussion of these choices.
In this section, we consider the most naive gluing and the resulting spectral curve.

We consider the reflection Ri as a linear map on the space Cn changing the
coordinates of the vectors by the following rule:

(10-7) γj →
{

γj if j 6= i
γi + (γ|ei) if j = i

.

We denote wγ the image of a vector γ under the action of an element w ∈ W .
We build the spectral curve D[γ] as follows. A point z ∈ D[γ] is defined by a pair

(λ, p) ∈ D̂ × C such that p[γ](λ, u) = p. By definition of p[γ](λ, u), this defines a

cover of D̂ with ramification points in the fibres above the critical values u1, . . . , un.
We now glue in the most naive way, meaning that each point in the fibre above any
of the ui is a simple ramification point. Let us now describe this sheeted cover.

Our spectral curve is obtained by analytic continuation of p[γ] from D̂ through
the (pre-images of the) cuts Li. Each copy of D̂ is then viewed as a sheet of a
branched cover of the λ plane. We can analytically continue p[γ] through Li seen
as a cut on a Riemann surface giving rise to a new function of λ

(10-8) p[Riγ](λ) := Rip
[γ](λ;u) :=

√
2

1− d
(

Riφ
[γ]
)T

(U − λ)Ψ11

where

(10-9) Riφ
[γ](λ;u) =

µ
∑

j=1

γjRiφ
(j)(λ;u) = φ[γ](λ;u) + (γ|ei)φ[ei](λ;u).

In other terms, we glue along the images of the cut Li the sheets given by p[Riδ](λ)
and p[δ](λ) for all δ in the W -orbit of the initial vector γ.

The above procedure defines a |W | sheeted cover D of the λ plane such that the
fiber above a point λ is {p[wγ](λ, u)}w∈W . The different sheets of this cover can
thus be labelled by elements w ∈W and we denote by λ[w] the unique point in the
fiber above a generic point λ belonging to the sheet labelled by w. We define by p
the unique function on D such that

(10-10) ∀w ∈W , p
(

λ[w]
)

= p[wγ](λ, u)

for a generic λ.
This cover is branched over all the points in the fibres above the points ui,

i = 1, . . . , n, and a ramification point above ui joins the sheets labelled by w and
Riw for some w ∈W .

This branched cover is our spectral curve. It has |W |/2 simple ramification

points over ui, i = 1, . . . , n. We denote by u
[w]
i , w ∈W , the point in the fiber above

ui such that p
(

u
[w]
i

)

= p[wγ](ui). This notation is ambiguous, so we denote by Wi

the minimal set such that

(10-11) λ−1(ui) = {uwi |w ∈Wi}.
By definition, one has the important relation

(10-12) ∀w ∈Wi , p
(

λ[w]
)

− p
(

λ[Riw]
)

=
(wγ|ei)
(γ|ei)

[

p
(

λ[Id]
)

− p
(

λ[Ri]
)]

.

Thanks to our assumption of finiteness of W , D can be compactified by intro-
ducing ramification points of higher order above ∞.

The order of these ramification points above ∞ deserves some investigation.
Since the reflection group W is finite, then the ramification index of such a point
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is equal to the Coxeter number h(W ), i.e. the order of a Coxeter transformation.
In such a case, there exists a longest positive root

∑

imiαi (reminding that the set
{αi} is a set of simple roots) and the Coxeter number is equal to 1 +

∑

imi.
Let us recall as well that a Coxeter transformation is a product of all simple

reflections. The different order for this product leading to different transformations,
all with the same order. The different Coxeter transformations correspond to the
different points in the fiber above ∞. In the case of an infinite group, this order
is infinite and the different ramification points in the fiber above ∞ correspond to
different conjugacy classes of Coxeter transformations.

We now have a Riemann surface Σ which is a branched cover of the λ plane.
In our case, when the group is finite, its genus is given by the Riemann-Hurwitz
formula:

(10-13) 2− 2g(Σ) = 2|W | − |W |
2
n− (h(W )− 1)

|W |
h(W )

.

Remark 10.3. We have built a curve using this procedure. There exist two ways
of changing the cover built in this way. First by specifying some particular value
for the vector γ. Second, by choosing a different gluing procedure for building the
cover: for each point in the fibre above a critical value ui, one can decide whether it
is a ramification point or not. We followed here the most naive procedure where all
the points are ramification points, recovering the spectral curve built by Milanov
in the case of simple singularities [26]. This procedure is the most general but gives
the highest possible genus of the curve.

In the preceding sections, we had chosen a particular value of γ prescribed by
Dubrovin’s construction as well as the simplest possible curve by considering covers
where only one point in the fibre above each critical value is a ramification point.
This leads to the lowest genus spectral curve possible but requires one to study the
gluing procedure carefully case by case.

10.2. Global topological recursion and correlation functions of a CohFT.

10.2.1. Global topological recursion. We remark that we are not in the cases dis-
cussed in the preceding sections since the spectral curve has |W |/2 ramification
points in the fibre above one critical value. This implies that the topological recur-
sion has to be modified a little in order to take the right form.

Definition 10.4. We define the correlation functions defined by the global topo-
logical recursion applied to D as the differential forms defined by induction through

ωg,k(z1, . . . , zk) =

n
∑

i=1

∑

w∈Wi

Res
z→u

[w]
i

∫ σi,w(z)

z
B(z1, ·)

2 (ω0,1(z)− ω0,1(σi(z)))

[

ωg−1,k+1(z, σi,w(z), z2, . . . , zk)

+
∑

A⊔B={2,...,k}

g
∑

h=0

ωh,|A|+1(z, ~zA)ωg−h,|B|+1(σi,w(z), ~zB)



 ,

where

(10-14) ω0,1(z) := p(z)dλ(z),

(10-15) ω0,2(z1, z2) =
∑

w∈W

(γ|wγ)B(z1, z2)

and σi,w is the local involution exchanging the two sheets meeting at uwi . In the
right hand side, all the contributions involving a factor of ω0,1 are set to 0.
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Note that, in this recursion, the recursion kernel does not involve ω0,2 itself but
rather B. This might seem to break the usual symmetry between the different
arguments of ωg,k but, as we shall see in the next section, it is not the case.

10.2.2. From global to local. In [10], the correspondence between topological re-
cursion and CohFT was discussed only at the local level. In order to match the
correlation functions defined by the global topological recursion with those of the
CohFT, let us translate the global recursion into a local one written in terms of
integrals in the λ-plane around the critical values ui.

Lemma 10.5. The global topological recursion on the spectral curve D with x = λ,
y = p and B(p1, p2) is equivalent to the local recursion with local spectral curve

(10-16) ∀i = 1, . . . n , ω
[i]
0,1(λ) = ∆i,λp(λ

[Id])dλ

and

(10-17) ∀i, j = 1, . . . n , ω
[i,j]
0,2 (λ1, λ2) = ∆i,λ1∆j,λ2ω0,2(λ

[Id]
1 , λ

[Id]
2 )

where

(10-18) ∆i,λf(λ
[w]) =

f(λ[w])− f(λ[Riw])

2

for a meromorphic form f on D.
In other words, the discontinuities

(10-19) ω
[i1,...,ik]
g,k (λ1, . . . , λk) :=

k
∏

j=1

∆ij ,λj
ωg,k(λ

[Id]
1 , . . . , λ

[Id]
k )

of the correlation functions ωg,k produced by the global recursion satisfy the corre-
sponding local recursion.

Proof. It is first important to note that

(10-20) ∆i,λ1ωg,k+1(λ
[w], λ

[w1]
1 , . . . , λk) =

(wγ|ei)
(γ|ei)

∆i,λ1ωg,k+1(λ
[Id], λ

[w1]
1 , . . . , λk).

This is proved by induction and follows from the definition of ω0,2 in terms of the
Bergman kernel. This property allows us to rewrite the topological recursion in a
local version where one sums only over one of the ramification points in the fiber
above each of the critical values ui.

Writing z = λ[w], one can rewrite the term Res
z→u

[w]
i

as a residue when λ→ ui

in the following way:

(10-21) Res
λ[w]→u

[w]
i

= 2 Res
λ→ui

.

This gives

ωg,k(z1, . . . , zk) =

n
∑

i=1

∑

w∈Wi

Res
λ→ui

∫ λ[Riw]

λ[w] B(z1, ·)
2∆i,λω0,1(λ[w])

∆i,λ∆i,λ′



ωg−1,k+1(λ
[w], λ′[w], z2, . . . , zk)

∑

A⊔B={2,...,k}

g
∑

h=0

ωh,|A|+1(λ
[w], ~zA)ωg−h,|B|+1(λ

′[w], ~zB)





∣

∣

∣

∣

∣

∣

λ′=λ

.
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Plugging property (10-20) into this equation, the global recursion reads

ωg,k(z1, . . . , zk) =

n
∑

i=1

Res
λ→ui

∑

w∈Wi

(wγ|ei)
(γ|ei)

∫ λ[Riw]

λ[w] B(z1, ·)

2∆i,λω0,1(λ[Id])
∆i,λ∆i,λ′









ωg−1,k+1(λ
[Id], λ′[Id], z2, . . . , zk)

∑

A⊔B={2,...,k}

g
∑

h=0

ωh,|A|+1(λ
[Id], ~zA)ωg−h,|B|+1(λ

′[Id], ~zB)





∣

∣

∣

∣

∣

∣

λ′=λ

.

Finally, using the fact that 2
∑

w∈Wi
=
∑

w∈W in the expression above, one gets

ωg,k(z1, . . . , zk) =

1

4

n
∑

i=1

Res
λ→ui

∆i,λ

∫ λ[Id]

ω0,2(z1, .)

∆i,λω0,1(λ[Id])
∆i,λ∆i,λ′



ωg−1,k+1(λ
[Id], λ′[Id], z2, . . . , zk)

∑

A⊔B={2,...,k}

g
∑

h=0

ωh,|A|+1(λ
[Id], ~zA)ωg−h,|B|+1(λ

′[Id], ~zB)





∣

∣

∣

∣

∣

∣

λ′=λ

.

Acting with the operators
∏k

j=1 ∆ij ,λj
on both sides proves the lemma. �

10.2.3. Identification of the local initial data with a CohFT. Now that we have
derived a local topological recursion equivalent to the global one, one only needs to
identify its initial data with the data of a CohFT following the dictionary of [10].
For this purpose, we will follow exactly the same steps as in the preceding sections.
Let us first state precisely the identification that we want to find since it is slightly
different from the usual setup where one has only one ramification point in each
fiber and a specific value for γ.

First of all, let us remind that, according to [14], the Laplace transform of the
local two point function reads

(10-22)
1

2π
√
ζ1ζ2

∫∫

λ1−ui∈R

λ2−uj∈R

ω
[ij]
0,2 (λ1, λ2)e

λ1−ui
ζ1

+
λ2−uj

ζ2 =

∑n
k=1 f(ζ1)

i
k f(ζ2)

j
k

ζ1 + ζ2
,

where

(10-23) f(ζ)ik := − 1√
2πζ

∫

λ1−ui∈R

ω
[ij]
0,2 (λ1, λ2)

d
√

−2λ2 + 2uj

∣

∣

∣

∣

∣

λ2=uk

e
λ1−ui

ζ .

In these terms, the identification consists in showing that

(10-24) f(ζ)ik =

n
∑

j=1

(γ|ej)GjiR(ζ)
i
k

and

(10-25)

n
∑

j=1

(γ|ej)Gji

n
∑

k=1

R(ζ)ik∆
− 1

2

k =
1√
2πζ

∫

λ−ui∈R

ω
[i]
0,1(λ) · e

λ−ui
ζ

where R(ζ) is the R-matrix defining the CohFT we started from for deriving our
Fuchsian system.

Note that the proof of Equation (10-25) is a simple verbatim of the proof of
Section 5 by replacing φ(i) by

∑n
j=1(γ|ej)Gjiφ

(i). A corollary of this identification
is the following theorem:
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Theorem 10.6. The correlation functions ωg,k produced by the global recursion
generate the correlation functions of the original CohFT through

ωg,k(λ(z1)
[Id], . . . , λ(zk)

[Id]) =

∑

i1,...,ik
j1,...,jk
d1,...,dk

k
∏

l=1

[(γ|ej)Gji]

∫

Mg,k

αg,k(ei1 , . . . , eik)
k
∏

l=1

ψdl

l d

(

(

d

dx

)dl

ξil(zl)

)

.

10.2.4. Compatibility condition and homogeneity. Let us now remark the compati-
bility between Equation (10-24) and Equation (10-25) can be written as the usual
compatibility condition for the Bergman kernel by considering all the ramification
points, i.e.

(10-26) η(z) =

n
∑

i=1

∑

w∈Wi

Res
z′=u

[w]
i

dp

dλ
(z′)B(z, z′) + Res

z′=z

dp

dλ
(z′)B(z, z′)

is invariant any local involution
√

λ(z)− ui → −
√

λ(z)− ui.
Finally, it is an easy exercise to prove the homogeneity at the level of ω0,2 by

using Rauch’s variational formula as in Section 6.

Appendix A. Frobenius manifolds of rank 2

In this appendix we explicitly construct global spectral curves for two rank 2
CohFTs. We begin with the prepotential F (t1, t2) which one uses to produce the
structure of a Frobenius manifold. We follow Dubrovin’s construction to produce
a superpotential. In both cases we need to vary the construction slightly due to
degeneracy of the Gauss-Manin system. The two examples satisfy the conditions
of Theorem 6.1 and hence topological recursion produces the CohFT associated to
the Frobenius manifold. Note that although the two examples are of genus zero,
they do not satisfy the conditions of Theorem 5.1.

A.1. Gromov-Witten invariants of CP1.

F =
t21 t2
2

+ et2 , E = t1∂t1 + 2∂t2 , E · F = 2F (+t21)

ηαβ =

(

0 1
1 0

)

, Ψ =
1√
2

(

e−t2/4 et2/4

−ie−t2/4 iet2/4

)

µ =

(

− 1
2 0
0 1

2

)

, V = ΨµΨ−1 =
i

2

(

0 −1
1 0

)

u1 = t1 + 2et2/2, u2 = t1 − 2et2/2

V1 = ∂u1Ψ ·Ψ−1 =
1

u1 − u2
· V = −V2

The vector fields φ given in canonical coordinates satisfy (2-16) which is equivalent
to the Fuchsian system:

(A.1) (U − λ)∂λφ = (12 + V )φ

and

(A.2) ∂ui
φ =

(

− Bi

λ− ui
+ Vi

)

φ, Bi = −Ei(
1
2 + V ), Vi = ∂ui

Ψ ·Ψ−1.

This has general solution

φ =
c1

(u1 − u2)1/2









√

u2 − λ
u1 − λ

−i
√

u1 − λ
u2 − λ









+
c2

(u1 − u2)1/2
(

i
1

)

.
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We choose the solution c1 = 1, c2 = 0. Since d = 1 (2-24) does not apply. Never-
theless, φ is the gradient of p so we can calculate

dp(λ, u) =
1

u1 − u2

(

√

u2 − λ
u1 − λ

du1 +

√

u1 − λ
u2 − λ

du2

)

.

In this example, we will also go through the equivalent treatment in terms of flat
coordinates for the pencil of metrics. The vector fields φ are gradient vector fields
of the flat coordinates

φi = Ψiαη
αβ∂βx(t1 − λ, t2, ..., tn)

for the pencil of metrics g − λη where

gαβ =

(

2et2 t1
t1 2

)

.

The flat coordinates for the pencil are of the form x(t1−λ, t2, ..., tn) so it is enough
to consider the case λ = 0, i.e. find flat coordinates for the intersection form. These
are given by solutions of the Gauss-Manin system of linear differential equations
((5.9) in [7]):

gαγ∂βξγ +
∑

γ

(12 − µγ)c
αγξγ = 0, ξβ = ∂βx.

2et2∂21x + t1∂1∂2x + 0 = 0
2et2∂1∂2x + t1∂

2
2x + et2∂1x = 0

t1∂
2
1x + 2∂1∂2x + ∂1x = 0

t1∂1∂2x + 2∂22x + 0 = 0

⇒ x = c1 · arccos
(

1
2 t1e

−t2/2
)

+ c2 · t2
Choose

p = i arccos
(

1
2 (t1 − λ)e−t2/2

)

λ = t1 − 2et2/2 cos(−ip) = t1 − et2/2(ep + e−p)

Note that the critical points of λ are indeed t1 ± 2et2/2 = u1/2. It was proven in
[10] that the curve p = ln z, λ = a+ b(z+1/z) does indeed produce the CohFT for
Gromov-Witten invariants of CP1.

A.2. Discrete surfaces. The 2-dimensional Hurwitz-Frobenius manifold H0,(1,1)

of double branched covers of the sphere, with two branch points and unramified at
infinity was defined by Dubrovin [6]. Its potential is

F =
t21 t2
2

+
1

2
t22 log t2, E = t1∂t1 + 2t2∂t2 , E · F = 4F (+t22)

ηαβ =

(

0 1
1 0

)

, Ψ =
1√
2

(

t
1/4
2 t

−1/4
2

−it1/42 it
−1/4
2

)

µ =

(

1
2 0
0 − 1

2

)

, V = ΨµΨ−1 =
i

2

(

0 −1
1 0

)

u1 = t1 + 2t
1/2
2 , u2 = t1 − 2t

1/2
2

V1 = ∂u1Ψ ·Ψ−1 =
−1

u1 − u2
· V = −V2

The general solution of (A.1) and (A.2) is

φ =
c1

(u1 − u2)1/2









√

u2 − λ
u1 − λ

i

√

u1 − λ
u2 − λ









+
c2

(u1 − u2)1/2
(

i
1

)

.
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The solutions of Dubrovin described in (2-18)-(2-21) yield φ(1) = φ(2) hence Gij is
degenerate. We use one of the solutions φ = φ(1) in (2-24) to get

p(λ, u) =
t
1/4
2

2

√

(u1 − λ)(u2 − λ)
(u1 − u2)1/2

(

1 i
)

(

1
−i

)

=
1

2

√

(u1 − λ)(u2 − λ).

This corresponds to the spectral curve λ = t1 + z + t2/z, p = z − t2/z which
arises from the well-studied Hermitian matrix model with Gaussian potential hence
discrete maps [17] and was shown to correspond to the given CohFT in [2].
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