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Abstract. We introduce a new Monte Carlo template-based reconstruction method for air
shower arrays, with a focus on shower core and energy reconstruction of γ-ray induced air
showers. The algorithm fits an observed lateral amplitude distribution of an extensive air
shower against an expected probability distribution using a likelihood approach. A full Monte
Carlo air shower simulation in combination with the detector simulation is used to generate the
expected probability distributions. The goodness of fit can be used to discriminate between
γ-ray and hadron induced air showers. As an example, we apply this method to the High
Altitude Water Cherenkov γ-ray Observatory and its recently installed high-energy upgrade.
The performance of this method and the applicability to air shower arrays with mixed detector
types makes it a promising reconstruction approach for current and future instruments.
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1 Introduction

Extensive Air Shower (EAS) detector arrays take advantage of their large collection area on
the ground to detect the secondary particles generated by the interaction of a primary particle
in the Earth’s atmosphere. The estimation of EAS properties is performed by measuring
the Lateral Distribution Function (LDF) and the arrival time distribution of the secondary
particles. In this paper, we demonstrate a method to estimate properties of the EAS that can
be derived from the information in LDF. The LDF of an EAS describes the observed number
of particles at a given distance from the shower axis (impact distance). By using the LDF
information the shower impact point on the ground and energy of the primary particle can
be estimated.

Traditionally, the LDF is fitted with a functional shape, which is typically derived em-
pirically to describe on average the features of the distribution. Typically, the parameters of
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these functions cannot directly be associated with the air shower properties. A widely used
functional shape is the Nishimura-Kamata-Greisen (NKG) functions [1] [2]. In addition to the
shape of the distribution, also the fluctuations needed to be taken into account in the fitting
procedure. Fluctuations in observed signal amplitude arise from detector response and fluc-
tuations in particle densities, both of which might not be trivial to parametrize. This makes
the fit results from these approaches to depend on the actual type of the detector, in turn
making the combined fitting of EASs with a mixed array of particle detectors challenging.

To address these problems, we present a Monte Carlo (MC) template-based likelihood
fit method for γ-ray induced EASs observed with an array of particle detectors. This method
can in principle be extended to air showers induced by other cosmic-ray particles, however,
our focus is on the application of this method in γ-ray astronomy. The template-based fit
procedure for γ-ray induced EAS was pioneered for the CAT telescope [3] [4] and further
improved and re-implemented in the H.E.S.S telescopes [5]. A more mature version of this
approach based on MC templates known as Image Pixel-wise fit for Atmospheric Cherenkov
Telescopes (ImPACT) [6] is used in Imaging Atmospheric Cherenkov Telescopes (IACTs) such
as H.E.S.S. and has shown its effectiveness [7]. Another example of template-based likelihood
fitting of EAS was recently developed to obtain cosmic-ray energy for observations made
with the High Altitude Water Cherenkov (HAWC) γ-ray Observatory. It has been applied to
obtain the all-particle cosmic-ray energy spectrum recently published in [8].

The MC template-based likelihood fit method presented here is applicable for EAS
detector arrays and reconstructs the shower core and the energy of VHE γ-ray showers. In
addition, the quality of the fit can be used to discriminate between EAS induced by γ-rays
or hadronic particles. The nature of likelihood fitting makes it straightforward to combine
measurements of different detector types in the same fit algorithm. The MC template-based
likelihood fit method employs no approximations apart from the EAS simulation and the
detector model itself, which is inevitable in a model-based fitting procedure. Due to the lack
of hadronic interaction, γ-ray induced EASs can be modelled more reliably than nuclei. In
addition, a prior unknown composition of the flux of subatomic nuclei makes the phase-space
to be covered by the EAS templates significantly larger and therefore the fitting procedure
more complex.

This approach can be used in general for air shower arrays. As a proof of the concept,
we demonstrate its usability for HAWC γ-ray Observatory [9] and to its high-energy upgrade
consisting of a sparse array of smaller water Cherenkov detectors [10]. It is applicable to
the current (Tibet AS-γ Experiment [11] and ARGO-YBJ [12]) and future observatories
(LHAASO [13] and a next-generation observatory to be built in the Southern Hemisphere
[14–18]). A method like this one is a robust approach to perform the combined reconstruction
for mixed type particle detector arrays (in this case HAWC and its high energy upgrade with
a sparse array).

2 General Considerations

Before going into details on the method, we discuss in this section the general considerations
that lead to our particular implementation. As an illustration, we use a simulated array
of water-Cherenkov detectors, of which the details are given and Section 4. However, the
discussion in this section applies to all type of particle detectors.
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Figure 1. Average of observed number of photo-electrons (Npe) as a function of the impact distance
(r).

2.1 Ambiguity Between Primary Energy and Xmax

The LDFs measured by EAS detector arrays exhibit large fluctuations, due to the fact that
they are observed at a particular developmental stage of the EAS. The intrinsic uncertainty
in the first interaction of the primary particle gives rise to different observed LDFs for the
same primary particle properties. As we are using water-Cherenkov detectors for illustration
throughout this article, the LDFs are measured using the observed number of photo-electrons
(pe) (for more details see Section 4). In Figure 1 averaged LDFs for γ-ray induced EAS are
shown for vertical showers. The averages are calculated over EASs initiated with the same
energy of the primary γ-rays that have similar shower development. We show these curves
to illustrated some complications that arise when using LDFs to deduce the properties of
the primary particle. The black curves show the example of matching LDFs combination for
multi-TeV γ-rays, in which, the energies are two-fold apart and the difference in Xmax values
is 150 g/cm2. The red curves show that for sub-TeV γ-rays for a fixed value of energy of the
primary particle with increasing Xmax the averaged LDFs of the showers shifts significantly
to the higher pe values, which again might lead to ambiguity in determining the primary
particle energy. It is not likely to break this ambiguity completely, however by guiding the
fit procedure the ambiguity can be significantly reduced. The way we implemented this will
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be discussed in Section 6.

2.2 Signal Free Detectors

The LDF has a long tail in which typically only a fraction of the detectors will have a signal,
in Figure 1 this corresponds to the distances at which the value of 〈Npe〉 < 1 pe. It can
be seen that there actually is some information in the tail of distribution that can break
the aforementioned ambiguity, therefore it is desirable to maximise the information in the
fit which includes the measurement of zeros. In Figure 2 we show the probability density
distributions of observing a certain number of pe at impact distances of ∼20 m and ∼80
m. We see that the probability of observing zero pe signal increases from 0.7% to 36.3% at
impact distances of ∼20 m to ∼80 m. In a likelihood-based method, it is straightforward to
add the LDF of the signal free detectors to the likelihood function.
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Figure 2. This plot includes vertically simulated EASs between 4.5 to 5.5 TeV. The top left panel
shows the probability density distribution of the observed number of pe (Npe) at an impact distance
of 20 m and the right panel shows it for log10(Npe). The bottom panel (left and right) show the same
as above at an impact distance of 80 m.
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2.3 Logarithmic Signal Amplitude

Since the underlying physical processes that lead to the particle densities observed at the
ground are partially multiplicative in nature, fluctuations are typically easier described in log-
space. This is illustrated in Figure 2 in which the left panels show the amplitude distribution
in a linear scale, while the figure on the right shows them on log-scale. It can be observed,
by transforming to log-space the effect of the long-tails in the amplitude are significantly
reduced. And in addition, small signal distributions can be described with similar binning
as that of large signals, making the generation of template distributions for the likelihood fit
significantly easier in log-space. The observed zero pe signal is stored at a low negative value
in the log-space, which is lower than the small non-zero pe signal observed in the log-space.

3 Likelihood Function

Due to the aforementioned reasons, we give an alternative to a semi-analytical model de-
pendent fit and present an MC template-based likelihood fit method. It automatically takes
into account all the fluctuations and gives a complete picture of the model in a probabilistic
way with only the assumption that the MC model and the detector simulations are accurate
enough.

In Figure 3, we show one of the MC templates which describes the probability of an
observed LDF of a γ-ray shower for given shower parameters. These templates are generated
by binning the simulated MC dataset in Energy (E), Xmax, and zenith angle (θ) bins. One
such three-dimensional bin contains one such template, further binned in the logarithm of
the observed number of pe (log10(Npe)) and the impact distance of the pe signal (r) bins.
However, it is to be noted that the observed signal does not necessarily have to be observed
pe. For different particle detection techniques, the nature of the observed signal may vary.
The function to be minimised in the fit procedure is defined as the negative log-likelihood

logL = −2
∑
i

log(F (Si, ri, Xmax, E|θ, φ)), (3.1)

where function F gives the probability of a given detector unit observing signal (Si)
situated at an impact distance of (ri) for a γ-ray shower of energy (E), (Xmax), zenith angle (θ)
and azimuth angle (φ). For illustration purpose, in this article for water-Cherenkov detector
technique, Si term is replaced with log10(Npe)i. Distance ri is defined as the perpendicular
distance to the shower axis

ri = [(xi − xc)
2 + (yi − yc)

2 − sin2 θ{(xi − xc) cosφ+ (yi − yc) sinφ}2]1/2, (3.2)

with xi, yi and xc, yc representing the coordinates of the different detector units and the
location of the shower core in the detector plane respectively. The calculation of ri in shower
frame, as shown in equation 3.2 contains the information of the core coordinates on the
ground.

For a given EAS, one can get the log-probability for all detector units using the previously
defined templates. Summing-up the log-probability of all detector units gives the likelihood
of the given set of values of the parameters. As we are using negative log-likelihood, by
minimising the likelihood (L) one obtains the best fitting values at the minimum value of
L, the value of xc and yc give the estimated shower core coordinates, E gives the estimated
primary γ-ray energy, and Xmax gives the depth of the shower maximum.
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It is straightforward to extend this formalism for a mixed type particle detector array.
One can define the likelihood function as defined in equation (3.1) for the different type of
detector arrays and then summing them will give the total likelihood function (see equation
3.3) for the combined detector array

Ltotal = Ltype1 + Ltype2 + Ltype3 + ..., (3.3)

where Ltypei tells the likelihood of detector type i and it can be described as in equation (3.1)
with the corresponding probability function Ftype.

To assess the quality of the likelihood fit, we construct a Goodness of Fit (GoF). The
GoF value can be used to identify events on which the fit method failed. Further, it can also
be used to deliberately separate the model behaviours which are different than the model for
the fit method itself. In this case, the model is defined for the γ-ray induced air showers,
and the other models are the LDFs of a hadron induced air showers. We define our GoF
by modelling the mean and the uncertainty of the likelihood value as a function of observed
percentage hits of the array. For a given value of the percentage hits of the array, the resultant
distribution for the likelihood values results in a Gaussian-like distribution. Therefore, we fit
a Gaussian to the likelihood distribution for a given value of the percentage hits of the array,
the mean 〈L〉 and σ of the Gaussian are used to define the GoF in the following way

GoF =
LFit − 〈L〉

σ
. (3.4)

4 Air Shower and Detector Simulations

Detailed MC simulations are needed in order to generate the MC based templates. In order
to simulate the interactions in the atmosphere induced by the γ-ray, we use the CORSIKA
package (v7.4000) [19], which provides us with secondary particles tracks at the ground level.
To obtain the LDF-templates, we used a large statistic set of simulations in the energy range
between 0.3 and 300 TeV and with an E−2 energy spectrum. The zenith angles (θ) of these
γ-rays were distributed uniformly in cos θ within the range 0◦ < θ < 45◦.

Throughout this article, we will show the method applied to the HAWC γ-ray obser-
vatory. HAWC is situated at the Sierra Negra in Mexico at an altitude of 4100 m a.s.l. It
consists of 300 cylindrically shaped Water Cherenkov Detectors (WCDs) of 7.3 m diameter
and 5 m in height. Each of these WCDs has three 8", and one 10" upward facing Photo
Multiplier Tubes (PMTs) anchored at the bottom that detect the Cherenkov light produced
by secondary particles passing through the water in the tank. The LDF of an EAS is ob-
tained from the charge, expressed in the number of pe, observed at each PMT. The detector
response, including interactions of secondary particles in the WCDs, Cherenkov light produc-
tion, propagation, and detection by PMTs are modeled using a dedicated software package
based on Geant4 (v4.10.00) (HAWCSim) [20]. A more detailed description of the HAWC
simulations can be found in [21].

5 Template Generation

In this section, we explain the different steps in the procedure to generate MC based templates
using the simulation dataset defined in Section 4.
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5.1 Binning Scheme

We have binned the dataset described in Section 4 in E, Xmax and θ bins. The binning of the
parameter phase-space has been optimised as a compromise between the size of the dataset
and the achievable resolution on the fit parameters. The optimisation procedure is described
in section 7, here we summarise the resulting binning scheme:

• 5 θ bins (0 to 45◦): equally spaced in cos θ, bin size = 0.06

• 30 E bins (0.3 to 300 TeV): equally spaced in log10(E/GeV), bin size = 0.1

• 12 Xmax bins (150 to 750 g/cm2): bin size = 50 g/cm2

Each combination of E, Xmax and θ bin contains a PDF as shown in Figure 3 for the proba-
bilistic description of an observed lateral amplitude distribution of a γ-ray shower. We stored
the PDFs as two-dimensional (2D) histograms with log10(Npe) on one axis and r on the other.
The binning inside these 2D histograms is defined as follows:

• log10(Npe) bins: bin size = 0.1 (which is approximately equal to the charge resolution
of PMTs in use 33%)

• r bins: bin size = 2 m, in range of 0 to 500 m.

5.2 Smoothing

Since the MC simulation chain is very computationally intensive, generating enough MC
statistics to populate the whole phase-space of EAS parameters is not practical. Therefore,
there are very rarely or unpopulated bins that occur particularly in the edges of the phase-
space which contain little statistics. These bins might introduce unwanted artefacts in the
templates that might influence the fits.

To reduce the impact of these bins, we smoothed the PDFs using Gaussian distributed
weighted sum for a given bin in a given direction (r or log10(Npe)). Figure 3 shows one such
profile before and after smoothing.

5.3 Interpolation

It is essential to make the likelihood surface smooth specifically for a multidimensional fitting
procedure such as this case. We used three-dimensional grid interpolation over the parameters
(i.e. E, Xmax and r) to obtain the probability of a given signal at a given impact distance.
This probability is then used in the likelihood fit procedure to calculate the likelihood value.

6 Fitting Procedure

As described in Section 3, we get our likelihood function by combining the probabilities of
observing log10(Npe) at a given distance r for given values of E, Xmax and θ of the primary
particle at different detector units. In this section, we will further describe the details of the
likelihood fit method itself explaining the various measures we took to aid the fit method
to find the global minimum. The fitting is performed using the widely-used MINUIT [22]
minimisation algorithm.

We have four parameters E, Xmax, xc and yc to fit simultaneously for a given information
of shower arrival direction. In order to guide the minimisation process, we applied the strategy
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Figure 3. A typical template histogram for Xmax bin 500 to 550 g/cm2, energy bin ∼59 to ∼75
TeV and zenith angle bin 19 to 28 degree. It shows the probability (P) distribution as a function
of log10(Npe) and impact distance (r). The z-axis shows the probability in logarithmic scale. The
left panel shows the template histogram before smoothing and the right one after smoothing. The
histograms attached below show the probability (P0) of observing a zero pe signal as a function of r.

described below. The reconstruction of the direction is not part of the method presented in
this paper, however, it is needed to select the right lookup table and to transform the detector
locations into the plane perpendicular to shower axis. For direction reconstruction, we used a
curved shower front fit which is used within the HAWC software framework as input for our
method. The reconstructed direction together with the calculated Centre-Of-Mass (COM) of
the amplitude of the signals provides the starting point of the fit procedure.

6.1 First Pass

In the first pass of our method, we try three starting values for the minimisation procedure,
based on the calculated COM. First being the COM estimate itself, which in the case of a
shower core inside the array should provide a starting point close the global minimum. In order
not to get stuck in a local minimum, we start the minimisation procedure at two additional
starting (X,Y ) locations. These trials are defined in the direction of the COM estimate with
respect to the centre of the array, which is an educated guess of the true location of the shower
core. The second trail is just outside the array, while another one is placed at a significant
distance from the array.

To start the minimisation with a reasonable value of E we use the information of the
number of detectors that got at least a single pe hit (Nhit) as a function of the distance of the
core location from the centre of the array. This distribution we show in Figure 4 (left panel),
one can estimate the energy of a given shower by using the value of the observables Nhit and
the distance of the trial core from the centre of the array. Etrue denotes the simulated energy
of the primary γ-ray photon.
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Figure 4. The left panel shows the relation between the number of tanks got at least a single pe
hit and the distance of the shower core from the centre of the array. The true energy (Etrue) of the
primary γ-ray photon is shown on the z-axis. The right panel is showing the relation between the
Etrue and the true Xmax. The white dashed line shows the functional relation. The z-axis shows the
number of shower events (Nevents).

As explained in Section 2, one of the challenges is finding the global minimum while
there are ambiguities in LDF for different values of Xmax and shower energy. Therefore, in
the first pass of the fit procedure, we enforce the linear relation between Etrue and the average
value of Xmax as shown in Figure 4 (right panel).

To reduce the total computation time, the number of iterations of the minimiser is limited
to 10 for each of the three starting points. From the three resulting minimum likelihood values,
we select the smallest value and the corresponding fit parameters are used as the starting point
in the second pass of the fit method.

6.2 Second Pass

The results of the first pass of the fit-procedure are passed to the direction-reconstruction
method, which can get a more accurate estimate of the direction now that it has a better
knowledge of the shower core location. The results from the direction-reconstructor are used,
together with the location of the shower core as the starting point for the next pass. In this
pass, the constrained on the relation between Xmax and Etrue is no longer enforced and the
maximum number of iterations of the minimiser is increased to 40. Typically the fit procedure
converges on the best fitting parameters before reaching the maximum number of iterations.
The reconstructed core now can further be used to improve the direction-reconstruction.

6.3 Examples

We show one typical example MC event of the γ-ray reconstructed energy of ∼ 17 TeV in
Figure 5. The 2D projection of the likelihood surface shows the contours with different colours.
The contour colour scale varies from red to blue indicating the maximum to minimum of the
likelihood surface respectively. The red colour star shows the true (simulated) core location.
The COM location is shown with the cyan colour star. The magenta colour circles over the
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Figure 5. Example MC event. The figure on the right is the zoom in version of the figure on the
left around the reconstructed core. The likelihood surface contours from blue to red colour show
the minimum to maximum respectively. The magenta circles over the tanks show the relative charge
observed between the different tanks.

tanks denote the relative charge observed between the tanks. We also show the off-array trial
direction and one such example. The green colour star shows the reconstructed core as the
best fit result which falls in the prominent minimum shown with blue coloured contours of
the likelihood surface. It can be seen that the method converged to very close to the true
core location.

In Figure 6 (left panel) we show the LDF of the example MC γ-ray shower discussed
above and the template PDF corresponding to the best fit parameter values. The black dots
represent the tank locations and observed signal and the dashed line show the observed zero
pe. Similarly, as an example applied to real data, we show in Figure 6 (right panel) the best
fitting template PDF and LDF of a data event measured by HAWC, which is selected after
hadron rejections cuts from the direction of the Crab Nebula.

7 Binning Optimisation

Deciding the bin size for different fit parameters to make the templates is a crucial step. On
one hand, too fine binning can be very computing intensive for making the templates and
performing the fit, while on the other hand, too coarse binning affects the smoothness of the
likelihood function and hence will decrease the achievable resolutions of the fitted parameters.

To find an optimal bin size for each parameter, we created templates of varying bin
sizes for a given parameter while fixing the others. Typically, reducing the bin size in a
parameter will improve the resolution and reduce the bias up to a point where binning is not
the dominant effect on parameter estimation anymore.
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Figure 6. The LDF and PDF template corresponding to the event in Figure 5 with true energy ∼
16 TeV, reconstructed energy of ∼ 17 TeV and true Xmax ∼ 400 g/cm2, reconstructed Xmax ∼ 423
g/cm2 and zenith angle ∼ 20.76◦ for the MC event (left panel). One similar Crab Nebula data event
is also shown (right panel) with the reconstructed energy of ∼ 17 TeV, Xmax ∼ 424 g/cm2 and zenith
angle ∼ 4.03◦. The black dots show the LDFs for non-zero Npe and observed zeros are shown as the
dashed lines on the histogram below with their corresponding probability.

Firstly we fix the shower energy at 10TeV, and we optimise the binning in Xmax and r.
We have chosen 10TeV as being rather central value in the sensitivity of air shower detector
arrays like HAWC, however, we note here that the procedure of optimisation can be repeated
at different energies.

In Figure 7 we show the case of where we varied bin sizes (25, 50, 75, 100 and 150 g/cm2)
of Xmax and fixed the bin size of energy to 0.1 in log10(E/GeV) and core distance to 2 m.
While fitting Xmax, we fixed the other two parameters to their simulated values and only let
Xmax as a free parameter. As Xmax is also dependent on energy, we have chosen only 10
TeV energy showers. Figure 7, shows the Xmax bias and Xmax resolution as a function of
Xmax bin size. Xmax bias and Xmax resolution are the mean and RMS of Xmax,reco - Xmax,true

distribution, which is approximately a Gaussian. Reducing the bin size below 50 g/cm2 seems
not to improve resolution and bias any further, therefore we chose it as the optimal value.

We repeated the procedure for the r binning. Figure 8 shows that the optimal bin size
at 10 TeV energy was 2 m. The points for a given bin size represents the core resolution (68%
containment radius) of the corresponding core (true) - core (reco) distribution.

To optimise the E bin size, we again repeated the procedure for creating the templates,
but for the test sample, we took an energy range instead of only 10 TeV energy to escape
the discreteness in the log10(Ereco) - log10(Etrue) distribution. From the fit output for the
energy range, we took the 10 TeV bin, which includes some nearby energies and makes the
distributions smooth. By looking at Figure 9, 0.1 in log10(E/GeV) seems to be the best
choice.
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8 Performance

We assessed the performance of the fit method using MC simulations for the HAWC array.
The test simulation data set has the same ranges for the parameters E, Xmax and θ as of
the simulation dataset for generating the MC templates which are described in Section 4.
To have events of a reasonable size, we put an additional condition that at least 10% of the
available channels should have observed a signal.

We show the performance on the core and energy reconstruction and gamma-hadron
separation. The performance on Xmax is not shown because it was found to be dominated by
the prior relation we have used between Xmax and E as described in Section 6. However, it
is to be noted that the template binning and fitting in Xmax is crucial in order to partially
break the ambiguity in Xmax and energy as discussed in Section 2.1.

8.1 Core Resolution

In figure 10, the core resolution as a function of true γ-ray energy is shown. We defined the
core resolution as 68% containment radius of the distribution of the distance between the
reconstructed and true shower core. To give a reference, we show the core resolution for a
simple Centre-Of-Mass (COM) estimation (red markers). We show the core resolution for the
true core of the showers falling inside (solid markers) and outside (hollow markers) the array.
It can be seen over all the energy range the likelihood (LH) procedure works better than the
simple COM estimation as expected. The core resolution is ∼6 m for 0.3 TeV and then falls
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Figure 10. Core resolution (68% containment radius) shown as a function of the true energy of
the γ-ray. Here COM and LH are centre of mass estimate and likelihood fit respectively. Off and
On-Array stands for the true core of the shower falling inside and outside the array respectively.

down to ∼3 m for energies larger than 10 TeV for the events falling inside the array. For
events falling outside the array over a radially symmetric area, which is 50% as of the area of
the main array the core resolution is ∼10 m at 0.3 TeV and again falls down to ∼7 m for the
highest energies. It is worth to note that even for the events falling outside the array the LH
performs similar at the low energies and better at high energies in comparison to the COM
on-array estimate.

Overall, the shower core is accurately reconstructed over the whole energy range. At the
low energies, even though there are fewer particles observed on the ground, we get reasonable
fit results which can be partially attributed to the fact that method takes into account the
zero pe signal.

8.2 Energy Resolution and Bias

In Figure 11 we show the distribution of reconstructed energy versus true energy. The z-
axis shows the number of shower events. The figure shows the strong correlation between
reconstructed and true energy.

The performance of the energy reconstruction can be evaluated by with the fractional
deviation (log10(Ereco) - log10(Etrue)) of the reconstructed energy with respect to the true
energy. The deviation from 0 of the mean of the distribution of this fractional deviation (see
Figure 12 (top panel)) is the bias in the energy reconstruction. Similarly, the RMS can be
understood as the energy resolution(see Figure 12 (bottom panel)).
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Figure 11. Distribution of reconstructed γ-ray photon energy versus true γ-ray photon energy. The
z-axis shows the number of γ-ray events.

The energy bias is large at the low energies but converges to zero at energies >4TeV,
which indicates the stable region of the energy reconstruction will start above this value. The
bottom panel of Figure 12 shows the energy resolution of the likelihood fit method, which
starts at ∼50% for low energy and drops down to ∼25% at the highest energies. Such energy
resolution is very promising for EAS arrays like HAWC.

8.3 Gamma-Hadron Separation

The concept of the goodness of fit is explained in Section 3. To demonstrate the gamma-
hadron separation power, we show the GoF distributions for the simulated MC air showers.
Figure 13 exhibits the GoF distributions as a function of observed percentage hits (percent
number of detector units) of the HAWC array. It shows the most probable value of the GoF
distribution with 68% and 95% containment. We present, the distributions for simulations of
γ-ray and proton induced air showers. For the higher mass hadrons, one would expect even
more diverge distribution of the GoF from the γ-ray induced air showers.

It is evident from the GoF distribution of γ-ray and proton induced air showers that
it starts showing a separation power for as low as ∼20% of the percentage hits of the array
and the separation power increase with event size. The last part in the graph shows a slight
decrease in separation power, which might be due to saturation effects of the detector.
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Figure 12. Fractional energy bias (top) and energy resolution (bottom) as a function of true γ-ray
photon energy.

9 Application to Mixed Detector Arrays

In this section, we illustrate the applicability of this method for mixed detector type air shower
arrays by using detector simulations for HAWC and its high-energy upgrade, the outrigger
array [10, 23]. The outrigger array consists of 345 smaller Water Cherenkov Detectors (WCDs)
around the main array of the HAWC γ-ray observatory (see Figure 14 for the schematic
layout). The typical separation between the two outrigger WCDs is ∼15 m. One outrigger
WCD is consists of a cylindrical tank of 1.55 m diameter and 1.65 m height equipped with
one 8" PMT at the bottom of the tank, and therefore its response is significantly different
than the WCDs of the HAWC main array. As explained in Section 3, it is straightforward to
combine different detector types in the likelihood function.

Figure 14 an example is illustrated of the method applied to a simulated event with
signals detected in both WCDs of outriggers and the main array of HAWC. It shows the
likelihood contours and the reconstructed and the true core for a simulated event located in the
area instrument by the outrigger array. The best fitting templates corresponding to the main
array tanks and the outriggers are shown in Figure 15 left and right panel respectively. In the
case of the smaller outrigger detectors, the fluctuations in the particle density of the shower
front become more prominent which manifest in both larger amplitude fluctuations and more
zero signal detectors. Nevertheless, it is not a problem for the template-based likelihood
fit procedure, which combines these significantly different detector responses naturally to
reconstruct the γ-ray properties.
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Figure 13. The GoF distributions of the likelihood fit method for simulated γ-ray and proton induced
air shower are shown in red and black respectively. It shows the most probable value of GoF with
68% and 95% containment as a function of percentage hits of the HAWC main array.

10 Conclusion and Prospects

We described the working of the MC template-based likelihood fit method and showed the
possibility of γ-ray shower reconstruction for air shower arrays. This work demonstrates the
reconstruction of core location and the energy of the primary particle for γ-ray induced air
showers using the observed LDF. The goodness of fit of the method shows that in addition to
γ-ray reconstruction, it can be used to reject the background from hadron induced air showers.
In principle, this method can be expanded for direction reconstruction while using the timing
of observed signals. Although we have shown its working only for γ-ray induced air showers,
it might be possible to apply it to the reconstruction of other particle species. However,
with the mixed composition of hadronic induced cosmic-ray air showers and the uncertainty
on hadronic interaction models, it might be more challenging to obtain reconstruction with
similar accuracy.

Currently, this method is in consideration for reconstruction of the HAWC data. It can
both be applied to archival data and to the new combined dataset to be taken with both the
main array and the high-energy upgrade with the outrigger array.
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