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RATIONAL POINTS AND PRIME VALUES OF POLYNOMIALS
IN MODERATELY MANY VARIABLES

KEVIN DESTAGNOL AND EFTHYMIOS SOFOS

ABSTRACT. We derive the Hasse principle and weak approximation for fibrations of cer-
tain varieties in the spirit of work by Colliot-Thélene-Sansuc and Harpaz—Skorobogatov—
Wittenberg. Our varieties are defined through polynomials in many variables and part of
our work is devoted to establishing Schinzel’s hypothesis for polynomials of this kind. This
last part is achieved by using arguments behind Birch’s well-known result regarding the
Hasse principle for complete intersections with the notable difference that we prove our re-
sult in 50% fewer variables than in the classical Birch setting. We also study the problem
of square-free values of an integer polynomial with 66.6% fewer variables than in the Birch
setting.
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1. INTRODUCTION

1.1. Prime values of polynomials and rational points. Let n > 1 be an integer and

assume that f € Q[tq,...,t,]. Let Ki,..., K, be cyclic extensions of Q, denote the degree

[K; : Q] by d; and fix a basis {w1;,...,wa} for K; as a vector space over Q. We will denote
Nr,0(Xi) = N, jo(Triwri + -+ + 2q,,w4,4), (1<i<r)

where N, g denotes the field norm. Let now the quasi-affine variety X < A" x A% x ... x A%
be defined via

X (O #* f(tl, e ,tn) = NKl/Q(Xl) == NKT/Q(XT’)) (].].)
and let V be a smooth proper model of the affine subvariety of A” x A% x --- x A% given by
fltr, .. tn) = Ny o(x1) = -+ = Nk, jo(x,). (1.2)

The Hasse principle and weak approximation for varieties of this kind have been the object
of intensive study. There are cases where the Hasse principle and weak approximation hold
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and there are examples for which they fail, [9]. However, it has been conjectured by Colliot-
Thélene [§] that all such failures are accounted for by the Brauer-Manin obstruction.

The main objective of this paper is to study the Hasse principle and weak approximation
for the class of varieties defined by (ILT]) and (I.2]) under the restriction that the polynomial f
is an irreducible form and has many variables compared to its degree, but only moderately so
as it will appear in due course. To this end, information on prime values assumed by integer
polynomials can be exploited. The prototypical example is due to Hasse [21], whose proof of
the Hasse principle for smooth quadratic forms in four variables relies on Dirichlet’s theorem
on primes in arithmetic progressions combined with the global reciprocity law and the Hasse
principle for non-singular quadratic forms in three variables. This fibration argument was
later generalized in an important work by Colliot-Thélene and Sansuc [9] to establish that,
conditionally under Schinzel’s hypothesis, various pencils of varieties over QQ satisfy the Hasse
principle and weak approximation. Their result was then extended by many authors, see
the introduction of [20] for a list of relevant references. Theorem [[.3] below will allow us to
replace Schinzel’s hypothesis in order to prove unconditionally the Hasse principle and weak
approximation for the varieties defined by (L) and (I.2]) in the case of an irreducible form f
with moderately many variables compared to its degree. Let us conclude by mentioning that
unconditional proofs in this subject exist in cases where the underlying polynomials have
small degree (see for instance [10, Th. 9.3]) or special factorisation over Q. For example,
polynomials that are completely split over Q are treated in [5]. Our main result provides
an example where the polynomial needs to have moderately many variables compared to its
degree but has no restriction on its shape.

For a homogeneous polynomial f € Z[zy,...,z,] that is irreducible in Q[z1,...,x,]| we
let o¢ be the dimension of the singular locus of f = 0, namely the dimension of the affine
variety cut out by the system of equations Vf(z1,...,2,) = 0 (see [2, pg. 250]). Observe
that 0 < oy < n —1 and that oy = 0 if and only if the projective variety defined by f is
non-singular.

Theorem 1.1. Let f, K; and X be as in (I1l) with f an irreducible form and assume that
n — oy = max{4, 1 + 298" (deg(f) — 1)}.

Then X satisfies the Hasse principle and weak approximation. In particular, X (Q) is Zariski
dense as soon as it is non-empty.

Note that, thanks to the fact that our Theorem [[.3] below (which is the main ingredient
of the proof of Theorem [[T]) holds in half as many variables as in the work of Birch, a direct
application of [2, §7,Th. 1] would not prove Theorem [Tl Our strategy will be to establish
an analogue of [20, Prop. 1.2] and then to adapt the argument in the proof of [20, Th. 1.3].

Like in the proof of [I0, Th. 9.3], one can deduce weak approximation for the variety
V' defined by (L.2)) from Theorem [IT] since weak approximation is a birational invariant of
smooth varieties and hence it is enough to establish the result for the smooth model of V'
provided by X. We then conclude the proof of Corollary by alluding to the fact that the
Hasse principle and Zariski density by the existence of a rational point are consequences of
weak approximation.

Corollary 1.2. Keep the assumptions of Theorem [I.1 and let V' be as in (1.2). Then V
satisfies the Hasse principle and weak approximation. In particular, V(Q) is Zariski dense
as soon as it 1§ non-empty.
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1.2. Primes represented by polynomials. As mentioned above, a key tool in our proof of
Theorem [[Tlis a generalization of Schinzel’s hypothesis for polynomials in moderately many
variables compared to its degree. Let f € Z[x1,...,x,] be a, not necessarily homogeneous,
polynomial that is irreducible in Q[xy,...,x,] and denote by f; the top degree part of f.
We define o; := oy. For a non-empty compact box 4 < R" with the property that
fo(#B) < (1,0), we define

7 (B) = #{xel" n A : f(x)is a positive prime} and Lis(H) := J dx (1.3)

2 10g fo(x)

Our main result in this section is the following theorem.

Theorem 1.3. Assume that f € Z[x1, ..., z,] is any integer polynomial which is irreducible
in Qzy,...,x,] and let B < R™ be any non-empty compact box with fo(#) < (0,0). If

n — o = max{4, (deg(f) — 1)298W=1 4 1}, (1.4)
then for every fixed A > 0 the following holds for all sufficiently large P,
(1—p#{xeF): f(x)=0})) ( P )
mi(PAB) = L Lif(PA) + O —_—
f( ) (p gﬂe (1 _ 1/p) f( ) AB,f (lOg P)A

where the implied constant depends at most on A, A and f.

Note that the assumption fo(#) < (0,00) shows that for all sufficiently large P every
x € PP satisfies fy(x) » P8 > 1 thus Li;(P%) is well-defined. We shall see in
Lemma [3.22] that Lif(P%) — vol(#) P"/log(P¥e)) «; 5 P"/(log P)?, hence

(P L 1 St _n#{XEFn.f(XFO})) " 0, (—(1 i ) (1.5)

deg(f 1—-1/p) log P og P)?

Bateman and Horn [I] provided heuristics that led to a conjecture regarding the prime
values of an integer polynomial in a single variable. One can modify their heuristics in
the case that the polynomial has arbitrarily many variables, thus resulting in an analogous
conjecture regarding the prime values of an integer polynomial in many variables. We refer
the reader to Appendix [Al for a quick overview of Schinzel’s hypothesis, the Bateman-Horn
conjecture and their generalisations. Theorem then establishes the analogous conjecture
provided that the polynomial has sufficiently many variables compared to its degree.

There are currently no available techniques capable of settling any case of the Bateman—
Horn conjeture in one variable apart from the case of one linear polynomial, which is Dirich-
let’s theorem for primes in arithmetic progressions. Efforts have therefore focused on settling
such problems for polynomials in more variables. Notable examples in cases with n = 2 are
Iwaniec’s work [25] for quadratic polynomials, Fouvry-Iwaniec’s work [15] for 2% + x3 with
T3 prime, Friedlander-Iwaniec’s work [16] for 27 + x5 , Heath-Brown’s work [22] for 23 + 223,
Heath-Brown—Moroz’s work [24] for binary cubic forms and the recent work of Heath-Brown—
Li [23] on 22 + 23 with x5 prime. The special shape of these polynomials plays a central role
in the proofs of these results; they are all related to norms of a number field. In cases with
n > 2 it should be noted that Green—Tao—Ziegler [19] studied simultaneous prime values
of certain linear polynomials by a variety of methods, Friedlander and Iwaniec [17] studied
the prime values of 23 + 22 + 22 via the class number formula of Gauss, while Maynard’s
work [28] employs geometry of numbers to cover the case of incomplete norm forms.

prime
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It is therefore a natural question whether the problem of representing primes by polyno-
mials can be studied for polynomials with no special shape. Let us recall here that one of
the important theorems in the frontiers between analytic number theory and Diophantine
geometry concerns the Hasse principle for systems of polynomials in many variables and with
no special shape by Birch [2]. To prove Theorem we shall employ the Hardy—Littlewood
circle method in the form used by Birch and use several of his estimates.

While Birch’s work applies to every non-singular homogeneous polynomial f having at
least n = (deg(f) — 1)2d0g(f ) + 1 variables (which was recently improved by Browning and
Prendiville [6] to n > (deg(f) —+/deg(f)/2)29%e) ), the assumption (I4) of our Theorem [
is less restrictive, as it allows for half as many Varlables The improved range is due to the
use of Lo-norm inequalities in the minor arcs, as well as bounds for exponential sums due to
Browning-Heath-Brown [4] and Deligne [13] to show that the singular series in Birch’s work
converges absolutely in the range (L.4)).

Let us finally give a direct consequence of Theorem [L.3]

Corollary 1.4. Let f € Z|z1,...,x,]| be an integer homogeneous polynomial which 1S 117e-
ducible in Q[zy,...,z,] and assume that n — o > max{4, (deg(f) — 1)24()=1 4 1}, Then
f(x) takes inﬁm’tely many distinct positive prime values as X ranges over Z" if and only if
f(R™) is not included in (—o0,0] and for every prime p the set f(Z") is not included in pZ.

Proof. We clearly need to focus only on the sufficiency. If f(R") ¢ (—o0, 0] holds, then we
can obviously find a non-empty box # < R" with f(#) < (0,+x), so that vol(#) # 0.
If f(Z") & pZ holds, then the p-adic factor in (L) is strictly positive and we shall see in
Lemma [3 17 that the product over p is absolutely convergent. Hence by (ILH]) we deduce that
7f(P) =52 P"/log P. If f(x) = ¢ was soluble only for finitely many primes g, say g, .. ., g,
then the standard estimate #{x € Z" n P% : f(x) = q} <42 P" ! would lead to

Pn T B
ogp o ™B) = DHXEL A PB:f(X) = q} <farpgrn P
which is a contradiction. O

1.3. Square-free integers represented by polynomials. An integer m is called square-
free if for every prime p we have p® f m. In particular, 0 is not square-free and m is square-free
if and only if —m is.

Assume that we are given a polynomial f € Z[x1, ..., x,] that is separable as an element of
Q[x1,...,x,] and let fy and oy be as in §1.21 A similar approach to the one for Theorem [I.3]
allows us to study the set Sy := {x e Z" : f(x) is square-free}.

Theorem 1.5. Assume that f € Z|xq,...,x,] is any integer polynomial which is separable
as an element of Q[x1,...,z,] and let B < R™ be any non-empty closed box. If
1
n — o, > max {1, (deg(f) - 1)2deg<f>}, (1.6)

then there ezists 5 = B(f) > 0 such that for all P = 2 the equality

= T (1-p#{xe @2y 160 = 0}) + OpalP™)

p prime

holds with an implied constant that depends at most on f and A.
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The problem of square-free values of integer polynomials has a very long history, see [3] for a
list of references. Many cases are still open, for example, there is no irreducible quartic integer
polynomial in one variable for which we know that it takes infinitely many square-free values.
One of the most general results, conditional on the abc conjecture, is due to Poonen [29]
where arbitrary polynomials are treated. Our Theorem covers unconditionally arbitrary
polynomials of fixed degree and number of variables with the proviso that the number of
variables is suitably large compared to the degree. Theorem features a saving of two
thirds of the variables compared to the Birch setting [2]. This saving comes from the fact
that exponential sums whose terms are restricted to square-free integers can be bounded in
a satisfactory manner, this was done in the work of Briidern, Granville, Perelli, Vaughan
and Wooley [7] and Keil [27].

Notation. We shall use the notation x to refer to n-tuples x = (z1,...,z,). We will also
make use of the classical von Mangoldt function denoted A and of the classical Mobius
function denoted p. The letter d will refer exclusively to the degree of the polynomial f in
Theorem [LL3l Finally, throughout the paper, we shall make use of the notation

e(z) := exp(2miz), z € C. (1.7)

The polynomial f and the box Z will be considered fixed throughout. This is taken to mean
that, although each implied constant in the big O notation will depend on several quantities
related to f, we shall avoid recording these dependencies. The list of the said quantities
consists of
fo, n, d, ar, 90, 5, n, )\1, A, >\,

whose meaning will become evident in due course. The symbol ¢ will be used for a small
positive parameter whose value may vary, allowing, for example, inequalities of the form
2° « 2°/*. Further dependency of the implied constants on other quantities will be recorded
explicitly via an appropriate use of subscript.

Acknowledgements. We are grateful to Jean-Louis Colliot-Thélene and Yang Cao for
helpful conversations regarding the applications of Theorem [.L3. We would also like to
thank Tim Browning for suggesting the proof of Proposition B.7. We wish to acknowledge
the comments of the anonymous referee that helped improve this work considerably.

2. THE PROOF OF THEOREM [I.1]

Denote by Q, the completion of Q with respect to the place v, let | - |, be the p-adic norm
defined by |z|, = p~@ for x € Q, if v = p is finite and define | - |, as the classical absolute
value for the real place. We will use the notation Zg for the ring of S-integers for any finite
set of finite places S and we will say that a prime p is a fixed prime divisor of a polynomial
f€Z|xy,...,x,]if, for all (xq,...,x,) € Z", we have p | f(x1,...,2,).

2.1. Preliminary lemmas. We begin by establishing the following analogue of [9, Lem. 2].

Lemma 2.1. Let f € Z[z1,...,x,]| be a non-zero polynomial with content equal to 1. If p is
such that f (Z") < pZ, then p < deg(f).

Proof. Define d := deg(f) and let p be a prime such that f(Z") < pZ. On one hand, we
have by assumption that

#{x e (Z/pZ)" : f(x) =0} =p".
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On the other hand, since f has content one, [33] Eq.(2.7)] implies that
#{xe (Z/pL)" : f(x) =0} <dp""
and hence p < d, thus concluding the proof of the lemma. O

We now use Lemma 2] to verify the following analogue of [20, Prop. 1.2] and of the
hypothesis (H;) of [11] over Q.

Proposition 2.2. Let f € Q|x1,. .., x,] be an irreducible homogeneous polynomial satisfying
the assumptions (1.4) and f(1,0,...,0) > 0. Let C be a positive real constant and ¢ > 0.
Suppose we are given (Aip, ..., A\np) € Q) for p in a finite set of finite places S containing

all primes p < deg(f) and all primes p such that f does not have p-integral coefficients
as well as all primes p such that v,(f(1,0,...,0)) > 0. Then there exists infinitely many
(A1, ..y An) € ZE such that \y > CX\; > 0 for all i € {2,...,n}, |\ — Niplp < € for all
ie{l,...,n} andpe S and f(\,...,\,) = Lu for a prime { ¢ S and ue Z§, u > 0.

Proof. Up to multiplication of (Aq,...,A,) and (A1,,...,A\np) by a product of powers of
primes in S, we can assume without loss of generality that (Ai,,...,\,p) € Z7 for p e S.
The assumption that f(1,0,...,0) > 0 provides with a; € Q and a > 0 such that

flzy, ... zn) = azt + Z awt - at (2.1)

i=(i17...7’in)€Nn

i1+-+in=d

0<i1,...,in<d

11%#d

Let N_g be the number of indices i with a; < 0. We can assume that C' > N>°‘“‘ and C' > 1
whenever a; < 0. As in the proof of [20, Prop. 1.2], we can now find (>\071, coyAon) €L
such that |Ag; — Aipl, < €/2 for all p e S. We can choose them such that A\g; > CAg; > 0

for all i € {2,...,n}. We can now see that f(Xo1,...,Aon) >0 by alluding to
FQots - dom) = aXg; — Z @il Ay - - A

ai<0

and the inequalities

d—i1
M= T = e SN N X e O N > X el
>0a<0 al<0 a; <0 >0 a; <0

Let A = [],cgp and a fixed integer N big enough so that |AN|, < /2 for all p € S. Now
consider the polynomial g € Q[zy,...,z,] given by

g(l’l, . ,S(Zn) = f()\(],l + LL’lAN, ey >\0,n + S(ZnAN)

The polynomial g can be expressed as g = tg for t € Z§ and g a polynomial with integer
coefficients which is irreducible over Q. Let us denote by ¢ the product of all fixed prime
factors of g. We will now establish that if p is a prime factor of ¢ then p € S. Let p | c.
Either p divides the content of § and in particular, with the notation ([2.1), ,(aA) # 0 which
immediately implies that p € S or, denoting by ¢ the content of g, p is a fixed prime factor
of the polynomial §/¢ which has integral coefficients and content equal to one. By Lemma
(211 this implies that p < deg(f) and hence that p € S. Moreover, with the notation of §1.2,
Go = A™ f and the conditions z; > Cz; > 0 define an open cone % in R™. In addition, when
f is evaluated at (Ag1,...,Aon) € € it produces a strictly positive value, therefore we can
find a box # < € such that f(#) < (0,00). Since for all P we have P# < €, we obtain
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from Theorem [[3] that there exist infinitely many x € Z" n € such that g(x)/c is prime.
Introducing \; = A\o; + 2; AN for any i € {1,...,n} and for any such x € Z" n €, we get that

F, . ) /(ct) = g(xq, ..., x,)/(ct)

is prime. This yields the result because A\g1 > CXg; > 0 and z; > Cz; > 0, which implies
M= (Aoq +21AY) > ON\; = C( N + 2, AY). Moreover, |\; — Aiol, < |AY], < £/2 and hence
XN = Niplp <eforallpeSandallie{l,...,n}. O

2.2. Conclusion of the proof of Theorem [I.1

Proof. We proceed by adapting the proof of [20, Th. 1.3]. We are given 1 > ¢ > 0, a finite
set of places S and a point (t,, X1, ...,X,,) € X(Q,) for every place v of Q and we want to
find (t,x1,...,x,) € X(Q) such that for all v € S,

|ti_ti,p|v<€ (iE{l,...,n}),
|xji,i_xji,i,v|v < £ (ie{l,...,T}, jle{l,,dl})

2.2.1. First step. By density and continuity, we can assume that t,, € Q™ and by a linear
change of variables, we can assume that t,, = (1,0,...,0). Note that the solubility over R
implies that f(1,0,...,0) > 0 in the case where there is a totally imaginary K;. In addition,
it implies that f(1,0,...,0) can be strictly positive or strictly negative when all K; are
totally real. We denote by s € {—1,+1} the sign of f(1,0,...,0). We can enlarge S so that
it contains the real place, the field K is unramified outside S for all i € {1,...,r}, S contains
all primes p < deg(f), all primes p such that f does not have p-integral coefficients as well
as primes p such that v,(f(1,0,...,0)) > 0.

2.2.2. Second step. Let L = [dy,...,d,] denote the least common multiple of the degrees
di,...,d, and M = max,eg max i<i<r |, p|y- By [14, Prop. 6.1], we know that the image

1<5;<d;

of the map N, /g, : K;, — Q) is open and that a polynomial function is continuous for the
p-adic topology. Hence there exists ¢/ > 0 such that for every (A1,...,\,) € Q" satisfying
for every i € {1,...,n}, the inequality |A\; —¢;,|, < &', we have that f(A,...,\,) is a local
norm for K;/Q for the place p and there exists €” > 0 such that for every (A1,...,\,) € Q"

satisfying for every ¢ € {1,...,n}, the inequality |\, —¢;,|, < €”, we have that

€
[fFA s An) = f(aps s tap)p < === f(t1p, - s tnp)pl Llp, (pe S). (2.2)
2M

Then applying Proposition yields (A, ..., \,) € Z% such that Ay > C\; > 0 for all i €
{2,....n}, |\ —tiplp, <min{e/2,¢ "/2} forallie {1,...,n} and pe S and f(Ay,..., \,) =
slu for a prime ¢ ¢ S and v € Z§ with v > 0. We thus obtain that f(A,...,\,) is a
local norm for K;/Q for all places of S. This is also the case for the real place because
f(A1, ..., An) > 0 in the case that there is a totally imaginary K;.

2.2.3. Third step. Now, f(Ay,...,A,) = fsu is a unit in Z, for every Q, and p ¢ S U {¢}
and we know by [26, Prop. V.3.11] that this implies that f(A1,...,\,) is a local norm for
K;/Q for all p ¢ S U {¢}. By the global reciprocity law and the fact that K;/Q is unramified
outside S we see that f(Ay,...,\,) is also a local norm for K;/Q at the place ¢ (see [20,
Prop. V.12.9]). The conclusion is that f(A1,...,\,) is a local norm for K;/Q at every
place of Q and then by the Hasse norm principle [26, Th. V.4.5], one gets that there exists
(x1,...,%,) € Q" x -+ x Q% such that 0 # f(A1,...,\y) = Ng,o(x1) =+ = Ng,g(x,).



8 KEVIN DESTAGNOL AND EFTHYMIOS SOFOS

2.2.4. Fourth step. By continuity, there exists €; > 0 such that for all ¢; € Q* such that

|1 — Moo < €1, then H - /\%‘ < Smmno - Writing m = [L,deg(f)], by weak approx-
0 i<n

imation in Q, since A; > 0 one can find p € Q such that |p — 1|, < min {3, }min{l, |Ailp}

for all p € S and |pm/Cleg — Ao < min {5 min {1 AL — 2} 51} where we can assume that

€ < 2);. In particular, this implies that |p|, = 1 for all p € S. We now make the following
change of variables,

Nio=pmAsDN e {1, n), x; = p™hEx de{l,..., 1},
so that for all finite place p € S we have

m €, E
|)‘/ Ai |p |)‘ |p|p /des(f) 1|p |)‘i|p|p - 1|p < )

and therefore |\, — ¢, ,|, < e for all i € {1,...,n}. Moreover, we have

0# f(N,...,A,) = Nk, jo(x)) = -+ = Ng,g(x). (2:3)

As for the real place, we have |\] — 1], < ¢ and |X; — \;/A1]en < €/2. The treatment of the
archimedian place is now concluded similarly as in [20], by alluding to 0 < \;/A; < C~! and
by taking C' big enough, namely C > g

2.2.5. Fifth step. To conclude the proof, it remains to find (x/,...,x”) e Q% x --- x Q% v-
adically close to (X1, ...,X,,) for all v € S and such that Ng, o(x}) = Ng,o(x}) for all 7 €
{1,...,7}. By (22) and the choice of X" = ()}, ..., X)) above, one can write f(\],...,\) =
fltip, .. tayp)By with 3, € Q, satisfying |3, — 1|, < 537|L|, for all finite place p € S. In
particular, |B,[, = 1 and 8, € Z for all finite place p € S. Now, Hensel’s lemma implies
that there exists a, € Z, such that £, = o and

ﬁp_l
L

|O‘p - 1|p =

p

Of course, there exists a, such that 3, = ol and |ay, — 1] < €/(2M) since one can always
ensure that f(1,0,...,0) and f(\},...,\)) have the same sign. Now alluding to the facts

’'n

that (t,,X14,...,%,) € X(Q,) and to (2.3), we obtain that for all ve S

0# f(N, ..., AL) = Nigjglay™x1,) = -+ = N, gy x,,).
In other words, for every i € {1,...,r}, we have N, g (ag/dixi7v> = Nk, g (x}) forallve S.
Thanks to the fact that weak approximation holds for the norm tori Nk, g(z) = 1, one gets
the existence of x} € Q% such that |z, — k! Tjiole <€/2forallveSandje{l,... d;}
and N, o(x]) = Nk, /o(x;). Therefore we have
0# f(A), -, A0) = Niyja(x)) = - = Nk, jg(x/)
along with
" L/d

|25 = Tjinlo < |5y — @ @gi0lo + 2500l = 1y <,

thus concluding the proof of Theorem [I.11 O
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3. THE PROOF OF THEOREM [[.3|

3.1. First steps and auxiliary estimates. The proof of Theorem is initiated by using
the following exponential sums for real «,

S@) = > e(af(x)) and W(a):= > elap),  (3.1)

XEL"NPA 1 min{ fo(#)} P<p<2max{fo (&)} P?
where we used that, in the setting of Theorem [L.3] the following quantities are positive
min{ fo(#A)} = min{fo(x) : x € A} and max{fy(A)} := max{fy(x) : x € A}.

The fact that Sé e(a{f(x) —p})da is 1 when f(x) = p and is otherwise 0, shows that for all
P »¢ 5 1, we have the equality
1
n(PA) = f S(a)W (a)da. (3.2)
0
This identity has the useful feature that it completely separates the problem of evaluating
7y into two problems, one regarding the evaluation of the sum S (that is only related to
the values of the polynomial f) and one regarding the evaluation of the sum W (that is
only related to the distribution of primes). Birch [2] has a similar identity, save for the
factor W(«). The main idea is that the presence of this extra factor can be turned to our
advantage, as it attains small values for certain « for which |S(«)| is large. Let us comment
that we could have defined W in an alternative way by replacing the range for the primes p
by the condition min{fy(%)}P? < p < max{fy(#)}P?, however, our choice will make more
transparent the proof of Lemma 3.19
Before proceeding let us recall here the estimates from the work of Birch [2] that we shall
need later. First, following [2, pg. 251,Eq.(5)], we let for 6 € (0,1] and a € Z n [0, q) with

M (0) = {a e (0,1]: 2jga — a| < P*‘”(‘H)"} (3.3)

and

w0 = U A0 (3.4)

1<q<P(d—1)0 aeZn[0 q)
ged(a,q)=

Birch then gives the following upper bound for the volume of .Z (6).
Lemma 3.1 (Birch [2, Lem. 4.2)). .#(6) has volume at most P~4+Xd=1)8,

Next, we choose any positive 6, 6§, satisfying
n—oy
9d—1

1> 0+ 6df, and —(d—1) > 66, (3.5)

As in [2, pg.252,Eq.(13)-(14)] it is easy to see that there exists 7' € N and positive real
numbers 61, ..., 07 with the properties

(T « P?,
9T>9T—1>--->91>90>0a

1 d=2(d—1)0r (3.6)
1
§5>2(d_1)(9t+1_9t) for0<t<T-1.

\
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We next recall [2, Lem. 4.3]. Note that it was proved for homogeneous f, but, as noted by
Schmidt [31], §9] a similar argument works for inhomogeneous f, because the Weyl differenc-
ing process is not affected by lower order terms.

Lemma 3.2 (Birch [2, Lem. 4.3]). Let 0 < 8 < 1 and ¢ > 0. Then if o is not in
A (0) modulo 1,

(™ e
|S(a)] « P" o(5t )+
Following the notation in [2, pg. 253] and for 6, a, ¢ as above we also let

M,(0) = {a € (0.1]  ga — a] < gPH) (37)

and

A0 = U A0 (3.8)

1<g< P10 acZn[0,q)

ged(a,q)=1
With 6y as in (B3], we let
n = (d—1)6 (3.9)
and for a € Z,q € N we define
af(x)
Saqi= E(;Z o (T) : (3.10)
x€(Z/qZ)
Finally, for any v € R and any measurable ¢ < [—1,1]" we define
1) = | euno)ax (3.11)
X6

The following result, due to Birch, gives an upper bound for the quantity 1(%’;~).

Lemma 3.3 (Birch [2, Lem. 5.2]). Let € be a box contained in [—1,1]" with sidelength at
most o < 1. Then

n—o

S
I(Cg, 7) « o" min ll’ (O’d|fy|) 2d—T(g—1) 1 ¢ .

The next result was proved by Birch with f instead of f; in the definition of 1(%;7),
however the following result holds in light of the remarks concerning the function p (oo, %)
appearing in Schmidt’s work [31} §9].

Lemma 3.4 (Birch [2| Lem. 5.1]). Assume that we are given coprime integers ¢ € N and
a€Zn[0,q) and let o€ M, (00) with the notations (3.3) and (3.7). Denoting 8 := a — ¢,
we have

S(a) = ¢ " P"S,I(%; P'B) + O(P™ 1),

Let us now turn to the quantity S, , defined in (3.I0). The next two lemmas will be used
to prove Proposition 3.7

Lemma 3.5 (Birch [2 Lem. 5.4]). For every e > 0 and for a € Z, q € N with ged(a, q) =1
we have

n—o

__noop
Spq € ¢ TG
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Lemma 3.6 (Browning-Heath-Brown [4, Lem. 25] ). We have

Sa,pk &y, p(k—l)n-i-af

for allk =2

Note that, as explained in [4, Eq. (6.1)], the quantity ¢ in [4) Lem. 25] coincides with
—1+ oy, with o as in the present work.

The next result is of key importance in the proof of Theorem [L3 It is what allows to save
variables compared to the Birch setting.

Proposition 3.7. Let f € Z[x1,...,x,] be an irreducible polynomial and define

Tr(g) =g D, |Saqs ¢eN.

ae(Z/qZ)*

(1) If n — o = max{5, (deg(f) — 1)24()=1 1 2} then the abscissa of convergence of the
Dirichlet series of Ty is strictly negative.

(2) If n— oy = max{4, (deg(f) — 1)24¢)=1 1 1} then there exists a constant C' = C'(f) > 0
such that Y, ., Tr(q) < (logx)"

Proof. Part (1). Tt is sufficient to prove that there exists A\; > 0 such that >, ¢*Ty(q) < .
By [2 §7], the function T is multiplicative, hence the series over ¢ converges absolutely if
the analogous Euler product converges absolutely, i.e.

DTty = D P Y 18, ] < . (3.12)

PR P RN ag(Z/p*L)*

By Lemma [3.5 the terms with & > 2971(d — 1) contribute

« Z Z pk(1772d717(d{1)+5+>\1). (3.13)
P k>1+29-1(d—1)
By the assumption n — oy > (d — 1)297! + 2
n—oy 2
—_—— 214+ —
(d—1)2¢-1 (d—1)2¢-1
we have
p(l—ﬁ(d{nﬁwxl) < p( m+a+>\1>

Y

1 1
thus taking e, \; sufficiently small we can ensure that this is at most p 247 '@-» < 2 2¢7T@-1 |
which is of the form 1 — ¢ for some 0 < § < 1. Note that if § € (0,1) then for all z € R with
0<z<1-9¢andall kg e N we have

z
Do

k>=kg

Therefore the sum in (3.13) is

d—1(7_ _ "9y _
<<d2p(1+2 (d 1))(1 zdfl(d,lﬁaﬂl) « Zp72+(6+)\1)(1+2d Hd-1) prs/z < o,
p p p
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where we have taken e, \; sufficiently small to ensure (g + A\;)(1+2%1(d —1)) < 1/2. Next,
we study the contribution towards ([3.12) of any k € [2,2971(d — 1)]. By [4, Lem. 25] we
infer that the said contribution is

« Zpk()q—n)-‘rk-i-(k—l)n—l-af _ Zp(l—i-)\l)k—n-i-af < Zp(l+)\1)(2d71(d—l))—n+af.
p p p
The assumption n — o > (d — 1)2¢71 + 2 shows that the exponent is < A\;(2771(d — 1)) — 2
and for small \; the sum converges. To conclude the proof of (3.12)) it only remains to bound
the contribution of terms with £ = 1. As noted in [6] §5], one can prove

n _rTof
Ty(p) = p 2 S,y « P72 (3.14)
ae(Z/pL)*

by Deligne’s estimate and induction on oy. Taking small A; < 1/4 and using the assumption
n—oy = 5 shows that the terms with & = 1 in (8.12) form a convergent series. This completes
our proof.

Part (2). If k € [2,277!(d — 1)] then Lemma B.6 and n — oy > 1 + 2¢71(d — 1) imply
that T;(p*) « p~'. Furthermore, using Lemma B35 and n — o; > 1 4+ 2971(d — 1) we have
that if & > 1+ 2% (d — 1) then Ty(p*) « p~=2"@=D"" " Finally, n — oy > 4, thus (314)
ensures that T¢(p) « p~'. Putting everything together yields >}, _, T +(p*) < C'p~? for some
C" = C'(f) > 0 and the proof is concluded by using 3, Tr(q) < [ [, (142051 Ty(p*). O

3.2. The minor arcs. For § € (0,1] and a € Z n [0, q) with ged(a,q) = 1 we use the sets
A (0) and A, ,(0) defined by (B.4) and (B3). Next, we choose any positive 9,0, satisfying

Lemma 3.8. For any 0 < 6 <1 we have

1/2
« (J |S(a)|2da) PY2(log P)~ Y2,
ag¢. M (0)

Proof. By Schwarz’s inequality the integral on the left side is bounded by

(LM()| |da> (f W(a)fda) -

The proof is concluded by noting that

J S(a)W (a)da
ag¢ #(0)

1
J W (a)?da = > 1« P?/log P. O
0

3 min{ fo(#)} P<p<2max{fo(#)} P

Lemma 3.9. Keep the assumptions of Theorem[1.3 and [B.5]). Then we have,

1/2
(f |S(a)|2da> — O(Prd279/2)
ag¢.# (0o)

Proof. Using the entities (6;)7_,, given in (3.6), we have for sufficiently small € > 0,

f S(a)2da « P (Gt)or) e o pan-d—s
ag. A (0r)
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due to Lemma [3.2] the third equation of (3.6]) and (L4). For ¢t < T and ¢ > 0 we get

15(a)[Pda < P—d+2(d—1)6t+1+2(n—(2;’{)0t>+e

J:///(et+1)\%(9t)

by Lemmas [3.1] and The proof can now be completed easily by using the last equation
of B.8), (3.5) and T « P?, as in the last stage of the proof of [2, Lem. 4.4]. O

Lemma 3.10. Keep the assumptions of Theorem .3 and [B3). Then we have,

J S(a)W(a)da| = O(P"9%),
ag¢.#(0o)

Proof. The proof follows immediately by tying together Lemmas 3.8 and 3.9 O

Recall the definition of .#"(6y) and ., ,(6) given in (3.8) and (B3.7). The next lemma is
analogous to [2, Lem. 4.5].

Lemma 3.11. Keep the assumptions of Theorem .3 and [B.3). Then we have

w(PA) = J W (a)da + O(P"%/%),
q<P(d 100 aeZn[0 q q(00)

ged(a,q)=1

where C" is as in Proposition [3.7].

Before proceeding we note that one can take an arbitrarily small positive value for 6, in
Lemma B.IT] because the system of inequalities (B.5) can be solved for any 6, > 0 small
enough. This will come at the cost of a worse error term in Lemma [B.11] however, it will still
exhibit a power saving and it will thus be acceptable for the purpose of verifying Theorem [L.3]

3.3. The intermediate range. Under the assumptions of Theorem and (B.5) we can
use Lemmas B.1] 3.4 and the trivial bound W(a) « P?¢ to evaluate the quantity S(a) in
Lemma BT1l This yields

T+(PA Wia/q + yvP—4 B
7f(Pn ) > Y Sa,qf (%) ( /Pd )dv < (log P)™, (3.15)
qSP(dfl)go a€Zn[0,q) lv[<Pn
ged(a, q):

valid for all A > 0, where n, S,, and I(%;v) are defined respectively in (3.9), B.10)
and (3110).
For A,ge N and a € Z n [0, q) with ged(a,q) = 1 we let

M, (A) :={aeR(mod 1) : |a—a/q| < P’d(log P)4}, (3.16)
mA) = (J ) 9,4 (3.17)

1<q<(log P)A a€Zn[0,q)
ged(a,q)=1

and we observe that 9M(A) < .#'(6y) for all P » 1. We denote the difference by
t(A) = A"(00)\IM(A). (3.18)

The set t(A) is therefore to be thought of as lying ‘between’ the major arcs .#’(6y) and the
minor arcs [0, 1)\.#Z’(0y). We shall see in §3.4] that 9(A) gives rise to the main term in
Theorem [1.3]
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Next, we observe that Lemma [3.3 and our assumption n — oy > 1+ 2%71(d — 1) yield
J [(By)ldy « Q #a0 , (Q = 1), (3.19)
V=@

in particular showing that §; [I(Z;~)|dy converges under assumption (IL.4).
Lemma 3.12. [f (IL4]) holds then

|14 P )
S0t Y sl @MY Ny g pyaniaee,
(log P)A<q<Pm acZn[0,q) [v|<Pn
ng(a‘vq):l
(3.20)

where C' is as in Proposition[3.7]

Proof. If « is not in the union of the sets {a (mod 1) : |a — a/q| < P~4+(d=D%} taken
over all ¢ € N n [1,(logP)4] and a € Z n [0,q) with gcd(a,q) = 1, then by Dirichlet’s
approximation theorem there are coprime integers 1 < a’ < ¢ with ¢ < P (@=D% and
la — d'/q'| < P~%*@=D% /o/ " Thus we must have ¢ > (log P)*. Alluding to Vaughan’s
estimate [12, §25] and using partial summation we obtain

(W(a)] « (P2 + PY5 + (PY) ') (log P)* < (P(log )~/ 4 P'° 4 P4=12)(log P)?,

which is « P?(log P)~4/2*3. For each a and ¢ as in (320) we get by (3.I9) that

| e
lylspn

hence by the second part of Proposition B.7 we see that the sum over ¢ in the lemma is

|IW(a/q +y P

pi dy « (log P)~4/*3,

« Z Z |Sar;q| (log P)fA/2+3 < (log P)—A/2+3+C" 0
(log P)A<g<P? a€Zn[0,q) ¢
ged(a,q)=1
Lemma 3.13. Assume (L4]). Then we have
. W(a/q+~yP~¢ loglog P)¢’
S o0t Y S 1(8)| LWL Oy Lomlos P

d A :
g<(log P)4 aedZ(m[(;,q) (log P)A<|y|<Pn P (log P) 2d(d—1)
ged(a,q)=1

Proof. The proof follows immediately by combining the bound W (a) « P?, the inequal-
ity (3.19) for Q = (log P)* and the second part of Proposition 3.7 O

Tying Lemmas [3.12] and [3.13] proves the following lemma.

Lemma 3.14. Keep the assumptions of Theorem[1.3. Then there exists a strictly positive
constant X = X(f) such that for every fized sufficiently large A > 0 we have
f S(a)(a)da] « —
o a)da —_—
aet(A) (log P)AA
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3.4. The major arcs. Bringing together (B.15), (8.18), and Lemma B.14] we see that under
the assumptions of Theorem [[.3] there exists A > 0 such that for all large A > 0 we have

wr(PA W(a/q +~P~4 _
Lpn ) P Saqf 1(%;7) </Pd7 Jay « (log P)~™. (3.21)
g<(log P)A  a€Zn[0 q [y|<(log P)#
gcd(aq)

Using the Siegel-Walfisz theorem as in [12, pg. 147] we can show that there exists ¢ =
c(A) > 0 such that if |3] < P~%(log P)4, ¢ < (log P)*, a coprime to ¢ and x € [P%? P
then

,;mA m(a/q+ ) = 90EQ§ <Lx e(ﬁt)dt) + 0 ((1 + |Blx)x exp (—c\/@» , (3.22)

where 1, o and A denote the Mobius, Euler and von Mangoldt functions. We now see that
q €T
Stogpletplara + 6)) = 0 ([ e(@at) + 0 ((1+ |slarsenp (~evioz )
p<z 2

due to the estimate Y m<. A(m) « /2. Partial summation shows that W (a/q + 3) equals

m#p

,U((J) ;max{fo(ﬂ ypd (ﬁt)dt 3‘2 min{ fo(#)}P? (5t)dt 2 max{fo(B)}P, ru 1 /
v(q) (log( L max{fy(B)}P?) log(} min{fo(2)}P?) L min{fo(,%)}Pd<L e(ﬁt)dt><10gu>du

up to an error of size « (1 + |8|P?%)P%exp (—cy/log P). Partial integration now yields

Loy pla) ([P (y P dt (L+ )P
W(ajq+~pP~%) = 19 J U Lo (323
@/ ) ©(q) ( min{fo(#))pd  10g1 exp (cy/log P) (3:23)

The error term makes the following contribution towards (3.21]),

<ep(—eviosP) N 0" Y S [1(%:7)|(1 + (log P)")dy
q<(log P)A aedZ(m[(;q) [7<(log P)4
ged(a,q)=1

and, by the second part of Proposition [3.7 this is « exp (—c«/log P) (log P)A*!, which is
obviously « exp (—c/2«/log P). Hence, letting

=P = Y 1(q) S S,

g<(log P)4 (p(q)q” a€Zn| Oq)
ged(a,q)=
and
2 max{fo(2)} P?¢ o — Pfdt
wap) = | )| | D ) e,
lv|<(log P) L min{ fo(%)} P4 og

we obtain the following result via (3:21).

Lemma 3.15. Under the assumptions of Theorem [1.3 there exists A = A(f) > 0 such that
for every A > 0 we have m;(PB) = Za(P)W 4(P) P4+ O(P"(log P)~**) for all sufficiently
large P.
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3.5. The non-archimedean densities. If n — o; > 3 then ([BI4) along with the multi-
plicativity of T [2} §7] gives

ZW Z|af1| Z'MH*

¥ aE(Z/qZ) q>x

Hence, for ¢ € N, the estimate ¢/¢p(q) <« loglog(4q) that can be found for example in [36],

Th. 5.6] implies
Z |:U’ ;1)|n Z |Sa,q| « x71/2+€'
Q>$ 4 ae(Z/qZ)*

Therefore, we have

_ i IU(Q) Z Saq+0 IOgP) A/4)

Pa)g" s
The multiplicativity of the last sum over a shows that the above sum over ¢ is Hp Bp, where

D Sup

By i=1-—
p_ ) ae(Z/pZ)*

Finally, the following lemma is obtained by observing that

D Sww= 0 (—1+ Y elafX)/p)) = "+ pHix e Fy f(x) =0} (324)

ae(Z/pZ)* xelFy a€Z/pZ

Lemma 3.16. If n — oy > 3 then

=P =] ( (1 | #ixe IFZZ;nf(X) = 0}> (1 B %)1> + O((log P)~44).

p

Combining (B14) and ([B24) yields p "#{x € FI : f(x) = 0} = 1/p + O(p~"~71/2), thus

verifying the following lemma.
Lemma 3.17. Ifn — oy > 3 then the product in Theorem converges absolutely.
3.6. The archimedean densities. Letting for P? > { min{fo(%#)}

2 max{fo (%)} e(—fy,u)
‘I’(P)¢=J 1(%;7) J ———adp | dy,
veR L min{fo(%)} log(uP?)

we see by (B.19) and our assumption (L4]) that there exists Ay = Ao(f) > 0 such that

U4 (P)P~% = U(P) + O4((log P)~24). (3.25)
Now we observe that for all reals z, u with z > > 0 and z ¢ {1/, 1} we have
1 1 1 1 & (=1
- = log )" 3.26
log(pz) logz (1 + %) log z 1;) (log Z)k( og )", ( )

therefore, letting for k € Z~,

2 max{fo(#)}
J(k) = J i 1(%;7) (J e(—yp)(log u)’“du> dy, (3.27)

3 min{fo(#)}
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we infer that for all sufficiently large P we have

0

1 —1)*
W)= o 2 g 3:25)

Let us furthermore introduce the following entity for all n € N and k € Z~,

In(k) = LR exp (— W;f) 1(%;7) ( f e e(—yu)(log u)’“du> dy. (3.29)

3 min{fo(#)}

Lemma 3.18. Under the assumption (L4]) we have liIJIrl Jn(k) = J(k) for every k € Zsy.
n—+0o0

Proof. We have J(k) — J,(k) < S|y|<1ogn‘%ﬂT(7>d7 + Sw\>1ogn‘%ﬂT(7)d% where
2n2
i) = (1-ew (<23 ) ) 1),

We have I(%;~) « 1 due to Lemma B3] hence,

2 2
f 6 (y)dy « (logn) (1 — exp (—M)) =o(1).
Ivl<logn n
By (B19) we get S\'y\>logn H3(v)dy « (logn)™t = o(1) for some positive A\; = A\(f). O

Lemma 3.19. Under the assumption ([L4]) we have the following for every k € Zsy,

lim J, (k) — L (log fo) "t

Proof. Tt is standard to see that the Fourier transform of the function ¢, : R — R de-

fined through ¢, (x) := 7=/?n eXp( n?x?) satisfies ¢, (7) = exp(—n?n=242). Therefore, the
Fourier inverse formula yields ¢, (z) = §; e(27)@,(7)dy. Using this for z = fy(t) — y and
rewriting (3.29) as
2max{fo(# ) 22
J f log ) J exp <— 5 ) e((f(t) — p)y)dy |duds,
te# min{ fo(A)} ~eR n
we infer that J,,(k) = §,, gn(t)dt, where

(log p1)* @ (f(t) — p)dp.

2max{fo(#)}
gn(t) = f

3 min{fo(%)}

It is obvious from [I8, Ex. 1.2] that for any reals a < ¢ < b and any continuous function
h: |a,b] — R one has
b

lim | A(p)en(c — p)dp = h(c).

n— -+ a

Recalling that fy(#) < (0,00) we infer that whenever t € % then the following inequality

holds, 2 min{fo(#)} < fo(t) < 2max{f(#)}. This gives lim,_, 1 g, (t) = (log fo(t))* and a
use of the dominated convergence theorem concludes the proof of the lemma. U

Lemma 3.20. Under the assumption (L4) we have, for all sufficiently large P, V(P) =
P"Liy (PB).
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Proof. Combining Lemmas and we get J(k) = §,(log fo(t))*dt. Injecting this
into (3.28) and interchanging the sum over k& and the integral over t yields

_ LR S B Gt VAP K
U(P) = L (k)g(Pd) ];0 (1og(Pd))k(1 g folt)) )dt. (3.30)

The proof is concluded by alluding to (8:26) and making the change of variables x = Pt. [
Combining Lemma with ([B.28]) provides us with the following result.

Lemma 3.21. Under the assumptions of Theorem[1.3 there exists Ay = Ao(f) > 0 such that
for every A > 0 and every sufficiently large P we have

U A(P) = Lif(PB)P~ "D 4 O4(P(log P)~"*2).

Our final result offers an asymptotic expansion of Lif(P%) in terms of (log P)™*
Lemma 3.22. For f and % as in Theorem[L.3 and P large enough we have

Li,(P%) - VOI;’%) 101:13 iy “1; _ (L}(log fo(t))k—ldt) @.

k=2

In particular, we have

, vol(#B) P" P

Proof. The first equality follows by combining Lemmas 318 and B.19 with (3:28]) and (3.30).
To prove the second, note that if log P > 2 then

- (_1)1671 _1 ® 1 ©
Z d¥ (I@(logfo(t))k dt) (log P)* Z logP (logP)2];22k—2>

k=2

thus concluding the proof. O
3.7. The proof of Theorem [I.3] It follows by merging Lemmas [3.15] and 3.211 O

4. THE PROOF OF THEOREM

4.1. First steps and auxiliary estimates. Similarly as in §3.1] we may write
1

#(8, 7 P#) ~ | S(@)@a)a.

0
where S(«) is defined in (B1]) and

Q(a) := > e(am).

m square-free,m+#0
min{fo(#)}—1<mP~ d<max{fo( )1

We shall later need certain estimates concerning exponential sums taking values over
square-free integers that we record here. For a € R and N € R, define

fo(a,N) := Z w(n)?e(an).

The following result is the very special case corresponding to the choices k = 2 and p = 3/2
in the work of Keil [27].
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Lemma 4.1 (Keil 27, Th. 1.2]). We have
f | folo, N)|2de « NY?(log N)?.

For p prime and £, m non-negative integers such that m < ¢, define g(p*, p™) by

0, ifl>=m > 2,
P —p g’ p™) = {1, if m < min{2, ¢},
1—p2 ifl=m<1.

We extend this definition by defining the following whenever d, g € N are such that d | ¢,

= H g(pup(q)’pup(d)

plg

We can now introduce the following entity for g € N,

q) = Y e(b/a)g(g, ged(b, ). (4.1)

Briidern, Granville, Perelli, Vaughan and Wooley studied Q(«) in [7].

Lemma 4.2. There exist absolute positive constants 01,0 such that for all ¢ € N with
q< P allaeZn[l,q),deN, veR with |y < P and all c; < c; € R we have

S e(mlafq + 4P ) = 9 (

m square-free,m+#0 C(Q)
ci<mP~4<cy

02Pd
f e(det)dt) + Ocy ey (L+ 7)) P%),

c1 P4

where ( denotes the Riemann zeta function and the implied constant depends at most on ¢,
and cy.

Proof. We will show that there exists an absolute § > 0 such that if |3] < P79 ¢ < P?, a
is coprime to ¢ and x € [P%2, P??] then

2 _ G
1<;<x:u(m> e(m(a’/q + 5)) - <(2>

from which one can deduce the asymptotic stated in the lemma in the same way as we
deduced ([3.23) from ([3.22). To prove (£.2) we first note that for all b and ¢ € N we have

o= Y Z 3 u(d)(%+0(l)) (4.3)

1<m<z 1<m<z 1<d<y/z
m=b(mod q) m=b(mod q) ged(q,d?)|b
m square-free

(fg e(ﬁt)dt) + O ((1+ |Blz)z' ), (4.2)

and completing the sum over d gives 759(q, gcd(b, q)) + O(v/x). For ged(a, q) =1 we let

Z(wiq,a) = Y. p(m)’e(ma/q) = Y e(bajq) >, p(m)®

1<m<z 1<m<z
m=b(mod q)
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and use (A1) and (43)) to get the following estimate with an absolute implied constant for
qs<z

Z(x;q,a) — G;((q;)x & g/, (4.4)

We therefore obtain by partial summation that

S ulmPelm(afa + ) = e(aB)Zeig.) - 2515 | e(us)Z(usg. )y

1<m<zx

and by (A4)) this becomes

G(q) ("
m( f ewt)dt)m((uwm)qﬁ%

with an absolute implied constant. This proves ([£2) with § = (2 + d)~!. Indeed, if ¢ < P°
then the equality P = P5G=9 and the bound P? < z yield g < x%_‘s, ie gyz <z'0. O

Finally, the next result is shown in the proof of [7, Lem. 3.1].

Lemma 4.3 (Briidern, Granville, Perelli, Vaughan and Wooley, [7, Lem. 3.1]). The function
G is multiplicative, supported in cube-free integers and satisfies for all prime p the identity

Glp) =Gp*) =-p?(1-p )"

4.2. Continuation of the proof. Recalling the meaning of .Z () and .#, ,(6) in (3.4]) and
B33), we allude to Holder’s inequality and Lemma 1] to obtain

<<LM(9) S (e )3da) U Qla |3/2da)2/3

1/3
< ( J |S(a)|3da> P3(log P)*3.
ag¢.#(0)

The proof of Lemma can be adapted straightforwardly to show that if

J S(a)Q(a)dar
a4 (0)

n—ao 2 _
Tlf -3@d-1)> 50, (4.5)

1/3 d_6
(J |S(a)|3da) « P"37%
og M (0)

Let n := (d—1)6y. Under the assumptions of Theorem [[.5l and for 6, as in (4.5]), one obtains
the following inequality that is in analogy with Lemma [B.11]

4(S; A PB) = f )da+0< ‘5).
q<P" aeZn[0 q q(f0)
gcd(aq =1

1>6+6dfy, and

then

Similarly as in the proof of (B.I%]), one may now acquire some d; = d;(f) > 0 such that

S P%# P~
EEEEE- 5 3 s e @ e s
q<P%1 acZn[0,q) 7\<Pn i
gcd(aq)=1
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By Lemma 2] we see that for suitably small §; and all a as in (f6) and ¢ < P°* one has
4 G(q) (max{fo(#)}+1) 4 s
Qaja+P) = T | ey Pt | + O (14 )P,
C(2) \Jomintso()y-1)ps

Therefore, as in the proof of Lemma B.15 we may infer that there exists a positive constant
93 = 63(f) such that the quantity #{S; n P#} equals

pPn G(Q) f [(@; fy) J‘(max{fo(z@)}Jrl)pd »
2 S e(—yP4)dt |dvy |, (4.7
w)(qZ v - q)( pi<pn P (min{fo(#)}—1)P4 ( Jdt Jdy | (A7)

<pPd a€Zn|[0,q)
ged(a, q) 1

up to an error term which is O(P"~%). We shall now use Lemma [£3] to show that the sum
over ¢ forms an absolutely convergent series. Bringing into play (8.14]) and [4, Lem. 25] we
obtain the bounds

|G(p)Tr(p)| « p ()2 and |G(p2)Tf(p2)| « p"tos,

Hence, assuming n — oy > 2, these two estimates allow to modify easily the proof of
Proposition B.7, thereby showing that the abscissa of convergence of the Dirichlet series
of |G(q)|T¥(q) is strictly negative. This provides 6, = d4(f) > 0 such that for all x > 2, one
has 3., 1G(q)|Ty(q) « x7%, hence the sum over ¢ in 7)) is IT" + O(P~"*), where I’ is

ge 3 sa,q=1_[<1—p 2(1—p ( 3 Sa7p+]% 3 sa7p2)>.

a€Zn[0,q) P acZn(0,p) a€Zn[0,p?)
a,q)=1 ged(a,p)=1

One can easily see, for example, by using orthogonality of characters of Z/p*Z to detect the
condition f(x) = 0, that

Bixe @Dy 109 =0} = (14 =V St N S
anm(O D) anm[O,p2),Ma
from which we can show that I1'/{(2) is

M (1  #xe Z/pQZén = 0}>

» p

This is in agreement with the infinite product in Theorem
To deal with the integral in (L7)) we observe that the transformation t = Py gives

(max{fo(#)}+1) max{fo(%B)}+1
P (P it = e(—yu)dp < min{l,h 1}, (48)
(min{fo(#)}—1) P4 min{fo(#)} -1

hence Lemma B3] shows that the integral in (7)) converges absolutely and equals
max{fo(%)}+1 s
| (] e(—ym)dp |dy + O(P~) (19)
~veR min{fo(£)}—1
for some &5 = 05(f) > 0.
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One can combine the bound (£8) with Lemma B3 to show that the integral over ~y
in (£9) equals vol(#) using arguments that are entirely analogous with the case &k = 0
in Lemmas .18 and B.19] Thereby alluding to the well-known estimate

H#{Z" A PB} = vol(B)P" + Ox(P" 1)
allows us to conclude the proof of Theorem

APPENDIX A. THE BATEMAN-HORN HEURISTICS IN MANY VARIABLES

In this section we extend the Bateman—Horn heuristics from the setting of univariate
polynomials to that of polynomials with arbitrarily many variables; we do so because we
were unable to find a reference for this extension in the literature.

In 1958, Schinzel [30] formulated the following conjecture concerning prime values of uni-
variate polynomials.

Conjecture A.1 (Schinzel’s hypothesis H, [30]). Let fi,..., f. € Z[z] be univariate ir-
reducible polynomials with positive leading coefficient. If T];_, fi has no repeated polynomial
factors and, for every prime p, there exists x, € Z such that p 1 fi(xp)--- fr(xp,), then there
exist infinitely many integers m such that fi(m),..., f.(m) are all primes.

This conjecture was later refined by Bateman and Horn [I] who, based on the Cramér
model and the heuristics behind the Hardy-Littlewood conjecture (see [34, pg. 6-8]), gave a
quantitative version of Schinzel’s conjecture.

Conjecture A.2 (Bateman—Horn’s conjecture, [I]). Keep the assumptions of Conjec-
ture [A1l Then the number of integers m € [1, P] such that every fi(m),..., f.(m) is prime
s asymptotically equivalent to the following quantity as P — +00,

(A—p 'z el : fi(x) - fr(x) = 0}) 1 Yo da
]Hn (1=1/p) ) deg(f1) - -~ deg(fr) L (log )"

The convergence of the infinite product is established in [1] using the prime ideal theorem.
These two conjectures lie very deep and imply a number of notoriously difficult conjectures
as immediate corollaries (the twin primes conjecture among others; see [30] for a non ex-
haustive list of implications). There are applications to the arithmetic of algebraic varieties,
see [9], [35] or [20], where Schinzel’s hypothesis is assumed in order to prove that the Hasse
principle and weak approximation holds.

Recall that for a polynomial f we denote by fy the top degree part of f. Let us now record
the multivariable version of the Bateman—Horn conjecture.

Conjecture A.3 (Extension of the Bateman—Horn conjecture). Assume that we are
given irreducible polynomials fi,..., f. € Z[x1,...,z,] such that T]._, fi has no repeated
polynomial factors. Moreover, we assume that 8 < R™ is a non-empty boxr such that
fio(#B) < (1,00) for all i € {1,...,1r}. Denote by my, . 1, (P%AB) the cardinality of the set
of integer vectors x € Z™ n PA for which every fi(x),..., f+(X) is a positive prime number.
Then 7y, . 5, (P2) is asymptotic to the following quantity as P — 400,

I (L—p#{xeF): fix) - f(x) =0}) dx
p prime (1-1/p) P 1_[2;1 log fio(x)
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Remark A.4. Before providing the heuristics behind Conjecture let us note that one
can prove that the product over p converges. Indeed, a version of the prime number theorem
for schemes over Z that can be found in the work of Serre [32, Cor. 7.13] implies that

n

D #IxeFy: filx) - £(x) =0} =<f i) + 0 (aneeve)

= 5 logt
for some ¢ = ¢(f,..., f,) > 0. Now partial summation implies that
1
Zp’”#{x elF): fi(x) - fr(x) =0} =rloglogz + C; + O <log:c>
p<z

for some constant C. Hence the following series converges,

—n n r

S (i rtxe By A0 £ = 0p )
> p
which in turn yields the convergence of the product over p appearing in the statement of the
conjecture.

We end this section by adapting the heuristics behind Conjecture to the multivariate
case. Recall that the Cramér model asserts that a random positive integer m of size X
has probability 1/log X of being a prime. An analogous statement can be made if the
extra condition that m lies in a primitive arithmetic progression modulo ¢ for some positive
integer ¢ is added, in this case the probability is 1/(¢(q) log X) owing to Dirichlet’s theorem
on primes in arithmetic progressions. This implies that for coprime a, g, the conditional
probability that a positive integer m of size X is prime provided that m = a (mod ¢) equals

Prob[m ~ X is a prime | m = a (mod ¢)] ~ 1/@(?)/;(% X) = = (llogX' (A.1)

In the setting of Conjecture observe that for typical x € Z" the integer f;(x) can be
prime only if f;(x) is coprime to all small primes. Therefore, letting z = z(P) be a function
that slowly tends to infinity with P and letting & := ]_[p <. D, we see that

Wfly"'yfT(P%) . .
o Prob[z; = a; (mod &) for all 1 <i < n|-Payp, (A.2)
#{Z" ~ PA} ae(Z/Z@Z)”

Vie{l,...r}, fi(a)e(Z/PL)
where P, » denotes the joint probability defined through
P, » := Prob[m; ~ P81 is a prime for all 1 <i <r | m; = fi(a) (mod 2)].

This is because the integer f;(x) is typically of size P9 when x € P% and the values
fi(x) are thought to behave like a random integer m; lying in the arithmetic progression
fi(a) (mod &), provided that x = a (mod &?). Note that for ¢ # j the polynomials f; and
f; are coprime due to the assumption that [ [, f; has no repeated factors, therefore it is
reasonable to expect that for ¢ # j the integer values f;(x) and f;(x) behave independently.
This suggests that

Poo = 1_[ Prob[m; ~ P¥U) is a prime | m; = fi(a) (mod 2)]

i=1
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and by (AJ) one now gets Py » = P"¢(L) "(log P)~"[[;_,(deg(f;))"". Substituting this
into (A.2)) and noting that Prob[z; = a; (mod &)] = 1/ yields

ﬂff_(%”)%( z ) 1 L D 1.
vol(%) P (P)log P/ [, deg(fi) " ac(Z) PT)"

Vie{l,...r}, fi(a)e(Z)PL)

The sum over a forms a multiplicative function of & that can be evaluated as
[T = #xe By i) f,(x) = 0}).
pP<z

Putting everything together shows that we expect 7y, f (PZ) to be approximated by

wer T L (27) ()

In view of Remark [A4] the product over p < z(P) converges to the product in Conjecture [A3]
as P — +oo. For x € PZ we have fi(x) = Pd&(f0) and using deg(f;) = deg(fip) we get

vol(%) P §p.p 1dx dx

(log P) [ T;—, deg(fi) - [ ;=) log(Pdesti) Y [Tiz; log fio(x)’
thereby concluding our explanation of the asymptotic in Conjecture [A.3]

p<z
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