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TWISTS OF HOOLEY’S ∆-FUNCTION OVER NUMBER FIELDS

EFTHYMIOS SOFOS

Abstract. We prove tight estimates for averages of the twisted Hooley ∆-function over
arbitrary number fields.

1. Introduction

In his memoir [Hoo79] Hooley studied the following function, previously brought to atten-
tion by Erdős,

∆pnq :“ max
aPR

7
 
d P N : ea ă d ď ea`1, d | n

(
, pn P Nq. (1.1)

He showed that its average order is genuinely smaller than that of the divisor function, namely

1

x

ÿ

nďx
∆pnq Î plog xq 4

π
´1.

This saving enabled him to provide diverse applications in topics related to Diophantine
approximation, divisor sums and problems of Waring’s type. Further applications were later
found by Vaughan [Vau85], [Vau86], for problems of Waring’s type, by Tenenbaum [Ten86] in
the topic of Diophantine approximation, as well as for Chebychev’s problem on the greatest
prime factor of polynomial sequences by Tenenbaum [Ten90].

The problem regarding the average of ∆ was revisited by Tenenbaum [Ten85], who estab-
lished a strong upper bound, with a special corollary that the exponent 4

π
´1 can be replaced

by any positive constant. Specifically, letting

pεpxq “
d

log log logp16 ` xq
log logp3 ` xq ,

for any x ě 1, enables us to state his result, namely

1

x

ÿ

nďx
∆pnq Î plog xqOppεpxqq.

In this paper we are interested in generalisations of functions similar to ∆ over arbitrary
number fields. Let K be any number field with ring of integers denoted by OK . The symbol
IK will be reserved for the monoid of non-zero integral ideals of OK , while Na “ 7OK{a will
always refer to the ideal norm of a P IK . The generalisation of (1.1) to K is given by

∆Kpaq :“ max
aPR

7
 
d P IK : ea ă Nd ď ea`1, d | a

(
, pa P IKq.

The following result and its proof are entirely due to Professors Régis de la Bretèche and
Gérald Tenenbaum [dlBT16].
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Theorem 1.1. There exists a positive constant c “ cpKq such that

1

x

ÿ

Naďx
∆Kpaq Î plog xqcpεpxq,

where the implied constant is allowed to depend on K.

To show Theorem 1.1, De la Bretèche and Tenenbaum begin by showing that

1

x

ÿ

Naďx
∆Kpaq Î 1

log x

ÿ

nďx

µpnq2
n

ÿ

Na“n
∆Kpaq

in a way that is familiar to experts (see, for example [NT98]). They now observe that for
square-free n, if there exists d P N with d | Na then there exists a unique ideal d with d | n,
thus implying that ∆Kpaq “ ∆pnq in the last sum. This shows that

1

x

ÿ

Naďx
∆Kpaq Î 1

log x

ÿ

nďx

µpnq2
n

rKpnq∆pnq,

where

rKpnq :“ 7
 
d P IK : Nd “ n

(
, pn P Nq.

Next, choosing a monic irreducible polynomial f P ZrXs such that K “ Qpθq for a root θ of
f , one can use the Dedekind–Kummer theorem to relate the function rK and ̺f , defined by

̺f pnq :“ 7tt P Z{nZ : fptq ” 0 pmod nqu,
in particular, getting

ÿ

nďx

µpnq2
n

rKpnq∆pnq Î
ÿ

nďx

µpnq2
n

̺f pnq∆pnq.

As a last step, they applied [Ten90, Th.3] to establish Theorem 1.1, and, in addition, they
showed that one can take any fixed constant c ą

?
2.

Next, let ψK be any quadratic Dirichlet character on K and define

∆Kpa;ψKq :“ sup
aPR

0ďbď1

ˇ̌
ˇ

ÿ

d|a
eaăNdďea`b

ψKpdq
ˇ̌
ˇ, pa P IKq. (1.2)

When K “ Q this function was considered by La Bretèche and Tenenbaum [dlBT12], as well
as by Brüdern [Brü12]. Their work culminates in the bound,

1

x

ÿ

nďx
∆Qpn;ψQq2 Î plog xqOppεpxqq. (1.3)

In this paper we generalise this to any number field by following the arguments in [dlBT12].

Theorem 1.2. Let ψK be a quadratic Dirichlet character defined on any number field K.

There exists a positive constant c “ cpK,ψKq such that

1

x

ÿ

Naďx
∆Kpa;ψKq2 Î plog xqcpεpxq,

where the implied constant is allowed to depend on K and ψK .
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Professors Régis de la Bretèche and Gérald Tenenbaum have informed us that there may
be a neater way to prove Theorem 1.2 without simply translating their work [dlBT12] to
number fields, which is what we do in the present paper. It must be noted that one cannot
directly deduce Theorem 1.2 for all number fields K from the work in [dlBT12] in the same
way that Theorem 1.1 was deduced from [Ten90, Th.3]. This direct deduction can only be
made if K is such that there exists a Dirichlet character χ defined in Q and satisfying

a P IK ñ ψKpaq “ χpNaq. (1.4)

However, (1.4) does not hold for every K and ψK . Indeed, let K{Q be a quadratic extension,
let L{K be a quadratic extension and define a quadratic character ψK by defining ψKppq to
be 1,´1 or 0 respectively according to whether p is split, inert, or ramifies in L. If p is a
rational prime such that pOL is inert in L and (1.4) holds, then

´1 “ ψKppq “ χpNpq “ χpp2q “ 1,

which gives a contradiction. We also provide a number field K for which the following relaxed
version of (1.4) fails: assume that there exists a function g : Z Ñ C such that

p P IK ,Np is a prime in Z ñ ψKppq “ gpNpq. (1.5)

Take

K :“ Qp
?

´1q and ψKpaq :“
ˆ
1 `

?
´1

a

˙
, (1.6)

where p1`
?

´1
¨ q is a quadratic symbol in K. For every rational prime p with p ” 5 pmod 8q we

have pOK “ pp for a prime ideal p in IK . Letting ˘t be the two solutions of t2 ” ´1 pmod pq,
the Dedekind–Kummer theorem shows that

tψKppq, ψKppqu “
#ˆ

1 ` t

p

˙
,

ˆ
1 ´ t

p

˙+
,

where p ¨
p

q is the Legendre quadratic symbol in Fp. Note that Np “ Np is a prime in Z,

therefore, if (1.5) holds, then ψKppq “ ψKppq. This means that

1 “ ψKppqψKppq “
ˆ
1 ` t

p

˙ˆ
1 ´ t

p

˙
“
ˆ
1 ` t2

p

˙
“

ˆ
2

p

˙
.

Recall that p ” 5 pmod 8q, therefore p2
p

q “ ´1. This shows that (1.5) cannot hold for our K.

The proof of Theorem 1.2, supplied in §3, follows closely the approach in [dlBT12] involving
an induction related to the number of prime ideal divisors of a. There will only be minor
modifications; these are to take care of the fact that there may be several ideals d of a given
norm in (1.2). Thus one has to deal with short sums

ř
d ψKpdq that contain an amount of

terms which is not necessarily bounded. We have to show that cancellation in this short
sum still occurs in this situation and it will turn out that the arguments of La Bretèche and
Tenenbaum [dlBT12] are flexible enough to handle these issues when suitably modified.

Let us finally remark that interest in averages of ∆-functions has lately spiked due to
applications to Manin’s conjecture. This is a central conjecture in the area of Diophantine
geometry, introduced by Manin and his collaborators in [FMT89], whose aim is to provide a
precise description of the distribution of rational points on Fano varieties. However, its status
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for surfaces has not yet been fully resolved. An important rôle in proving the conjecture for
Châtelet surfaces is assumed by the asymptotic estimation of divisor sums of the form

ÿ

ps,tqPZ2

|s|,|t|ďx

ÿ

dPN
d|F ps,tq

ψQpdq,

as x Ñ `8, where F P Zrs, ts is a separable quartic form and ψQ is a quadratic Dirichlet
character. La Bretèche and Tenenbaum used (1.3) to handle these divisor sums when F is
irreducible or a product of two irreducible quadratic forms in [dlBT13], which enabled them
to prove Manin’s conjecture for two families of Châtelet surfaces.

In our joint work [BS16] with Browning, Theorems 1.1 and 1.2 are used to study divisor
sums of the shape

ÿ

ps,tqPZ2

|s|,|t|ďx

˜
nź

i“1

ÿ

ki|Fips,tq

ˆ
Gips, tq
ki

˙¸
,

where Fi, Gi P Zrs, ts are appropriate binary forms with
řn
i“1 degpFiq “ 4 and

` ¨
¨
˘
denotes

the Jacobi symbol. As a byproduct we provide matching upper and lower bounds agreeing
with Manin’s conjecture for every Châtelet surface and every quartic del Pezzo surface with
a conic bundle structure over Q. The example (1.6) can occur in the setting of quartic del
Pezzo surfaces with a conic bundle structure. Indeed, let

Φ1px0, . . . , x4q :“ x0x1 ´ x2x3, Φ2px0, . . . , x4q :“ x20 ` 2x21 ` x22 ` x23 ´ x24 ` x1x3,

and consider the surface X Ă P4
Q that is cut out by the system Φ1 “ Φ2 “ 0. The map

f : X Ñ P1
Q given by

fpxq :“
#

rx0, x2s if px0, x2q ‰ p0, 0q
rx3, x1s if px3, x1q ‰ p0, 0q

is a conic bundle morphism whose fibers are given by

pa2 ` b2qx2 ` pa2 ` ab` 2b2qy2 “ z2.

In the terminology of [BS16, §2] we have θ “
?

´1,K “ Qp
?

´1q, Gps, tq “ s2 ` st` 2t2, as

well as gpxq “ x2 ` x ` 2 and L “ Kp
a

1 `
?

´1q. Furthermore, [BS16, Lemma 2.2] shows
that

hps, tq “
ÿ

k|s2`t2

ˆ
s2 ` st` 2t2

k

˙

can be written as a sum of the shape
ÿ

a|ps´
?

´1tq
ψKpaq,

where ψK is a quadratic character in Qp
?

´1q that coincides with the one in (1.6) because

the character in (1.6) satisfies ψKppq “ 1 if and only if p splits in Kp
a
1 `

?
´1q.

Notation. The symbol p will exclusively refer throughout this paper to prime ideals in OK

and the residue degree of any p Ă OK will be denoted by fp. We shall make frequent use of
the multiplicative span of all linear prime ideals,

P
˝
K “ ta Ă OK : p | a ñ fp “ 1u.
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The symbols µK , τK and ΛK will be used for the Möbius, divisor and the von Mangoldt
function on IK , while ωK will stand for the number of distinct prime ideal divisors on IK .
Unless the contrary is explicitly stated, the implicit constants in Landau’s O-notation and
Vinogradov’s Î-notation are allowed to depend onK and ψK but no other parameters. Lastly,
the notation fpxq — gpxq will be taken to mean fpxq Î gpxq Î fpxq.
Acknowledgement. We are grateful to Gérald Tenenbaum for his generous explanations.
We are furthermore indebted to Régis de la Bretèche and Gérald Tenenbaum for providing
us with the proof of Theorem 1.1.

2. Precursory maneuvers

We begin by establishing the following property,

a, b P IK coprime ñ ∆Kpabq ď τKpaq∆Kpbq and ∆Kpab;ψKq ď τKpaq∆Kpb;ψKq. (2.1)

Indeed, any d | ab can be written uniquely as d “ d1d2, where d1 | a, d2|b. Therefore
ÿ

d|ab
eaăNdďea`b

ψKpdq “
ÿ

d1|a
ψKpd1q

ÿ

d2|b
ea´logNd1ăNd2ďea`b´logNd1

ψKpd2q

and a similar equality holds when ψK is replaced by 1. The triangle inequality ensures the
validity of (2.1).

Lemma 2.1. For any W0 P N and any f : IK Ñ Rě0 define the pair of functions

Mpx; fq :“ 1 ` sup
1ďyďx

1

y

ÿ

Naďy
fpaq

and

Lpx,W0; fq :“ 1 ` sup
1ďyďx

1

log y

ÿ

Naďy
aPP˝

K

gcdpNa,W0q“1

fpaqµKpaq2
Na

.

If there exists t ą 0 such that fpabq ď τKpaqtfpbq for all integral coprime ideals a, b then for

any W0 P N we have the following as x Ñ 8,

Mpx; fq —t,W0
Lpx,W0; fq.

Proof. Let us begin by showing that

ÿ

Naďx

fpaq
Na

—W0

ÿ

Naďx
aPP˝

K

gcdpNa,W0q“1

fpaqµKpaq2
Na

. (2.2)

The non-negativity of f makes the inequality Ï clear. To prove the remaining inequality we
may factorise uniquely each a P IK as a “ bcd, where each prime ideal divisor p of b satisfies
Np|W0 and each prime ideal factor of a which is coprime to W0 and has residue degree at
least 2 divides c. The property of f stated in our lemma shows that

ÿ

Naďx

fpaq
Na

ď
ź

Np|W0

˜ 8ÿ

m“0

τKppmqt
Npm

¸
ź

Npďx
fp‰1

˜ 8ÿ

m“0

τKppmqt
Npm

¸
ÿ

Ndďx
dPP˝

K

gcdpNd,W0q“1

fpdq
Nd
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and we see that the first term is Ot,W0
p1q. Writing Np “ pg for a rational prime p we see that

the second product is

Î
ź

2ďgďrK:Qs

ź

pďx1{g

˜ 8ÿ

m“0

pm ` 1qt
pgm

¸
ď

ź

pďx

ˆ
1 `Ot

ˆ
1

p2

˙˙rK:Qs
Î 1.

It thus remains to show that

ÿ

Ndďx
dPP˝

K

gcdpNd,W0q“1

fpdq
Nd

Î
ÿ

Nd1ďx
d1PP˝

K

gcdpNd1,W0q“1

fpd1qµKpd1q2
Nd1

.

To this end, we may factorise uniquely each d as d1d2 where d1, d2 are coprime, d1 is square-
free and d2 is square-full. We may thus infer that

ÿ

Ndďx
dPP˝

K

gcdpNd,W0q“1

fpdq
Nd

ď
ÿ

Nd1ďx
d1PP˝

K

gcdpNd1,W0q“1

fpd1qµKpd1q2
Nd1

ÿ

Nd2ďx
p|d2ñp2|d2

τKpd2qt
Nd2

and the proof of (2.2) is concluded by observing that the sum over d2 is

ď
ź

Npďx

ˆ
1 `Ot

ˆ
1

Np2

˙˙
“ Otp1q.

In light of (2.2) it is sufficient for our lemma to show that

Mpx; fq —t 1 ` sup
1ďyďx

1

log y

ÿ

Naďy

fpaq
Na

. (2.3)

Abel’s summation can be employed to prove the inequality Ï in (2.3). For the remaining
inequality let us factorise a as bc with b, c coprime, b square-free and c square-full. This
yields ÿ

Naďy
fpaq ď

ÿ

Ncďy
p|cñp2|c

τKpcqt
ÿ

Nbďy{Nc

fpbqµKpbq2.

Therefore, if the following holds

ÿ

NbďT
fpbqµKpbq2 Î T

1
2 ` T

log T

ÿ

NbďT

fpbq
Nb

, (2.4)

then the required estimate (2.3) becomes available thanks to

ÿ

Naďy
fpaq Î y

ÿ

Ncďy
p|cñp2|c

τKpcqt
Nc

1

log x
Nc

ÿ

Nbďx{Nc

fpbqµKpbq2
Nb

Î y

˜
sup

1ďyďx

1

log y

ÿ

Nbďy

fpbq
Nb

¸
ÿ

Ncďy
p|cñp2|c

τKpcqt
Nc
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and ÿ

Ncďy
p|cñp2|c

τKpcqt
Nc

Î
ź

Npďy

ˆ
1 `Ot

ˆ
1

Np2

˙˙
Ît 1.

To prove (2.4) we shall deploy the bound fpbq ď τKpbq Î Nb1{2 to obtain
ÿ

NbďT
fpbqµKpbq2 “

ÿ

NbďT 1{4

fpbqµKpbq2 `
ÿ

T 1{4ăNbďT
fpbqµKpbq2

Î T 1{2 `
ÿ

NbďT
fpbqµKpbq2 logNb

log T
.

Employing the identity µKpbq2 logNb “ ř
b“cp logNp allows us to bound the last sum by

2

log T

ÿ

NcďT
fpcqµKpcq2

ÿ

NpďT {Nc

logNp Î T

log T

ÿ

NcďT

fpcq
Nc

,

where the prime number theorem for K has been used. �

Proposition 2.2. There exists a positive constant c “ cpK,ψK q such that for any W P N we

have ÿ

Naďx,aPP˝
K

gcdpNa,W q“1

∆Kpa;ψKq2µKpaq2
Na

Î plog xq1`cpεpxq.

The implied constant is allowed to depend on K,W and the character ψK .

Proof. The claim stems from Theorem 1.2 by taking fpaq “ ∆Kpa;ψKq2, t “ 2 and W0 “ W

in Lemma 2.1. �

Lemma 2.1 makes possible to deduce Theorem 1.2 from the following claim: For any

Dirichlet quadratic character ψK there exist positive constants c2, z2 that depend only on K

and ψK such that

ÿ

p|añNpąz2
aPP˝

K ,Naďx

∆pa;ψKq2µKpaq2
Na

ÎK,ψK
plog xq1`c2pεpxq. (2.5)

For a P IK , u P R and q P Rě1 we let

∆Kpa;uq :“
ÿ

d|a
euăNdďeu`1

1 and Mqpaq :“
ż `8

´8
∆Kpa;uqqdu. (2.6)

Lemma 2.3. For all a P IK and q P N we have Mqpaq ď τKpaqq.
Proof. It is evident that Mqpaq ď ∆KpaqMq´1paq, hence the assertion can be validated by
induction on q upon noting that M1paq “ τKpaq. �

Lemma 2.4. For each b P IK and positive integer a we have
ÿ

d1,...,da
di|b

maxNbiăeminNbi

1 ď 2a`1Mapbq.
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Proof. It is convenient to rewrite the last summation condition as

2 ´ log

ˆ
maxNbi

minNbi

˙
ą 1,

hence, letting x` “ maxt0, xu for x P R, we can bound the sum in the lemma by

ÿ

d1,...,da
di|b

ˆ
2 ´ log

ˆ
maxNbi

minNbi

˙˙`
.

Using the convention pa, bs “ H when a ě b verifies the succeeding identity for all a, b P R,

pb ´ aq` “
ż

pa,bs
1du.

This provides the equality of the last sum with

ÿ

d1,...,da
di|b

ż

rlogmaxNbi,2`logminNbiq
1du “

ż `8

´8

ˆ ÿ

eu´2ăNdďeu

d|b

1

˙a
du,

which, upon decomposing the sum over d as
ÿ

eu´2ăNdďeu´1

d|b

1 `
ÿ

eu´1ăNdďeu

d|b

1,

leads to the desired bound

2a
ż `8

´8

ˆ ÿ

eu´2ăNdďeu´1

d|b

1

˙a
du` 2a

ż `8

´8

ˆ ÿ

eu´1ăNdďeu

d|b

1

˙a
du,

that is clearly sufficient for the lemma. �

For integers c, q in the range 1 ď c ď q ´ 1 we can obtain via Hölder’s inequality with
exponents q´1

q´c and q´1
c´1 the succeeding inequality

Mcpbq “
ż `8

´8
∆pb;uq

q´c
q´1∆pb;uq

qpc´1q
q´1 du ď M1pbq

q´c
q´1Mqpbq

c´1
q´1 .

Using this for c “ a and c “ q ´ a yields respectively

Mapbq ď M1pbq
q´a
q´1Mqpbq

a´1
q´1 and Mq´apbq ď M1pbq

a
q´1Mqpbq

q´a´1

q´1 , (2.7)

an inequality that will be used later.

3. The proof of Theorem 1.2

The bound (2.5) will be proved by an induction process which is given in §3.1. The central
result deployed in this process is Proposition 3.2, whose proof is postponed until §3.2.
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3.1. The induction process. Throughout §3 the positive real number z2 “ z2pK,ψKq will
be allowed to increase but it will be independent of the counting parameter x. The Erdős–Kac
theorem for K shows that the number of distinct prime ideal divisors of a typical element
a P IK is of size log logNa, thus suggesting to consider the contribution of a satisfying
ωKpaq ą 10 log log x in (2.5). Using (2.1) with b “ OK we see that it is at most

ÿ

ωKpaqą10 log log x
Naďx

τKpaq2µKpaq2
Na

ď
ÿ

Naďx

τKpaq2µKpaq2
Na

ˆ
5

2

˙ωKpbq´10 log logx

and the inequality 10 ´ 10 logp52q ă 1 affirms the bound

plog xq´10 logp 5
2

q ź

Npďx

ˆ
1 ` 10

Np

˙
Î log x.

This shows that (2.5) stems from the estimate

ÿ

p|añNpąz2
ωKpaqď10 log log x

aPP˝
K ,Naďx

∆Kpa;ψKq2µKpaq2
Na

ÎK,ψK
plog xq1`c2pεpxq. (3.1)

We will soon replace the ∆-term by an expression involving an integral that approximates
∆Kpa;ψKq. The approximation can be performed when the divisors of a are evenly spaced
and we proceed by showing that the sum in (3.1) can be restricted to a with this property.
For any A ą 0 we define E pAq as the set of all a P IK for which there are distinct d, d1 with

d|a, d1|a, Nd ď Nd1 ď Ndp1 ` plog 2Ndq´Aq.
Assume that A ě 10. Then each ideal counted in

ÿ

p|añNpąz2
aPP˝

KXE pAq,Naďx

∆Kpa;ψKq2µKpaq2
Na

(3.2)

is of the shape a “ dd1m, where d, d1,m are coprime in pairs and square-free and satisfy

Nd ď Nd1 ď Ndp1 ` plog 2Ndq´Aq.
Hence, by (2.1) with b “ OK , the sum is bounded by

ÿ

m,dPP˝
K

NmNdďx

µKpmq2µKpdq2τKpmq2
NmNdτKpmq´2

ÿ

d1PP˝
K ,p|añNpąz2

NdďNd1ďNdp1`plog 2Ndq´Aq

µKpd1q2τKpd1q2
Nd1 .

Introducing the following arithmetic function,

fpdq :“
ÿ

d1PP˝
K

Nd1“d

µKpd1q2τKpd1q2,

allows us to bound the sum over d1 by

Nd´1
ÿ

p|dñpąz2
NdďdďNdp1`plog 2Ndq´Aq

fpdq.
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Using [Shi80, Th.1] shows that the last expression is bounded byNd´1plogNdq´1´A multiplied
by a quantity that is bounded by

ÎA exp
´ ÿ

z2ăpďz2`2Nd

fppq{p
¯

Î exp
´ ÿ

z2ăNpďz2`2Nd

4{Np
¯

Î plogNdq4.

We have thus shown that the sum in (3.2) is

Î
ÿ

mPP˝
K

Nmďx

µKpmq2τKpmq2
Nm

ÿ

dPP˝
K

Ndďx

µKpdq2τKpdq2
NdplogNdqA´3

Î plog xq4
ÿ

dPP˝
K

Ndďx

µKpdq2τKpdq2
NdplogNdqA´3

.

By Abel’s summation the sum over d is Î plog xq7´A, thus yielding

A ě 10 ñ
ÿ

p|añNpąz2
aPP˝

KXE pAq,Naďx

τKpaq2µKpaq2
Na

ÎA plog xq11´A,

which reveals that, owing to (3.1), the next estimate is sufficient for the proof of (2.5),

ÿ

Naďx,p|añNpąz2
ωKpaqď10 log log x
aPP˝

K ,aRE p10q

∆Kpa;ψKq2µKpaq2
Na

ÎK,ψK
plog xq1`c2pεpxq. (3.3)

The induction process that will enable us to prove (3.3) requires that we are in possession
of an ordering of the prime ideals p Ă OK ; thus we form the sequence ppiq8

i“1 such that

i ă j ñ pi ‰ pj ,Npi ď Npj . (3.4)

Prime ideals of the equal norm are allowed to be ordered arbitrarily, but their ordering is
fixed once and for all. Hence, for any a we can set i`paq “ maxti P N : pi | au and define

p`paq :“ pi`paq.

Furthermore, for each r P N and square-free a P IK , we let ar :“ a if r ě ωKpaq. If r ă ωKpaq
holds then we choose the first r prime ideal divisors of a according to the ordering above and
let ar be their product. Setting rx :“ r10 log log xs shows that the sum in (3.3) is

ÿ

Naďx,p|añNpąz2
ωKpaqď10 log log x
aPP˝

K ,aRE p10q

∆Kparx ;ψKq2µKpaq2
Na

ď
ÿ

Naďx,p|añNpąz2
aPP˝

K

∆Kparx ;ψKq2µKpaq2
Na

.

Letting for any a P IK , a P R and b P p0, 1s,

∆Kpa;ψ; a, bq :“
ˇ̌
ˇ

ÿ

eaăNdďea`b

d|a

ψKpdq
ˇ̌
ˇ

sets the stage for the entrance of the important entity

Mqpa;ψKq :“
ż 1

0

ż

R
∆Kpa;ψ; a, bqqdadb, pa P IK , q P Nq. (3.5)
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Let qx :“ r
a
rx{p1 ` log rxqs and define for r, q P N the average

L pxq :“ 4
rx
qx log x`

ÿ

Naďx,aPP˝
K

p|añNpąz2

M2qxparx ;ψKq
1
qx µKpaq2

Na
.

The next lemma shows that Theorem 1.2 stems from

L pxq ÎK,ψK
plog xq1`c2pεpxq. (3.6)

Lemma 3.1. For all q P N and square-free a P IK with Na ď x and a R E p10q we have

∆Kpa;ψKq2 ď 82 ` 210plog xq
20
q M2qpa;ψKq

1
q .

Proof. The lemma is valid if ∆Kpa;ψKq ă 8, we may therefore assume henceforth that the
opposite holds. Note that the definition of ∆Kpa;ψKq provides a0 P R, b0 P r0, 1s such that

|∆Kpa;ψK ; a0, b0q| ě 1

2
∆Kpa;ψKq. (3.7)

We bring into play the box B Ă R2 given by
´
a0, a0 ` 1

8plog 2xq10
¯

ˆ
´
b0, b0 ` 1

8plog 2xq10
¯
,
´
a0 ´ 1

8plog 2xq10 , a0
¯

ˆ
´
b0 ´ 1

8plog 2xq10 , b0
¯

respectively according to whether b0 ă 1
2 or not. We choose to focus on the latter case; the

former being treated similarly. For any pa, bq P B we have

|∆Kpa;ψK ; a, bq ´ ∆Kpa, ψK ; a0, b0q| ď
ÿ

d|a
eaďNdďea0

1 `
ÿ

d|a
ea`bďNdďea0`b0

1. (3.8)

If the first sum has more than one term then there exist d ‰ d1 P IK with d, d1|a and

ea0´1{8plog 2xq10 ď Nd ď Nd1 ď eu0 ,

thus leading via Na ď x and ez ď 1 ` 2z (valid in the range 0 ă z ă 1), to

Nd1 ď Nd e1{8plog 2xq10 ď Nd

ˆ
1 ` 1

4plog 2xq10
˙

ď Nd

ˆ
1 ` 1

plog 2Ndq10
˙
,

which contradicts the assumption a R E p10q of our lemma. A similar argument shows that
the second sum in (3.8) also contains at most one term, therefore invoking ∆Kpa;ψKq ě 8
and (3.7) provides us with

∆Kpa;ψK ; a, bq ě ∆Kpa;ψKq
2

´ 2 ě ∆Kpa;ψKq
4

.

This inequality immediately furnishes the required estimate by restricting the range of inte-
gration in (3.5) to B. �

For positive integers r, q and any σ P p0, 14 s we define the functions

L˚
r,qpσq :“ 4

r
q

σ
`

ÿ

aPP˝
K

p|añNpąz2

M2qpar;ψKq
1
q µKpaq2

Na1`σ
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and for s P Rě1 we let

fpsq :“
c

s

1 ` log s
.

Noting that L pxq ď eL˚
rx,qxp1{ log xq, our aim now becomes to prove that for all sufficiently

small σ ą 0 we have

r Ï 1, q “ rfprqs ñ L˚
r,qpσq Î ec2

?
r log r

σ
(3.9)

for some constant c2 ą 0 depending at most on K and ψK . Clearly, this is sufficient for
verifying (3.6).

The strategy for the proof of (3.9) is indirect and resembles a backwards induction process.
First, note that if the variable r is replaced by any fixed integer constant t, then for any
q we have L˚

t1,q Ît1 1{σ. Indeed, using Lemma 2.3 in combination with the obvious bound

M2qpa;ψKq ď M2qpaq furnishes

L˚
t1,qpσq ´ 4

t1

q

σ
Î

ÿ

aPIK

τKpat1 q2µKpaq2
Na1`σ ď

ÿ

aPIK

22t
1

Na1`σ Ît1 ζKp1 ` σq Î1
t

1

σ
. (3.10)

It will therefore be advantageous to bound L˚
r,qpσq in terms of L˚

r´1,qpσq for r and q in suitable
ranges. To this end we shall deploy the succeeding lemma, whose proof is postponed until
§3.2.

Proposition 3.2. There exist positive constants c3, t
1, z2, σ0 that depend at most on K and

ψK , such that for all integers t,m in the range

t1 ď t ď 10 log
1

σ
, m ď

a
t{p1 ` log tq ă m` 2,

and σ P p0, σ0q we have

L˚
t,mpσq ď e

c3
m L˚

t´1,mpσq.
To deduct (3.6) from Proposition 3.2 define for each integer ℓ the following set,

Aℓ :“ tn P N : ℓ ď fpnq ă ℓ` 1u,
which furnishes the following partition into disjoint sets

N X rt1, rs “
ď

ℓPN
Aℓ.

Let k :“ minAℓ. It is easy to see that fpk`c
?
k log kq ą fpkq`1 holds for some large positive

c independent of k, and therefore 7Aℓ ď c
?
ℓ log ℓ. In addition, the definition of k shows that

fpk´1q ă ℓ and therefore
?
k log k Î ℓ log ℓ, hence 7Aℓ ď c4q log ℓ for some absolute constant

c4 ą 0. Furthermore, Aℓ will be empty unless ℓ ď q.
It is now time to reveal our backwards induction process. Whenever n P Aq we use

Proposition 3.2 with t “ n,m “ q to reduce the value of n from r down to minAq. This will
come at a cost of expp c3

q
7Aqq ď qc3c4 . At the end of this section we shall prove that there

exists a positive constant c5 “ c5pK,ψKq such that for all σ ą 0 sufficiently small we have

t1 ď t ď 10 log
1

σ
, m “ rfptqs ñ L˚

t,mpσq ď mc5L˚
t,m´1pσq. (3.11)

When n reaches minAq we will use (3.11) with t “ minAqx and m “ q. We subsequently
iterate the process by using Proposition 3.2 with m “ q ´ 1 and t “ n for all n P Aq´1. We
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repeat this procedure going backwards until ℓ is small enough so that t1 P Aℓ. The total cost
will be

Î
ź

ℓďq
ℓc3c4`c5 ď ec2

?
r log r,

for some constant c2 ą 0 that depends at most on K and ψK . At the end of this process
we shall be left with L˚

t1,qpσq which can be estimated via (3.10), thus concluding the proof

of (3.9).

Proof of (3.11). Let us begin by introducing the constants ηK :“ min
!
10´3, 2

´ 3
rK:Qs

)
and

ut :“ expp70t{tq. We shall make use of the set Dt that consists of all square-free a P IK for
which there are distinct d, d1 satisfying

d|at, d1|at, Nd ď Nd1 ď Ndp1 ` ηtKq.

For each such a we can choose and fix square-free and coprime in pairs dat , d
1
at ,mat P IK

with a “ datd
1
atmat and dat , d

1
at being in the range designated above. We may now deploy the

inequality µKpaq2M2mpat;ψKq ď µKpaq2τKpatq2m “ 4tm to infer that for large enough t ě t1

the contribution of a with Ndat ď expp70tq towards L˚
t,mpσq ´ 4

t
m {σ is at most

4t
ÿ

aPDt

η´t
K ďNdatďexpp70tq

µKpaq
Na1`σ ď 4t

ÿ

mPIK

η´t
K ďNdďexpp70tq

1

Nd1`σNm1`σ
ÿ

d1PIK

NdďNd1ďNdp1`ηtK q

1

Nd11`σ .

The estimate
ř

Nd1ďx 1 “ cKx`OKpx1´ 1
rK:Qs q shows that the sum over d1 is

ď Nd´1´σ
´
cKη

t
KNd `OKpNd

1´ 1
rK:Qs q

¯
,

which provides the following bound,

Î 4t

σ

¨
˝ηtK

ÿ

Ndďexpp70tq

1

Nd
`

ÿ

Nděη´t
K

1

Nd1`rK:Qs

˛
‚Î 4t

σ

´
ηtK70

t ` η
trK:Qs
K

¯
Î 1

σ2t
.

Let us now focus on the contribution of a P Dt with Ndat ą expp70tq. The cardinality of
the prime ideal divisors of a in the range Np ď expp70t{tq, henceforth denoted by ωpa; tq,
cannot exceed t, otherwise the first t prime ideals dividing a will have norm in that range,
thus Ndat ď Nat ď pexpp70t{tqqt, which is contradiction. In the case where σ ą p32{9qt70´t

we see, upon using ζKp1`σq Î σ´1, that the contribution of the ideals a under consideration

towards L˚
t,mpσq ´ 4

t
m {σ is at most

4t
ÿ

aĂOK

µKpaq2Na
σ{2
t

Na1`σuttσ{2 Î 4t
ÿ

aĂOK

µKpaq2
Na1`σ{2uttσ{2 Î p7{10qt

σ
.

In the remaining case σ ď p32{9qt70´t we set v :“ 2{plog 70q and bound the contribution by

4t
ÿ

aĂOK

µKpaq2vωpa;tq´t

Na1`σ Î 4t

vtσ

ź

Npďexpt?
utu

p1 ` Np´1qv´1,
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which is again Î p7{10qt{σ. Thus far we have shown that

L˚
t,mpσq Î 4

t
m ` p7{10qt

σ
`

ÿ

aPP˝
K ,aRDt

p|añNpąz2

M2mpat;ψKq 1
mµKpaq2

Na1`σ . (3.12)

Taking z2 ą 2 we see that each a in the sum has odd norm, thus each element of the set

S :“
 

pa, bq P p´1, 0s ˆ p0, 1q : a` b ě 0
(

satisfies Z X peu, ea`bs “ t1u and therefore ∆Kpa;ψK ; a, bq “ 1. Hence, for any q P N we
have M2qpa;ψKq ě volpSq “ 1{2. We can now imitate the proof of Lemma 3.1, replacing
1{plog 2xq10 by ηtK , to prove that for all q P N and square-free a P IK with a R Dt we have

∆Kpat;ψKq2 ď 82 ` 210η
´ 2t

q

K M2qpa;ψKq
1
q ď 211η

´ 2t
q

K M2qpat;ψKq
1
q .

Using this for q “ m´ 1 in combination with

M2mpat;ψKq ď ∆Kpat;ψKq2M2m´2pat;ψKq
leads to

M2mpat;ψKq 1
m ď 2

11
m η

´ 2t
mpm´1q

K M2m´2pat;ψKq
1

m´1 .

The proof of (3.11) is concluded by injecting the last inequality into (3.12) and making use

of m Ï fptq to derive η
´ 2t

mpm´1q

K ď mc5 for some positive constant c5 that depends at most on
K and ψK . �

3.2. The proof of Proposition 3.2. To relate L˚
t,mpσq and L˚

t´1,mpσq demands that we have

an understanding of the fluctuation of M2mpa;ψKq 1
m as the number of prime ideal divisors of

a varies. To this end, we observe that for any a P IK and prime p we have

∆Kpap;ψK ; a, bq “ ∆Kpa;ψK ; a, bq ` ψKppq∆Kpa, ψK ; a ´ logNp, bq.
For a positive integer m we can raise to the power 2m to obtain

∆Kpap;ψK ; a, bq2m “
ÿ

0ďjď2m

ˆ
2m

j

˙
ψppq2m´j

K ∆Kpa;ψK ; a, bqj∆Kpap;ψK ; a´ logNp, bqq´j .

Hence, letting for a P IK , w P R, m P N and 0 ď j ď m,

Nj,mpa, wq :“
ż 1

0

ż

R
∆Kpa;ψK ; a, bqj∆W pa, ψ; a ´ w, bqq´jdadb

and recalling (3.5) we arrive at

M2mpap;ψKq “ 2M2mpa;ψKq `
ÿ

1ďjď2m´1

ˆ
2m

j

˙
ψKppqjNj,2mpa, logNpq.

If 1 ă j ă m´ 1 we use cd ď c2

2
` d2

2
for

c “ ∆Kpa;ψK ; a, bqj`1∆Kpa;ψK ; a ´ w, bqm´j´1, d “ ∆Kpa;ψ; a, bqj∆Kpa;ψK ; a ´ w, bqm´j

to acquire

N2j`1,2mpa, wq ď 1

2
N2j`2,2mpa, wq ` 1

2
N2j,2qpa, wq
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and the inequality cd ď mc2

2 ` d2

2m yields in like manner

N1,2mpa, wq ď m

2
N2,2mpa, wq ` 1

2m
M2mpa;ψKq,

N2m´1,2mpa, wq ď m

2
N2m´2,2mpa, wq ` 1

2m
M2mpa;ψKq.

Putting everything together, we have

M2mpap;ψK q ď 4M2mpa;ψKq `W2mpa, pq,
where

W2mpa, pq :“
ÿ

1ďjďm´1

bj

ˆ
2m

2j

˙
N2j,2mpa, logNpq (3.13)

and the sequence given through

bj :“

$
’&
’%

1 ` m
2m´1

` 2
3
pm ´ 2q if j “ 1

1 ` m
2m´1 if j “ m´ 1

1 ` j
2m´2j´1

` m´j
2j`1

otherwise.

satisfies bj ď 1 ` 2
3m.

Assume that we are given a P IK with ωKpaq ą t´ 1. Then letting ptpaq be the t-th prime

ideal factor of a according to the ordering (3.4) and using py1 ` y2q 1
m ď y

1
m

1 ` y
1
m

2 , valid for
yi P Rě0, we deduce

M2mpat;ψKq 1
m ď 4

1
mM2mpat´1;ψKq 1

m `W2mpat´1, ptpaqq 1
m .

This inequality is also valid if ωKpaq ď t´ 1, since in that case we have at “ at´1. We obtain

L˚
t,mpσq ď 4

1
mL˚

t´1,mpσq `
ÿ

mPP˝
K

ωKpmq“t´1
p|mñNpąz2

ÿ

pjP˝
K

jąi`pmq

W2mpm, pjq
1
m

ÿ

nt“mpj

µ2Kpnq
Nn1`σ .

Each ideal n is of the form mpjd, where d is square-free and each prime divisor of d, pi|d
satisfies i ą j. We can therefore deduce that the sum over n is

Î
ÿ

nt“mpj

µ2Kpnq
Nn1`σ Î Nmp´1´σ

j

ź

NpąNpj

ˆ
1 ` 1

Np1`σ

˙
,

and, recalling that we denote the Dedekind zeta function of K by ζK , we deduce that the last
product is

ď ζKp1 ` σq
ź

NpďNpj

ˆ
1 ` 1

Np1`σ

˙´1

Î 1

σ

ź

NpďNpj

ˆ
1 ´ 1

Np1`σ

˙
.

The inequality Np´σ ě 1 ´ σ logNp and Mertens’ theorem show that the inner product is

Î
ź

NpďNpj

ˆ
1 ´ 1

Np

˙
exp

¨
˝σ

ÿ

NpďNpj

logNp

Np

˛
‚Î

Npσj

logNpj
,
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thus showing that the sum over n is ÎK σ´1 Nm´1´σpNpj logNpjq´1. Letting for m P P˝
K ,

Ampmq :“
ÿ

pjPP˝
K

jąi`pmq

W2mpm, pjq
1
m

Npj logNpj
,

we have thus obtained

L˚
t,mpσq ´ 4

1
mL˚

t´1,mpσq Î 1

σ

ÿ

mPP˝
K

ωKpmq“t´1
p|mñNpąz2

µ2Kpmq
Nm1`σ Ampmq. (3.14)

Using Hölder’s inequality with exponents m, m
m´1 we see that Ampmq is at most

˜
ÿ

pjPP˝
K

jąi`pmq

W2mpm, pjq logNpj

Npj

¸ 1
m
˜

ÿ

pjPP˝
K

jąi`pmq

1

Npj plogNpjq
m`1
m´1

¸m´1
m

.

By the prime number theorem for K and partial summation we infer that with z :“ Np`pmq
the last sum is at most

ď
ÿ

Npąz{3

1

Np plogNpq
m`1
m´1

Î plog zq´m`1
m´1

thus acquiring the validity of

Ampmq Î
˜

ÿ

pjPP˝
K

jąi`pmq

W2mpm, pjq logNpj

Npj

¸ 1
m

plog zq´m`1
m´1 . (3.15)

For ϑ P R and a P IK define

τ˚
Kpa;ψK ;ϑq :“

ÿ

d|a
ψKpdqNdiϑ and τ˚

Kpa;ψKq :“ 1

2π

ż

R

|τ˚
Kpa;ψK ;ϑq|2

6 ` ϑ2
dϑ. (3.16)

Lemma 3.3. For all a P IK we have M2pa;ψKq ď τ˚
Kpa;ψKq.

Proof. We start by using the following well-known formula, valid for all u, v, x P R,

´ 1

2πi

ż `8

´8

eitpx´vq ´ eitpx´uq

t
dt “

"
1 if u ă x and x ă v,

0 if x ă u or x ą v,

a proof of which can be found, for example, in [Wie33, §5]. The substitution t ÞÑ 2πr gives

∆Kpa;ψK ; a, bq “
ż `8

´8

ˆ
1 ´ e´2πirb

2πir
τ˚
Kpa, ψK ; 2πrq

˙
e´2πiardr

except when a, b assume a finite set of values, thus Plancherel’s theorem leads to
ż `8

´8
∆Kpa;ψK ; a, bq2da “ 1

2π2

ż `8

´8

1 ´ cosp2πrbq
r2

ˇ̌
τ˚
Kpa, ψK ; 2πrq

ˇ̌2
dr.
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It can then be inferred from
ş1
0
p1 ´ cosp2πrbqqdb “ 1 ´ sinp2πrq

2πr
that 2π2M2pa;ψKq equals

ż `8

´8

ˆ
1 ´ sinp2πrq

2πr

˙ ˇ̌
τ˚
Kpa, ψK ; 2πrq

ˇ̌2

r2
dr

and the inequality 1 ´ sinp2πrq
2πr

ď 4π2r2

3`2π2r2
furnishes the proof of our lemma. �

Define the arithmetic function g : N Ñ Z though gpnq :“ 7tp Ă OK : Np “ nu and note
that the prime number theorem for K provides a positive constant κ such that

ÿ

1ďnďT
gpnq “ lipT q `O

`
T e´plog T qκ˘. (3.17)

Recall the definition of Mqpaq in (2.6).

Lemma 3.4. For all Ξ ě 1 and m P N we have

m´14´m ÿ

NpąΞ

W2mpm, pq logNp

Np
Î M2mpm, ψKq

m´2
m´1 τ˚

Kpm;ψKq
m

m´1

` e´plog Ξqκ4mM2mpmq
2m´2
2m´1 τKpmq

2m
2m´1 .

Proof. Using (3.13) shows that the sum in our lemma is bounded by
ˆ
1 ` 2

3
m

˙ ÿ

1ďjďm´1

ˆ
2m

2j

˙ ÿ

NpąΞ

N2j,2mpm, logNpq logNp

Np
(3.18)

and the inner sum can be recast as
ż 1

0

ż

R
∆Kpm;ψK ; a, bq2j

ˆ ÿ

NpąΞ

logNp

Np
∆Kpm;ψK ; a ´ logNp, bq2m´2j

˙
dadb.

Letting h :“ 2m ´ 2j allows us to see that the sum over p equals

ÿ

d1,...,dhPIK

di|m

ψKpd1 ¨ ¨ ¨ dhq
ÿ

*

nąΞ

gpnq log n
n

,

where the sum
ř

* is over integers n satisfying the further condition

a´ min logNdi ă log n ď a´ max logNdi ` b.

This implies that the sum contains no terms unless maxNdi ă ebminNdi, in which case (3.17)
and Abel’s summation provide the bound

Î
ż a`b´log maxNdi

a´min logNdi

1p0,8qpt´ log Ξqdt` e´plog Ξqκ ,

where 1p0,8q denotes the characteristic function of the positive real numbers. This confirms

ÿ

NpąΞ

logNp

Np
∆Kpm;ψK ; a ´ logNp, bqh Î

ż

R
∆Kpm;ψK ; s, bqhds` e´plog Ξqκ ÿ

d1,...,dhPIK ,di|m
maxNdiăeminNdi

1
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and according to Lemma 2.4 the inner sum is Î 2hMhpmq. Therefore the sum over the prime
ideals in (3.18) is

Î
ż 1

0

ż

R
∆Kpm;ψK ; a, bq2jda

ż

R
∆Kpm;ψK ; s, bq2m´2jdsdb

` e´plog Ξqκ4m´jM2jpmqM2m´2jpmq,
where we have used |ψKpdq| ď 1 to dispense with the integration over 0 ď b ď 1 in the second
term. In virtue of (2.7) and Lemma (3.3) one can show by following the argument involving
Hölder’s inequality at the end of the proof of [dlBT12, Lem. 2.4] that the last expression is

Î M2mpm;ψKq
m´2
m´1 τ˚pm;ψKq

m
m´1 ` e´plog Ξqκ4mM2mpmq

2m´2
2m´1 τKpmq

2m
2m´1 ,

which, in view of
ř

1ďjďm´1

`
2m
2j

˘
“ 4m ´ 2, finishes our proof. �

We may now deploy the bound supplied by Lemma 3.4 in conjunction with (3.15) to obtain

Ampmq Î Bmpmq ` Cmpmq,

where

Bmpmq :“ M2mpm;ψKq
m´2

mpm´1q τ˚
Kpm;ψKq

1
m´1

plog zq
m`1
m´1

and

Cmpmq :“ M2mpmq
2m´2

mp2m´1q τKpmq
2

2m´1

e
1
m

plog zqκ .

Alluding to Lemma 2.3, the term Cmpmq makes the following contribution towards (3.14),

Î 1

σ

ÿ

mPP˝
K

ωKpmq“t´1
p|mñNpąz2

µ2KpmqτKpmq2
Nm1`σ exp

ˆ
´ 1

m
plogNp`pmqqκ

˙
.

Each m above is the product of p`pmq and t´ 2 prime ideals pi with Npi ď Np`pmq. Taking
into account the possible permutations of the ideals pi shows that the sum over m is

Î 1

pt ´ 2q!
ÿ

Npąz2

exp
`
´ 1
m

plogNpqκ
˘

Np

˜
ÿ

NpiďNp

4

Npi

¸t´2

.

The sum over pi is at most 4 log2Np `Op1q, hence using the inequality expp´xq ď ℓ!
xℓ
, valid

for all x ě 0, ℓ P N, we obtain that the expression above is bounded by

Î 4tℓ!mℓ

pt ´ 1q!
ÿ

pąz2

1

Np

plog logNpqt´2

plogNpqκℓ .

We may suppose that t1 satisfies pκt15 ´ 1q ą 1 and t1 ą 5, so that upon choosing ℓ :“ r t5 s we
see that the sum is

Î
ż 8

z2

plog log uqt
uplog uqt{5 du “

´κt
5

´ 1
¯´t ż 8

pκt
5

´1q log log z2

vt

ev
dv ď

´κt
5

´ 1
¯´t

t!.
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Therefore, using logm “ 1
2 log t`Oplog log tq (which is implied by the assumptions of Propo-

sition 3.2), as well as log n! “ n log n`Opnq, we see that the contribution of the entity Cmpmq
towards (3.14) is

Î σ´1 4
tℓ!mℓ10t

λℓ0t
t

ď σ´1 expp´ 7

10
t log t`Opt log log tqq Î 1

σpt!q2{3 .

We now turn our attention to the contribution of Bmpmq to (3.14). It is at most

ÿ

mPP˝
K

ωKpmq“t´1
p|mñNpąz2

M2mpm;ψKq
m´2

mpm´1q τ˚
Kpm;ψKq

1
m´1

plogNp`pmqq 1
m

µ2Kpmq
Nm1`σ

1

σ logNp`pmq . (3.19)

For m as in the sum above we let Spmq be the set of square-free elements n P P˝
K that

are divisible by m with the further property that any prime ideal pi|n with pi ∤ m satisfies
i ą i`pmq. These ideals enjoy the property nt´1 “ m and therefore

ÿ

nPP˝
K

nt´1“m

µKpnq2
Nn1`σ ě

ÿ

nPSpmq

µKpnq2
Nn1`σ ě µKpmq2

Nm1`σ
ź

iąi`pmq
piPP˝

K

ˆ
1 ` 1

Np1`σ
i

˙
.

The effect of primes pi with residue degree more than 1 is bounded by a constant depending
only on K, thus the product is

Ï ζKp1 ` σq
ź

iďi`pmq

ˆ
1 ´ 1

Np1`σ
i

˙
Ï 1

σ
exp

¨
˝´

ÿ

iďi`pmq

1

Np1`σ

˛
‚,

which by the Mertens theorem for K is

Ï 1

σ
exp

¨
˝´

ÿ

iďi`pmq

1

Np

˛
‚Ï 1

σ logNp`pmq .

We deduce that the sum in (3.19) is

Î
ÿ

mPP˝
K

ωKpmq“t´1
p|mñNpąz2

M2mpm;ψKq
m´2

mpm´1q τ˚
Kpm;ψKq

1
m´1

plogNp`pmqq 1
m

ÿ

nPP˝
K

nt´1“m

µKpnq2
Nn1`σ .

Observe that for each n in the inner sum we have ωKpnq ě ωKpmq “ t´ 1 and therefore the
double sum may be reshaped into

ÿ

nPP˝
K

ωKpnqět´1

˜
µKpnq2M2mpnt´1;ψKq

m´2
mpm´1q

Nn
p1`σqpm´2q

m´1

¸˜
µKpnq2τ˚

Kpnt´1;ψKq
1

m´1

Nn
1`σ
m´1 plogNp`pnkqq 1

m

¸
.

Assuming that t1 is large enough so that m ą 2 we can gain the succeeding bound via a use
of Hölder’s inequality with exponents m´1

m´2
, m´ 1,

Î L˚
t´1,mpσq

m´2
m´1 Dt´1,mpσq

1
m´1 ,
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where for t,m positive integers and pσ P p0, 14q we have defined

Dt´1,mppσq :“
ÿ

nPP˝
K

ωKpnqět´1

µKpnq2τ˚
Kpnk;ψq

Nn1`pσplogNp`pnt´1qqm´1
m

.

To estimate Dt´1,mppσq we shall need the following lemma.

Lemma 3.5. For ϑ,Γ P p0,8q define

SpΓ;ϑq :“
ÿ

NpďΓ
pPP˝

K

|1 ` ψKppqNpiϑ|2
Np

.

There exists a constant B “ BpK,ψKq such that the following holds uniformly in ϑ,

SpΓ;ϑq ď
#
2 log p1 ` |ϑ| log Γq ` 2 log

´
log Γ

1`|ϑ| log Γ

¯
`Op1q, if 0 ă |ϑ| ď 1

2 log log Γ `B log logp2 ` |ϑ|q, otherwise,

where the implied constants are independent of Γ and ϑ.

Proof. For j “ 1,´1 we let

SjpΓ;ϑq :“
ÿ

NpďΓ
pPP˝

K ,ψKppq“j

|1 ` ψKppqNpiϑ|2
Np

so that SpΓ;ϑq “ ř
jPt1,´1u SjpΓ;ϑq `Op1q. Introduce the functions gj : N Ñ Zě0 via

gjpnq :“ 7ta P P
˝
K : Na “ n,ψKpaq “ ju

and note that the condition p P P˝
K forces Np to be a rational prime. The quantitative

version of Chebotarev’s theorem provides positive constants c1, η1 such that

ÿ

pďΓ

gjppq “
ÿ

NpďΓ
pPP˝

K ,ψKppq“j

1 “ lipΓq
2

`OpΓe´c1plog Γqη1

q,

due to the standard bound ÿ

NpďΓ
fpą1

1 Îε,K Γ
1
2

`ε,

valid for all ε ą 0. Hence, in the notation of [Ten15, Lem.III.4.13], we can use hprq :“ |1`eir|2
and directly modify its proof to show that for each w ă Γ the following equality holds
uniformly in ϑ ‰ 0,

ÿ

wăNpďΓ
pPP˝

K

ψKppq“j

|1 ` jNpiϑ|2
Np

“
ÿ

wăpďΓ

|1 ` jpiϑ|2 gjppq
p

“ log

ˆ
log Γ

logw

˙
`O

ˆ
1

|ϑ| logw ` 1 ` |ϑ|
ec

2 plogwqη1

˙
,

owing to h “ 2 for our choice of h. This equality is parallel to [dlBT12, Eq.(3.16)], our proof
can thus be concluded as the one of [dlBT12, Lem.2.5] by using it for suitable parameters w
according to the value of ϑ in relation to Γ. �
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Lemma 3.6. For all t, m as in Proposition 3.2 and pσ P R X p0, 14q, we have

Dt´1,mppσq Î t´ 1

pσ
`
1 ´ 1

2m

˘t´1
.

Proof. Fix an element m P P˝
K . The integral ideals n in Dt´1,mppσq with nt´1 “ m are of the

shape n “ md, where d is square-free and furthermore if pi|d then i ą i`pmq. Hence,

Dt´1,mppσq ď
ÿ

mPP˝
K

ωKpmq“t´1

µKpmq2τ˚
Kpm;ψKq

Nm1`pσplogNp`pmqqm´1
m

ź

iąi`pmq

˜
1 ` 1

Np1`pσ
i

¸
.

The last product is

Î ζKp1 ` pσq exp
´

´
ÿ

iďi`pmq
Np´1´pσ

i

¯
Î pσ´1 exp

´
´

ÿ

iďi`pmq
Np´1´pσ

i

¯
.

The inequality 1 ´ Np´pσ
i ď pσ logNpi reveals that

ÿ

iďi`pmq
Np´1´pσ

i ě
ÿ

iďi`pmq

1

Npi
´ pσ

ÿ

iďi`pmq

logNpi

Npi
,

which, by the prime number theorem for K, is Î log logNp`pmq ´ pσ logNp`pmq. We can
therefore bound Dt´1,mppσq by

Î 1

pσ
ÿ

mPP˝
K

ωKpmq“t´1

µKpmq2τ˚
Kpm;ψKq

NmplogNp`pmqq 2m´1
m

Np`pmqpσ
Nmpσ

and, letting

T :“
ÿ

mPP˝
K

ωKpmq“t´1

µKpmq2τ˚
Kpm;ψKq

NmplogNp`pmqq 2m´1
m

,

allows us to deploy the inequality Np`pmq ď Nm to infer that Dt´1,mppσq Î T {pσ. For ϑ P R
let

T pϑq :“
ÿ

mĂP˝
K

ωKpmq“t´1

µKpmq2|τ˚
Kpa;ψK ;ϑq|2

NmplogNp`pmqq 2m´1
m

.

Note that alluding to (3.16) and using τ˚pm, ψ;´ϑq “ τ˚pm, ψ;ϑq provides us with

T Î
ż 8

0

T pϑqp1 ` ϑ2q´1dϑ.

Denote p1 “ p`pmq. Each ideal m in T pϑq is the product of p1 and k´ 1 different prime ideals
pi P P˝

K that satisfy i ă i`pmq. Therefore

T pϑq Î 1

pt ´ 2q!
ÿ

p1PP˝
K

|τ˚
Kpp1;ψ;ϑq|2

Np1plogNp1q 2m´1
m

¨
˚̊
˝

ÿ

NpďNp1

pPP˝
K

|τ˚
Kpp;ψK ;ϑq|2

Np

˛
‹‹‚

t´2
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and using Lemma 3.5 allows us to follow the arguments proving [dlBT12, Eq.(2.25),(2.26)] to
acquire the bound

ż 1

0

T pϑqdϑ Î 2t

pt ´ 2q!

" pt´ 2q!
p2m´1

m
` 1qt´1

` pt ´ 1q!
p2m´1

m
qt´1

` pt´ 1q!
p2m´1

m
` 1qt´1

*
Î t´ 1

p1 ´ 1
2m

qt´1
.

In the remaining range, ϑ ą 1, one can conjure up Lemma 3.5 and the proof of [dlBT12,
Eq.(2.27)] to deduce the estimate

T pϑq Î
ˆ
1 ´ 1

2m

˙´pt´1q
tlogp2 ` ϑqu

B

1´ 1
2m ,

which, in light of ż 8

1

tlogp2 ` ϑqu
B

1´ 1
2m ϑ´2dϑ ÎB 1,

is sufficient for our lemma. �

Assorting all appropriate estimates obtained so far validates

L˚
t,mpσq ´ 4

1
mL˚

t´1,mpσq Î
L˚
t´1,qpσq

m´2
m´1 pt´ 1q

1
m´1

σ
1

m´1

`
1 ´ 1

2m

˘ t´1
m´1

` 1

σpt!q2{3 . (3.20)

Bringing into play the entity

L˚
k,qpσq :“ Lk,qpσq ` 4

k
q

σ
and noting that

Lk`1,qpσq ´ 4
1
qLk,qpσq “ L˚

k`1,qpσq ´ 4
1
qL˚

k,qpσq, 4
t´1
m

σ
ď L˚

t´1,mpσq

allows to gain via (3.20) the following inequality,

L˚
t,mpσq ď L˚

t´1,mpσq

¨
˝4

1
m ` pt´ 1q

1
m´1

4
t

mpm´1q
`
1 ´ 1

2m

˘ t´1
m´1

` 1

4
t´1
m pt!q2{3

˛
‚.

Using the fact m “ fptq `Op1q shows that the middle term in the parenthesis is

1

tlog 4´ 1
2

`op1q .

Hence, there exists c3 ą 0, depending at most on K and ψK such that

L˚
t,mpσq ď e

c3
m L˚

t´1,mpσq,
an estimate that concludes the proof of Proposition 3.2.
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[dlBT12] R. de la Bretèche and G. Tenenbaum, Oscillations localisées sur les diviseurs, J. Lond. Math. Soc.

(2) 85 (2012), no. 3, 669–693.
[dlBT13] , Sur la conjecture de Manin pour certaines surfaces de Châtelet, J. Inst. Math. Jussieu 12

(2013), no. 4, 759–819.



TWISTS OF HOOLEY’S ∆-FUNCTION OVER NUMBER FIELDS 23

[dlBT16] , Private communication.
[FMT89] J. Franke, Y. I. Manin, and Y. Tschinkel, Rational points of bounded height on Fano varieties, Invent.

Math. 95 (1989), no. 2, 421–435.
[Hoo79] C. Hooley, On a new technique and its applications to the theory of numbers, Proc. London Math.

Soc. (3) 38 (1979), no. 1, 115–151.
[NT98] M. Nair and G. Tenenbaum, Short sums of certain arithmetic functions, Acta Math. 180 (1998),

no. 1, 119–144.
[Shi80] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. reine angew. Math. 313 (1980),

161–170.
[Ten85] G. Tenenbaum, Sur la concentration moyenne des diviseurs, Comment. Math. Helv. 60 (1985), no. 3,

411–428.
[Ten86] , Fonctions ∆ de Hooley et applications, Séminaire de théorie des nombres, Paris 1984–85,
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