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Polynomial upper bound on interior Steklov nodal sets
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Abstract. We study solutions of uniformly elliptic PDE with Lipschitz leading coefficients

and bounded lower order coefficients. We extend previous results of A. Logunov ([9])

concerning nodal sets of harmonic functions and, in particular, prove polynomial upper

bounds on interior nodal sets of Steklov eigenfunctions in terms of the corresponding

eigenvalue �.
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1. Introduction

This paper considers non trivial solutions u to the following general second order

elliptic equation
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C c.x/u D 0 (1)

in some smooth bounded domain � � R
n. We make the following assumptions

on the coefficients of L:

(1) L is uniformly elliptic, that is for a fixed � > 0

aij .x/�i �j � �j�j2; for all � 2 Rn; x 2 �I (2)

(2) the coefficients of L are bounded,
X

i;j

jaij .x/j C
X

i

jbi .x/j C jc.x/j � ƒ; x 2 �I (3)

(3) the leading coefficients are Lipschitz,
X

ij

jaij .x/ � aij .y/j � �jx � yj: (4)
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We focus our interest on the relation between the zero set and the local growth

properties of a solution u. In particular, we will address nodal sets of functions

whose leading order coefficients A.x/ D ¹aij ºn
i;j D1 are derived from the Laplace

operator. Using normal coordinates we will hence assume that

A.0/ D I;

where I denotes the n � n-identity matrix. This assumption allows us to reduce

the amount of technicalities when we discuss the generalized frequency function

below.

1.1. Doubling indices and nodal set. Given a fixed ball B such that 2B � �,

the doubling index N.B/ is a measure of the local growth of u on B defined by

N.B/ D log2

sup2B juj
supB juj

Here and for the rest of the paper rB is the ball concentric to B and scaled by

a factor r > 0. As the following simple example shows, the doubling index can

be seen as a local generalization of the degree of a polynomial for continuous

functions. Letting u D xn and B D Œ�r; r�, we have

N.B/ D log2

supŒ�2r;2r� jxjn

supŒ�r;r� jxjn D log2

.2r/n

rn
D n:

Thus, the doubling index indeed recovers the degree up to a constant. We will

often write N.x; r/ for the doubling index of u on the ball B.x; r/.

The nodal set of u is simply its zero set

Zu D ¹u�1.0/º:

Sparked by the famous conjecture of Yau [15, 16] on nodal sets of Laplace eigen-
functions, it is a celebrated problem to try to estimate the Hausdorff measure
H

n�1.Zu/ of the nodal set of solutions to various partial differential equations.
By the work [7] of Hardt-Simon, it is known that Hn�1.Zu/ is finite.

The seminal papers by Donnelly and Fefferman [2] (see also the more recent
work [11, 12] of the second author ) highlight how the doubling index can be used
to obtain bounds on the size of the nodal set. Our main result is along these lines
and extends the work of Logunov [9] for Laplace eigenfunctions to solutions u

of equation (1). More precisely, we show that the size of the nodal set of such
solutions is controlled by the doubling index in the following way.
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Theorem 1.1. There exist positive numbers r0 D r0.M; g/; C D C.M; g/ and

˛ D ˛.n/ such that for any solution u of equation .1/ in a domain � satisfying the

conditions .2/–.4/, we have

H
n�1.Zu \ Q/ � C diamn�1.Q/N ˛.Q/;

where Q � B.p; r0/ is an arbitrary cube in �.

Here, N.Q/ is the uniform doubling index of u on a cube Q as defined by

N.Q/ WD sup
x2Q;r2.0;diam.Q//

N.x; r/:

The proof adapts the machinery developed by Logunov to solutions of more
general elliptic equations. In the present note we will follow the work [9] indicat-
ing the appropriate modifications when one deals with such equations. From our
standpoint, these modifications include an adaptation of the doubling scaling, a
propagation of smallness estimate and an accumulation of growth (referred to as
Simplex lemma in [9]).

In Section 2, we build a toolbox consisting mostly of elliptic estimates and
almost monotonicity of a generalized frequency function – see equation (7). In
contrast to [9], the generalized frequency function needs to be more carefully
estimated, but it turns out that a similar scaling property holds (cf. Lemma 2.2).

Onwards, in Section 3, the toolbox is used to verify our generalized versions
of the crucial simplex and hyperplane lemmata. Here one also needs to introduce
appropriate gradient estimates and propagation of smallness for equations with
rougher coefficients, whereas [9] exploits bounds pertinent to harmonic functions.

Now, the obtained two lemmata work together to investigate the additivity
properties of the frequency. The underlying principal idea can be roughly sum-
marized as follows: if the frequency of u on a big cube Q is high, then it cannot
be high in too many disjoint subcubes qi � Q. For the rest of the discussion, we
essentially refer to [9], as the statements follow directly.

1.2. Application: interior nodal sets of Steklov eigenfunctions. Let M be a
smooth, connected and compact manifold of dimension n � 2 with non-empty
smooth boundary @M and denote by � D �g the Laplace–Beltrami operator
on M . The Steklov eigenfunctions on M are solutions to

´

�� D 0 in M;

@�� D �� on @M:
(5)
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In this setting, the spectrum is discrete and is composed of the eigenvalues

0 D �0 < �1 � �2 � � � � % 1:

Given a Steklov eigenfunction u D u�, we distinguish the codimension 1 interior

nodal set

Z� D ¹x 2 M W �.x/ D 0º

and the codimension 2 boundary nodal set

N� D ¹p 2 @M W �.p/ D 0º :

As mentioned earlier, we are interested in measuring the size of these nodal sets.
It is expected (see [5]) that their size is controlled by the Steklov eigenvalue. More
precisely, it is conjectured that

c1� � H
n�1.Z�/ � c2�

and

c3� � H
n�2.N�/ � c4�;

where H
n is the n-dimensional Hausdorff measure. In the above, the ci are

positive constants that may only depend on the geometry of the manifold M .
These conjectures are similar to the famous Yau conjecture for nodal sets of
eigenfunctions of the Laplace operator. We now briefly present the current best
results present in the literature, starting with the interior nodal set:

Table 1. Current best bounds for Hn�1.Z�/

Regularity and dimension Current Best Lower Bound Current Best Upper Bound
C ! , n D 2 c� [10] X c� [10, 19] X

C ! , n � 3 c� [19] X

C 1, n D 2 c [13] c�
3
2 [20]

C 1, n � 3 c�
2�n

2 [13]

In the case of the boundary nodal set, we have

Table 2. Current best bounds for Hn�2.N�/

Regularity and dimension Current Best Lower Bound Current Best Upper Bound
C ! , n � 2 c� [17] X

C 1, n D 2 c� [14]

C 1, n � 3 c�
4�n

2 [14]
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We use Theorem 1.1 to provide a polynomial upper bound for interior nodal
sets in the smooth case in any dimension n � 2.

Theorem 1.2. Let M be a smooth, connected and compact manifold of dimension

n � 2 with non-empty smooth boundary @M . Let �� be a Steklov eigenfunction

on M corresponding to the eigenvalue �. Then

H
n�1.Z�/ � c�˛;

where c D c.M; g/ and ˛ D ˛.n/.

The proof is based on a gluing procedure that transforms M into a compact
manifold without boundary. Doing so and working locally then allows to transfer
the study of the nodal set of � to that of a solution u to the elliptic equation 1. The
details are presented in Section 5.

1.3. Acknowledgements. The authors are grateful to Werner Ballman, Alexan-
der Logunov, Eugenia Malinnikova, Iosif Polterovich and Steve Zelditch for com-
ments, valuable discussions and feedback on this manuscript.

2. Tool box

2.1. Elliptic estimates. We recall Theorem 8:17 (cf. also Theorem 8:24) of [4]
for operators of the type L as above. For any weak solution u 2 W 1;2 of Lu D 0

and � > 0, we have the following elliptic estimate

sup
B.x;�/

juj2 � c1

−

B.x;.1C�/�/

u2; (6)

where c1 D c1.n; L; �/. On the other hand, for every continuous function
−

B.x;�/

u2 � sup
B.x;�/

juj2:

2.2. Properties of the frequency function. The frequency function associated
to a harmonic function, due to Almgren, is a well-known object which allows one
to study growth properties and doubling conditions. It possesses several useful
properties, among which – a monotonicity property.

In the spirit of [3] and [1], we would like to address a certain construction of a
frequency function adopted to a more general situation, i.e. a solution to an elliptic
PDE of the form L.
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Let w 2 W
1;2

loc
.B1/. We define

H.r/ WD
Z

@Br

w2d�; D.r/ WD
Z

Br

jrwj2dx;

I.r/ WD
Z

Br

.jrwj2 C w.b � rw/ C cw2/dx:

Here d� is an abbreviation for the standard surface measure on the sphere @Br ,
i.e. dV@Br

. In particular, d� does not refer to the normalized surface measure. The
generalized frequency ˇ.r/ is then defined as

ˇ.r/ WD rI.r/

H.r/
: (7)

Let us now pause to briefly comment the above construction. First, in contrast
to the case of harmonic functions, the sign of ˇ.r/ is no longer clearly determined.
Furthermore, it is not a priori clear whether H.r/ is not vanishing for a large set
of radii r .

However, it turns out that for sufficiently small r (depending only on n and the
bounds on L), the quantity H.r/ is positive (cf. Lemma 9, [1] and Lemma 2:2, [3]).
Moreover, for such small r one can arrange that

ˇ.r/

r
� �C; (8)

where C is a positive number, which depends only on n and the bounds on L (cf.
Corollary 10, [1]).

Second, our definition of ˇ.r/ follows the one in [1] (cf. Notation 8 therein).
In particular, as already pointed out, in our definition we implicitly utilize the fact
that A.0/ D I , which allows us to reduce the amount of technical details. One can
also define and work with ˇ.r/ in the general case via a certain diagonalization
procedure, which we briefly discuss below (see Theorem 2.1 below).

Now, as mentioned the frequency ˇ enjoys a certain almost monotonicity
property:

Theorem 2.1. There exist positive numbers R; c2; c3, depending only on n and

the bounds on the operator L, i.e. (2)–(4), such that

ˇ.r1/ � c3ˇ.r2/ C c2;

for any choice of positive numbers r1; r2 satisfying

0 < r1 < r2 < R:
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Moreover, if one chooses an arbitrarily small positive number �, then for a suffi-

ciently small r2 , one may take

c3 D 1 C �:

Sketch of proof. The proof is to some extent technical. However, the needed
statements is directly obtained by inspecting and following the lines of Theo-
rem 3.2.1, [6] and Theorem 2:1, [3] where the authors consider also the case of
an unbounded lower order coefficient c.x/. Roughly speaking, the proof can be
divided in three steps and for convenience we now briefly outline the strategy. For
further details, we refer to Theorem 2:1, [3].

First, one diagonalizes the operator L by introducing an appropriate metric g

adapted to the matrix A.x/ D ¹aij ºn
i;j D1 of leading order coefficients. This

method appears in several other unique continuation results, notably in the works
of Aronszajn and we refer to [3] as well as the references therein. Afterwards, one
works in normal coordinates with respect to the metric g where the leading order
matrix A.x/ is actually diagonalized, namely of the form �.x/I , where �.x/ is
a positive Lipschitz function and where I denotes the identity matrix. We also
point out that by construction, �.x/ is close to the constant 1, provided A.x/ is
close to the identity.

Further on, one introduces the generalized frequency function ˇg.r/ with
slightly modified Hg.r/; Dg.r/ and Ig.r/ that are now encapsulating the function
�.x/ – see the formulas .2:8/–.2:10/ in [3]. An advantage of the use of ˇg instead
of ˇ is that integration by parts is simpler and reduces several further technical
complications.

Second, one would like to estimate the derivative of ˇg.r/ with respect to r . To
this end, one needs to obtain expressions for the derivatives of Hg.r/ and Ig.r/.
While the derivative d

dr
Hg.r/ is somewhat straightforward to obtain, some care

needs to be taken for d
dr

Ig.r/. In [3] the authors utilize a variational argument:
they study the kinetic energy functional Dg.r/ along a certain variational family
ut

t2J , defined over an appropriate interval J . In fact the family ut is obtained
via rescaling. Then, a computation of the variation of the kinetic energy yields
a suitable expression for the derivative of Dg.r/, which also implies a suitable
expression for the derivative of Ig.r/.

Third, one truncates the frequency function, i.e. for a sufficiently small r0 one
considers the set

�r0
D ¹r � r0W ˇg.r/ > max.1; ˇg.r0/º:

As ˇg is absolutely continuous, this set is actually a countable collection of
intervals

S

j .aj ; bj /. We observe that on the complement of �r0
one already has
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bounds on ˇg.r/. Now, using the expressions for the derivatives of Ig .r/; Hg.r/

and assuming that r is sufficiently small (depending only on bounds on L) one
obtains the bound

ˇ0
g.r/

ˇg.r/
� �b; for all r 2 �r0

;

where b is a positive number that depends on n and the bounds on L. This implies
that if r 2 .aj0

; bj0
/ for some index j0, then after integration over the interval

.r; bj0
/ one obtains

ˇg .r/ � ˇg .r/ exp.b.bj0
� r// � exp.b.bj0

� r// max.1; ˇg.r0//:

Now, we can select

c3 WD eb.r0�r/; c2 WD .1 C C r�/eb.r0�r/;

where C is the constant from (8). It follows that

ˇg .r/ � c3ˇg.r0/ C c2;

for any r in the interval .0; r0/, where we have also used the bound. The above
arguments could be repeated if r0 is replaced by any smaller number r2 from
the interval .0; r0/, which would also lead to replacing the set �r0

by �r2
. This

yields the almost monotonicity statement for the generalized frequency function
ˇg .r/. The corresponding statement for ˇ.r/ follows by comparability of the
corresponding quantities Ig .r/; I.r/ and Hg.r/; H.r/, as we assume that A.x/

is close to the identity for points x near the origin. �

We also have the following derivation formula (cf. Corollary 3.2.8 in [6];
Proposition 11, [1]; formula .2:16/, [3])

d

dr

�

log
H.r/

rn�1

�

D O.1/ C 2
ˇ.r/

r
� �c4;

where c4 D c4.n/ > 0. As a consequence, we get

Lemma 2.1. The function ec4rH.r/ is increasing for r 2 .0; r0/.

Now let 0 < R1 < R2 < r0. An integration yields

H.R2/ D H.R1/
�R2

R1

�n�1

exp

�

O.1/.R2 � R1/ C 2

Z R2

R1

ˇ.r/

r
dr

�

:
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Using the almost monotonicity of the frequency, we estimate the integral on
the right hand side by

log
�R2

R1

�

2c�1
3 .ˇ.R1/ � C1/ �

Z R2

R1

ˇ.r/

r
dr � log

�R2

R1

�

.c2 C c3ˇ.R2//;

which, after absorbing the dimensional constants, yields

c5

�R2

R1

�2c�1
3

.ˇ.R1/�c2/

� H.R2/

H.R1/
� c5

�R2

R1

�2.c3ˇ.R2/Cc2/

: (9)

2.3. Doubling numbers and scaling. The main technical tool we need the
following lemma.

Lemma 2.2. Let � 2 .0; 1/. There exist positive constants c6 D c6.�/ and

r0 D r0.�/, such that for any u 2 W 1;2.B/ with Lu D 0, we have

tN.x;�/.1��/�c6 �
supB.x;t�/ juj
supB.x;�/ juj � tN.x;t�/.1C�/Cc6 ;

where x 2 r0B; � > 0; t > 2 satisfy the condition B.x; t�/ � r0B . Furthermore,

there is a threshold N0 D N0.�/, such that if N.x; �/ > N0, then the constant c6

can be dropped in the above estimate and one has

tN.x;�/.1��/ �
supB.x;t�/ juj
supB.x;�/ juj � tN.x;t�/.1C�/:

Proof. The argument goes along the lines of the Appendix in [9] with appropriate
modifications. For completeness we provide the technical details. We prove the
following claim.

Claim 2.1. Suppose � > 0 is a sufficiently small number. Then there exists a

positive number r1 depending only on � and the bounds on the operator L, such

that

ˇ.p; r.1 C �//.1 � 100�/ � c7 � N.p; r/ � ˇ.p; 2r.1 C �//.1 C 100�/ C c7;

for every number r in the interval .0; r1/ and every point p in the ball r1B .

Using the elliptic estimate (6) and Lemma 2.1, there exists � > 0 such that

sup
B.p;r/

juj2 � c8H..1 C 2�/r/=rn�1:
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Using Lemma 2.1, there holds H..1 � �/2r/ � e2c4�rH.2r/ so that

sup
B.p;2r/

juj2 � 1

!n.2r/n

Z

B.p;2r/

u2

� 1

!n.2r/n

Z 2r

2r.1��/

H.�/d�

� c2

H.2r.1 � �//

rn�1
;

(10)

where we have used the fact that H.2�/ � e2cr .�0��/H.2�0/ for � < �0 and where

c2.�; n/ D �

!n2n�1e2c4r0
. Using the latter, we estimate the doubling indices as

follows

N.p; r/ WD log2

supB.p;2r/ juj
supB.p;r/ juj � 1

2
log2

H.2r.1 � �//

H.r.1 C �//
C c9;

where c9 D log2

c2

c8

. The last quotient is controlled via the generalized frequency

as given in (9). Further, assume that r0 is sufficiently small, so that c3 D 1 C �.
Then, we have

1

2
log2

H.2r.1 � �//

H.r.1 C �//
� 1

2
log2

h

c5

�2.1 � �/

1 C �

�

2ˇ.r.1C�//�c2
1C�

i

� ˇ.r.1 C �// � c2

1 C �
log2

�2.1 � �/

1 C �

�

C 1

2
log2.c5/

� ˇ.r.1 C �//

1 C �
log2

h2.1 � �/

1 C �

i

� c10:

Now, we recall that for small r , the frequency function is “almost non-negative”
in the sense of (8). Thus, for a sufficiently small � > 0 we get

ˇ.r.1 C �//

1 C �
log2

h2.1 � �/

.1 C �/

i

� c9 � ˇ.r.1 C �//.1 � 20�/ � c7:

Hence, we obtain

N.p; r/ � ˇ.p; r.1 C �//.1 � 100�/ � c7:

Similarly, one sees

N.p; r/ � ˇ.p; 2r.1 C �//.1 C 100�/ C c7;

provided that � and r0 are sufficiently small. Indeed, this time, the quotient
appearing in the definition of N.p; r/ is estimated in a reversed way: one obtains
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an upper bound for the numerator and a lower bound on the denominator. This
is achieved by using the elliptic estimate (6) and Lemma 2.1 as before. Thus,
one obtains an upper bound on N.p; r/ in terms of similar quotient of the type
H.�0/=H.�/. The latter is further estimated from above in the terms of the right
estimate in (9). This finishes the proof of the claim.

We now proceed showing the lower bound in Lemma 2.2. First, we can assume
that t is bounded away from 2. Indeed, if t � 21C�, then as t > 2 we have
tN.x;�/.1��/ � 2N.x;�/. Hence

sup
B.x;t�/

juj � sup
B.x;2�/

juj � c112N.x;�/ sup
B.x;�/

juj � tN.x;�/.1��/ sup
B.x;�/

juj;

which gives the lower bound and the additional statement as well. Thus, we as-
sume that t > 21C�. Let us also set Q� WD �=1000, so that .1 � Q�/t > 2.1 C Q�/.
Using the estimate (10) and definition of the doubling index, the frequency scal-
ing (9), we have

supB.x;t�/ juj2

supB.x;�/ juj2 � c2.t�/1�nH..1 � Q�/t�/

2�2N.x;�/ supB.x;2�/ u2
:

To bound the numerator from below we use the estimate (9) over balls with
radii .2�.1 C Q�// and .t�.1 � Q�//, followed by an application of Claim 2.1. This
way we can also absorb the term t1�n in the constants. To bound the denominator
we use the elliptic estimate (6). Hence, we have

supB.x;t�/ juj2

supB.x;�/ juj2 � c11

�

.1�Q�/t
2.1CQ�/

�.2N.x;�/=.1C100Q�/.1CQ�//�c9 H.2�.1 C Q�//

2�2N.x;�/H.2�.1 C Q�//

D c1122N.x;�/
� .1 � Q�/t

2.1 C Q�/

�.2N.x;�/=.1C100Q�/.1CQ�//�c9

:

Now, we can absorb the powers of 2 from the numerator and denominator,
further adjusting the constants c11; c9 if needed. The latter is thus bounded from
below by

c12

� .1 � Q�/t

.1 C Q�/

�.2N.x;�/=.1C100Q�/.1CQ�//�c13

� c14t2N.x;�/.1��/�c6 ;

where we have absorbed the quotient .1 � Q�/=.1 C Q�/ by using the smallness of
Q� and further adjusting the participating constants. In particular, we reduce the
power of t by a small multiple of N.x; �/.
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This concludes the proof of the lower bound. The upper bound in Lemma 2.2
follows similarly. To show the additional statements in the Lemma, it suffices to
take �=2 instead of � and require that

N.x; �/ >
2

�
c6.�=2/ DW N0.�=2/: �

We will also need the following comparison for doubling numbers at nearby
points (cf. Lemma 7.4, [9]).

Lemma 2.3. There exists a radius r0 > 0 and a threshold N0 such that, for

x1; x2 2 B.p; r/ and � > 0 such that d.x1; x2/ < � < r0; N.x1; �/ > N0, there

exists a constant C > 0 such that

N.x2; C�/ >
99

100
N.x1; �/:

Proof. The proof proceeds exactly as in Lemma 7.4, [9], using Lemma 2.2 above.
�

3. Additivity of frequency

The main motivation behind the results in [9] seems to be the investigation of
additivity of the frequency function. The two principal ideas are encapsulated
within the simplex and hyperplane lemmata.

3.1. Barycenter accumulation. Roughly speaking, we will assert the following:
suppose that the doubling exponents at the vertices ¹x1; : : : ; xnC1º of a simplex
are large (i.e. bounded below by a fixed N0 > 0). Then, the doubling exponent at
the barycenter of the simplex x0 WD 1

n

PnC1
iD1 xi is bounded below by .1 C c/N0,

where c > 0 is a fixed constant. Heuristically, the growth “accumulates” at
the barycenter. The proof proceeds via direct use of the frequency properties
discussed in Section 2.

Definition 3.1. Given a simplex S WD ¹x1; : : : ; xnC1º, we define the relative width
w.S/ of S as

w.S/ WD width.S/

diam.S/
;

where diam.S/ is the diameter of S and width.S/ is the smallest possible distance
between two parallel hyperplanes, containing S in the region between them.
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Further on, we will consider simplices S whose relative width is bounded
below as w.S/ � w0 WD w0.n/ > 0 – the specific bound w0 will be specified
later.

Now, in order to apply the scaling of frequency we will need the following
covering lemma.

Lemma 3.1. Let S WD ¹x1; : : : ; xnC1º be an arbitrary simplex satisfying w.S/ �
w0. There exist a constant ˛ WD ˛.n; w0/ > 0 and a number (ratio) K WD
K.n; w0/ � 2

w0
, so that if one takes a radius � WD K diam.S/, then one has

B.x0; .1 C ˛/�/ �
SnC1

iD1 B.xi ; �/:

Moreover, for t > 2 there exists ı.t/ 2 .0; 1/ with ı.t/ ! 0 as t ! 1, so that

B.xi ; t�/ � B.x0; .1 C ı/t�/:

The main result of this subsection is the following proposition.

Proposition 3.1. Let ¹B1ºnC1
iD1 be a collection of balls centered at the vertices

¹xiºnC1
iD1 of the simplex S and radii not exceeding �

2
, where � D �.n; w0/ comes

from Lemma 3.1. Then, there exist the positive constants c WD c.n; w0/; C WD
C.n; w0/ � K; r WD r.w0; L/ and N0 WD N0.w0; L/ with the following property:

If S � B.p; r/ and if N.Bi / > N > N0; i D 1; : : : n C 1, then

N.x0; C diam S/ > .1 C c/N:

Proof. First, Lemma 2.2 shows that by taking larger balls, the doubling exponents
essentially increase, so we can assume that all balls Bi have the radius �.

Let us set
M WD sup

SnC1

iD1
B.xi ;�/

juj;

and let us suppose that M is achieved on the ball B.xi0; �/ for a fixed index i0.
In particular, by Lemma 3.1 we have

sup
B.x0;.1C˛/�/

� M:

Further, let us introduce parameters t > 2; � > 0 to be specified below and assume
that the second statement in Lemma 2.2 holds for the ball B.xi0; t�/, by which we
see

sup
B.xi0

;t�/

juj � MtN.1��/:
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Moreover, assuming that the scaling in Lemma 2.2 is functional at the barycenter
x0 and recalling Lemma 3.1, we conclude

� t .1 C ı/

1 C ˛

�N.x0;t.1Cı/�/.1C�/Cc6

�
supB.x0;t.1Cı/�/ juj
supB.x0;.1C˛/�/ juj

�
supB.xi0

;t�/ juj
supB.x0;.1C˛/�/ juj

� MtN.1��/

M
D tN.1��/:

Specifying the parameters, we select t > 2 large enough to ensure ı.t/ � ˛
2
, and

hence
t .1 C ı/

1 C ˛
� t1� ;

for some  D .t; ˛/ 2 .0; 1/. Thus, putting the last estimates together we see

t .1�/N.x0 ;t.1Cı/�/.1C�/Cc6 � tN.1��/

and therefore

N.x0; t .1 C ı/�/ � 1 � �

.1 C �/.1 � /
N � c3:

Selecting an � D �./ > 0 we can arrange that

1 � �

.1 C �/.1 � /
> 1 C 2c;

for some c WD c./ > 0. Hence, we conclude

N.x0; t .1 C ı/�/ � N.1 C 2c/ � c3 � .1 C c/N C .cN0 � c3/ > .1 C c/N;

provided that N0 is sufficiently big. �

3.2. Propagation of smallness. We use propagation of smallness to derive
estimate on the doubling exponents. The main auxiliary result in this discussion is
the propagation of smallness for Cauchy data. In terms of exposition, we follow the
discussion in [9] with appropriate changes whenever we need to address operators
with rough coefficients and lower regularity instead of the standard Laplacian and
smooth coefficients.

Lemma 3.2 (cf. Lemma 4.3, [8]). Let u be a solution of .1/ in the half-ball BC
1

where the conditions .2/; .3/; .4/ are satisfied. Let us set

F WD
°

.x0; 0/ 2 Rnjx0 2 Rn�1; jx0j <
3

4

±

:
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If the Cauchy conditions

kukH 1.F / C k@nukL2.F / � � < 1 and kuk
L2.B

C
1

/
� 1:

are satisfied, then

kuk
L2

�

1
2

B
C
1

� � C�ˇ ;

where the constants C; ˇ depend on n; �; C1; C2.

It is convenient to introduce the following doubling index.

Definition 3.2. The doubling index N.Q/ of a cube Q is defined as

N.Q/ WD sup
x2Q;r2.0;diam.Q//

N.x; r/:

An immediate observation is that

N.q/ � N.Q/; if q � Q;

and if Q �
S

i Qi with diam.Q/ � diam.Qi/, then there exists an index i0 such
that

N.Q/ � N.Qi0/:

Proposition 3.2 (cf. Lemma 4.1, [9]). Let Q be a cube Œ�R; R�n in Rn and let us
divide Q into .2A C 1/n equal sub-cubes qi with side-length 2R

2AC1
. Let ¹qi;0º be

the collection of sub-cubes which intersect the hyperplane ¹xn D 0º and suppose
that there exist centers xi 2 qi;0 and radii ri < 10 diam.qi;0/ so that N.xi ; ri/ > N

where N is fixed. Then there exist constants A0 D A0.n/; R0 D R0.L/; N0 D
N0.L/ (here we mean dependence on the bounds of the operator L) with the
following property: if A > A0; N > N0; R < R0, then

N.Q/ > 2N:

Proof. We assume that R0 is small enough, so that Lemma 2.2 holds with � D 1
2

and the equation .1/ at this scale is satisfied along with the conditions .2/; .3/; .4/.
Moreover, at this scale we can also use Lemma 3.2.

To ease notation, without loss of generality by scaling we may assume that
R D 1

2
; R0 � 1

2
. Let B be the unit ball centered at 0. We consider the half ball

1
32

BC � 1
8
B and wish to apply the propagation of smallness for Cauchy data

problems. To this end, we need to bound u and ru on F WD 1
32

BC \ ¹xn D 0º.
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Step 1: Bound on u. First, let us set

M WD sup
1
8

B

juj;

by which we have

sup
B.xi ; 1

32
/

juj � M; for all xi 2 1

16
B:

Hence, for xi 2 1
16

B Lemma 2.2 and the assumption that N.xi ; ri/ > N imply

sup
8qi;0

juj � sup
B.xi ;

16
p

n

2AC1
/

juj � C
�512

p
n

2A C 1

�
N
2

sup
B.xi ; 1

32 /

juj � e�c1N log AM;

where c1 D c1.n/ > 0 and we have assumed in the last step that N; A are
sufficiently large.

Step 2: Bound on ru. Further, we wish to bound the gradient jruj. We recall
the following facts.

Lemma 3.3. Let u be a solution of equation .1/ in a domain � satisfying the

conditions .2/–.4/. Then, if �0 �� �, we have

kukW 2;2.�0/ � C kukL2.�/;

where C depends on the parameters in (2)–(4) and d.�0; @�/.

For a proof of Lemma 3.3 we refer to Theorem 8:8, the remark thereafter and
Problem 8:2, [4].

Lemma 3.4. Let u 2 W 2;2.Rn/ and let us consider the trace of u onto the

hyperplane ¹xn D 0º Š R
n�1 which, abusing of notation, we also denote by u.

Then

krukL2.Rn�1/ � C.kukW 2;2.Rn/ C kukL2.Rn�1//;

where C D C.n/.

For a proof of Lemma 3.4 we refer to Lemma 23, [1]. Using Lemma 3.4
for functions of the form �u, where � is a standard smooth cut-off function and
u 2 W 2;2 we see that

krukL2.Rn�1\Br / � C.kukW 2;2.B2r / C kukL2.Rn�1\B2r //;

where � is supported in B2r .
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Using these last lemmas along with the standard Sobolev trace estimate, we
have

krukL2.F \qi;0/ � C.kukW 2;2.2qi;0/ C kukL2.F \2qi;0//

� C1kukW 2;2.4qi;0/ � C2kukL2.8qi;0/:

Again using the trace estimate, this shows that

kukW 1;2.F \qi;0/ C k@nukL2.F \qi;0/ � C3kukW 2;2.4qi;0/ C krukL2.F \qi;0/

� C4kukL2.8qi;0/

� C5

.2A C 1/n
sup
8qi;0

juj:

Summing up over the cubes qi;0 and using the bound in the first step, we get

kukW 1;2.F / C k@nukL2.F / � C5

.2A C 1/n�1
sup
8qi;0

juj � e�c2N log AM:

Step 3: Propagation of smallness. Let us observe that

kukL2. 1
32

BC/ � C6M:

and set

v WD u

C6M
;

by which we have

kvkL2. 1
32

BC/ � 1:

Hence, by the bounds in Steps 1 and 2 and propagation of smallness from
Lemma 3.2 we get

kvkL2. 1
64

BC/ � �ˇ ;

where � D e�c3N log A. Let us now select a ball B
�

p; 1
256

�

� 1
64

BC and observe
that by (6)

sup
B.p; 1

256
/

jvj � �ˇ ;

which implies

sup
B.p; 1

256 /

juj � e�c4ˇN log AM:
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Moreover, as 1
8
B � B

�

p; 1
2

�

, we have by definition supB.p; 1
2

/ juj � M . This
implies

supB.p; 1
2

/ juj
supB.p; 1

256
/ juj � ec4ˇN log A:

Finally, applying the doubling scaling Lemma 2.2 we have

supB.p; 1
2

/ juj
supB.p; 1

256
/ juj � .128/

zN=2;

where zN is the doubling index for B
�

p; 1
2

�

. Therefore,

zN � c5N log A � 2N;

where A is assumed to be sufficiently large. �

4. Counting Good/Bad cubes and application to nodal geometry

Using the results of Section 3, one can deduce the following result.

Theorem 4.1. There exist constants c > 0, an integer A depending on the

dimension d only and positive numbers N0 D N0.M; g/; r D r.M; g/ such that

for any cube Q 2 B.p; r/ the following holds:

If Q is partitioned into An equal sub-cubes qi , then

#
°

qi W N.qi / � max
�N.Q/

1 C c
; N0

�±

� An�1

2
:

The proof is combinatorial in nature and we refer to Theorem 5:1, [9] for
complete details. As an application of the previous theorem, we also have our
main theorem

Theorem 4.2. There exist positive numbers r0 D r0.M; g/; C D C.M; g/ and

˛ D ˛.n/ such that for any solution u of equation (1)) in a domain � satisfying

the conditions .2/–.4/, we have

H
n�1.¹u D 0º \ Q/ � C diamn�1.Q/N ˛.Q/;

where Q � B.p; r0/ is an arbitrary cube in �.

For details, we refer to Theorem 6.1, [9].
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5. Application to Steklov eigenfunctions

Our goal is to transform a solution �� to the Steklov problem (5) on a manifold
M into a solution u to equation (1) on some domain � � R

n.

5.1. Getting rid of the boundary. There exists a procedure (see [1, 20, 19]) to
transform M into a compact manifold without boundary, which we highlight here.
We first let d.x/ WD dist.x; @M/ be the distance between a point x 2 M and the
boundary. We then define

ı.x/ D
´

d.x/ x 2 M�;

l.x/ x 2 M n M�;

where � D �.M/ > 0 is such that d.x/ is smooth in a � neighborhood M� of @M

in M . We choose l 2 C 1.M n M�/ in such a way that makes ı smooth on M .
It now follows that

v.x/ WD e�ı.x/��.x/;

identifies with �� on M and satisfies a Neumann boundary condition. More
precisely, v solves

´

�gv C b.x/ � rgv C q.x/v D 0 in M;

@�v D 0 on @M;

where � D �rı is the unit outward normal and with
´

b.x/ D �2�rgı.x/;

q.x/ D �2jrı.x/j2 � ��gı.x/:

The fact that v satisfies a Neumann boundary condition now allows us to get rid
of the boundary by gluing to copies of M together along the boundary and extend
v in the natural way. Denote by xM D M [M the compact boundaryless manifold
obtained by doing so. We remark that the induced metric Ngij on xM is Lipschitz
on @M . Using the canonical isometric involution that interchanges the two copies
M of xM , we can then extend v; b and q to xM . Abusing notation and writing v for
the extension, we obtain that v satisfies the elliptic equation

� Ngv C Nb.x/ � r Ngv C Nq.x/v D 0

in xM and we have the following bounds
´

k NbkW 1;1.N / � C �;

k NqkW 1;1.N / � C �2:
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Fix a point O in xM . In local coordinates around O , we have

� Ngf D 1
p

j Ngj
@i .

p

j Ngj Ngij @j f /; .r Ngf /i D Ngij @j f:

where
p

j Ngj is the determinant of the extended metric tensor Ng. Since the extended
metric is Lipschitz and recalling the boundedness of Nb and Nq, it then follows that
v is a solution of equation (1) with L satisfying the conditions (2, 3, 4).

In order to get uniform control over the coefficients, we now work at wave-
length scale and consider the ball B.x0; 1=�/ � xM . We introduce

vx0;�.x/ WD v
�

x0 C x

�

�

;

for x 2 B.0; 1/. Then, vx0;� satisfies equation (1) where the coefficients .aij /; bi

and c are uniformly bounded in L1 by a constant not depending on �. Moreover,
the ellipticity constant of the .aij / does not change and the Lipschitz constant �

can only improve. It is clear that the family of vx0;� solves equation 1 and satisfies
the conditions .2/; .3/; .4/ without any dependence on �. In what follows, we will
thus be able to apply Theorem 4.2 uniformly on this family. For more details on
the above, we refer the reader to Section 3.2 of [1].

5.2. Upper bound for the nodal set

Remark 5.1. Many of the results we collect in this subsection work only within
a small enough scale r < r0. Since we work locally at wavelength scale r D 1

�
,

all those results hold for � big enough.

We now fix a point x0 in xM , let r0 D ��1 and choose normal coordinates
in a geodesic ball B Ng.x0; r0/. Without loss of generality, we assume r0 is smaller
than the injectivity radius of xM . For x; y in B Ng.x0; r0/, we respectively denote the
Euclidean and Riemannian distance by d.x; y/ and d Ng .x; y/. For � big enough,
we have

d Ng .x; y/ � 2d.x; y/ (11)

for any two distinct points x; y 2 B Ng.x0; r0/. By construction, the nodal sets of the
eigenfunction �� and its extension v coincide in M . Combining this observation
with equation (11) allows to compare the size of the corresponding nodal sets on
small balls. Indeed, for any r < r0=2, one has

H
n�1.Z��

\ B Ng.O; r// � H
n�1.Zv \ B.x; 2r//: (12)
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Denoting by Zvx0;�
the nodal set of vx0;�, we then remark that

H
n�1.Zv \ B.x; 2r// � �1�n

H
n�1.Zvx0;�

/:

Also, by Proposition 1 in [19], there exists c1 > 0 such that the doubling index
of Nx0;�.x; r/ of vx0;� on the ball B.x; r/ � B.0; 1/ satisfies

Nx0;�.x; r/ � c1�

for any r < r0. We choose r < r0=4 and let Q be the cube centered at origin and
of side length r so that the above now implies

Nx0;�.Q/ D sup
x2Q;r2.0;diam.Q//

Nx0;�..x; r/ � c1�:

Collecting all of the above, noticing that B.0; 2r/ � Q and using Theorem 4.2,
we finally get that

H
n�1.Z.��/ \ B Ng.x0; r// � �1�n

H
n�1.Zvx0;�

\ Q/

� c1.n/�1�nN ˛.Q/

� c2.n/�˛�nC1:

Covering M with � �n balls B.x0; r/ of radius r D 1
4�

finally yields

H
n�1.Z�/ � c�˛C1

and thus concludes the proof of Theorem 1.2.
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