
Ngesh, a tool for simulating random phylogenetic trees

 DOIDOI 10.5281/zenodo.261931110.5281/zenodo.2619311

ngesh is a Python library for simulating random phylogenetic trees and related data. It is
intended for benchmarking phylogenetic methods and for providing dummy trees during the
development or debugging of phylogenetic methods. The generation of random phylogenetic
trees also goes by the name of “simulation methods for phylogenetic trees” or just “simulating
phylogenetic trees”.

Please note that this is both a work in progress and a library intended to be simple, for complex
methods see the bibliography and the alternatives here listed

In detail, with ngesh:

• trees are returned either as strings in Newick representation or as Python’s ETE tree
objects

• trees will also have random branch-lengths, which you can remove if are only interested
in the topology

• trees can be generated from user-provided seeds, so that the random generation can be
reproduced across executions (while it cannot be guaranteed due to many technical
reasons, the execution should be reproducible also in different machines and different
version of Python)

• trees can be generated according to user-provided birth and death ratios (and the death
ratio can be set to zero, resulting in a birth-only tree)

• non-extant leaves can be pruned from birth-death trees
• speciation events default to two descendants, but the number of descendants can be

randomly drawn from a user-defined Poisson process (so that it is possible to model hard
politomies)

• trees can be limited in terms of number of extant leaves, evolution time (as related to the
birth and death parameters), or both

• nodes can optionally receive unique labels, either sequential ones (like “L01”, “L02”, and
“L03”), random human-readable names (like “Sume”, “Fekobir”, and “Tukok”), or
random biological names approximating the binomial nomenclature standard (like
“Sburas wioris”, “Zurbata ceglaces”, and “Spellis spusso”)

Installation

In any standard Python environment, ngesh can be installed with:

pip install ngesh

1

http://etetoolkit.org/

The pip installation will also fetch the dependencies ete3 and numpy, if necessary.

How to use

You can test your installation from the command line with the ngesh command, which will
return a different random small birth-death tree in Newick format each time it is called:

$ ngesh
(Saorus getes:1.31562,((Voces earas:1.07567,(Dallao spettus:0.703609,Sburas
wioris:0.703609)1:0.372063)1:0.464667,(Zurbaza ceglaces:0.527431,(Amduo
vizoris:0.345862,Uras wiurus:0.345862)1:0.18551)1:1.00897)1:2.1707);

$ ngesh
((Ollio zavis:0.698453,(Spectuo sicui:0.596731,((Ronis
mivulis:0.0431014,Vaporus conomattas:0.0431014)1:0.413634,Rizarus
urrus:0.456735)1:0.139996)1:0.101722)1:3.17827,(Deses mepus:2.22061,(Ovegpuves
wiumoras:1.88469,(Easas ecdebus:0.201891,Muggas
lupas:0.201891)1:1.6828)1:0.335918)1:1.65611);

More complex illustrations can also be executed from the command line. If you have PyQt5
installed (which is listed as a dependency), the following code will pop up the ETE Tree Viewer
on a random tree:

python3 -c "import ngesh ; ngesh.display_random_tree()"

2

Figure 1: random tree

The package is designed to be used a library. The main function is the gen_tree() function,
which will return an ETE tree object, which can be printed either in ASCII art or as a Newick
tree.

$ ipython3

In [1]: import ngesh

In [2]: tree = ngesh.gen_tree(1.0, 0.5, max_time=3.0, labels="human")

In [3]: print(tree)

 /-Gupe
 /-|
 /-| \-Ui
 | |
 /-| \-Otevze
 | |

3

 | | /-Tio
 | \-|
 /-| \-Giludi
 | |
 | | /-Kea
 | | /-|
 | | | \-Puke
 | \-|
 | | /-Feigat
 /-| | |
 | | \-| /-Magma
 | | | /-|
 | | \-| \-Hepti
--| | |
 | | \-Uhodu
 | |
 | \-Ramumi
 |
 \-Gibu

In [4]: print(tree.write())
((((((Gupe:0.221592,Ui:0.221592)1:0.274564,Otevze:0.130366)1:0.208385,
(Tio:0.114998,Giludi:0.102135)1:0.589543)1:0.979981,
((Kea:0.223773,Puke:0.901625)1:0.115261,(Feigat:0.944765,
((Magma:0.541031,Hepti:0.541031)1:0.120214,Uhodu:0.661245)1:0.28352)1:0.072120
7)1:0.667637)1:0.119319,Ramumi:1.24512)1:1.03792,Gibu:0.663448);

The full documentation for the gen_tree() function is available in its docstring (which can be
visualized with print(ngesh.gen_tree.__doc__) or directly in the source code. The most
important parameters are:

• birth, the birth rate (i.e., lambda)
• death, the death rate (i.e., mu)
• num_leaves and max_time, which are stopping parameters indicating the minimum

number of extant leaves or the maximum evolutionary time
• label, which indicates which kind of random labels should be given to the nodes (None,

"enum" for a simple enumeration, "human" for randomly generated names, and "bio" for
randomly generated specie names)

Other parameters allow to tweak the birth-process, allowing polytomies, prune the tree for
extinct lineages, and a seed for the random generator that guarantees reproducibility.

How to cite

If you use ngesh, please cite it as:

Tresoldi, Tiago (2019). Ngesh, a tool for simulating random phylogenetic trees. Version
0.1.1. Jena. Available at: https://github.com/tresoldi/ngesh

In BibTeX:

@misc{Tresoldi2019ngesh,

4

https://github.com/tresoldi/ngesh/blob/master/ngesh/random_tree.py

 author = {Tresoldi, Tiago},
 title = {Ngesh, a tool for simulating random phylogenetic trees. Version
0.1.2},
 howpublished = {\url{https://github.com/tresoldi/ngesh}},
 address = {Jena},
 year = {2019},
 doi = {10.5281/zenodo.2619311},
}

How does ngesh work?

For each tree, an event_rate is computed from the sum of the birth and death rates. At each
iteration, which takes place after an random expovariant time from the event_rate, one of the
extant nodes is selected for an “event”: either a birth or a death from the proportion of each rate.
All other extant leaves have their distances updated with the event time.

The random labels follow the expected methods for random text generation from a set of
patterns, taking care to generate names as universally readable (if not pronounceable) as
possible.

What does “ngesh” mean?

Technically it is just an unique name, but it was derived from one of the Sumerian words for
“tree”, ĝeš, albeit with an uncommon transcription. The name comes from the library once being
a module of a larger system for simulating language evolution and benchmarking related tools,
called Enki after the Sumerian god of (among many other things) language and mischief.

The intended pronounciation, as in the most accepted reconstructions, is /ŋe /. But don’t streesʃ
over it: it is just a unique name.

Alternatives

There are many tools for simulating phylogenetic processes in order to obtain random
phylogenetic trees. The most complete is probably the R package TreeSim by Tanja Stadler,
which includes many flexible tree simulation functions. In R, one can also use the rtree()
function from package ape and the birthdeath.tree() one from package geiger, as well as
manually randomizing taxon placement in cladograms.

In Python, some code similar to ngesh and which served as initial inspiration is provided by
Marc-Rolland Noutahi on the blog post How to simulate a phylogenetic tree ? (part 1).

A number of on-line tools are also available at the time of writing:

• T-Rex (Tree and reticulogram REConstruction at the Université du Québec à Montréal
(UQAM)

• Anvi’o Server can be used on-line as a wrapper to T-Rex above
• phyloT, which by randomly sampling taxonomic names, identifiers or protein accessions

can be used for the same purpose

5

https://phylot.biobyte.de/
https://anvi-server.org/meren/random_phylogenetic_tree_w500_nodes
http://www.trex.uqam.ca/index.php?action=randomtreegenerator&project=trex
https://mrnoutahi.com/2017/12/05/How-to-simulate-a-tree/
https://CRAN.R-project.org/package=TreeSim
https://en.wikipedia.org/wiki/Enki
http://psd.museum.upenn.edu/epsd/epsd/e2052.html

TODO

• Add stoping criterion of total number of nodes (in complement to the number of extant
nodes currently available)

• Rewrite the random label generators into actual Python generators
• Better implementation of the scientific name generator, exporting the function and

guaranteeing there are no duplicates
• Import the text generators from Enki or similar methods
• Consider replacing expovariate with an actual random Poisson sampling, or allow

multiple models
• Build a simple website and link to automatically generated documentation

Gallery

6

7

References

• Bailey, N. T. J. (1964). The elements of stochastic processes with applications to the
natural sciences. John Wiley & Sons.

• Foote, M., J. P. Hunter, C. M. Janis, and J. J. Sepkoski Jr. (1999). Evolutionary and
preservational constraints on origins of biologic groups: Divergence times of eutherian
mammals. Science 283:1310–1314.

• Harmon, Luke J (2019). Phylogenetic Comparative Methods – learning from trees.
Available at: https://lukejharmon.github.io/pcm/chapter10_birthdeath/. Access date:
2019-03-31.

• Noutahi, Marc-Rolland (2017). How to simulate a phylogenetic tree? (part 1). Available
at: https://mrnoutahi.com/2017/12/05/How-to-simulate-a-tree/. Access date: 2019-03-31

• Stadler, Tanja (2011). Simulating Trees with a Fixed Number of Extant Species.
Systematic Biology 60.5:676-684. DOI: https://doi.org/10.1093/sysbio/syr029

8

https://doi.org/10.1093/sysbio/syr029
https://mrnoutahi.com/2017/12/05/How-to-simulate-a-tree/
https://lukejharmon.github.io/pcm/chapter10_birthdeath/

Author

Tiago Tresoldi (tresoldi@shh.mpg.de)

The author was supported during development by the ERC Grant #715618 for the project CALC
(Computer-Assisted Language Comparison: Reconciling Computational and Classical
Approaches in Historical Linguistics), led by Johann-Mattis List

9

http://www.lingulist.de/
http://calc.digling.org/
https://cordis.europa.eu/project/rcn/206320/factsheet/en

	Ngesh, a tool for simulating random phylogenetic trees
	Installation
	How to use
	How to cite
	How does ngesh work?
	What does “ngesh” mean?
	Alternatives
	TODO
	Gallery
	References
	Author

