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Abstract

W Perceiving speech requires the integration of different
speech cues, that is, formants. When the speech signal is split
so that different cues are presented to the right and left ear
(dichotic listening), comprehension requires the integration
of binaural information. Based on prior electrophysiological
evidence, we hypothesized that the integration of dichotically
presented speech cues is enabled by interhemispheric phase
synchronization between primary and secondary auditory cor-
tex in the gamma frequency band. We tested this hypothesis
by applying transcranial alternating current stimulation (TACS)
bilaterally above the superior temporal lobe to induce or

INTRODUCTION

Our ability to discriminate and assign meaning to speech
sounds relies on the identification and integration of
spectrotemporal cues carried by the acoustic speech
signal. A common approach to study the mechanisms
underlying speech cue integration is to present distinct
cues to different ears (dichotic listening) and to investi-
gate the conditions under which they give rise to the sub-
jective experience of an integrated unified speech sound
(Preisig & Sjerps, 2019; Mathiak, Hertrich, Lutzenberger,
& Ackermann, 2001; Liberman & Mattingly, 1989; Rand,
1974). Although the auditory nerve projects from each
ear to both cerebral hemispheres, processing of acoustic
input is initially dominant in the neural pathway, includ-
ing the auditory cortex that is “contralateral” to the ear of
presentation (Pollmann, Maertens, von Cramon, Lepsien,
& Hugdahl, 2002; Sparks & Geschwind, 1968; Kimura,
1967); for reviews, see (Hugdahl & Westerhausen, 2016;
Westerhausen & Hugdahl, 2008). Therefore, the unifica-
tion of the binaurally presented speech cues requires in-
terhemispheric integration, that is, the grouping and
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disrupt interhemispheric gamma-phase coupling. In contrast
to initial predictions, we found that gamma TACS applied in-
phase above the two hemispheres (interhemispheric lag 0%)
perturbs interhemispheric integration of speech cues, possibly
because the applied stimulation perturbs an inherent phase lag
between the left and right auditory cortex. We also observed
this disruptive effect when applying antiphasic delta TACS (in-
terhemispheric lag 180°). We conclude that interhemispheric
phase coupling plays a functional role in interhemispheric
speech integration. The direction of this effect may depend
on the stimulation frequency. Il

fusion of cues that are initially processed by different cere-
bral hemispheres. Moreover, processing of speech and
language, for example, phoneme recognition, is dominant
in the left hemisphere (Mesgarani, Cheung, Johnson, &
Chang, 2014; Giraud & Poeppel, 2012; Chang et al., 2010;
Obleser, Zimmermann, Van Meter, & Rauschecker, 2007,
Jancke, 2002; Zatorre & Belin, 2001). Thus, the integration
of binaurally presented speech cues may require interhemi-
spheric transfer of information from the right to the left
auditory cortex via the corpus callosum, as described in
the so-called callosal relay model (Steinmann et al., 2014,
2018; Bayazit, Oniz, Hahn, Guntirkiin, & Ozgoren, 2009;
Westerhausen, Griiner, Specht, & Hugdahl, 2009; Jincke,
2002).

The interhemispheric transfer and integration of sen-
sory information has been suggested to be facilitated
through phase synchronization between neural oscilla-
tions in the two hemispheres (Fell & Axmacher, 2011;
Fries, 2005). Hence, interhemispheric phase synchroni-
zation may play a crucial role for the integration of dichotic
speech cues. In support of this idea, Steinmann et al.
(2014) have shown modulation of interhemispheric gamma
(30-100 Hz) phase synchronization during dichotic speech
listening. More precisely, increased gamma functional con-
nectivity was observed in a condition requiring transfer of
speech cues for phoneme recognition, and this connectivity
was directed from the right to the left secondary auditory
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cortex (Steinmann et al., 2018). Thus, interhemispheric
phase synchronization in the gamma band in the posterior
superior temporal cortex plays a role in the interhemi-
spheric integration of speech.

It is still unclear whether this synchronization contrib-
utes functionally to speech integration or merely results
from it (Zaehle, Lenz, Ohl, & Herrmann, 2010). More-
over, it is unclear whether its role is limited to oscillations
in the gamma range. Besides their role in interhemi-
spheric integration of speech, cortical oscillations in the
lower gamma range (25-40 Hz) are also important for
the processing of phonetic information such as formant
transitions or voicing (Rufener, Oechslin, Zaehle, &
Meyer, 2016; Giraud & Poeppel, 2012; Shamir, Ghitza,
Epstein, & Kopell, 2009; Poeppel, 2003). Slower oscilla-
tions in the delta and theta (~1-8 Hz) band overlap with
intelligibility-relevant temporal fluctuations in the acous-
tic speech signal and may contribute functionally to the
processing of syllabic information during diotic speech
perception (Riecke, Formisano, Sorger, Baskent, &
Gaudrain, 2018; Zoefel, Archer-Boyd, & Davis, 2018;
Keitel, Ince, Gross, & Kayser, 2017; Rimmele, Zion
Golumbic, Schroger, & Poeppel, 2015; Gross et al., 2013;
Luo & Poeppel, 2007; for a comprehensive review, see
Kosem & Wassenhove, 2017). Thus, these slow oscillations
may contribute to diotic speech perception, but there
exists no evidence to suggest that they play a role in
interhemispheric integration.

In this study, we investigated the mechanisms under-
lying dichotic speech cue integration. We tested the hy-
pothesis that interhemispheric phase synchronization
plays a functional role in interhemispheric speech inte-
gration. We experimentally manipulated interhemispheric
phase synchronization by applying transcranial alternating
current stimulation (TACS) simultaneously above the audi-
tory cortex in the lateral superior temporal lobe of each
hemisphere. To functionally couple the two regions, we
fixed the phase of TACS across the two stimulation sites
(in-phase condition). Conversely, to functionally decouple
the two regions, we reversed the phase of TACS at one
site (anti-phase condition; Preisig, Sjerps, Kosem, &
Riecke, 2019; Saturnino, Madsen, Siebner, & Thielscher,
2017). This approach has already been successfully
applied to modulate bistable perception in the visual do-
main (Helfrich et al., 2014). To test for a specific role of
gamma oscillations for interhemispheric speech sound
integration, we applied TACS at 40 Hz (gamma condi-
tion). Furthermore, we included 3.125-Hz TACS (delta
condition) and sham stimulation as control conditions
to enable establishing frequency specificity of the puta-
tive effect of gamma TACS on interhemispheric speech
integration.

Interhemispheric speech integration was assessed
using a dichotic listening task. An ambiguous speech
sound (“base,” perceptually intermediate between the
syllables /ga/ and /da/) was presented to the participants’
right ear and a disambiguating acoustic cue (“chirp,”

which was either a low or high third formant, F3) to their
left ear. Interhemispheric integration of the base and the
chirp is reflected by an increased number of /ga/ reports
in the low-F3 condition and an increased number of /da/
reports in the high-F3 condition (Preisig & Sjerps, 2019).

We predicted that interhemispheric phase synchroni-
zation (in-phase condition) would significantly increase
interhemispheric speech integration, as reflected by an
increased number of /ga/ reports in the low-F3 condition
and an increased number of /da/ reports in the high-F3
condition, compared with interhemispheric phase de-
synchronization (anti-phase condition). Furthermore,
we predicted that functional coupling of bilateral auditory
cortices in the gamma, but not delta frequency band,
would strengthen interhemispheric speech integration,
compared with sham stimulation.

METHODS
Participants

Thirty-six right-handed volunteers (M = 22.56 years, SD =
2.93; 14 men) participated in the study. All participants
had normal or corrected-to-normal visual acuity. The par-
ticipants reported no history of neurological, psychiatric,
or hearing disorders, and all had normal hearing (hearing
thresholds of less than 25 dB HL at 250, 500, 750, 1000,
1500, 3000, and 4000 Hz, tested on both ears separately
using pure tone audiometry) and no threshold difference
between the left and the right ear larger than 5 dB for any
of the tested frequencies. All participants gave written in-
formed consent before the experiment. Ethical approval to
conduct this study was provided by the local ethics com-
mittee (CMO region Arnhem-Nijmegen). This study was
conducted in accordance with the principles of the latest
version of the Declaration of Helsinki.

Electric Stimulation

Electric currents were applied through two high-density elec-
trode configurations, each consisting of concentric rubber
electrodes: a central circular electrode (radius = 1.25 cm)
and a surrounding ring electrode (inner radius = 3.5 cm,
outer radius = 4.8 cm). Each electrode configuration was
connected to a separate battery-driven transcranial current
stimulator (Neuroconn, Ilmenau, Germany), similar to pre-
vious two-channel approaches (Ten Oever et al., 2016;
Riecke, Formisano, Herrmann, & Sack, 2015). The elec-
trode configurations were centered according to the inter-
national 10-20 system over CP5 (above the left cerebral
hemisphere) and CP6 (above the right cerebral hemi-
sphere; see Figure 1). These scalp locations were chosen
to produce relatively strong currents in the target regions
over the auditory speech areas (i.e., left and right lateral
superior temporal lobe), as suggested by prior electric field
simulations on a standard head model using the simnibs
toolbox (Thielscher, Antunes, & Saturnino, 2015).

Preisig et al. 1243



Figure 1. Dual-site high-density
TACS setup. Left: The electrode
configurations were centered
according to the international
10-20 system over CP5 (above
the left cerebral hemisphere)
and CP6 (above the right
cerebral hemisphere). Right:
The interhemispheric phase
synchrony was manipulated
using in-phase TACS (0° phase
lag between stimulation sites,
dotted line) and anti-phase
(180° phase lag, dotted line)
TACS. The colors represent the
polarity (positive = red;
negative = blue) of the current
for the time stamp highlighted
by the dotted line. RH = right
hemisphere; LH = left
hemisphere. ®
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TACS was applied at a frequency in the low gamma
band (40 Hz) or in the delta band (3.125 Hz), the latter
matched the timescale of the syllabic envelope, that is,
the duration of the syllable matched the length of a half
cycle of the delta TACS. Before starting the actual exper-
iment, we ensured that all participants tolerated the
TACS well. TACS intensity was adjusted individually to
the point for which the participant reported feeling com-
fortable or uncertain about the presence of the current
(1.4 = 0.1 mA peak-to-peak, mean * SD across par-
ticipants). Impedance was kept below 10 kQ. The average
current density was 0.2 mA/cm” at the center electrode
and 0.06 mA/cm? at the concentric ring electrode. Stim-
ulation was ramped over the first and the last 10 sec of
each experimental block using raised cosine ramps.

The timing of the electric and auditory stimuli was con-
trolled using a multichannel D/A converter (National
Instruments, sampling rate: 11 kHz) and Datastreamer
software (Ten Oever et al., 2016). Visual stimulation and
response recording were controlled using Presentation
software (Version 18.0, Neurobehavioral Systems, Inc.,
Berkeley, CA).

Behavioral Pretest

Interhemispheric speech sound integration was assessed
by simultaneously presenting an ambiguous base and a
disambiguating chirp (F3) to the right and left ear,
respectively. The chirp supported either a /da/ (high F3
~ 2.9 kHz) or a /ga/ (low F3 ~ 2.5 kHz) interpretation of
the ambiguous base. Because perceptual category bound-
aries may vary across individuals, a pretest was used to
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define participant-specific ambiguous base stimuli for the
main experiment. The pretest included the presentation
of nine stimuli of the /da/~/ga/ continuum, each 16 times,
in random order. To make this pretest most similar to the
main experiment, syllables of the /da/~/ga/ continuum
were presented to the right ear, and a single F3 chirp
(identical to the F3 component in the ambiguous base
stimulus) to the left ear. Subjective category boundaries
were estimated by assessing individual psychometric
curves and identifying the point at which participants re-
ported perceiving the stimulus as /da/ or /ga/ in ~50% of
the trials. The stimulus associated with this individual
category boundary was then used as the base stimulus
for the subsequent main experiment (Preisig & Sjerps,
2019). Further detail concerning stimulus creation is re-
ported in a previous publication using the same materials
(Preisig & Sjerps, 2019).

Experimental Design and Task

The experiment included four stimulation conditions and
sham stimulation. Electric stimulation was applied at one
of the two frequencies, 40 Hz and 3.125 Hz. Each of these
frequency conditions was presented in two interhemi-
spheric phase synchronization conditions: (A) “In-phase
stimulation” was applied with a phase lag of 0° between
the central electrodes placed over the left and the right
auditory speech areas (i.e., bilateral superior temporal
lobe) to induce interhemispheric synchronization. (B)
“Anti-phase stimulation” was applied with a relative phase
lag of 180° to induce interhemispheric desynchronization
(Preisig et al., 2019; Saturnino et al., 2017; see Figure 1).
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During “sham stimulation” (placebo), the onset ramp was
followed immediately by an offset ramp, that is, no elec-
tric stimulation was applied during the actual experiment.
The ramp was repeated at the end of the block.

The experiment consisted of 10 experimental blocks.
Each block consisted of 48 trials containing the ambigu-
ous base stimulus (for which the F3 frequency was set at
the participant-specific subjective category boundary
value that was obtained in the pretest) and 12 trials con-
taining unambiguous base stimuli (which contained an
F3 component that supported a clear /da/ interpretation
[~2.9 kHz] or a /ga/ interpretation [~2.5 kHz]) presented
to the right ear. The ambiguous base stimulus was paired
with a disambiguating F3 chirp presented to the left ear
(24 trials with the high F3 chirp and 24 trials with the low
F3 chirp). In the unambiguous stimuli, a chirp with the
same F3 frequency as the base was presented to the left
ear. Unambiguous stimuli did not require interhemispheric
integration for disambiguation because participants could
readily identify these stimuli based on monaural input
alone, that is, the unambiguous base stimulus presented
to the right ear. The first half of the experiment included
five blocks of trials: gamma in-phase TACS, gamma anti-
phase TACS, delta in-phase TACS, delta anti-phase TACS,
and sham. The order of the first five experimental blocks
was reversed in the second half of the experiment. The or-
der of all blocks was pseudorandomized, such that blocks
of the same TACS frequency followed upon each other and
counterbalanced across participants. This pseudorandomi-
zation scheme was used to account for potential cross-
frequency carryover effects (Vossen, Gross, & Thut, 2015).

After each block, participants were asked to rate the
subjective strength of any sensations induced by the
stimulation on a visual analogue scale from 0 cm (no
subjective sensations) to 10 cm (strong subjective sen-
sations). Although sensation ratings were relatively low
in all conditions, TACS blocks (M = 2.64, SD = 1.38)

were rated significantly higher than sham blocks (M =
1.77, SD = 1.46), t(25) = 3.11, p < .01. However, even
though participants rated TACS and sham blocks dif-
ferently (Turi et al., 2019; Zoefel, Allard, Anil, & Davis,
2020), this unlikely influenced our main results, as we
found no association between sensation ratings and be-
havioral performance, Pearson’s R(128) = —0.14, p =
.10, across stimulation conditions.

The auditory stimuli were presented with an ISI of on
average 3.5 sec. The exact ISI was set so that the syllable
onset occurred at one of six predefined, equidistant
TACS phases (TACS/syllable onset lag: 30°, 90°, 150°,
210°, 270°, 330°). This allowed compensating for indi-
vidual differences in the optimal relative TACS syllable
timing (Zoefel, Davis, Valente, & Riecke, 2019; Riecke
et al., 2018; Riecke, Formisano, et al., 2015; Riecke, Sack,
& Schroeder, 2015), with the aim to improve the detect-
ability of putative stimulation effects in the group-level
analysis. In this study, we did not observe any effect of
TACS/syllable onset lag (Figure 2). Thus, the behavioral
data were pooled across the six TACS/syllable onset lags
for each stimulation condition. Every stimulus was pre-
ceded by a fixation cross presented 600 msec before
auditory stimulus onset. At 1450 msec after the fixation
cross onset, the response options /ga/ and /da/ were pre-
sented (one above and one below the fixation cross,
falling within a visual angle of 9.43°). The participants
indicated their response by pressing the corresponding
response button with their left index finger." Participants
were instructed to perform as accurately and as fast as
possible. The position (up vs. down) of the response
options was counterbalanced across participants.

Data Analysis

In a first step, we assessed the reliability of the categorical
judgments of individual participants on unambiguous
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Figure 2. The phase angle histograms show the distribution of the participants’ best TACS/syllable onset lag in the stimulation condition labeled
above each histogram (in-phase 40 Hz, anti-phase 40 Hz; sham, in-phase 3.125 Hz, anti-phase 3.125 Hz). The optimal timing of TACS and the
syllable presentation, that is, average best lag was 87° = 12° (mean = SEM) across participants. The distribution of the participants’ best lag pooled
across TACS stimulation condition (in-phase 40 Hz, anti-phase 40 Hz; sham, in-phase 3.125 Hz, anti-phase 3.125 Hz) did not deviate significantly
from uniformity (Rayleigh test for nonuniformity of circular data, z = 1.733, p = .177), suggesting that the best lag varied substantially across
participants. Moreover, the best lags observed in the different stimulation conditions were observed to be uncorrelated ( ps >.08), indicating that
participants’ best lag varied across stimulation conditions. To compensate for these individual differences in optimal relative TACS syllable timing,
the best lag was aligned across participants, and the remaining phase bins were phase wrapped, separately for each participant and stimulation
condition (for details, see Experimental Design and Task section). Initial analysis of the aligned data for an effect of TACS/syllable onset lag revealed
no significant result; therefore, the six TACS/syllable onset lags were pooled in all subsequent analyses.

Preisig et al. 1245



endpoint trials (base and chirp stimuli with the same F3  ps > .19): Linear mixed-effect models were used to ana-
endpoint, supporting the interpretation of /ga/ or /da/) lyze categorical responses, and repeated-measures
collected during the sham blocks. Hence, for each particc ~ ANOVAs were used to test for a stimulation effect, inter-
ipant, we tested with a chi-square test whether the pro- hemispheric phase effect, frequency effect, and interac-
portion of /ga/ responses differed between /ga/ and /da/  tions. Post hoc comparisons were conducted using
endpoint stimuli. Based on this criterion, the data of four  paired ¢ tests and false discovery rate (FDR) corrections
participants were excluded from further analyses because ~ for multiple comparisons were applied (Benjamini &
their classification accuracy did not significantly exceed =~ Hochberg, 1995).

chance level. One additional participant was excluded
because of a technical error during the experiment.

Thus, the final data set included data from 31 participants RESULTS

M = 22.63 years, SD = 3.20, 12 men). The average classification accuracy (%) including unambig-
Two dependent variables were analyzed: the categori-  uous stimuli (extreme points from the /ga/~/da/ continuum)

cal response on each individual trial (0 = /da/; 1 = /ga/) during sham blocks was high (M = 90.59, SD = 8.74). For

and the proportion of responses consistent with the pre- trials that required interhemispheric integration, par-

sented F3 chirp (i.e., those in which interhemispheric in- ticipants integrated the information from the F3 chirp on

tegration occurred), per condition. These variables were average on 73.4 = 9.7% (mean = SEM) of the trials that
computed based on participants’ responses to the stimuli ~ included an ambiguous base stimulus. First, we tested
requiring interhemispheric integration, that is, the stim-  whether participants’ responses to ambiguous base stimuli
uli composed of an ambiguous base and a disambi-  were influenced by the frequency of the disambiguating F3
guating F3 chirp. For each stimulation condition, the chirp presented to the contralateral ear. For this analysis,
proportion of integrated trials was calculated per TACS/  we only included sham blocks. We observed that partici-
syllable onset lag, which were concatenated to build a  pants gave on average 34.12 + 10.08% (mean = SEM)
behavioral time series. To compensate for individual dif-  /ga/ responses to ambiguous bases combined with the high
ferences (Figure 2), the maximum (best lag) of the time (~2.9 kHz) F3 chirp and 80.92 = 9.14% (mean = SEM) /ga/
series was subsequently aligned across individuals. responses to ambiguous bases combined with the low
Because we did not observe any effect of TACS/syllable (~2.5 kHz) F3 chirp. To confirm that the chirp F3 frequency
onset lag, the behavioral time series were pooled across  influenced participants’ response (0 = /da/; 1 = /ga/ re-
the six TACS/syllable onset lags for each stimulation con-  sponse), a logistic linear mixed-effect model with the fixed
dition. Statistical analyses were conducted in R (Version  factor “chirp type” (levels: high F3 = —1; low F3 = 1), and
3.3.3) using parametric tests (normality assumption was by-participant random intercepts and slopes were fitted to
fulfilled, the dependent variable in each of our conditions the data. The analysis revealed a main effect of chirp type
was normally distributed, Shapiro-Wilk test of normality, (B = 2.733,z = 13.052, p < .001). This result indicates that
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Figure 3. (A) The proportion of /ga/ responses (mean * SEM) as a function of chirp type (high F3, low F3) in the sham condition. (B) Participants’
average performance (mean *+ SEM across participants) is shown for each stimulation condition relative to sham (gray reference line, shaded
area represents SEM across participants). Dots represent the data points of single participants.
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interhemispheric speech integration occurred (i.e., the
participants integrated the chirp and the contralateral
ambiguous base) during the sham blocks as we expected
(Figure 3A).

Figure 3B shows participants’ average performance for
each stimulation condition and the sham condition. In the
stimulation conditions, overall performance ranged on
average between 71.75% and 73.98%, whereas in the sham
condition, it was significantly better (76.16%; average dif-
ference: 3.46%), t(30) = 2.89, p = .007, d = 0.37. To test
whether the strength of this general stimulation effect
depended on the frequency or phase synchrony of the
TACS, a two-way repeated-measures ANOVA, including
the within-subject factors Stimulation Frequency (40 Hz,
3.125 Hz) and Interhemispheric Phase Synchronization
(in-phase, anti-phase) was conducted for the dependent
variable difference in interhemispheric integration of the
chirp as compared with sham stimulation. Delta values be-
tween the performance in each stimulation condition and
the sham condition were included in the analysis. Contrary
to our predictions, this analysis revealed no significant
interaction Stimulation Frequency X Interhemispheric
Phase Synchronization, F(1, 30) = 2.59, p = .12, v, =
.01, or main effects of Stimulation Frequency, F(1, 30) =
0.12, p = .73, nf) = .0004, or Interhemispheric Phase
Synchronization, F(1, 30) = 0.20, p = .66, nf) = .0008.
The lack of a main effect of Interhemispheric Phase
Synchronization implies no significant difference between
in-phase versus anti-phase stimulation.

To identify the specific TACS conditions under which the
stimulation effect occurred, a one-way repeated-measures
ANOVA, including the within-subject factors Stimulation
Condition (sham, in-phase 40 Hz, anti-phase 40 Hz, in-phase
3.125 Hz, anti-phase 3.125 Hz) was conducted for the de-
pendent variable the proportion of integrated trials. This
analysis revealed a significant main effect of Stimulation
Condition, F(4, 120) = 2.99, p = .02, > = .02. Pairwise
comparisons revealed significantly reduced performance in
the in-phase 40-Hz condition, #(30) = —2.78, p = .049, FDR-
corrected, d = —0.37, and anti-phase 3.125-Hz condition,
1(30) = —2.76, p = .049, FDR-corrected, d = —0.40, com-
pared with sham stimulation, but not in the anti-phase
40-Hz condition, #(30) = —1.44, p = .32, FDR-corrected,
d = —0.22, or in-phase 3.125-Hz condition, #(30) =
—2.16, p = .13, FDR-corrected, d = —0.29. These results
indicate that the bihemispheric TACS modulated inter-
hemispheric speech integration.

DISCUSSION

In this study, we tested the hypothesis that interhemi-
spheric phase synchronization facilitates interhemispheric
speech integration. To test this, we applied TACS simulta-
neously above listeners’ left and right auditory speech
areas (either in-phase or anti-phase) to synchronize or de-
synchronize the two areas and measured the effect on

interhemispheric speech integration. Based on previous
evidence from electrophysiological studies (Steinmann
et al., 2014, 2018), interhemispheric integration of speech
might be causally related to phase synchronization of bilat-
eral auditory speech areas in the gamma frequency band.
No such effect has been reported for the delta frequency
band. Thus, we predicted that functional coupling of bilat-
eral auditory speech areas in the gamma, but probably not
in delta frequency band, would strengthen interhemi-
spheric speech integration, compared with functionally
decoupling them.

Our results show a reduction of interhemispheric in-
tegration under gamma TACS compared with sham stim-
ulation. This reduction was significant when gamma TACS
was applied in-phase above the two cerebral hemispheres.
We also observed a significant reduction when anti-phase
delta TACS was applied. We found no significant difference
between in-phase compared with anti-phase conditions for
either gamma or delta TACS. Although we found a general
reduction of performance during TACS versus sham stimu-
lation, we observed no main effect or interaction in an over-
all ANOVA comparing these reductions across the different
TACS conditions. However, the observed pattern of signif-
icant (in-phase gamma TACS, anti-phase delta TACS) and
nonsignificant (anti-phase gamma TACS, in-phase delta
TACS) changes in speech perception relative to sham stim-
ulation strongly suggests that TACS modulated interhemi-
spheric speech cue integration.

Contrary to our prediction, in-phase, not anti-phase,
gamma TACS perturbed interhemispheric speech cue in-
tegration. This finding implies that full interhemispheric
phase synchronization (0° difference) at 40 Hz is not ben-
eficial for interhemispheric speech cue integration. This
observation could be related to interindividual differences
in interhemispheric auditory transfer times (Henshall
et al., 2012). Strongest interhemispheric integration may
occur when gamma phase in the two hemispheres differs
in a manner commensurate with individual auditory trans-
fer times. This notion is supported by findings showing
that the auditory event-related N100 to dichotically pre-
sented syllables occurs at a different latency over the right
versus the left auditory cortex (Eichele, Nordby, Rimol, &
Hugdahl, 2005). The reported lag is on average 15 msec,
which closely matches with the half cycle duration of our
gamma TACS (12.5 msec). In line with this, a recent study
found that anti-phase TACS applied at 40 Hz does not
affect response laterality during dichotic listening (Meier
et al., 2019). Critically, the authors could show in a
follow-up analysis that, only in participants with intrinsic
gamma phase asymmetries closer to 0°, anti-phase gamma
TACS led to a reduction of interhemispheric integration,
that is, a shift in response laterality to right ear. These re-
sults corresponds well with our finding that anti-phase
gamma TACS, which imposes an interhemispheric lag
of 12.5 msec, may not perturb speech cue integration.
Our current experimental design does not allow further
testing this idea; this may be done in future studies that
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parametrically manipulate interhemispheric phase asyn-
chrony in multiple steps across the gamma cycle.

Other studies have reported that bilateral 40-Hz TACS
perturbs phonemic processing, decreasing discrimina-
bility of syllables with different VOTs in young adults
(Rufener, Zaehle, Oechslin, & Meyer, 2016) but increas-
ing it in older adults (Rufener, Oechslin, et al., 2016) and
in dyslexic individuals (Rufener, Krauel, Meyer, Heinze,
& Zaehle, 2019). Therefore, we cannot rule out that our
gamma TACS also affected local phoneme processing.
We positioned our electrodes so as to stimulate espe-
cially cortical speech areas in the lateral superior tempo-
ral lobe; therefore, we believe that the observed effect
originates from these areas. We cannot exclude that
other regions were stimulated by spreading current and
also contributed to the effect as our design did not in-
clude control regions. In addition to that, gamma TACS
might have affected deployment of attentional resources,
considering that unilateral 40-Hz TACS may affect perfor-
mance on dichotic working memory tasks (Wostmann,
Vosskuhl, Obleser, & Herrmann, 2018).

Surprisingly, our results suggest that not only gamma-
phase coupling but also delta-phase coupling plays a role
for interhemispheric speech cue integration. Our observa-
tion that anti-phase delta TACS perturbed behavioral per-
formance suggests that this type of stimulation disrupts
cross-lateral transfer of speech cues as well. Previous stud-
ies using dichotic stimulus presentation did not report
phase coupling in this frequency band (Steinmann et al.,
2014, 2018). Therefore, we speculate that anti-phase TACS
may have caused a difference in neural excitability be-
tween hemispheres during the processing of the binaural
input: When the current was positive over one site, it was
negative over the contralateral site, and vice versa. This
may have been particularly relevant for the delta TACS
condition, in which the applied current matched the
syllabic envelope. Increased neural excitability in one
hemisphere and decreased excitability in the other may
have resulted in an interhemispheric difference in the ef-
fectiveness with which the dichotic syllabic components
(chirp or ambiguous base) were processed. Indeed, trans-
cranial direct current stimulation has been shown to have
polarity-specific effects on temporal and spectral pro-
cessing of auditory input (Heimrath, Kuehne, Heinze, &
Zaehle, 2014; Schaal, Williamson, & Banissy, 2013; Zaehle,
Beretta, Jincke, Herrmann, & Sandmann, 2011; Vines,
Schnider, & Schlaug, 2006).

An important additional consideration is that anti-
phase delta TACS may disrupt interhemispheric cross-
frequency dynamics between delta and gamma oscillations
during speech perception (Giraud & Poeppel, 2012).
Coupling of these frequency bands could be of particular
relevance for interhemispheric integration, because re-
gions in the left and right auditory cortex may be differ-
ently tuned with respect to these frequency bands, with
a relative leftward dominance of low-gamma neural oscil-
lations and/or rightward dominance of slow frequency
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oscillations (Flinker, Doyle, Mehta, Devinsky, & Poeppel,
2019; Bouton et al., 2018; Giraud & Poeppel, 2012;
Saoud et al., 2012; Poeppel, 2003). In addition to this,
there is support that right hemispheric auditory process-
ing may be tuned for spectral information (Preisig &
Sjerps, 2019; Bouton et al., 2018) and left hemispheric
auditory processing may be tuned for temporal informa-
tion (Flinker et al., 2019; Saoud et al., 2012)—a theoretical
framework originally formulated in the asymmetric sam-
pling theory (Poeppel, 2003; for a similar framework,
see Zatorre & Belin, 2001). In a previous study, we found
that the laterality of initial chirp sound processing, that is,
the ear of presentation, did not influence participants’
perceptual decisions (Preisig & Sjerps, 2019). However,
stimulus laterality influenced the processing speed of
integration. Thus, we cannot rule out that the ear of
presentation contributes to the observed TACS effect.
Our current experimental design does not allow further
testing this idea; this may be done in future studies apply-
ing interhemispheric cross-frequency delta—gamma TACS
stimulation presenting the chirp to the left and the right
ear, respectively.

In summary, our results indicate that both gamma and
delta TACS affect interhemispheric speech integration,
but in different ways. The induced perturbations imply
that interhemispheric phase coupling plays a functional
role in interhemispheric speech integration.
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Note

1. To activate the right motor cortex, in line with a related on-
going neuroimaging study examining speech processing in the
left cerebral hemisphere.
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