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Summary
In this paper, we discuss a novel model reduction framework for linear struc-
tured dynamical systems. The transfer functions of these systems are assumed
to have a special structure, for example, coming from second-order linear sys-
tems or time-delay systems, and they may also have parameter dependencies.
Firstly, we investigate the connection between classic interpolation-based model
reduction methods with the reachability and observability subspaces of linear
structured parametric systems. We show that if enough interpolation points are
taken, the projection matrices of interpolation-based model reduction encode
these subspaces. Consequently, we are able to identify the dominant reachable
and observable subspaces of the underlying system. Based on this, we pro-
pose a new model reduction algorithm combining these features and leading
to reduced-order systems. Furthermore, we discuss computational aspects of
the approach and its applicability to a large-scale setting. We illustrate the effi-
ciency of the proposed approach with several numerical large-scale benchmark
examples.
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1 INTRODUCTION

In this paper, we consider linear structured parametric systems, having transfer functions of the form:

H(s, p) = (s, p)(s, p)−1
(s, p), (1)

where

(s, p) =
k∑

i=1
𝛾i(s, p)Ci, (s, p) =

l∑

i=1
𝜅i(s, p)Ai, (s, p) =

q∑

i=1
𝛽i(s, p)Bi, (2)

in which Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rp×n are constant matrices, s takes values in C, and p =
[
p(1), … , p(d)

]
∈ Ωd are

the system parameters. 𝜅i(s, p), 𝛽i(s, p) and 𝛾i(s, p) are functions of s ∈ C and p ∈ Ωd. Additionally, the restrictions
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𝜅i(⋅, p), 𝛽i(⋅, p) and 𝛾i(⋅, p) are assumed to be meromorphic functions. The assumption of meromorphic coefficients will
be used to ensure that (1) is well-defined, that is, that the inverse(s, p)−1 exists almost everywhere (in the sense that the
set of poles of K(s,p) forms a set of Lebesgue measure zero). The system (1) covers a large class of linear systems, arising
in various science and engineering applications, for example, classical linear systems, second-order systems, time-delay
systems, integro-differential systems, and their parameter-dependent variants.

In order to illustrate the class of systems (1), we consider a dynamical system arising in computational
electro-magnetics presented in Reference 1. A discretized system can be obtained by the spatial discretization of the elec-
tromagnetic field equations, describing the electro-dynamical behavior of microwave devices when the surface losses are
included in the physical model. The transfer function of the system has a very particular structure; precisely, it has a
fractional integrator and takes the form:

H(s) =
√

sB⊤

(
s2I − 1√

s
D +A

)−1√
sB. (3)

If the above equation is compared with the form given in Equation (1) for a fixed parameter, then the matrices (s),(s)
and (s) can be given by

(s) =
√

sB⊤

, (s) =

(
s2I − 1√

s
D +A

)
, (s) =

√
sB,

and

𝛾1(s) = 𝛽1(s) =
√

s, 𝜅1(s) = s2
, 𝜅2(s) = −

1√
s

, 𝜅3(s) ≡ 1,

B1 = C⊤

1 = B, A1 = I, A2 = D, and A3 = A.

Hence, the transfer function (3) fits into our framework (1).
Model order reduction (MOR) has been studied extensively in the literature for some classes of linear systems, see,

for example, References 2,3 for standard linear systems,4–7 for second-order systems,8,9 for time-delay systems, and the
review paper10 for parametric systems. Furthermore, several researchers have investigated MOR techniques for the gen-
eralized linear systems (1). For a fixed parameter, balanced truncation has been proposed in Reference 11. The method
requires computing the system Gramians, namely reachability and observability Gramians, which can be a computation-
ally challenging task in a large-scale setting. Another popular MOR method, transfer function interpolation, has also been
studied,12,13 where for a given set of interpolation points, it is shown how to construct an interpolating reduced-order
system while preserving the system structure. However, References 12,13 leave an important open problem about the
choice of a good set of interpolation points. Furthermore, we would like to mention that a data-driven approach for
structured non-parametric systems has been studied in Reference 14. Nevertheless, the construction of the structured
reduced-order system is not a straightforward task; more importantly, it is not clear how to construct a reachable and
observable system. It is worth noticing that for parametric non structured systems, the authors in Reference 15 have devel-
oped optimization-based methods for the2 ⊗ 2 error. Although the approach has new developments on the optimality
conditions, its implementation is still numerically expensive for medium to large scale systems.

In this paper, we discuss a connection between interpolation-based MOR methods with the reachable and observable
subspaces of linear structured parametric systems. We show that if enough interpolation points are taken, the projection
matrices of interpolation-based model reduction encode these subspaces. As a consequence, we propose an approach to
construct reduced-order systems preserving the common subspaces containing the most reachable as well as the most
observable states. This approach can be seen as a combination of the interpolation-based method in Reference 12, and of
some aspects of the Loewner framework for first-order systems.16

The precise structure of the paper is as follows. In the subsequent section, we discuss the construction of interpo-
lating reduced-order systems for (1) for a given set of interpolation points s and parameters p. Thereafter, in Section 3,
we define the concepts of reachability and observability for linear structured parametric systems and connect them
with interpolation-based MOR methods. Subsequently, by combining both features, we discuss the construction of
reduced-order systems keeping the subspaces of the most reachable and observable states simultaneously. In Section 5,
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we illustrate the efficiency of the approach using several benchmark examples and finally conclude with future avenues.
In the rest of the paper, we make use of the following notation.

• svd{⋅} denotes the singular value decomposition (SVD) of a matrix.
• By using MATLAB® notation, we denote the first l columns of a matrix V by V(∶, 1 ∶ l).
• Let  be a subspace of Cn (or Rn). We denote the orthogonal complement of  by ⊥.

• Let H(⋅) and G(⋅) be two matrix valued complex functions. We say that H(s)
a.e.

= G(s) if H(s) = G(s) for almost every
s ∈ C.

2 PRELIMINARY WORK

In this section, we briefly recap the interpolatory framework to construct reduced-order systems from Reference 12. Let
us consider linear systems whose input-output mappings (transfer functions) are given in (1). Our goal is to construct
reduced-order systems, having a similar structure using Petrov-Galerkin projection as follows:

̂H(s, p) = ̂(s, p) ̂(s, p)−1
̂(s, p), (4)

where

̂(s, p) = (s, p)V,
̂(s, p) = W⊤

(s, p)V,
̂(s, p) = W⊤

(s, p). (5)

We aim at determining full-rank matrices V and W in a way that the resulting reduced-order system interpolates a given
set of interpolation points for s and p. This problem was considered in Reference 12, where the idea of constructing
interpolatory non-parametric structured systems13 and classical linear parametric systems17 was extended to the systems
(4). However, the authors in Reference 12 present the framework for linear structured parametric systems, where the
functions given in (2) can be decomposed as q(s, p) ∶= qs(s)qp(p), but this can be readily extended to the general case. In
the following theorem, we present a variation of this result where this decomposition is not required.

Theorem 1. Let H(s, p) be a transfer function as in (1). Consider interpolation points {𝜎i, pi} and {𝜇i, qi}, i ∈
{1, … , r}, such that (s, p) is invertible for {s, p} ∈ {𝜎i, pi} ∪ {𝜇i, qi}. Furthermore, let the full-rank matrices
V, W ∈ Cn×r satisfy:

span
i∈{1,… ,r}

{
(𝜎i, pi)−1

(𝜎i, pi)
}

⊆ range(V), (6a)

span
i∈{1,… ,r}

{
(𝜇i, qi)−⊤

(𝜇i, qi)⊤
}

⊆ range(W). (6b)

If the reduced matrices are computed as shown in (5), then the following conditions are satisfied, for i ∈
{1, … , r}:

H(𝜎i, pi) = ̂H(𝜎i, pi), (7a)

H(𝜇i, qi) = ̂H(𝜇i, qi). (7b)

Moreover, if 𝜇i = 𝜎i, qi = pi for i ∈ {1, … , r}, and H(s, p) and ̂H(s, p) are differentiable at (𝜎i, pi) for i ∈
{1, … , r}, then along with (7a,b), the following conditions are satisfied:

d
ds

H(𝜎i, pi) =
d
ds

̂H(𝜎i, pi), (8a)

∇pH(𝜎i, pi) = ∇p ̂H(𝜎i, pi). (8b)

 10970207, 2024, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7496 by M
PI 335 D

ynam
ics of C

om
plex T

echnical System
s, W

iley O
nline L

ibrary on [30/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 23 BENNER et al.

Proof. The theorem can be proven exactly along the lines given in Reference 12. We begin by proving (7a). We
have

̂H(𝜎i, pi) = ̂(𝜎i, pi) ̂(𝜎i, pi)−1
̂(𝜎i, pi)

= (𝜎i, pi)V ̂(𝜎i, pi)−1W⊤

(𝜎i, pi)

= (𝜎i, pi)V ̂(𝜎i, pi)−1W⊤

(𝜎i, pi)(𝜎i, pi)−1
(𝜎i, pi)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∈range(V)

= (𝜎i, pi)V ̂(𝜎i, pi)−1W⊤

(𝜎i, pi)Vz
= (𝜎i, pi)Vz = (𝜎i, pi)(𝜎i, pi)−1

(𝜎i, pi) = H(𝜎i, pi).

Analogously, we can prove (7b). Furthermore, we can prove (8a) and (8b) along the lines given in References
13 and 17, respectively. For the sake of brevity, we refrain from providing a complete proof. ▪

In the previous theorem, we have seen how an interpolatory reduced-order system can be constructed for a given set
of interpolation points. However, a good choice of interpolation points for both frequency (s) and the parameters (p) is
essential to construct a good reduced-order system. Additionally, the problem of finding suitable candidates for interpo-
lation points does not have a straightforward answer. Therefore, in this work, we take a different approach. Precisely, we
show that given a sufficiently large number of interpolation points, we can determine the important subspaces, leading
to good quality of the reduced-order systems. To that end, we first discuss the concepts of reachability and observability
for dynamical systems.

3 REACHABILITY, OBSERVABILITY, AND REDUCED- ORDER SYSTEMS

This section aims at showing the connection of the Petrov-Galerkin projection matrices V and W in (6a,b) (Theorem 1)
with the classical concepts of reachability and observability of dynamical systems. Based on this, we can identify the
states that are simultaneously least reachable and least observable. This leads to an algorithm which is a combination of
interpolation and SVD techniques, enabling us to construct reduced-order systems for structured parametric systems. We
begin here by briefly revisiting some results for first-order linear systems.

3.1 Background on first-order systems

The transfer function of a first-order system is given by

Hfo(s) = C(sI −A)−1B, with A ∈ C
n×n

, B ∈ C
n×m and C ∈ C

p×n
. (9)

We note that the reachable subspace R and the observable subspace O of the system (9) are given by the smallest
subspaces of Cn such that

range
(

eAtB
)

⊂ R and range
(

eA⊤tC⊤

)
⊂O for every t ≥ 0.

This essentially follows from standard proofs relating reachability and observability of linear-time invariant systems with
the rank of the Kalman reachability and observability matrices defined as follows:

MR(A, B) =
[

BAB A2B … An−1B
]
, and (10a)

M⊤

O(C, A) =
[

C⊤A⊤C⊤ (A2)⊤C⊤ … (An−1)⊤C⊤

]
, (10b)

see Reference 18, chap. 2 for more details. The unreachable subspace, which is the orthogonal complement of R
and denoted by ⊥

R , consists of the states qur ∈ Cn such that q⊤

ureAtB = 0 for every t ≥ 0. Similarly, the unobservable
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BENNER et al. 5 of 23

subspace, characterized by ⊥

O , consists of the states quo ∈ Cn such that CeAtquo = 0 for every t ≥ 0. By means of the
Laplace transform, the reachability and observability subspaces can be seen as the smallest subspaces of Cn such that

range
(
(sI −A)−1B

)
⊂ R, and range

(
(sI −A)−⊤C⊤

)
⊂O, ∀s ∈ iR. (11)

Additionally, we note that the system (9) is reachable if R = Cn, and observable ifO = Cn. A classical result in system
theory is that if the system (9) is not reachable or not observable, then there exists a system of lower order, having the same
transfer function as the original one. Indeed, the unreachable or unobservable states, denoted by⊥

R and⊥

O , respectively,
can be removed from the dynamics, without changing the transfer function. Moreover, if the system is reachable and
observable, then it is minimal, that is, there exists no lower-order realization for the original transfer function, see, for
example, Reference 18, chap. 2.

For first-order systems, a well-known characterization of reachable and observable spaces is given by R =
range(MR(A, B)) andO = range

(
M⊤

O(C, A)
)

, where MR(A, B) and M⊤

O(C, A) are, respectively, the Kalman reachability
and observability matrices given in (10a,b). Furthermore, the authors in Reference 19 provided a different characterization
of these subspaces which is closely related to the interpolation problem. In particular, they have shown thatR = range(V)
andO = range(W), where

V =
[
(𝜎1I −A)−1B, (𝜎2I −A)−1B, … , (𝜎NI −A)−1B

]
, and

W =
[
(𝜎1I −A)−⊤C⊤

, (𝜎2I −A)−⊤C⊤

, … , (𝜎NI −A)−⊤C⊤

]

with N ≥ n and 𝜎k ∈ iR not an eigenvalue of A, k ∈ {1, … , N}, are distinct points. Notice that the above matrices V and
W are the particular matrices V and W from Theorem 1 when the original system is first-order non-parametric. Moreover,
also in Reference 19 and more recently in Reference 16, the authors have shown that the matrix

[
W⊤V W⊤AV

]
encodes

the dimension of the minimal order realization of the original system, that is,

rank
([

W⊤V W⊤AV
])
∶=

{
order of the minimal realization obtained by
removing unreachable and unobservable states

Furthermore, in Reference 16, an algorithm based on the SVD is provided in order to get the minimal realization or
reduced-order systems by Petrov-Galerkin projections.

Inspired by the above discussion on first-order systems, in what follows, we first extend some of the results to lin-
ear structured systems (1), and propose an algorithm, allowing us to construct reduced-order systems by removing
unreachable and unobservable subspaces.

3.2 Reachability, observability, and reduced systems for linear structured systems

As mentioned earlier, unreachable or unobservable states can be removed from first-order systems (9) such that the result-
ing lower-order system has the same transfer function as the original one. In this section, we study how these notions
can be extended to the class of structured systems (1). For the clarity of exposition, we start our discussion with the
non-parametric case, that is, linear structured systems of the form

H(s) = (s)(s)−1
(s). (12)

Dynamical systems can be represented using different frameworks, for example, as a semi-group in a Hilbert space, as a
linear system over a ring of operators and as a functional differential equation. Depending on the nature of representation
or the considered problem, there exist various definitions for reachability and observability.

For the infinite-dimensional control community, dynamical systems are represented in the infinite-dimensional set-
ting, where the state-space might be seen as an (infinite-dimensional) Hilbert space associated with a semi-group. There,
the notions of exact and approximate reachability and observability play an important role, see, for example, References
20,21 and 22, chap. 4. However, in this setup, the dynamical systems are no longer seen as functional differential equations.
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6 of 23 BENNER et al.

Hence, discretizing the infinite-dimensional Hilbert space leads to finite-dimensional first-order reduced-order systems
that do not preserve the structure in (12).

Another point of view is the one in algebraic system theory, which considers dynamical systems as linear systems
over a ring, see, for example, References 23,24. In this setting, the reachability and observability concepts rely on a rank
condition over a ring, for example, strong and weak reachability/observability, see References 25–27. However, since these
concepts depend on the underlying ring, we are not aware of a way to adapt it to a structure-preserving reduction in the
Petrov-Galerkin projection framework.

In this paper, we define a weaker notion of reachability/observability that relies only on linear algebra concepts and the
matrices of the realization of the system (12). These concepts are related to the realization of the transfer function (12) as
a functional differential equation, see References 11,28. To begin our discussion, we first make the following assumption
on the structure of (12):

Assumption 1. In (12), we assume(s) to have the following form:

(s) = 𝛼1(s)A1 +
l∑

i=2
𝛼i(s)Ai,

and, furthermore, that the following conditions are satisfied:

1. A1 is non-singular,

2. 𝛼k(𝚤𝜔)
𝛼1(𝚤𝜔)

→ 0 as |𝜔|→ ∞, 𝜔 ∈ R, and k ∈ {2, … , l}.

Assumption 1 states that the first meromorphic function 𝛼1(s) dominates the others at infinity. Additionally, its
corresponding matrix A1 is assumed to be nonsingular. Under this assumption, the following result holds.

Proposition 1. Under Assumption 1, the generalized pencil(s) is regular, that is,

f (s) = det(s) ≢ 0.

Moreover, since f is a nonzero meromorphic function, it has a countable number of zeros, and(s) is invertible
almost everywhere in C.

Proof. We note that

f (s) = det(s) = det

(
𝛼1(s)

(
A1 +

l∑

i=2

𝛼i(s)
𝛼1(s)

Ai

))

= 𝛼1(s)n det

(
A1 +

l∑

i=2

𝛼i(s)
𝛼1(s)

Ai

)
.

Due to 𝛼i(𝚤𝜔)
𝛼1(𝚤𝜔)

→ 0 as |𝜔|→ ∞, f (𝚤𝜔) is asymptotically equivalent to 𝛼1(𝚤𝜔)n det(A1). As a consequence, since
A1 is non-singular, f (s) cannot be the zero function. The rest of the result follows from the fact that f (s) is
meromorphic. ▪

From now on, in this section, we assume that (s) satisfies Assumption 1. Next, we define the reachabil-
ity/observability notions relevant to this work.

Definition 1. The Cn–reachable subspace R associated to the pair of functions ((s),(s)) is the smallest
subspace of Cn which contains range

(
(s)−1

(s)
)

for all s ∈ iR. In other words, if R = range(VR), where
VR ∈ Cn×rR is a full column rank matrix and rR ≤ n, we have

(s)−1
(s) = VRyR(s), (13)

in which yR(s) ∈ CrR×m is a matrix of meromorphic functions. In this case, we say that ((s),(s)) is
Cn–reachable if R = Cn.
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The Cn–unreachable subspace consists of the states qur ∈ Cn such that

q⊤

ur(s)−1
(s) = 0 ∀s ∈ iR.

As a consequence, the Cn–unreachable subspace is characterized by ⊥

R . It is worth noting that, in the case of first-order
systems (9), that is,(s)−1

(s) = (sI −A)−1B, the above definition generalizes (11).
We now recall that the transfer from the input to the state for system (12) is given by

x(s) = (s)−1
(s)u(s).

Hence, the Cn–reachable subspace R corresponds to the smallest subspace that contains the states x(s) for every s and
input function u(s). This justifies the use of the reachability terminology.

To connect the frequency and time-domains, let M(t) denote the inverse Laplace transform of (s)−1
(s). Hence, by

definition M(t) = VRY(t) ∀t ≥ 0, where Y(t) is the inverse Laplace transform of yR(s) in (13). It can be noticed that, for real
systems, that is, systems where M(t) is a real function, the matrix VR can be chosen as a real matrix. Also, in the context
of time-delay systems, Definition 1 is equivalent to the one of point-wise complete controllability, see References 29,30
and of Rn–controllability,23 chap. 2. Similarly, we use the following concept of observability.

Definition 2. The Cn–observable subspaceO associated to the pair of functions ((s),(s)) is the smallest
subspace of Cn which contains range

(
(s)−⊤

(s)⊤
)
, for all s ∈ iR. In other words, ifO = range(WO), where

WO ∈ Cn×rO is a full-rank matrix and rO ≤ n, we have

(s)(s)−1 = yO(s)W⊤

O,

in which yO(s) ∈ Cp×rO is a matrix of meromorphic functions. In this case, we say that ((s),(s)) is
Cn–observable ifO = Cn.

The Cn–unobservable subspace consists of the states quo ∈ Cn such that

(s)(s)−1quo = 0 ∀s ∈ iR,

and thus is characterized by⊥

O . Similarly, in the case of first-order systems, that is, (9),(s)−⊤


⊤(s) = (sI −A)−⊤C⊤ and

the above definition is a natural extension of (11) for observability. As discussed for the Cn reachability space, WO can be
chosen to be real if the original system represents real dynamics.

Analogous to first-order systems (9), if a structured system (12) is not Cn–reachable or Cn–observable, then there
exists a lower-order system that has the same transfer function. We state the result rigorously in the following theorem.

Theorem 2. Let ((s),(s),(s)) be a linear structured system of order n as shown in (12). If either ((s),(s))
is not Cn–observable or ((s),(s)) is not Cn–reachable, then there exists a lower-order structured realization
(̂(s), ̂(s), ̂(s)) of order r < n, realizing the original transfer function, that is,

(s)(s)−1
(s)

a.e.

= ̂(s) ̂(s)−1
̂(s).

Proof. Let us first consider the case where the structured system is not Cn–reachable. In this case, there exist
rR < n and a full-rank matrix VR ∈ Cn×rR such that (s)−1

(s) = VRz(s). From Assumption 1, there exists a
matrix W ∈ Rn×rR such that W⊤A1VR is non-singular. As a consequence, the projected generalized pencil

̂(s) = 𝛼1(s)W⊤A1VR +
l∑

i=2
𝛼i(s)W⊤AiVR

also satisfies Assumption 1. Hence, from Proposition 1, ̂(s) is invertible almost everywhere in C. Therefore,
(W⊤

(s)VR)−1W⊤

(s) = ̂(s)−1W⊤

(s)
a.e.

= z(s) and we have
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8 of 23 BENNER et al.

(s)−1
(s)

a.e.

= VR(W⊤

(s)VR)−1W⊤

(s). (14)

Thus,

(s)(s)−1
(s)

a.e.

= ̂(s) ̂(s)−1
̂(s)

with

̂(s) = (s)VR ∈ C
p×r

,
̂(s) = W⊤

(s)VR ∈ C
r×r

, and ̂(s) = W⊤

(s) ∈ C
r×m

.

Similarly, when the system is not Cn–observable, it can be shown that there exists a lower-order realization.▪

The above result states that if a structured realization is not Cn–reachable or not Cn–observable, then there exists a
lower-order structured realization which represents the same transfer function. Moreover, a lower-order realization can
be obtained via Petrov-Galerkin projection.

Remark 1. The counterpart of Theorem 2 is valid for first-order systems (9), that is, if the first order system (9)
is reachable and observable, then the system is minimal. Until now we have not been able to find a concrete
hypothesis for this result to hold for more general structured systems. For the current set up, the following
counter example holds. Consider the structured system given by

(s) =
⎡
⎢
⎢
⎢⎣

s + 1
s + 2

s + 3

⎤
⎥
⎥
⎥⎦

, (s) =
⎡
⎢
⎢
⎢⎣

1
1

(s + 3)

⎤
⎥
⎥
⎥⎦

, and (s) =
[
1 −(s + 2) 1

]
.

The Cn–reachable subspace VR is the smallest subspace, containing (s)−1
(s) =

⎡
⎢
⎢⎣

1
s+1

1
s+2
1

⎤
⎥
⎥⎦

for every s ∈ iR.

Hence, R = C3 and the system is Cn–reachable. In a similar way, one can show that the system is
Cn–observable. However, the transfer function is H(s) = (s)(s)−1

(s) = 1
s+1

and, hence the realization is
not minimal. As a conclusion, for general structured systems, Cn–reachability and Cn–observability are not
enough to characterize minimality.

However, it is worth noticing that the above example can be transformed into an equivalent system by
means of the following transformation:

̃(s) = U1(s)(s)U2(s) =
⎡
⎢
⎢
⎢⎣

s + 1
1

1

⎤
⎥
⎥
⎥⎦

,
̃(s) = U1(s)(s) =

⎡
⎢
⎢
⎢⎣

1
1
1

⎤
⎥
⎥
⎥⎦

, and

̃(s) = (s)U2(s) =
[
1 −1 1

]
,

where U1(s) = diag
(

1, 1,

1
s+3

)
and U2(s) = diag

(
1,

1
s+2

, 1
)

. For the transformed system, one can eas-

ily find that the Cn–reachable subspace R = range

([1 0
0 1
0 1

])
and the Cn–observable subspace O =

range

([1 0
0 −1
0 1

])
. As a consequence, for this equivalent realization, the system is not Cn–reachable and

Cn–observable and hence the minimal realization H(s) = 1
s+1

can be constructed be removing the subspaces
that are not reachable and not observable. Hence, for the transformed realization ̃(s), ̃(s) and ̃(s), we
are able to construct the minimal realization only based on Cn–reachability and Cn–observability properties.
In other words, the way (s), (s) and (s) are modeled might play an important role in the search for the
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BENNER et al. 9 of 23

minimal realization of structured systems using the Cn–reachable and Cn–observable subspaces. However,
an investigation on additional conditions required for minimality is out of the scope of this work.

We have shown that if we know reachable and observable subspaces R andO, we are able to construct lower-order
systems by removing the states that are unreachable or unobservable. The next step is to characterize these spaces using
matrices V and W defined in Theorem 1. By definition, it is easy to observe that range(V) ⊆ R and range(W) ⊆O.
Additionally, there always exist N ∈ N and interpolation points 𝜎1, … , 𝜎N such that

V =
[
(𝜎1)−1

(𝜎1),(𝜎2)−1
(𝜎2), … ,(𝜎N)−1

(𝜎N)
]
, (15a)

W =
[
(𝜎1)−⊤

(𝜎1)⊤,(𝜎2)−⊤

(𝜎2)⊤, … ,(𝜎N)−⊤

(𝜎N)⊤
]
, (15b)

and

range(V) = R and range(W) =O.

Moreover, the above proposition shows that we might only need r interpolation points to characterize the subspaces R
andO.

Proposition 2. Suppose that dim(R) = r. Then, for N ≥ r and

V =
[
(𝜎1)−1

(𝜎1),(𝜎2)−1
(𝜎2), … ,(𝜎N)−1

(𝜎N)
]

,

it holds that range(V) = R, for almost every selection of 𝜎1, … , 𝜎N .

Proof. Suppose that range(V) ≠ R for the selection of points 𝜎1, … , 𝜎N . Since range(V) ⊂ R, there exists
w ∈ R such that w⊥ range(V), that is, wTV = 0. As a consequence, wT

(𝜎k)−1B(𝜎k) = 0 for k = 1, … , N.
Hence, 𝜎k are the zeros of the meromorphic function f(s) = wT

(s)−1B(s). Since f(s) has a countable number
of zeros, this proves the result. ▪

Proposition 2 states that if we know that the dimension of the reachability subspace R is r, then we just need to
compute(𝜎i)−1

(𝜎i) for r different interpolation points to characterize this subspace. As consequence, if we have enough
interpolation points, that is, more than r, we can characterize this subspace. It is worth mentioning that the dimension of
the reachability subspace r is not known a priori and it is problem dependent. Throughout this manuscript, we will use the
expression “enough interpolation points” with the meaning that the number of points is more than r for the underlying
problem.

The above result can be straightforwardly extended to the characterization of the subspaceO using the matrix W.
Moreover, an immediate consequence of Proposition 2 is that the matrix V has rank r for almost every selection of N
different interpolation points. Additionally, we would like to mention that the matrix V (likewise the matrix W) can
be interpreted as snapshots in frequency domain taken at various frequency points. Therefore, more snapshots would
lead to a better subspace that encodes the reachability subspace. It is worth mentioning that, according to Proposition 2,
those snapshots could be selected in any place of the frequency domain, even in the same neighborhood. However, in
practice, the choice of snapshots in the same neighborhood is not ideal, because they would provide very similar subspace
information, often rendering the columns of V or W almost linearly dependent.

3.3 Note on the parametric case

So far, we have presented the definitions of Cn-reachability and Cn-observability for structured non-parametric systems.
For the parametric case (1), we can consider the following natural extensions of Definitions 1 and 2. The reachable sub-
space R = range(VR) associated to the pair of functions ((s, p),(s, p)), with a full column rank matrix VR ∈ Cn×rR ,
rR ≤ n, is the smallest subspace of Cn which contains(s, p)−1

(s, p) for every s ∈ iR and p ∈ Ωd. In other words,

(s, p)−1
(s, p) = VRzc(s, p),
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10 of 23 BENNER et al.

where zc(s, p) ∈ Cp×rR . Similarly, the Cn–observable subspace O = range(WO) associated to ((s, p),(s, p)), with a
full-rank matrix WO ∈ Cn×rO , rO ≤ n, is the smallest subspace of Cn which contains(s, p)−⊤

(s, p)⊤ for every s ∈ C and
p ∈ Ωd. In other words,

(s, p)(s, p)−1 = yO(s, p)WO,

where yO(s, p) ∈ Cp×rO is a matrix of meromorphic functions. Furthermore, the result of Theorem 2 can be extended to
the parametric case, showing that states that are unreachable and unobservable can be removed. Additionally, we know
that if we take enough interpolation points (𝜎i, pi), the matrices

V =
[
(𝜎1, p1)−1

(𝜎1, p1), … ,(𝜎N , pN)−1
(𝜎N , pN)

]
, (16a)

W =
[
(𝜎1, p1)−⊤

(𝜎1, p1)⊤, … ,(𝜎N , pN)−⊤

(𝜎N , pN)⊤
]
, (16b)

encode the reachability and observability spaces, that is,

range(V) = R and range(W) =O.

From now on, we assume that we have enough interpolation points such that range(V) = R and range(W) =O.
Although in theory, the nonparametric and parametric cases have a very similar structure, in practice, for parametric
examples, the identification of dominant subspaces might require a large amount of samples, which can be impractical
in some cases (see Reference 10).

3.4 Simultaneous reduction

We have seen that if the system (1) is not Cn–reachable or not Cn–observable, there exists a lower-order realization whose
transfer function remains the same as the original one. To obtain such a lower-order realization, one needs to truncate the
states that are unreachable or unobservable, as shown in Theorem 2. Also, there is a potential to remove more states as
we have seen that a minimal realization might require an even smaller state-space. However, it remains an open question
how this information can be used to obtain reduced-order systems. In what follows, we propose a method enabling to
identify simultaneously the states that are unreachable and unobservable. For this, we assume that

rank
([

W⊤A1V, … , W⊤AlV
])
= rank

⎛
⎜
⎜
⎜⎝

⎡
⎢
⎢
⎢⎣

W⊤A1V
⋮

W⊤AlV

⎤
⎥
⎥
⎥⎦

⎞
⎟
⎟
⎟⎠

= r, (17)

where V and W are the matrices defined in Equation (15a,b) encoding, respectively, the reachability and the observabil-
ity subspaces, that is, range(V) = R and range(W) =O and Ai, i ∈ {1, … , l}, are defined in (2). Using the matrices
appearing in (17), we will be able to extract simultaneously the subspaces that are unobservable and unreachable from
the original system To this aim, we consider the compact SVDs

[
W⊤A1V, … , W⊤AlV

]
= W1Σl ̃V

⊤

and
⎡
⎢
⎢
⎢⎣

W⊤A1V
⋮

W⊤AlV

⎤
⎥
⎥
⎥⎦
= ̃WΣrV⊤

1 . (18)

Let Wp ∶= WW1 and Vp ∶= VV1 be two truncation matrices and let us consider the lower-order realization
̂p(s, p) ̂p(s, p)−1

̂p(s, p) constructed by Petrov-Galerkin projection as follows:

̂p(s, p) = W⊤

p(s, p), ̂p(s, p) = (s, p)Vp,
̂p(s, p) = W⊤

p(s, p)Vp. (19)
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BENNER et al. 11 of 23

Then, the following result holds.

Theorem 3. The lower-order system ̂p(s, p) ̂p(s, p)−1
̂p(s, p) of order r, obtained as given in Equation (19),

realizes the original transfer function, that is,

̂p(s, p) ̂p(s, p)−1
̂p(s, p) = (s, p)(s, p)−1

(s, p)

for every s ∈ C and p ∈ Ωd.

Proof. Recall that Vp = VV1 and Wp = WW1. Hence, by construction, range
(
Vp

)
⊆ range (V) = R

and range
(
Wp

)
⊆ range (W) =O. Hence, there exist Va and Wa, Va ⊥ Vp and Wa ⊥ Wp such that

range
([

Vp Va
])
= R and range

([
Wp Wa

])
=O. As a consequence, from the compact SVDs in (18),

W⊤AkVa = 0, W⊤

a AkV = 0, and W⊤

a AkVa = 0, for k ∈ {1, … , l},

and hence,

W⊤

p(s, p)Va = 0, W⊤

a(s, p)Vp = 0, and W⊤

a(s, p)Va = 0.

Moreover, notice that

(s, p)−1
(s, p) =

[
Vp Va

][
̂p(s, p)−1

̂p(s, p)
⋆

]
and

(s, p)(s, p)−1 =
[

̂p(s, p) ̂p(s, p)−1
⋆

][W⊤

p

W⊤

a

]
.

Finally, we write

(s, p)(s, p)−1
(s, p) = (s, p)(s, p)−1

(s, p)(s, p)−1
(s, p)

=
[

̂(s, p) ̂(s, p)−1
⋆

][W⊤

p

W⊤

a

]
(s, p)

[
Vp Va

][
̂(s, p)−1

̂(s, p)
⋆

]

=
[

̂(s, p) ̂(s, p)−1
⋆

][W⊤

p(s, p)Vp 0
0 0

][
̂(s, p)−1

̂(s, p)
⋆

]

= ̂(s, p) ̂(s, p)−1
̂(s, p) ̂(s, p)−1

̂(s, p) = ̂(s, p) ̂(s, p)−1
̂(s, p),

which concludes the proof. ▪

Theorem 3 shows that if we construct the lower-order system as shown in Equation (19), it also realizes the original
system. As a consequence, the rank condition Equation (17) gives us the order r of the lower-order realization constructed
by Petrov Galerkin projection, which realizes the original system. Hence, the matrices

[
W⊤A1V, … , W⊤AlV

]
and

⎡
⎢
⎢
⎢⎣

W⊤A1V
⋮

W⊤AlV

⎤
⎥
⎥
⎥⎦

(20)

encode the complexity of the original system. Moreover, by means of the compact SVDs of these matrices, we are able to
find the projection matrices Vp = VV1 and Wp = WW1, leading to a lower-order system having the same transfer func-
tion as the original one. Hence, the states that are removed from the dynamics of the original systems can be seen as
unreachable or unobservable ones. On the other hand, the singular values in Σr and Σl give some important information
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12 of 23 BENNER et al.

about the simultaneous degree of reachability and observability of the states. Indeed, states that are related to small singu-
lar values can be interpreted to have a weak simultaneous degree of reachability and observability, while the states related
to large singular values are strongly simultaneously reachable and observable. Therefore, removing also the subspaces
associated with small singular values leads to reduced-order systems.

4 MODEL ORDER REDUCTION ALGORITHM

Based on the arguments given in the previous section, we propose Algorithm 1 for constructing reduced-order systems
for structured systems (12). The procedure consists in selecting interpolation points (si, pi) and constructs the matrices
V and W as in (6a,b) (Steps 2 and 3). If we have enough interpolation points, the subspaces range (V) and range (W)
mimic the reachable subspace R and the observable subspaceO, respectively. Then, in Step 4, we compute the SVDs
of the matrices in (22). As previously discussed, the numerical rank of those matrices provides an estimate of where to
truncate to obtain a reduced-order system. Hence, in Step 5, the projection matrices Vp and Wp are constructed according
to Theorem 3. Finally, in Step 6, the reduced-order system is determined by Petrov-Galerkin projection.

Remark 2. So far in the paper, we have refrained from discussing the idea of tangential interpolation. In the
case of multi-input multi-output (MIMO) systems, one can employ the idea of tangential interpolation which
has been proven to be very useful in the MIMO case.31 For this, along with considering interpolation points
{𝜎i, pi} and {𝜇j, qj}, we also consider tangential directions bi and cj of appropriate sizes. For details, we refer
to for example, Reference 17. Hence, with the tangential directions, the analogues of matrices V and W in
(16a,b) are

V =
[
(𝜎1, p1)−1

(𝜎1, p1)b1, … ,(𝜎N , pN)−1
(𝜎N , pN)bN

]
,

W =
[
(𝜎1, p1)−⊤

(𝜎1, p1)⊤c⊤

1 , … ,(𝜎N , pN)−⊤

(𝜎N , pN)⊤c⊤

N

]
.

Hence, these matrices can be used in Step 3 of Algorithm 1.

Remark 3. One of the additional advantages of the proposed algorithm is that it inherently allows to con-
struct frequency-limited reachable and observable subspaces by choosing the interpolation points in a given
frequency range. Hence, it yields a reduced-order system that is good in the considered frequency range.

Remark 4. The proposed framework is also suitable for non-dynamical linear parametric systems, that is,
systems of the form

A(p)x(p) = B(p),
y(p) = C(p)x(p).

In this case, the solution y(p) can be obtained as

y(p) = C(p)A(p)−1B(p),

and the reachability and observability subspaces, namely R and O, are the smallest subspaces such that
range

(
A(p)−1B(p)

)
⊂ R and range

(
A(p)−⊤C(p)⊤

)
⊂O for all p ∈ Ωd. In this case, we determine dominant

subsystems with respect to parameters using Algorithm 1.

Remark 5. In several applications, it is highly desirable to determine reduced-order systems via one-sided pro-
jection in order to potentially preserve some important properties of the systems such as stability or passivity.
In this case, in Step 3 of Algorithm 1, we set W = V, and in Step 5 of Algorithm 1, we again set Wp = Vp.

Remark 6. It is worth noticing that the matrix V in (16a) satisfies the generalized Sylvester equation

l∑

i=1
AiV𝚷i =

q∑

i=1
Bi

[
1, … , 1

]
𝚪i, (21)
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BENNER et al. 13 of 23

where𝚷i = diag
(

𝜅i(𝜎1, p1), … , 𝜅i(𝜎N , pN)
)

and𝚪i = diag
(

𝛽i(𝜎1, p1), … , 𝛽i(𝜎N , pN)
)

. Hence, one possible way
to obtain V in Step 3 of Algorithm 1, is by solving the generalized Sylvester Equation (21). In a large-scale
setting, one can use low rank methods such as References 32–34 to solve those linear matrix equations. A
detailed discussion on numerical methods of the matrix Equation (21) is not within the scope of this paper.

Remark 7. In the above remark, we have discussed that the matrix V can be constructed efficiently by solving
a corresponding Sylvester equation. However, one should also notice that the columns of the matrix V solve a
linear system with different interpolation points; see (15a). Therefore, these columns can also be constructed
independently, thus in an embarrassingly parallelizable fashion.

Algorithm 1. Construction of ROMs via Dominant Reachable and Observable subspace-based Projection (DROP)

1: Input: The transfer function as in (4), and tolerance tol.
2: Choose interpolation points for frequency and parameters to construct V and W.
3: Compute V and W using the interpolation points as in (6).
4: Determine SVDs

[
W⊤A1V,… , W⊤AlV

]
= W1Σl ̃V⊤ and

[W⊤A1V
⋮

W⊤AlV

]
= ̃WΣrV⊤

1 (22)

with Σl = diag
(

𝜎

l
1,… , 𝜎

l
N
)

and Σr = diag
(

𝜎

r
1,… , 𝜎

r
N
)
.

5: Compute order of reduced system r as

r = max{rl, rr},

where rl and rr are, respectively, the number of singular values 𝜎

l
k that are larger than tol and the number of singular

values 𝜎

r
k that are larger than tol.

6: Compute projection matrices:Vp = VV1(∶, 1∶r) and Wp = WW1(∶, 1∶r).
7: Compute reduced matrices:

̂(s, p) = W⊤

ps(s)Vp, ̂(s, p) = W⊤

p(s, p), and ̂(s, p) = (s, p)Vp.
8: Output: The reduced-order matrices: ̂(s, p), ̂(s, p), and ̂(s, p).

5 NUMERICAL RESULTS

In this section, we illustrate the efficiency of the proposed methods via several numerical examples, arising in various
applications. For the non-parametric case, we also compare with the existing methods proposed in References 1,11, and
for the parametric case with the adaptive interpolation method proposed in Reference 35. We have performed all the sim-
ulations on a board with 4 Intel® Xeon® E7-8837 CPUs with a 2.67-GHz clock speed using MATLAB 8.0.0.783 (R2016b).
Furthermore, we generate random numbers, whenever necessary, using rng(0, ‘twister’). In the case of a MIMO
system, we determine the projection matrices by employing the idea of tangential interpolation, and we choose the
tangential directions randomly.

5.1 A demo example

At first, we discuss an artificial example to illustrate the proposed method. Let us consider a system of order n = 3 as
follows:
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14 of 23 BENNER et al.

⎡
⎢
⎢
⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎥⎦
ẋ(t) =

⎡
⎢
⎢
⎢⎣

− 2 0 0
0 −1 0
0 0 −2

⎤
⎥
⎥
⎥⎦
x(t) + p

⎡
⎢
⎢
⎢⎣

0 1 0
− 1 0 0
1 0 0

⎤
⎥
⎥
⎥⎦
x(t) +

⎡
⎢
⎢
⎢⎣

1
0
1

⎤
⎥
⎥
⎥⎦
u(t),

y(t) =
[
1 1 0

]
x(t).

(23)

The example is constructed in such a way that the parameter p changes the imaginary parts of two eigenvalues of the
system. Hence, with a change of the parameter, we expect a change in the peak of the transfer function.

Next, we aim at constructing a reduced realization of the system Equation (23) by employing Algorithm 1. For this,
we take 10 points for the frequency s ∈

[
10−4

, 10
]

and for the parameter p ∈
[
− 10, 10

]
. We take the frequency points in

the given range in logarithmic scale, whereas the parameters are chosen randomly in the considered parameter range.
In Figure 1, we plot the decay of the singular values as computed in Step 4 of Algorithm 1. It can be observed that the
first two singular values are non neglectable, and the others are at the level of machine precision. This suggests that a
reachable and observable system, representing the input/output behavior of the system (23) has the order exactly r = 2.
We compare the transfer functions of the original and reduced-order systems for 20 linearly spaced parameter values in[
− 10, 10

]
, which are plotted in Figure 2. The figure shows that the error between the original and reduced-order system

is of the level of machine precision.
The order 2 of a minimal realization can also be easily verified by analyzing the system (23). Notice that x3(t) does not

influence the dynamics of x1(t) and x2(t), where xi(t) denotes the ith component of the vector x(t), and x3(t) is not being
observed due to the output matrix C =

[
1, 1, 0

]
. Hence, x3(t) can be eliminated as far as the input-output dynamics are

concerned. Therefore, the system (23) can exactly be reduced to order 2.

5.2 Time-delay system

Next, we consider the time-delay model13 of order n,

Eẋ(t) = Ax(t) +A
𝜏
x(t − 𝜏) + Bu(t),

y(t) = Cx(t),
(24)

F I G U R E 1 Demo example: Decay of the singular values.

F I G U R E 2 Demo example: The figure shows the Bode plot of the error between the original and reduced-order systems for different
parameter values. Each color represents the error for a different parameter.
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BENNER et al. 15 of 23

where E = 𝜇In + T, A = 1
𝜏

(
1
𝜁

+ 1
)
(T − 𝜇In), and A

𝜏
= 1

𝜏

(
1
𝜁

− 1
)
(T − 𝜇In) in which the matrix T is such that it is ones

on the sub- and super-diagonal along with the (1, 1) and (n, n) elements. The input matrix B is zero everywhere except
for the first and second entries, that is, B(1) = B(2) = 1, and the output matrix is C = B⊤. Furthermore, we choose 𝜇 = 5,
𝜁 = 0.01, 𝜏 = 1, and the order n = 500.

Next, we aim at constructing reduced-order systems using balanced truncation as proposed in Reference 11 and
using Algorithm 1. In order to apply Algorithm 1, we take 1000 logarithmically distributed frequency points in the range[
10−2

, 104]. Furthermore, to apply balanced truncation, we need to determine the system Gramians, which are given in
integral forms. To compute approximations of the Gramians, we make of use of the quadv command in MATLAB with
tol = 10−10 to integrate in the given frequency range.

First, we plot the singular values, obtained from balanced truncation and Algorithm 1 in Figure 3, which indicates
a faster decay of singular values obtained from Algorithm 1. We now determine reduced-order systems of order r = 12
using both methods. We compare the Bode plots of the original and reduced-order systems in Figure 4. The figure shows
that both methods capture the dynamics very well; however, our method clearly yields a better reduced-order system at
least by two orders of magnitudes at most frequencies.

F I G U R E 3 Time-delay example: Relative decay of the singular values using Algorithm 1 and structured balanced truncation.

(A)

(B)

F I G U R E 4 Time-delay example: The figure presents a comparison of the Bode plots of the original and reduced-order systems. (A) The
Bode plots of the original and reduced-order systems. (B) The Bode plots of the errors of the reduced-order systems.
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16 of 23 BENNER et al.

5.3 Heat equation with fading memory

We consider the heat equation with fading memory presented in Reference 11. Its dynamics are governed by the following
integro-PDE:

vt(t, x) = Δv(t, x) −
∫

t

0
𝛾(t − s)Δv(s, x)ds + 𝜒

𝜔
u(t) in (0,∞) × Ω,

v(t, x) = 0 in (0,∞) × Γ, v(0, x) = 0 in Ω,

vobs(⋅) =
∫Ω

v(⋅, x)dx,

(25)

where 𝛾 = 1.05, Ω = (0, 1) × (0, 1), Γ denotes the boundary of Ω and 𝜒
𝜔

is the characteristic function of the control set
𝜔 = [0.15, 0.25] × [0.2, 0.3] ⊂ Ω, i.e.,

𝜒
𝜔
(x) ∶=

{
1, if x ∈ 𝜔,

0, otherwise.

As discussed in Reference 11, after spatial discretization by a finite difference method, we obtain a Volterra
integro-differential system whose transfer function is given by

H(s) = C
(

sI −A + 1
s+𝛾

A
)−1

B. (26)

We consider 128 grid points in each direction, leading to a system of order n = 16,384. In Figure 5, we first plot the
relative singular values obtained using Algorithm 1 and balanced truncation from Reference 11. The figure shows that
a very low-order model is possible to obtain having very high accuracy. We determine reduced-order systems of order
r = 3 using both methods. We compare both reduced-order systems in Figure 6A, which shows that the reduced-order
systems are comparable. Moreover, in Figure 6B, we show the2-norm of the error systems with respect to the order of
the reduced-order system. This also indicates that both methods produce reduced-order systems of very similar quality.

5.4 Fractional Maxwell equations

Next, we consider the example mentioned in the introduction arising in computational electromagnetics, see Reference
1. As described in the introduction, the transfer function of this example has a fractional integrator of the form:

H(s) = sB⊤

(
s2I − 1√

s
D +A

)−1

B, (27)

F I G U R E 5 Heat equation with fading memory: Relative decay of the singular values using Algorithm 1 and structured balanced
truncation.
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BENNER et al. 17 of 23

(A)

(B)

F I G U R E 6 Heat equation with fading memory: The figure presents a comparison of the Bode plots of the original and reduced-order
systems for order r = 3, and2-norm of the error with respect to the order of the reduced-order systems. (A) The Bode plots of the original,
reduced-order systems, and the error system. (B) The relative errors of the reduced-order systems.

F I G U R E 7 Fractional Maxwell equations: Relative decay of the singular values using Algorithm 1.

where n = 29,295 is the order, I, A and D are n × n matrices, and B is an n × 1 matrix. In this example, the interesting
frequency range is  ∶=

[
4 ⋅ 109

, 8 ⋅ 109]Hz. We aim at employing Algorithm 1 and balanced truncation. Although the
proposed balanced truncation method from Reference 11 is not designed for limited frequency range, one can integrate
over instead of

[
0,∞

]
to determine the Gramians. However, we observe that for this example, the methodology proposed

in Reference 11 to obtain an approximation in low-rank factor form does not converge. As discussed in Reference 11, the
development of low-rank solvers for Gramians of structure systems needs some future research which is highly relevant
to this. Moreover, since the example is a large-scale one, it is not possible to apply the simple quadv function to obtain
approximations of Gramians as we did in the delay example.

We instead compare our methodology to the method proposed in Reference 1, where a reduced-order system is
obtained using moment-matching based on a single expansion point. In order to employ Algorithm 1, we take 50 points
in logarithmic scale in the frequency range of interest. First, we plot the relative decay of the singular values in Figure 7.
Ideally, we would like to determine a reduced-order system of order r = 38, which is reported in Reference 1. However,
our decay of singular values indicates that the order more than 10 would not improve the quality of the reduced-order
system as the singular values go to the level of machine precision. Therefore, we determine the reduced-order system of
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18 of 23 BENNER et al.

order r = 8 via our method and compare with the reduced-order system of order r = 38 as constructed in Reference 1. In
Figure 8, we compare both reduced-order systems. The figure suggests that our reduced-order system outperforms the
one reported in Reference 1. Importantly, notice that this is achieved even though our reduced-order system has an order
more than four times smaller than the one from Reference 1. On the other hand, we have used 50 sparse factorizations in
contrast to only one as used in Reference 1. This shows a bit of the trade-off of the proposed method compared to earlier
attempts to generalize moment-matching methods to structured linear systems.

5.5 Parametric anemometer

An anemometer, also known as a thermal mass flow meter, has sensors, namely heater and temperature after and before
the heater in the direction of the flow as shown in Figure 9. Due to the circulation of the flow, a temperature difference
occurs between the sensors. Measuring the temperature difference allows to estimate the fluid flow, for more details see
Reference 36.

The dynamics of the anemometer is governed by the convection-diffusion PDE

𝜌c 𝜕T
𝜕t

= ∇ ⋅ (𝜅∇T) − 𝜌cv∇T + q̇, (28)

where 𝜌 represents the mass density; c, 𝜅, v are the specific heat, thermal conductivity, and fluid velocity, respectively.
Moreover, q̇ denotes the heat flow into the system caused by the heater. We set 𝜌 = 1 and consider all other fluid properties
as parameters. A discretization of the PDE leads to a parametric system whose transfer function is given by

H(s, p) = C(s(E0 + p1E1) − (A0 + p2A1 + p3A2))−1B,

where p ∈ R3 and pi denotes the ith component of the vector p, which is given in terms of the fluid properties as follows:

p⊤ =
[

p1 p2 p3

]
⊤

=
[

c 𝜅 cv
]

⊤

.

F I G U R E 8 Fractional Maxwell equations: The Bode plots of the original, reduced-order systems, and the error system.

F I G U R E 9 Schematic diagram of a two-dimensional anemometer, compare Reference 37.
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BENNER et al. 19 of 23

The output matrix C is chosen such that it yields the output as the difference between the two sensors. For more details,
we refer to Reference 38 and for the model, to Reference 37. A finite-element discretization yields a parametric model
of order n = 29,008, and the model essentially has three parameters. It is worth mentioning that the stationary problem,
that is, when the left-hand side of Equation (28) is zero, would lead to a transfer function that does not depend on s and
p1, but only on p2 and p2. In this case, we are in the setup of non-dynamical linear parametric systems, and Algorithm 1
can still be used to construct a surrogate model, as described in Remark 4.

In order to apply the proposed method, we take 300 points for frequency s in logarithmic scale and 300 random points
for the parameters. For this example, the most relevant frequency range is

[
101

, 105], and the parameters are chosen
as follows: c ∈

[
0, 1

]
, 𝜅 ∈

[
1, 2

]
, and v ∈

[
0.1, 2

]
. First, in Figure 10, we plot the singular values, obtained by employing

Algorithm 1, which exhibits a rapid decay. We now determine reduced-order systems of order r = 78, meaning that we
consider the singular vectors corresponding to the relative singular values up-to 10−6. We compare the Bode plots of
the original and reduced-order systems in Figure 11 for two different parameter values, which clearly match for both
parameters all frequencies.

Moreover, in Figure 12, we plot the Bode diagram of the error systems, the difference of the original and reduced-order
systems, for different parameter configurations. The obtained reduced-order system captures the dynamics of the original

F I G U R E 10 Anemometer example: Relative decay of the singular values using Algorithm 1.

F I G U R E 11 Anemometer example: The Bode plots of the original and reduced-order systems for parameter values p(1) = (0, 1, 0.1) and
p(2) = (0.67, 1.67, 1.37).

F I G U R E 12 Anemometer example: The Bode plots of the absolute error between the original and the reduced-order systems for four
different parameter values.
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20 of 23 BENNER et al.

F I G U R E 13 Gyro example: Relative decay of the singular values obtained using Algorithm 1.

(A)

(B)

F I G U R E 14 Gyro example: A comparison of the original and reduced-order systems for different parameters values. (A) The Bode
plots of the original and reduced-order systems for parameter values p(1): (1.00; 10−7) at the top-left, p(2) ∶ (1.33; 4.64 ⋅ 10−7) at the top-right,
p(3) ∶ (1.67; 2.15 ⋅ 10−6) at the bottom-left and p(4) ∶ (2.00; 10−5) at the top-right. (B) The Bode plots of the absolute error between the
original and reduced-order systems for the above considered parameter values.
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BENNER et al. 21 of 23

systems very well. From the figures, it can be seen that the error is below 2 ⋅ 10−7 for all frequencies and four considered
parameter configurations.

5.6 Parametric butterfly gyroscope

As the last example, we consider a parametric butterfly gyroscope example. The butterfly is a vibrating micro-mechanical
gyro, which measures angular rates in up to three axes. It is used in inertial navigation applications. The model has mainly
two parameters of interest: the rotation velocity 𝜃 around the x-axis and the width of bearing d. The system and its model
reduction problem have been extensively studied in Reference 39. A finite element discretization leads to a parametric
model for the gyroscope of the form:

M(d)ẍ(t) +D(d, 𝜃)ẋ(t) +K(𝜃) = Bu(t),
y(t) = Cx(t),

(29)

where M(d) = M1 + dM2 ∈ Rn
, D(d, 𝜃) = 𝜃(D1 + dD2) ∈ Rn, K(d) = T1 + 1

d
T2 + dT3 ∈ Rn, B ∈ Rn, and C⊤ ∈ Rn; x(t) ∈

Rn, u(t) ∈ Rm, and u(t) ∈ Rq are the state, input and output vectors, respectively. Typical ranges for the parameters 𝜃

and d are
[
10−5

, 10−7] and
[
1, 2

]
, respectively. Finite-element discretization leads to n = 17,913. Normally, the system is

operated in the frequency range 2𝜋 ⋅
[
0.025, 0.25

]
. For more details on the model, we refer the reader to References 39,40.

In order to apply the proposed method, we take 500 points for frequency s in logarithmic scale and the same number
of random points for the parameter p =

[
d, 𝜃

]
⊤ in the considered range. In Figure 13, we first show the singular values,

obtained by employing Algorithm 1, which indicates a rapid decay. Since the magnitude of the transfer function of the
system is very small and wide ranged, (10−7 − 10−3), we choose to truncate at a relatively low level. Hence, we truncate
at 10−15, thus leading to a reduced-order system of order r = 80. We compare the quality of the reduced-order system with
the reduced-order system, obtained in Reference 35, where the authors have obtained a reduced-order system of order
r = 210.

We compare the Bode plots of the original and reduced-order systems in Figure 11 for four different parameter settings
and the Bode plots of the error systems are plotted in Figure 14. These figures indicate that both reduced-order systems
are of very similar quality; but our reduced-order system is of order r = 80, whereas the method proposed in Reference
35 yields a reduced-order system of order r = 210, which is more than two-and-half times larger than ours.

6 CONCLUSIONS

In this paper, we have studied model order reduction for linear structured parametric systems. Firstly, we recall the
construction of an interpolatory reduced-order system for a given set of interpolation points. Then, we have defined
the concepts of reachability and observability for linear structured parametric systems and connected them with
interpolation-based MOR methods. Subsequently, by combining both features, we have discussed the construction of
reduced-order systems by projecting onto those subspaces that are indicated by our approach as the most reachable and
observable ones simultaneously. Moreover, we have shown the efficiency of the proposed methods by means of various
examples, appearing in science and engineering.

The notion of minimal structured realizations opens several future directions, in particular, construction of mini-
mal realizations via Petrov-Galerkin projection. For this, a full characterization of the concept of minimal realization
for structured systems needs to be developed. One interesting future direction would be to combine the knowledge of
error estimates, for example, from References 35,41 that allow to choose good interpolations points instead of just taking
them randomly or in a logarithmic scale. Moreover, an extension to structured nonlinear systems by combining the ideas
presented in this paper and in Reference 42 is a promising direction.
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