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Preface

These notes arise as a coproduct of the book on Alexandrov geometry
we have been writing for a number of years. They were shaped in a
number of lectures given by the third author to undergraduate students
at different occasions at the MASS program at Penn State University
and the Summer School “Algebra and Geometry” in Yaroslavl.

The idea is to demonstrate the beauty and power of Alexandrov
geometry by reaching interesting applications and theorems with a
minimum of preparation.

In Chapter 1, we discuss necessary preliminaries.
In Chapter 2, we discuss the Reshetnyak gluing theorem and apply

it to a problem in billiards which was solved by Dmitri Burago, Serge
Ferleger and Alexey Kononenko.

In Chapter 3, we discuss the Hadamard–Cartan globalization the-
orem of and apply it to the construction of exotic aspherical manifolds
introduced by Michael Davis.

In Chapter 4, we discuss examples of Alexandrov spaces with cur-
vature bounded above. This chapter is based largely on work of Samuel
Shefel on nonsmooth saddle surfaces.

Here is a list of some sources providing a good introduction to Alex-
androv spaces with curvature bounded above, which we recommend
for further information:

⋄ The book by Martin Bridson and André Haefliger [15];
⋄ Lecture notes of Werner Ballmann [10];
⋄ Chapter 9 in the book [17] by Dmitri Burago, Yurii Burago

and Sergei Ivanov.

Early history of Alexandov geometry

Alexandrov geometry can use “back to Euclid” as a slogan. Alexandrov
spaces are defined via axioms similar to those given by Euclid, but
certain equalities are changed to inequalities. Depending on the sign
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of the inequalities we get Alexandrov spaces with curvature bounded
above or curvature bounded below ; for more on this see the manifesto
below. Despite that the definitions of the two classes of spaces are
similar, their properties and known applications are quite different.

The first synthetic description of curvature is due to Abraham
Wald; it was given in a single publication on “coordinate-free differen-
tial geometry” In 1941, similar definitions were rediscovered indepen-
dently by Alexander Danilovich Alexandrov, see [5]. In Alexandrov’s
work the first fruitful applications of this approach were given. Mainly:

⋄ Alexandrov’s embedding theorem — metrics of non-negative
curvature on the sphere, and only they, are isometric to
closed convex surfaces in Euclidean 3-space.

⋄ Gluing theorem, which tells when the sphere obtained by
gluing of two discs along their boundaries has non-negative
curvature in the sense of Alexandrov.

These two results together gave a very intuitive geometric tool for
studying embeddings and bending of surfaces in Euclidean space, and
changed this subject dramatically. They formed the foundation of the
branch of geometry now called Alexandrov geometry.

The study of spaces with curvature bounded above started later.
The first paper on the subject was written by Alexandrov; it appeared
in 1951, see [6]. It was based on work of Herbert Busemann, who
studied spaces satisfying a weaker condition [20].

Surfaces with upper curvature bounds were studied extensively in
50-s and 60-s and by now well understood; see the survey [51] and
the references there in. One of the key contributions to the subject
was made by Yurii Grigorievich Reshetnyak. He also proved few fun-
damental results about general spaces with curvature bounded above;
the most important of which is gluing theorem. An other, equally
important result, the globalization theorem or Hadamard–Cartan the-
orem. These theorems and their history are discussed in the chapters
2 and 3.

Manifesto of Alexandrov geometry

Consider the space M4 of all isometry classes of 4-point metric spaces.
Each element in M4 can be described by 6 numbers — the distances
between all 6 pairs of its points, say ℓi,j for 1 6 i < j 6 4 modulo
permutations of the index set (1, 2, 3, 4). These 6 numbers are subject
to 12 triangle inequalities; that is,

ℓi,j + ℓj,k > ℓi,k
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holds for all i, j and k, where we assume that ℓj,i = ℓi,j and ℓi,i = 0.

N4 E4 P4

M4

Consider the subset E4 ⊂
⊂ M4 of all isometry classes of 4-
point metric spaces which admit
isometric embeddings into Eu-
clidean space. The complement
M4\E4 has two connected com-
ponents.

0.0.1. Exercise. Prove the lat-
ter statement.

One of the components will be denoted by P4 and the other by
N4. Here P and N stand for positive and negative curvature because
spheres have no quadruples of type N4 and hyperbolic space has no
quadruples of type P4.

A metric space, with length metric, which has no quadruples of
points of type P4 or N4, respectively, is called an Alexandrov space
with non-positive or non-negative curvature, respectively.

Here is an exercise, solving which would force the reader to rebuild
a considerable part of Alexandrov geometry.

0.0.2. Advanced exercise. Assume X is a complete metric space
with length metric, containing only quadruples of type E4. Show that
X is isometric to a convex set in a Hilbert space.

In fact, it might be helpful to spend some time thinking about this
exercise before proceeding.

In the definition above, instead of Euclidean space one can take hy-
perbolic space of curvature −1. In this case, one obtains the definition
of spaces with curvature bounded above or below by −1.

To define spaces with curvature bounded above or below by 1, one
has to take the unit 3-sphere and specify that only the quadruples of
points such that each of the four triangles has perimeter at most 2·π
are checked. The latter condition could be considered as a part of the
spherical triangle inequality.
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Chapter 1

Preliminaries

In this chapter we fix some conventions and recall the main definitions.
The chapter may be used as a quick reference when reading the book.

To learn background in metric geometry, the reader may consult
the book of Dmitri Burago, Yuri Burago and Sergei Ivanov [17].

1.1 Metric spaces

The distance between two points x and y in a metric space X will be
denoted by |x− y| or |x− y|X . The latter notation is used if we need
to emphasize that the distance is taken in the space X .

The function
distx : y 7→ |x− y|

is called the distance function from x.
⋄ The diameter of metric space X is defined as

diamX = sup{ |x− y|X | x, y ∈ X } .

⋄ Given R ∈ [0,∞] and x ∈ X , the sets

B(x,R) = {y ∈ X | |x− y| < R},

B[x,R] = {y ∈ X | |x− y| 6 R}

are called respectively the open and the closed balls of ra-
dius R with center x. Again, if we need to emphasize that
these balls are taken in the metric space X , we write

B(x,R)X and B[x,R]X .

5
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A metric space X is called proper if all closed bounded sets in
X are compact. This condition is equivalent to each of the following
statements:

1. For some (and therefore any) point p ∈ X and any R < ∞,
the closed ball B[p,R] ⊂ X is compact.

2. The function distp : X → R is proper for some (and there-
fore any) point p ∈ X ; that is, for any compact set K ⊂ R,
its inverse image { x ∈ X | |p− x|X ∈ K } is compact.

1.1.1. Exercise. Let K be a compact metric space and

f : K → K

be a non-contracting map. Prove that f is an isometry.

1.2 Constructions

Product space. Given two metric spaces U and V , the product space
U × V is defined as the set of all pairs (u, v) where u ∈ U and v ∈ V
with the metric defined by formula

|(u1, v1)− (u2, v2)|U×V =
√

|u1 − u2|2U + |v1 − v2|2V .

Cone. The cone V = ConeU over a metric space U is defined as the
metric space whose underlying set consists of equivalence classes in
[0,∞) × U with the equivalence relation “∼” given by (0, p) ∼ (0, q)
for any points p, q ∈ U , and whose metric is given by the cosine rule

|(p, s)− (q, t)|V =
√

s2 + t2 − 2·s·t· cosα,

where α = min{π, |p− q|U}.
The point in the cone V formed by the equivalence class of 0 × U

is called the tip of the cone and is denoted by 0 or 0V . The distance
|0− v|V is called the norm of v and is denoted by |v| or |v|V .

Suspension. The suspension V = SuspU over a metric space U is
defined as the metric space whose underlying set consists of equivalence
classes in [0,π]×U with the equivalence relation “∼” given by (0, p) ∼
∼ (0, q) and (π, p) ∼ (π, q) for any points p, q ∈ U , and whose metric
is given by the spherical cosine rule

cos |(p, s)− (q, t)|SuspU = cos s· cot t− sin s· sin t· cosα,

where α = min{π, |p− q|U}.
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The points in V formed by the equivalence class of 0×U and π×U
are called the north and the south poles of the suspension.

1.2.1. Exercise. Let U be a metric space. Show that the spaces

R× ConeU and Cone[SuspU ]

are isometric.

1.3 Geodesics, triangles and hinges

Geodesics. Let X be a metric space and I be a real interval. A glob-
ally isometric map γ : I → X is called a geodesic1; in other words,
γ : I → X is a geodesic if

|γ(s)− γ(t)|X = |s− t|

for any pair s, t ∈ I.
We say that γ : I → X is a geodesic from point p to point q if

I = [a, b] and p = γ(a), q = γ(b). In this case the image of γ is
denoted by [pq] and with an abuse of notations we also call it a geodesic.
Given a geodesic [pq] we can parametrize it by distance to p; this
parametrization will be denoted as geod[pq](t).

We may write [pq]X to emphasize that the geodesic [pq] is in the
space X . Also we use the following short-cut notation:

]pq[ = [pq]\{p, q}, ]pq] = [pq]\{p}, [pq[ = [pq]\{q}.

In general, a geodesic between p and q need not exist and if it
exists, it need not be unique. However, once we write [pq] we mean
that we made a choice of a geodesic.

A metric space is called geodesic if any pair of its points can be
joined by a geodesic.

A geodesic path is a geodesic with constant-speed parameterization
by [0, 1]. Given a geodesic [pq], we denote by path[pq] the corresponding
geodesic path; that is,

path[pq](t) ≡ geod[pq](t·|p− q|).

A curve γ : I → X is called a local geodesic if for any t ∈ I there is a
neighborhood U of t in I such that the restriction γ|U is a geodesic. A
constant speed parametrization of local geodesic by the unit interval
[0, 1] is called a local geodesic path.

1Various authors call it differently: shortest path, minimizing geodesic.
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Triangles. For a triple of points p, q, r ∈ X , a choice of a triple of
geodesics ([qr], [rp], [pq]) will be called a triangle; we will use the short
notation [pqr] = ([qr], [rp], [pq]).

Again, given a triple p, q, r ∈ X there may be no triangle [pqr]
simply because one of the pairs of these points can not be joined by a
geodesic. Also, many different triangles with these vertices may exist,
any of which can be denoted by [pqr]. However, if we write [pqr], it
means that we made a choice of such a triangle, that is, we fixed a
choice of the geodesics [qr], [rp] and [pq].

The value
|p− q| + |q − r| + |r − p|

will be called the perimeter of the triangle [pqr].

Hinges. Let p, x, y ∈ X be a triple of points such that p is distinct
from x and y. A pair of geodesics ([px], [py]) will be called a hinge and
it will be denoted by [p x

y ] = ([px], [py]).

Convex sets. A set A in a metric space X is called convex if for
every two points p, q ∈ A, every geodesic [pq] in X lies in A.

A set A ⊂ X is called locally convex if every point a ∈ A admits
an open neighborhood Ω ∋ a such that any geodesic lying in Ω and
with ends in A lies completely in A.

Note that any open set is locally convex by the definition.

1.4 Length spaces

A curve is defined as a continuous map from a real interval to a space.
If the real interval is [0, 1] then curve is called path.

1.4.1. Definition. Let X be a metric space and α : I → X be a
curve. We define the length of α as

lengthα
def

== sup
t06t16...6tn

∑

i

|α(ti)− α(ti−1)|

Directly from the definition, it follows that if a path α : [0, 1] → X
connects two points x and y (that is, α(0) = x and α(1) = y) then

lengthα > |x− y|.

If for any ε > 0 and any pair of points x and y in a metric space
X there is a path α connecting x to y such that

lengthα < |x− y| + ε,

then X is called a length space.
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Note that any geodesic space is a length space. As can be seen
from the following example, the converse does not hold.

1.4.2. Example. Let X be obtained by gluing a countable collection
of disjoint intervals {In} of length 1 + 1

n
, where for each In the left

end is glued to p and the right end to q. Then X carries a natural
complete length metric with respect to which |p − q| = 1 but there is
no geodesic connecting p to q.

1.4.3. Exercise. Give an example of a complete length space for
which no pair of distinct points can be joined by a geodesic.

Let X be a metric space and x, y ∈ X .
(i) A point z ∈ X is called a midpoint between x and y if

|x− z| = |y − z| = 1
2 ·|x− y|.

(ii) Assume ε > 0. A point z ∈ X is called an ε-midpoint
between x and y if

|x− z|, |y − z| 6 1
2 ·|x− y| + ε.

Note that a 0-midpoint is the same as a midpoint.

1.4.4. Lemma. Let X be a complete metric space.
a) Assume that for any pair of points x, y ∈ X and any ε > 0

there is a ε-midpoint z. Then X is a length space.
b) Assume that for any pair of points x, y ∈ X there is a

midpoint z. Then X is a geodesic space.

Proof. We first prove (a). Let x, y ∈ X be a pair of points.
Set εn = ε

4n .
Set α(0) = x and α(1) = y.
Let α(12 ) be an ε1-midpoint of α(0) and α(1). Further, let α(14 )

and α(34 ) be ε2-midpoints for the pairs (α(0),α(12 ) and (α(12 ),α(1)
respectively. Applying the above procedure recursively, on the n-th
step we define α( k

2n ), for every odd integer k such that 0 < k
2n < 1, as

an εn-midpoint of the already defined α(k−1
2n ) and α(k+1

2n ).
In this way we define α(t) for t ∈ W , where W denotes the set of

dyadic rationals in [0, 1]. The map α can be extended continuously to
[0, 1]. Moreover,

➊
lengthα 6 |x− y| +

∞∑

n=1

2n−1 ·εn 6

6 |x− y| + ε
2 .
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Since ε > 0 is arbitrary, we get (a).
To prove (b), one should repeat the same argument taking mid-

points instead of εn-midpoints. In this case ➊ holds for εn = ε = 0.

Since in a compact space a sequence of 1/n-midpoints zn contains
a convergent subsequence, Lemma 1.4.4 immediately implies

1.4.5. Proposition. A proper length space is geodesic.

1.4.6. Hopf–Rinow theorem. Any complete, locally compact length
space is proper.

Proof. Let X be a locally compact length space. Given x ∈ X , denote
by ρ(x) the supremum of all R > 0 such that the closed ball B[x,R]
is compact. Since X is locally compact

➋ ρ(x) > 0 for any x ∈ X .

It is sufficient to show that ρ(x) = ∞ for some (and therefore any)
point x ∈ X .

Assume the contrary; that is, ρ(x) < ∞.

➌ B = B[x, ρ(x)] is compact for any x.

Indeed, X is a length space; therefore for any ε > 0, the set
B[x, ρ(x) − ε] is a compact ε-net in B. Since B is closed and hence
complete, it has to be compact. △

➍ |ρ(x) − ρ(y)| 6 |x − y|X , in particular ρ : X → R is a continuous
function.

Indeed, assume the contrary; that is, ρ(x) + |x − y| < ρ(y) for
some x, y ∈ X . Then B[x, ρ(x) + ε] is a closed subset of B[y, ρ(y)] for
some ε > 0. Then compactness of B[y, ρ(y)] implies compactness of
B[x, ρ(x) + ε], a contradiction. △

Set ε = miny∈B{ρ(y)}; the minimum is defined since B is compact.
From ➋, we have ε > 0.

Choose a finite ε
10 -net {a1, a2, . . . , an} in B. The union W of the

closed balls B[ai, ε] is compact. Clearly B[x, ρ(x)+ ε
10 ] ⊂ W . Therefore

B[x, ρ(x) + ε
10 ] is compact, a contradiction.

1.4.7. Exercise. Construct a geodesic space that is locally compact,
but whose completion is neither geodesic nor locally compact.
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1.5 Model angles and triangles.

Let X be a metric space and p, q, r ∈ X . Let us define its model
triangle [p̃q̃r̃] (briefly, [p̃q̃r̃] = △̃(pqr)E2) to be a triangle in the plane
E
2 with the same sides; that is,

|p̃− q̃| = |p− q|, |q̃ − r̃| = |q − r|, |r̃ − p̃| = |r − p|.

In the same way we can define the hyperbolic and the spherical
model triangles △̃(pqr)H2 , △̃(pqr)S2 in the hyperbolic plane H2 and
the unit sphere S

2. In the latter case the model triangle is said to be
defined if in addition

|p− q| + |q − r| + |r − p| < 2·π.

In this case the model triangle again exists and is unique up to an
motion of S2.

If [p̃q̃r̃] = △̃(pqr)E2 and |p−q|, |p−r| > 0, the angle measure of [p̃q̃r̃]
at p̃ will be called the model angle of triple p, q, r and it will be denoted
by ∡̃(p q

r)E2 . In the same way we define ∡̃(p q
r)H2 and ∡̃(p q

r)S2 ; in the
latter case we assume in addition that the model triangle △̃(pqr)S2 is
defined. We may use the notation ∡̃(p q

r) if it is evident which of the
model spaces H2, E2 or S2 is meant.

x

p

y

z

1.5.1. Alexandrov’s lemma. Let p, x, y, z be
distinct points in a metric space such that z ∈
∈ ]xy[. Then the following expressions for the
Euclidean model angles have the same sign:

a) ∡̃(x p
z)− ∡̃(x p

y),

b) ∡̃(z p
x) + ∡̃(z p

y)− π.

Moreover,

∡̃(p x
y) > ∡̃(p x

z) + ∡̃(p z
y),

with equality if and only if the expressions in (a) and (b) vanish.
The same holds for the hyperbolic and spherical model angles, but

in the latter case one has to assume in addition that

|p− z| + |p− y| + |x− y| < 2·π.

Proof. Consider the model triangle [x̃p̃z̃] = △̃(xpz). Take a point ỹ on
the extension of [x̃z̃] beyond z̃ so that |x̃− ỹ| = |x− y| (and therefore
|x̃− z̃| = |x− z|).
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x̃
p̃

ỹ

z̃

Since increasing the opposite side in a plane trian-
gle increases the corresponding angle, the following
expressions have the same sign:

(i) ∡[x̃ p̃
ỹ]− ∡̃(x p

y);
(ii) |p̃− ỹ| − |p− y|;
(iii) ∡[z̃ p̃

ỹ]− ∡̃(z p
y).

Since
∡[x̃ p̃

ỹ] = ∡[x̃ p̃
z̃] = ∡̃(x p

z)

and
∡[z̃ p̃

ỹ] = π− ∡[z̃ x̃
p̃ ] = π− ∡̃(z x

p),

the first statement follows.
For the second statement, construct a model triangle [p̃z̃ỹ′] =

= △̃(pzy)E2 on the opposite side of [p̃z̃] from [x̃p̃z̃]. Note that

|x̃− ỹ′| 6 |x̃− z̃| + |z̃ − ỹ′| =

= |x− z| + |z − y| =

= |x− y|.

Therefore

∡̃(p x
z) + ∡̃(p z

y) = ∡[p̃ x̃
z̃ ] + ∡[p̃ z̃

ỹ′ ] =

= ∡[p̃ x̃
ỹ′ ] 6

6 ∡̃(p x
y).

Equality holds if and only if |x̃− ỹ′| = |x− y|, as required.

1.6 Angles and the first variation.

Given a hinge [p x
y ], we define its angle as the limit

➊ ∡[p x
y ]

def

== lim
x̄,ȳ→p

∡̃(p x̄
ȳ)E2 ,

where x̄ ∈ ]px] and ȳ ∈ ]py]. (The angle ∡[p x
y ] is defined if the limit

exists.)
The value under the limit can be calculated from the cosine law:

cos ∡̃(p x
y)E2 =

|p− x|2 + |p− y|2 − |x− y|2

2·|p− x| ·|p− y|
.

The following lemma implies that in ➊, one can use ∡̃(p x̄
ȳ)S2 or

∡̃(p x̄
ȳ)H2 instead of ∡̃(p x̄

ȳ)E2 .
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1.6.1. Lemma. For any three points p, x, y in a metric space the
following inequalities

➋
|∡̃(p x

y)S2 − ∡̃(p x
y)E2 | 6 |p− x| ·|p− y|,

|∡̃(p x
y)H2 − ∡̃(p x

y)E2 | 6 |p− x| ·|p− y|,

hold whenever the left-hand side is defined.

Proof. Note that

∡̃(p x
y)H2 6 ∡̃(p x

y)E2 6 ∡̃(p x
y)S2 .

Therefore

0 6 ∡̃(p x
y)S2 − ∡̃(p x

y)H2 6

6 ∡̃(p x
y)S2 + ∡̃(x p

y)S2 + ∡̃(y p
x)S2 − ∡̃(p x

y)H2 − ∡̃(x p
y)H2 − ∡̃(y p

x)H2 =

= area △̃(pxy)S2 + area △̃(pxy)H2 .

The inequality ➋ follows since

0 6 area △̃(pxy)H2 6

6 area △̃(pxy)S2 6

6 |p− x| ·|p− y|.

1.6.2. Triangle inequality for angles. Let [px1], [px2] and [px3]

be three geodesics in a metric space. If all the angles αij = ∡[p xi

xj ] are
defined, then they satisfy the triangle inequality:

α13 6 α12 + α23.

Proof. Since α13 6 π, we can assume that α12 + α23 < π. Set γi =
= geod[pxi]. Given any ε > 0, for all sufficiently small t, τ, s ∈ R+ we
have

|γ1(t)− γ3(τ)| 6 |γ1(t)− γ2(s)| + |γ2(s)− γ3(τ)| <

<
√

t2 + s2 − 2·t·s· cos(α12 + ε) +

+
√

s2 + τ2 − 2·s·τ· cos(α23 + ε) 6

Below we define s(t, τ) so that for s = s(t, τ), this chain of inequalities
can be continued as follows:

6
√

t2 + τ2 − 2·t·τ· cos(α12 + α23 + 2·ε).

Thus for any ε > 0,

α13 6 α12 + α23 + 2·ε.

Hence the result follows.
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t

τ

s
= α 12

+ ε

= α
23 + ε

To define s(t, τ), consider three rays γ̃1, γ̃2, γ̃3

on a Euclidean plane starting at one point, such
that ∡(γ̃1, γ̃2) = α12 + ε, ∡(γ̃2, γ̃3) = α23 + ε and
∡(γ̃1, γ̃3) = α12 + α23 + 2·ε. We parametrize each
ray by the distance from the starting point. Given
two positive numbers t, τ ∈ R+, let s = s(t, τ) be
the number such that γ̃2(s) ∈ [γ̃1(t) γ̃3(τ)]. Clearly
s 6 max{t, τ}, so t, τ, s may be taken sufficiently
small.

1.6.3. Exercise. Prove that the sum of adjacent
angles is at least π.

More precisely: let X be a complete length space
and p, x, y, z ∈ X . If p ∈ ]xy[ then

∡[p x
z ] + ∡[p y

z ] > π

whenever each angle on the left-hand side is defined.

1.6.4. First variation inequality. Assume that for a hinge [q p
x] the

angle α = ∡[q p
x] is defined. Then

|p− geod[qx](t)| 6 |q − p| − t· cosα+ o(t).

Proof. Take a sufficiently small ε > 0. For all sufficiently small t > 0,
we have

|geod[qp](t/ε)− geod[qx](t)| 6
t
ε
·
√

1 + ε2 − 2·ε· cosα+ o(t) 6

6 t
ε
− t· cosα+ t·ε.

Applying the triangle inequality, we get

|p− geod[qx](t)| 6 |p− geod[qp](t/ε)| + |geod[qp](t/ε)− geod[qx](t)| 6

6 |p− q| − t· cosα+ t·ε

for any fixed ε > 0 and all sufficiently small t. Hence the result.

1.7 Space of directions and tangent space

Let X be a metric space with defined angles for all hinges. Fix a point
p ∈ X .

Consider the set Sp of all nontrivial geodesics which start at p. By
1.6.2, the triangle inequality holds for ∡ on Sp, so (Sp,∡) forms a



1.8. HAUSDORFF CONVERGENCE 15

pseudometric space; that is, ∡ satisfies all the conditions of a metric
on Sp, except that the angle between distinct geodesics might vanish.

The metric space corresponding to (Sp,∡) is called the space of
geodesic directions at p, denoted by Σ′

p or Σ′
pX . Elements of Σ′

p are
called geodesic directions at p. Each geodesic direction is formed by
an equivalence class of geodesics in Sp for the equivalence relation

[px] ∼ [py] ⇐⇒ ∡[p x
y ] = 0.

The completion of Σ′
p is called the space of directions at p and is

denoted by Σp or ΣpX . Elements of Σp are called directions at p.
The Euclidean cone ConeΣp over the space of directions Σp is

called the tangent space at p and is denoted by Tp or TpX .
The tangent space Tp could also be defined directly, without in-

troducing the space of directions. To do so, consider the set Tp of all
geodesics with constant-speed parameterizations starting at p. Given
α,β ∈ Tp, set

➊ |α− β|Tp
= lim

ε→0

|α(ε)− β(ε)|X
ε

Since the angles in X are defined, ➊ defines a pseudometric on Tp.
The corresponding metric space admits a natural isometric identi-

fication with the cone T′
p = ConeΣ′

p. The elements of T′
p are equiva-

lence classes for the relation

α ∼ β ⇐⇒ |α(t)− β(t)|X = o(t).

The completion of T′
p is therefore naturally isometric to Tp.

Elements of Tp will be called tangent vectors at p, despite that Tp

is only a metric cone and need not be a vector space. Elements of T′
p

will be called geodesic tangent vectors at p.

1.8 Hausdorff convergence

It seems that Hausdorff convergence was first introduced by Felix
Hausdorff in [37], and a couple of years later an equivalent definition
was given by Wilhelm Blaschke in [13]. A refinement of this defini-
tion was introduced by Zdeněk Frolík in [31], and then rediscovered
by Robert Wijsman in [60]. However, this refinement takes an inter-
mediate place between the original Hausdorff convergence and closed
convergence introduced by Hausdorff in the same book. For this reason
we call it Hausdorff convergence instead of Hausdorff–Blascke–Frolík–
Wijsman convergence.
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Let X be a metric space and A ⊂ X . We will denote by distA(x)
the distance from A to a point x in X ; that is,

distA(x)
def

== inf { |a− x|X | a ∈ A } .

1.8.1. Definition of Hausdorff convergence. Given a sequence
of closed sets (An)

∞
n=1 in a metric space X , a closed set A∞ ⊂ X

is called the Hausdorff limit of (An)
∞
n=1, briefly An → A∞, if

distAn
(x) → distA∞

(x) as n → ∞

for any fixed x ∈ X .
In this case, the sequence of closed sets (An)

∞
n=1 is said to converge

in the sense of Hausdorff.

Example. Let Dn be the disc in the coordinate plane with center
(0, n) and radius n. Then Dn converges to the upper half-plane as
n → ∞.

1.8.2. Exercise. Let An → A∞ as in Definition 1.8.1, then A∞ is
the set of all points p such that pn → p for some sequence of points
pn ∈ An.

Show that the converse fails.

1.8.3. Selection theorem. Let X be a proper metric space and
(An)

∞
n=1 be a sequence of closed sets in X . Assume that for some

(and therefore any) point x ∈ X , the sequence distAn
(x) is bounded.

Then the sequence (An)
∞
n=1 has a convergent subsequence in the sense

of Hausdorff.

Proof. Since X is proper, we can choose a countable dense set {x1, x2, . . .
. . . } in X . Note that the sequence an = distAn

(xk) is bounded for each
k. Therefore, passing to a subsequence of (An)

∞
n=1, we can assume that

distAn
(xk) converges as n → ∞ for any fixed k.

Note that for each n, the function distAn
: X → R is 1-Lipschitz

and nonnegative. Therefore the sequence distAn
converges pointwise

to a 1-Lipschitz nonnegative function f : X → R.
Set A∞ = f−1(0). Since f is 1-Lipschitz,

distA∞
(y) > f(y)

for any y ∈ X . It remains to show that

distA∞
(y) 6 f(y)

for any y.
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Assume the contrary; that is,

f(z) < R < distA∞
(z)

for some z ∈ X and R > 0. Then for any sufficiently large n, there is
a point zn ∈ An such that |x − zn| 6 R. Since X is proper, we can
pass to a partial limit z∞ of zn as n → ∞.

It is clear that f(z∞) = 0, that is, z∞ ∈ A∞. On the other hand,

distA∞
(y) 6 |z∞ − y| 6 R < distA∞

(y),

a contradiction.

1.9 Gromov–Hausdorff convergence

1.9.1. Definition. Let { Xα | α ∈ A} be a set of metric spaces. A
metric ρ on the disjoint union

X =
⊔

α∈A

Xα

is called a compatible metric if the restriction of ρ to every Xα coin-
cides with the original metric on Xα.

1.9.2. Definition. Let X1,X2, . . . and X∞ be proper metric spaces
and ρ be a compatible metric on their disjoint union X. Assume that
Xn is an open set in (X, ρ) for each n 6= ∞, and Xn → X∞ in (X, ρ)
as n → ∞ in the sense of Hausdorff (see Definition 1.8.1).

Then we say ρ defines a convergence2 in the sense of Gromov–
Hausdorff, and write Xn → X∞ or Xn

ρ
−→ X∞. The space X∞ is called

the limit space of the sequence (Xn) along ρ.

Usually Gromov–Hausdorff convergence is defined differently. We
prefer this definition since it induces convergence for a sequence of
points xn ∈ Xn (Exercise 1.8.2), as well as weak convergence of mea-
sures µn on Xn, and so on, corresponding to convergence in the ambi-
ent space (X, ρ).

Once we write Xn → X∞, we mean that we made a choice of
convergence. Note that for a fixed sequence of metric spaces X1,X2, . . .
. . . , one may construct different Gromov–Hausdorff convergences, say

Xn
ρ
−→ X∞ and Xn

ρ′

−→ X ′
∞, whose limit spaces X∞ and X ′

∞ need not
be isometric to each other.

For example, for the constant sequence Xn
iso

== R>0, there is a con-
vergence with limit X∞

iso

== R>0; guess the metric ρ from the diagram.

2Formally speaking, convergence is the topology induced by ρ on X.
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X1

X2

. . .

X∞

For another metric ρ′ — also guess it from the diagram — the limit
space X ′

∞ is isometric to the real line.

X1

X2

. . .

X ′
∞

1.9.3. Selection theorem. Let Xn be a sequence of proper met-
ric spaces with marked points xn ∈ Xn. Assume that for any fixed
R, ε > 0, there is N = N(R, ε) ∈ N such that for each n the ball
B[xn, R]Xn

admits a finite ε-net with at most N points. Then there is
a subsequence of Xn admitting a Gromov–Hausdorff convergence such
that the sequence of marked points xn ∈ Xn converges.

Proof. From the main assumption in the theorem, in each space Xn

there is a sequence of points zi,n ∈ Xn such that the following condition
holds for a fixed sequence of integers M1 < M2 < . . .

⋄ |zi,n − xn|Xn
6 k + 1 if i 6 Mk;

⋄ the points z1,n, . . . , zMk,n form an 1
k
-net in B[xn, k]Xn

.
Passing to a subsequence, we can assume that the sequence

ℓn = |zi,n − zj,n|Xn

converges for any i and j.
Consider a countable set of points W = {w1, w2, . . .} equipped with

the pseudometric defined as

|wi − wj |W = lim
n→∞

|zi,n − zj,n|Xn
.

Let Ŵ be the metric space corresponding to W ; that is, points in Ŵ
are equivalence classes in W for the relation ∼, where wi ∼ wj if and
only it |wi − wj |W = 0, and where

|[wi]− [wj ]|Ŵ
def

== |wi − wj |W .
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Denote by X∞ the completion of Ŵ .
It remains to show that there is a Gromov–Hausdorff convergence

Xn → X∞ such that the sequence xn ∈ Xn converges. To prove it, we
need to construct a metric ρ on the disjoint union of

X = X∞ ⊔ X1 ⊔ X2 ⊔ . . .

satisfying definitions 1.9.1 and 1.9.2. The metric ρ can be constructed
as the maximal compatible metric such that

ρ(zi,n, wi) 6
1
m

for any n > Nm and i < Im for a suitable choice of two sequences (Im)
and (Nm) with I1 = N1 = 1.

1.9.4. Exercise. Let Xn be a sequence of metric spaces which admits

two convergences Xn
ρ
−→ X∞ and Xn

ρ′

−→ X ′
∞.

a) If X∞ is compact, then X∞
iso

== X ′
∞.

b) If X∞ is proper and there is a sequence of points xn ∈ Xn

which converges in both convergences, then X∞
iso

== X ′
∞.
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Chapter 2

Gluing theorem and

billiards

In this chapter we define CAT[κ] spaces and give the first application,
to billiards.

Here “CAT” is an acronym for Cartan, Alexandrov and Toponogov.
It was was coined by Michael Gromov in 1987. Originally, Alexandrov
called these spaces “Rκ domain”; this term still in use.

2.1 4-point condition

Given a quadruple of points p, q, x, y in a metric space X , consider two
model triangles in the plane [p̃x̃ỹ] = △̃(pxy)E2 and [q̃x̃ỹ] = △̃(qxy)E2

with common side [x̃ỹ].

p̃

q̃x̃

ỹ

z̃

If the inequality

|p− q|X 6 |p̃− z̃|
E2 + |z̃ − q̃|

E2

holds for any point z̃ ∈ [x̃ỹ] then we say that
the quadruple p, q, x, y satisfies CAT[0] compar-
ison.

If we do the same for spherical model tri-
angles [p̃x̃ỹ] = △̃(pxy)S2 and [q̃x̃ỹ] = △̃(qxy)S2 , then we arrive at
the definition of CAT[1] comparison. If one of the spherical model
triangles is undefined1 then it is assumed that CAT[1] comparison

1 that is, if

|p− x| + |p− y| + |x− y| > 2·π or |q − x| + |q − y| + |x− y| > 2·π.

21
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automatically holds for this quadruple.
We can do the same for the model plane with curvature κ; that is

a sphere if κ > 0, Euclidean plane if κ = 0 and Lobachevsky plane if
κ < 0. In this case we arrive at the definition of CAT[κ] comparison.
However in these notes we will consider mostly CAT[0] comparison
and occasionally CAT[1] comparison; so, if you see CAT[κ], you can
assume that κ is 0 or 1.

If all quadruples in a metric space X satisfy CAT[κ] comparison
then we say that the space X is CAT[κ]. (Note that CAT[κ] is an
adjective.)

Note that in order to check CAT[κ] comparison, it is sufficient to
know 6 distances between all the pairs of points in the quadruple. The
latter observation implies the following.

2.1.1. Proposition. The Gromov–Hausdorff limit of a sequence of
CAT[κ] spaces is always a CAT[κ] space.

In the proposition above, it does not matter which definition of con-
vergence for metric spaces you use, as long as any quadruple of points
in the limit space can be arbitrarily well approximated by quadruples
in the sequence of metric spaces.

2.1.2. Exercise. Let V be a metric space and U = ConeV. Show
that U is CAT[0] if and only if V is CAT[1].

Analogously, if U = SuspV then U is CAT[1] if and only if V is
CAT[1].

The cone and suspension constructions are defined in Section 1.2.
The following exercise is bit simpler, but can be proved in essen-

tially the same way.

2.1.3. Exercise. Assume U and V are CAT[0] spaces. Show that the
product space U × V is CAT[0].

2.1.4. Exercise. Show that any complete length CAT[0] space is geo-
desic.

2.2 Thin triangles

The inheritance lemma 2.2.9 proved below plays a central role in the
theory. It will lead to two fundamental constructions: patchwork glob-
alization (3.3.2) and Reshetnyak gluing (2.3.1), which in turn are used
to prove the globalization theorem (3.3.1).

Recall that a triangle [x1 x2 x3] in a space X is a triple of minimiz-
ing geodesics [x1x2], [x2x3] and [x3x1]. Consider the model triangle
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[x̃1 x̃2 x̃3] = △̃(x1x2x3)E2 in the Euclidean plane. The natural map
[x̃1 x̃2 x̃3] → [x1 x2 x3] sends a point z̃ ∈ [x̃ix̃j ] to the corresponding
point z ∈ [xixj ]; that is, z is the point such that |x̃i − z̃| = |xi − z|
and therefore |x̃j − z̃| = |xj − z|.

In the same way, a natural map can be defined by the spherical
model triangle △̃(x1x2x3)S2 .

2.2.1. Definition of thin triangles. A triangle [x1 x2 x3] in the
metric space X is called thin if the natural map △̃(x1x2x3)E2 →
→ [x1 x2 x3] is short (that is, a distance nonincreasing map).

Analogously, triangle [x1 x2 x3] is called spherically thin if the nat-
ural map from the spherical model triangle △̃(x1x2x3)S2 to [x1 x2 x3]
is short.

2.2.2. Proposition. A geodesic space is CAT[0] (respectively CAT[1])
if and only if all its triangles are thin (respectively, all its triangles of
perimeter < 2·π are spherically thin).

Proof; “If” part. Apply the triangle inequality and thinness of triangles
[pxy] and [qxy], where p, q, x and y are as in the definition of CAT[κ]
comparison (page 21).

“Only-if” part. Applying CAT[0] comparison to a quadruple p, q, x, y
with q ∈ [xy] shows that any triangle satisfies point-side comparison,
that is, the distance from a vertex to a point on the opposite side is
no greater than the corresponding distance in the Euclidean model
triangle.

Now consider triangle [x1 x2 x3], with y ∈ [x1x2] and z ∈ [x1x3].
Let ỹ, z̃ be the corresponding points on the sides of the model tri-
angle △̃(x1x2x3)E2 . Applying point-side comparison first to triangle
[x1 x2 x3] with y ∈ [x1x2], and then to triangle [x1 y x3] with z ∈ [x1x3],
implies that model angles satisfy

∡̃(x1 x2

x3)E2 > ∡̃(x1 y

x3)E2 > ∡̃(x1 y
z)E2 .

Therefore |ỹ − z̃|
E2 > |y − z|.

The CAT[1] argument is the same.

2.2.3. Uniqueness of geodesics. In a CAT[0] proper length space,
pairs of points are joined by unique geodesics, and these geodesics de-
pend continuously on their endpoint pairs.

Analogously, in a CAT[1] proper length space, pairs of points at
distance less than π are joined by unique geodesics, and these geodesics
depend continuously on their endpoint pairs.
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Proof. Given 4 points p1, p2, q1, q2 in a CAT[0] proper length space
U , consider two triangles [p1 q1 p2] and [p2 q2 q1]. Since both these
triangles are thin, we get

|path[p1q1](t)− path[p2q1](t)|U 6 (1− t)·|p1 − p2|U ,

|path[p2q1](t)− path[p2q2](t)|U 6 t·|q1 − q2|U .

It follows that

|path[p1q1](t)− path[p2q2](t)|U 6 max{|p1 − p2|U , |q
1 − q2|U}.

Hence continuity and uniqueness in the CAT[0] case.
The CAT[1] case is done essentially the same way.

Adding the first two inequalities of the preceding proof gives:

2.2.4. Proposition. Suppose p1, p2, q1, q2 are points in a CAT[0]
proper length space U . Then

|path[p1q1](t)− path[p2q2](t)|U

is a convex function.

2.2.5. Corollary. Let K be a closed convex subset in a CAT[0] proper
length space U . Then distK is convex on U .

In particular, distp is convex for any point p in U .

2.2.6. Corollary. Any CAT[0] proper length space is contractible.
Analogously, any CAT[1] proper length space with diameter < π is

contractible.

Proof. Let U be a CAT[0] proper length space. Fix a point p ∈ U .
For each point x consider the geodesic path γx : [0, 1] → U from p

to x. Consider the one parameter family of maps ht : x 7→ γx(t) for
t ∈ [0, 1]. By uniqueness of geodesics (2.2.3) the map (t, x) 7→ ht(x) is
continuous; the family ht is called geodesic homotopy.

It remains to note that h1(x) = x and h0(x) = p for any x.
The proof of the CAT[1] case is identical.

2.2.7. Proposition. Suppose U is a CAT[0] proper length space.
Then any local geodesic in U is a geodesic.

Analogously, if U is a CAT[1] proper length space then any local
geodesic in U which is shorter than π is a geodesic.



2.2. THIN TRIANGLES 25

γ(0)

γ(a)

γ(b)

Proof. Suppose γ : [0, ℓ] → U is a local geodesic that is
not a geodesic. Choose a to be the maximal value such
that γ is a geodesic on [0, a]. Further choose b > a so
that γ is a geodesic on [a, b].

Since the triangle [γ(0)γ(a)γ(b)] is thin, we have

|γ(a− ε)− γ(a+ ε)| < 2·ε

for all small ε > 0. That is, γ is not length-minimizing on the interval
[a− ε, a+ ε] for any ε > 0, a contradiction.

The spherical case is done in the same way.

2.2.8. Exercise. Assume U is a CAT[κ] proper length space with
extendable geodesics; that is, any geodesic in U is an arc in an infinite
local geodesic defined on R.

Show that the space of geodesic directions at any point in U is
complete.

Now let us formulate the main result of this section.

y

p

x

z

2.2.9. Inheritance lemma. Assume that a
triangle [pxy] in a metric space is decomposed
into two triangles [pxz] and [pyz]; that is, [pxz]
and [pyz] have a common side [pz], and the sides
[xz] and [zy] together form the side [xy] of [pxy].

If both triangles [pxz] and [pyz] are thin, then
the triangle [pxy] is also thin.

Analogously, if [pxy] has perimeter < 2·π and both triangles [pxz]
and [pyz] are spherically thin, then triangle [pxy] is spherically thin.

ż

ṗ

ẋ ẏ
ẇ

Proof. Construct model triangles [ṗẋż] =
= △̃(pxz)E2 and [ṗẏż] = △̃(pyz)E2 so that ẋ
and ẏ lie on opposite sides of [ṗż].

Let us show that

➊ ∡̃(z p
x) + ∡̃(z p

y) > π.

Suppose the contrary, that is

∡̃(z p
x) + ∡̃(z p

y) < π.

Then for some point ẇ ∈ [ṗż], we have

|ẋ− ẇ| + |ẇ − ẏ| < |ẋ− ż| + |ż − ẏ| = |x− y|.

Let w ∈ [pz] correspond to ẇ; that is |z − w| = |ż − ẇ|. Since [pxz]
and [pyz] are thin, we have

|x− w| + |w − y| < |x− y|,
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contradicting the triangle inequality.
Let us denote by Ḋ the union of two solid triangles [ṗẋż] and [ṗẏż].

By ➊, there is a short map F that sends [p̃x̃ỹ] to Ḋ in such a way that

p̃ 7→ ṗ, x̃ 7→ ẋ, z̃ 7→ ż, ỹ 7→ ẏ.

2.2.10. Exercise. Use Alexandrov’s lemma (1.5.1) to prove the last
statement.

By assumption, the natural maps [ṗẋż] → [pxz] and [ṗẏż] → [pyz]
are short. By composition, the natural map from [p̃x̃ỹ] to [pyz] is
short, as claimed.

The spherical case is done along the same lines.

2.2.11. Exercise. Show that any ball in a CAT[0] proper length space
is a convex set.

Analogously, show that any ball of radius R < π
2 in a CAT[1] proper

length space is a convex set.

Recall that a set A in a metric space U is called locally convex if
for any point p ∈ A there is an open neighborhood U ∋ p such that
any geodesic in U with ends in A lies in A.

2.2.12. Exercise. Show that in any CAT[0] proper length space, any
closed, connected, locally convex set is convex.

2.2.13. Exercise. Let U be a CAT[0] proper length space and K ⊂ U
be a closed convex set. Show that

a) For each point p ∈ U there is unique point p∗ ∈ K that
minimizes the distance |p− p∗|.

b) The closest-point projection p 7→ p∗ defined by (a) is short.

2.3 Reshetnyak’s gluing theorem

Suppose U1 and U2 are proper length spaces with isometric closed
convex sets Ai ⊂ U i and ι : A1 → A2 be an isometry. Consider the
space W of all equivalence classes on U1 ⊔ U2 with the equivalence
relation given by a ∼ ι(a) for any a ∈ A1.

It is straightforward to see that W is a proper length space if
equipped with the following metric

|x− y|W
def

== |x− y|Ui

if x, y ∈ U i, and

|x− y|W
def

== min
{
|x− a|U1 + |y − ι(a)|U2


 a ∈ A1

}

if x ∈ U1 and y ∈ U2.
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Abusing notation, we denote by x and y the points in U1 ⊔ U2 and
their equivalence classes in U1 ⊔ U2/∼.

The space W is called the gluing of U1 and U2 along ι. If one
applies this construction to two copies of one space U with a set A ⊂
⊂ U and identity map ι : A → A, then the obtained space is called the
doubling of U along A.

We can (and will) identify U i with its image in W ; this way both
subsets Ai ⊂ U i will be identified and denoted further by A. Note
that A = U1 ∩ U2 ⊂ W , therefore A is also a convex set in W .

The following theorem was proved by Yuri Reshetnyak in [50].

2.3.1. Reshetnyak gluing. Suppose U1 and U2 are CAT[0] proper
length spaces with isometric closed convex sets Ai ⊂ U i, and ι : A1 →
→ A2 is an isometry. Then the gluing of U1 and U2 along ι is a
CAT[0] proper length space.

Proof. By construction of the gluing space, the statement can be
reformulated in the following way.

2.3.2. Reformulation of 2.3.1. Let W be a proper length space
which has two closed convex sets U1,U2 ⊂ W such that U1 ∪ U2 = W
and U1, U2 are CAT[0]. Then W is a CAT[0] space.

x0

x1 x2

z1

z2

U1

U2

A

It suffices to show that any triangle
[x0 x1 x2] in W is thin. This is obviously true
if all three points x0, x1, x2 lie in one of U i.
Thus, without loss of generality, we may as-
sume that x0 ∈ U1 and x1, x2 ∈ U2.

Choose points z1, z2 ∈ A = U1∩U2 that lie
respectively on the sides [x0x1], [x0x2]. Note
that

⋄ triangle [x0 z1 z2] lies in U1,
⋄ both triangles [x1 z1 z2] and [x1 z2 x2] lie in U2.

In particular each triangle [x0 z1 z2], [x1 z1 z2] and [x1 z2 x2] is thin.
Applying the inheritance lemma for thin triangles (2.2.9) twice we

get that [x0 x1 z2] and consequently [x0 x1 x2] is thin.

2.4 Reshetnyak’s puff pastry

In this section we introduce Reshetnyak’s puff pastry, a construction
which will be used in the next section to prove the collision theorem
(2.6.1).

Let A = (A1, . . . , AN ) be an array of convex closed sets in the
Euclidean space Em. Consider an array of N+1 copies of Em. Assume
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that the space R is obtained by gluing successive pairs of spaces along
A1, . . . , AN respectively.

A B

R0

R1
R

2

R
3

Puff pastry for (A,B,A).

The resulting space R will
be called Reshetnyak’s puff
pastry for the array A. The
copies of Em in the puff pas-
try R will be called lev-
els ; they will be denoted by
R0, . . . ,RN . The point in
the k-th level Rk which cor-
responds to x ∈ Em will be
denoted by xk.

Given x ∈ E
m, any point xk ∈ R is called a lifting of x. The map

x 7→ xk defines an isometry Em → Rk in particular we can talk about
liftings of subsets in Em.

Note that
⋄ The intersection A1 ∩ . . . ∩ AN admits a unique lifting in
R.

⋄ Moreover, xi = xj for some i < j if and only if

x ∈ Ai+1 ∩ . . . ∩ Aj .

⋄ The restriction Rk → Em of the natural projection xk 7→ x
is an isometry.

2.4.1. Observation. Any Reshetnyak’s puff pastry is a CAT[0] proper
length space.

Proof. Apply Reshetnyak’s gluing theorem (2.3.1) recursively for the
convex sets in the array.

2.4.2. Proposition. Assume (A1, . . . , AN ) and (Ǎ1, . . . , ǍN ) are two
arrays of convex closed sets in Em such that Ak ⊂ Ǎk for each k. Let
R and Ř be the corresponding Reshetnyak’s puff pastries. Then the
map R → Ř defined as xk 7→ x̌k is short.

Moreover, if
|xi − yj|R = |x̌i − y̌j |

Ř

for some x, y ∈ Em and i, j ∈ {0, . . . , n}, then the unique geodesic
[x̌iy̌j ]Ř is the image of the unique geodesic [xiyj ]R under the map
xi 7→ x̌i.

Proof. The first statement in the proposition follows from the con-
struction of Reshetnyak’s puff pastries.

By Observation 2.4.1, R and Ř are CAT[0] proper length spaces,
hence [xiyj ]R and [x̌iy̌j ]Ř are unique. Since the map R → Ř is short,
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the image of [xiyj ]R is a geodesic of Ř joining x̌i to y̌j . Hence the
second statement follows.

2.4.3. Definition. Consider a Reshetnyak’s puff pastry R with the
levels R0, . . . ,RN . We say that R is end-to-end convex if R0 ∪ RN ,
the union of its lower and upper levels, forms a convex set in R.

If R is the Reshetnyak’s puff pastry for an array of convex sets
A = (A1, . . . , AN ) then R is end-to-end convex if and only if the
union of the lower and the upper levels R0 ∪ RN is isometric to the
doubling of Em along the nonempty intersection A1 ∩ . . . ∩ AN .

2.4.4. Observation. Let Ǎ and A be arrays of convex bodies in Em.
Assume the array A is obtained by inserting in Ǎ several copies of the
bodies which were already listed in Ǎ.

For example, if Ǎ = (A,C,B,C,A), by placing B in the second
place and A in the fourth place, we obtain A = (A,B,C,A,B,C,A).

Denote by Ř and R the Reshetnyak’s puff pastries for Ǎ and A

respectively.
If Ř is end-to-end convex then so is R.

Proof. Without loss of generality we can assume that A is obtained
by inserting one element in Ǎ, say at the place number k.

Note that Ř is isometric to the puff pastry for A with Ak replaced
by Em. It remains to apply Proposition 2.4.2.

p

X

D
Let X be a convex set in a Euclidean space.

By a dihedral angle we understand an inter-
section of two half-spaces; the intersection of
corresponding hyperplanes is called the edge of
the angle. We say that a dihedral angle D is
supporting X at a point p ∈ X if D contains
X and the edge of D contains p.

2.4.5. Lemma. Let A and B be two convex sets in Em. Assume that
any dihedral angle supporting A ∩B at some point has angle measure
at least α. Then the Reshetnyak’s puff pastry for the array

(A,B,A, . . .
︸ ︷︷ ︸

⌈ π

α
⌉ + 1 times

).

is end-to-end convex.

The proof of the lemma is based on a partial case which we formu-
late as a sublemma.
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2.4.6. Sublemma. Let Ä and B̈ be two half-planes in E2, where Ä∩
∩ B̈ is an angle with measure α. Then the Reshetnyak’s puff pastry
for the array

( Ä, B̈, Ä, . . .
︸ ︷︷ ︸

⌈ π

α
⌉ + 1 times

)

is end-to-end convex.

α

α

α

π
−
α

π
−
α

Proof. Note that the puff pastry
R̈ is isometric to the cone over the
space glued from the unit circles
as shown on the diagram.

All the short arcs on the dia-
gram have length α; the long arcs
have length π−α, so making a cir-
cuit along any path will take 2·π.

Observe that end-to-end con-
vexity of R̈ is equivalent to the
fact that any geodesic shorter
than π with the ends on the in-
ner and the outer circles lies completely in the union of these two
circles.

The latter holds if the zigzag line has length at least π. This
line is formed by ⌈π

α
⌉ arcs with length α each. Hence the sublemma

follows.

Proof of 2.4.5. Fix arbitrary x, y ∈ Em. Choose a point z ∈ A∩B for
which the sum

|x− z| + |y − z|

is minimal. To show the end-to-end convexity of R, it is sufficient to
prove the following:

➊ The geodesic [x0yN ]R passes z0 = zN ∈ R.

Without loss of generality we can assume that z ∈ ∂A ∩ ∂B. In-
deed, since the puff pastry for 1-array (B) is end-to-end convex, Propo-
sition 2.4.2 together with Observation 2.4.4 imply ➊ in case z lies in
the interior of A. In the same way we can treat the case when z lies
in the interior of B.

Further we will use the following exercise in convex geometry

2.4.7. Exercise. Let A and B be two closed convex sets in Em and
A ∩B 6= ∅. Given two points x, y ∈ Em let f(z) = |x− z| + |y − z|.

Let z0 ∈ A ∩B be a point of minimum of f |A∩B.
Show that there are half-spaces Ȧ and Ḃ such that Ȧ ⊃ A and

Ḃ ⊃ B and z0 is also a point of minimum of the restriction f |Ȧ∩Ḃ.
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x
y

z

A B

Ȧ
Ḃ

Note that Em admits isometric splitting
Em−2 × E2 such that

Ȧ = E
m−2 × Ä

Ḃ = E
m−2 × B̈

where Ä and B̈ are half-planes in E2.
Using Exercise 2.4.7 let us replace each A

by Ȧ and each B by Ḃ in the array, to get
the array

(Ȧ, Ḃ, Ȧ, . . .
︸ ︷︷ ︸

⌈π

α
⌉ + 1 times

).

The corresponding puff pastry Ṙ splits as a product of Em−2 and a
puff pastry, call it R̈, glued from the copies of the plane E2 for the
array

(Ä, B̈, Ä, . . .
︸ ︷︷ ︸

⌈π

α
⌉ + 1 times

).

Note that the dihedral angle Ȧ ∩ Ḃ is at least α. Therefore the
angle measure of Ä∩ B̈ is also at least α According to Sublemma 2.4.6
and Observation 2.4.4, R̈ is end-to-end convex.

Since Ṙ
iso

== Em−2×R̈, the puff pastry Ṙ is also end-to-end convex.
It follows that the geodesic [ẋ0ẏN ]Ṙ passes ż0 = żN ∈ Ṙ. By

Proposition 2.4.2, the image of [ẋ0ẏN ]Ṙ under the map ẋk 7→ xk is the
geodesic [x0yN ]R. Hence Claim ➊ and the lemma follow.

2.5 Wide corners

We say that a closed convex set A ⊂ Em has ε-wide corners for given
ε > 0 if together with each point p the set A contains a small right
circular cone with tip at p and aperture ε; that is, ε is the maximum
angle between two generating lines of the cone.

For example, a plane polygon has ε-wide corners if all its interior
angles are at least ε.

We will consider finite collections of closed convex sets A1, . . .
. . . , An ⊂ Em such that for any subset F ⊂ {1, . . . , n} the intersection
⋂

i∈F Ai has ε-wide corners. In this case we may say briefly all inter-
sections of Ai have ε-wide corners.

2.5.1. Exercise. Assume A1, . . . , An ⊂ Em are compact, convex sets
with a common interior point. Show that all intersections of Ai have
ε-wide corners for some positive ε.
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2.5.2. Exercise. Assume A1, . . . , An ⊂ Em are convex sets with
nonempty interior which have a common center of symmetry. Show
that all intersections of an arbitrary number of sets Ai have ε-wide
corners for some positive ε.

The proof of the following proposition is based on Lemma 2.4.5;
this lemma is essentially the case n = 2 in the proposition.

2.5.3. Proposition. Given ε > 0 and a positive integer n there is
an array of integers jε(n) = (j1, . . . , jN ) such that

a) For each k we have 1 6 jk 6 n and each number 1, . . . , n
appears in jε at least once.

b) If A1, . . . , An is a collection of closed convex sets in Em

with a common point and all their intersections have ε-wide
corners then the puff pastry for the array (Aj1 , . . . , AjN ) is
end-to-end convex.

Moreover we can assume that N 6 (⌈π
ε
⌉+ 1)n.

Proof. The array jε(n) = (j1, . . . , jN ) is constructed recursively. For
n = 1, the array is (1).

Assume that jε(n) is constructed. Let us exchange each occurrence
of n in jε(n) by the alternating string

n, n+ 1, n, . . .
︸ ︷︷ ︸

⌈π

ε
⌉ + 1 times

.

Denote the obtained array by jε(n+ 1).
By Lemma 2.4.5, end-to-end convexity of the puff pastry for jε(n+

1) follows from end-to-end convexity of the puff pastry for the array
where each string

An, An+1, An, . . .
︸ ︷︷ ︸

⌈π

ε
⌉ + 1 times

exchanged to Q = An ∩ An+1. The latter follows by assumption on
jε(n), since all the intersections of A1, . . . , An−1, Q have ε-wide cor-
ners.

The upper bound on N follows directly from the construction.

2.6 Billiards

Let A1, A2, . . . An be a finite collection of closed convex sets in Em.
Assume that for each i the boundary ∂Ai is a smooth hypersurface.

Consider the billiard table formed by the closure of the complement

T = Em\
⋃

i

Ai.
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The sets Ai will be called walls of the table T and the billiards de-
scribed above will be called billiards with convex walls.

A1

A2

A3

A billiard trajectory on the table T is a unit-speed broken line
γ which follows the standard law of billiards at the break points on
∂Ai — in particular, the angle of reflection is equal to the angle of
incidence. The break points of the trajectory will be called collisions.
We assume the trajectory meets only one wall at a time.

Recall that the definition of sets with ε-wide corners is given on
page 31.

2.6.1. Collision theorem. Assume T ⊂ Em is a billiard table with
n convex walls. Assume that the walls of T have common interior
point and all their intersections have ε-wide corners. Then the number
of collisions of any trajectory in T is bounded by a number N which
depends only on n and ε.

As we will see from the proof, the value N can be found explicitly;

N = (⌈π
ε
⌉+ 1)n

2

will do.
The collision theorem was proved by Dmitri Burago, Serge Ferleger

and Alexey Kononenko in [18]; we present their proof with minor im-
provements.

Let us formulate and prove a corollary of the collision theorem:

2.6.2. Corollary. Consider n homogeneous hard balls moving freely
and colliding elastically in R3. Every ball moves along a straight line
with constant speed until two balls collide, and then the new velocities
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of the two balls are determined by the laws of classical mechanics. We
assume that only two balls can collide at the same time.

Then the total number of collisions cannot exceed some number N
which depends on the radii and masses of the balls. If the balls are
identical then N depends only on n.

The proof below admits a straightforward generalization to all di-
mensions.

Proof. Denote by ai = (xi, yi, zi) ∈ R3 the center of the i-th ball.
Consider the corresponding point in R3·N

a = (a1, a2, . . . , an) =

= (x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn).

The i-th and j-th ball intersect if

|ai − aj | 6 Ri +Rj ,

where Ri denotes the radius of the i-th ball. These inequalities define
n·(n−1)

2 cylinders

Ci,j =
{
(a1, a2, . . . , an) ∈ R

3·n

 |ai − aj | 6 Ri +Rj

}
.

The closure of the complement

T = R3·n\
⋃

i<j

Ci,j

is the configuration space of our system. Its points correspond to valid
positions of the system of balls.

The evolution of the system of balls is described by the motion
of the point a ∈ R3·n. It moves along a straight line at a constant
speed until it hits one of the cylinders Ci,j ; this event corresponds to
a collision in the system of balls.

Consider the norm of a = (a1, . . . , an) ∈ R3·n defined by

‖a‖ =
√

M1 ·|a1|2 + . . .+Mn ·|an|,

where |ai| =
√

x2
i + y2i + z2i and Mi denotes the mass of the i-th ball.

In the metric defined by ‖∗‖, the collisions follow the standard law of
billiards: the angle of reflection is equal to the angle of incidence.

By construction, the number of collisions of hard balls that we need
to estimate is the same as the number of collisions of the corresponding
billiard trajectory on the table T with Ci,j as the walls.

Note that each cylinder Ci,j is a convex set; it has smooth boundary
and it is centrally symmetric around the origin. By Exercise 2.5.2, all
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the intersections of the walls have ε-wide corners for some ε > 0 that
depends on the radiuses Ri and the masses Mi. It remains to apply
the collision theorem (2.6.1).

Now we present the proof of the collision theorem (2.6.1) based on
the results developed in the previous section.

Proof of 2.6.1. Let us apply induction on n.

Base: n = 1. The number of collisions cannot exceed 1. Indeed, by
the convexity of A1, if the trajectory is reflected once in ∂A1, then it
cannot return to A1.

Step. Assume γ is a trajectory which meets the walls in the order
Ai1 , . . . , AiN for a large integer N .

Consider the array

Aγ = (Ai1 , . . . , AiN ).

The induction hypothesis implies:

➊ There is a positive integer M such that any M consecutive elements
of Aγ contain each Ai at least once.

Let Rγ be the Reshetnyak’s puff pastry for Aγ.
Consider the lift of γ to Rγ defined as γ̄(t) = γk(t) ∈ Rγ for

any moment of time t between k-th and (k + 1)-th collisions. Since
γ follows the standard law of billiards at break points, the lift γ̄ is
locally a geodesic in Rγ. By Observation 2.4.1, the puff pastry Rγ is
a CAT[0] proper length space. Therefore γ̄ is a geodesic.

Since γ does not pass A1 ∩ . . . ∩ An, the lift γ̄ does not lie in
R0

γ ∪RN
γ . In particular, Rγ is not end-to-end convex.

Let
B = (Aj1 , . . . , AjK )

be the array provided by Proposition 2.5.3; so B contains each Ai at
least once and the puff pastry RB for B is end-to-end convex. If N is
sufficiently large, namely N > K ·M , then ➊ implies that Aγ can be
obtained by inserting a finite number of Ai’s in B.

By Observation 2.4.4, Rγ is end-to-end convex, a contradiction.

2.7 Comments

The gluing theorem (2.3.1) extends to the class of CAT[0] geodesic
spaces, which by Exercise 2.1.4 includes all CAT[0] complete length
spaces. It also admits a natural generalization to CAT[κ] length
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spaces; see the book of Martin Bridson and André Haefliger [15] and
our book [4] for details.

The idea in the proof of the collision theorem has a number of
applications to billiards. In particular, it can be used to bound topo-
logical entropy of the billiard flow; see another paper of Dmitri Burago,
Serge Ferleger and Alexey Kononenko [19]. The lecture [16] of Dmitri
Burago gives a short survey on the subject.

Note that the interior points of the walls play a key role in the
proof despite the fact that trajectories never go inside the walls. In a
similar fashion, puff pastry was used by the first author and Richard
Bishop in [3] to find the upper curvature bound for warped products.

In [36], Joel Hass constructed an example of a Riemannian metric
on the 3-ball with negative curvature and concave boundary. This
example might decrease your appetite for generalizing the collision
theorem — while locally such a 3-ball looks as good as the billiards
table in the theorem, the number of collisions is obviously infinite.



Chapter 3

Globalization and

asphericity

In this chapter we introduce locally CAT[0] spaces and prove the
globalization theorem which provides a sufficient condition for locally
CAT[0] spaces to be globally CAT[0].

The theorem implies in particular, that the universal cover of a
locally CAT[0] proper length space is a CAT[0] proper length space.
It follows that any locally CAT[0] proper length space is aspherical;
that is, its universal cover is contractible.

This globalization theorem leads to a construction toy set, de-
scribed by the flag condition (3.5.5). Playing with this toy set, we
produce examples of exotic aspherical spaces.

3.1 Locally CAT spaces

We say that a space U is locally CAT[0] (or locally CAT[1]) if a small
closed ball centered at any point p in U forms a CAT[0] space (or
CAT[1] space, respectively).

For example, S1 is locally isometric to R, and so S1 is locally
CAT[0]. On the other hand, S1 is not CAT[0], since closed local geo-
desics in S1 are not geodesics, so S1 does not satisfy Proposition 2.2.7.

If U is a proper length space then it is locally CAT[0] (or locally
CAT[1]) if and only if each point p ∈ U admits an open neighborhood
Ω which is geodesic and any triangle in Ω is thin (or spherically thin,
respectively). The proof goes along the same lines as in Exercise 2.2.11.

37
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3.2 Space of local geodesic paths

In this section we will study behavior of local geodesics in locally
CAT[κ] spaces. The results will be used in the proof of the globaliza-
tion theorem (3.3.1).

Recall that path is a curve parametrized by [0, 1]. The space of
paths in metric space U comes with the natural metric

➊ |α− β| = sup{ |α(t)− β(t)|U | t ∈ [0, 1] } .

3.2.1. Proposition. Let U be a proper locally CAT[κ] length space.
Assume γn : [0, 1] → U is a sequence of local geodesic paths con-

verging to a path γ∞ : [0, 1] → U . Then γ∞ is a local geodesic path.
Moreover

lengthγn → lengthγ∞

as n → ∞.

Proof; CAT[0] case. Fix t ∈ [0, 1]. Let R > 0 be the value such that
B[γ∞(t), R] forms a CAT[0] proper length space.

Assume a local geodesic σ is shorter than R/2 and intersects the
ball B(γ∞(t), R/2). Then σ cannot leave the ball B[γ∞(t), R]. Hence,
by Proposition 2.2.7, σ is a geodesic. In particular, for all sufficiently
large n, any arc of γn of length R/2 or less is a geodesic.

Since B = B[γ∞(t), R] is a CAT[0] proper length space, by Theo-
rem 2.2.3, geodesic segments in B depend uniquely and continuously
on their endpoint pairs. Thus there is a subinterval I of [0, 1], which
contains a neighborhood of t in [0, 1] and such that the arc γn|I is min-
imizing for all large n. It follows that γ∞|I is a geodesic, and therefore
γ∞ is a local geodesic.

The CAT[1] case is done the same way, but one has to assume in
addition that R < π.

The following lemma and its proof were suggested to us by Alexan-
der Lytchak. This lemma allows a local geodesic path to be moved
continuously so that its endpoints follow given trajectories. This state-
ment was originally proved by the first author and Richard Bishop
using a different method; see [2].

3.2.2. Patchwork along a curve. Let U be a locally CAT[0] proper
length space, and γ : [0, 1] → U be a path.

Then there is a CAT[0] proper length space N , an open set Ω̂ ⊂ N ,
and a path γ̂ : [0, 1] → Ω̂, such that there is an open locally isometric
immersion Φ: Ω̂ # U satisfying Φ ◦ γ̂ = γ.
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If lengthγ < π, then the same holds in CAT[1] case. Namely we
assume that U is a CAT[1] proper length space and construct a CAT[1]
proper length space N with the same property as above.

Proof. Fix r > 0 so that for each t ∈ [0, 1], the closed ball B[γ(t), r]
forms a CAT[κ] proper length space.

B0

B1
. . . . . .

Bn

Choose a partition 0 = t0 < t1 < . . . < tn = 1 so that

B(γ(ti), r) ⊃ γ([ti−1, ti])

for all n > i > 0. Set Bi = B[γ(ti), r].
Consider the disjoint union

⊔

i B
i =

{
(i, x)


 x ∈ Bi

}
with the

minimal equivalence relation ∼ such that (i, x) ∼ (i − 1, x) for all i.
Let N be the space obtained by gluing the Bi along ∼.

Note that Ai = Bi ∩ Bi−1 is convex in Bi and in Bi−1. Applying
the Reshetnyak gluing theorem (2.3.1) n times, we conclude that N is
a CAT[0] proper length space.

For t ∈ [ti−1, ti], define γ̂(t) as the equivalence class of (i,γ(t)) in
N . Let Ω̂ be the ε-neighborhood of γ̂ in N , where ε > 0 is chosen so
that B(γ(t), ε) ⊂ Bi for all t ∈ [ti−1, ti].

Define Φ: Ω̂ → U by sending the equivalence class of (i, x) to x. It
is straightforward to check that Φ, γ̂ and Ω̂ ⊂ N satisfy the conclusion
of the lemma.

The CAT[1] case is proved the same way.

The following two corollaries follow from: (1) the patchwork (3.2.2);
(2) Proposition 2.2.7, which states that local geodesics are geodesics
in any CAT space; and (3) Theorem 2.2.3 on uniqueness of geodesics.

3.2.3. Corollary. If U is a locally CAT[0] proper length space, then
for any pair of points p, q ∈ U , the space of all local geodesic paths
from p to q is discrete; that is, for any local geodesic path γ connecting
p to q, there is ε > 0 such that for any other local geodesic path δ from
p to q we have |γ(t)− δ(t)|U > ε for some t ∈ [0, 1].

Analogously, if U is a locally CAT[1] proper length space, then for
any pair of points p, q ∈ U , the space of all local geodesic paths from p
to q with length less than π is discrete.
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3.2.4. Corollary. If U is a locally CAT[0] proper length space, then
for any path α there is a choice of a local geodesic path γα connecting
the ends of α such that the map α 7→ γα is continuous, and if α is a
local geodesic path then γα = α.

Analogously, if U is a locally CAT[1] proper length space, then for
any path α shorter than π, there is a choice of a local geodesic path γα

shorter than π connecting the ends of α such that the map α 7→ γα is
continuous, and if α is a local geodesic path then γα = α.

Proof of 3.2.4. We do the CAT[0] case; the CAT[1] case is analogous.
Consider the maximal interval I ⊂ [0, 1] containing 0, such that

there is a continuous one-parameter family of local geodesic paths γt

for t ∈ I connecting α(0) to α(t) with γt(0) = γ0(t) = α(0) for any t.
By Proposition 3.2.1, I is closed, so we can assume I = [0, s] for

some s ∈ [0, 1].
Applying the patchwork (3.2.2) to γs, we get that I is also open in

[0, 1]. Hence I = [0, 1]. Set γα = γ1.
By construction, if α is a local geodesic path, then γα = α.
Moreover, from Corollary 3.2.3, the construction α 7→ γα produces

close results for sufficiently close paths in the metric defined by ➊;
that is, the map α 7→ γα is continuous.

Given a path α : [0, 1] → U , we denote by ᾱ the same path traveled
in the opposite direction; that is,

ᾱ(t) = α(1− t).

The product of two paths will be denoted with “∗”; if two paths α and
β connect the same pair of points then the product ᾱ ∗ β is a closed
curve.

3.2.5. Exercise. Assume U is a locally CAT[1] proper length space.
Consider the construction α 7→ γα provided by Corollary 3.2.4.

Assume α and β are two paths connecting the same pair of points
in U , where each has length less than π and the product ᾱ ∗ β is null-
homotopic in the class of closed curves with length smaller than 2·π.
Then γα = γβ.

3.3 Globalization

The original formulation of the globalization theorem, or Hadamard–
Cartan theorem, states that if M is a complete Riemannian manifold
with sectional curvature 6 0, then the exponential map at any point
p ∈ M is a covering; in particular it implies that the universal cover
of M is diffeomorphic to the Euclidean space of the same dimension.
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In this generality, this theorem appeared in the lectures of Elie
Cartan, see [22]. This theorem was proved for surfaces in Euclidean 3-
space by Hans von Mangoldt [42], and a few years later independently
for 2-dimensional Riemannian manifolds by Jacques Hadamard [34].

Formulations for metric spaces of different generality were proved
by Herbert Busemann in [20], Willi Rinow in [53], Mikhael Gromov
in [32, p.119]. A detailed proof of Gromov’s statement was given by
Werner Ballmann in [9] when U is proper, and by the first author and
Richard Bishop in [2] in more generality; also see references in our
book [4].

For CAT[1] proper spaces, the globalization theorem was proved
by Brian Bowditch in [14].

3.3.1. Globalization theorem. Any simply connected proper lo-
cally CAT[0] length space is CAT[0].

Analogously, assume U is a locally CAT[1] proper length space such
that any closed curve γ : S1 → U with length smaller than 2·π is null-
homotopic in the class of closed curves with length smaller than 2·π.
Then U is a CAT[1] space.

The surface of revolution illustrated in
the diagram is an example of a simply con-
nected space that is locally CAT[1] but not
CAT[1]. To contract the marked curve one
has to increase its length to 2·π or more; in particular the surface does
not satisfy the assumption of the globalization theorem.

The proof of the globalization theorem relies on the following the-
orem, which essentially is [7, Satz 9].

3.3.2. Patchwork globalization theorem. A locally CAT[0] proper
length space U is CAT[0] if and only if all pairs of points in U are joined
by unique geodesics, and these geodesics depend continuously on their
endpoint pairs.

Analogously, a locally CAT[1] proper length space U is CAT[1] if
and only if all pairs of points in U at distance less than π are joined
by unique geodesics, and these geodesics depend continuously on their
endpoint pairs.

The proof uses a thin-triangle decomposition with the inheritance
lemma (2.2.9) and the following construction:

3.3.3. Line-of-sight map. Let p be a point and α be a curve of
finite length in a length space X . Let ᾱ : [0, 1] → U be the constant-
speed parameterization of α. If γt : [0, 1] → U is a geodesic path from
p to ᾱ(t), we say

[0, 1]× [0, 1] → U : (t, s) 7→ γt(s)
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is a line-of-sight map from p to α.

Proof of the patchwork globalization theorem (3.3.2). Note that the im-
plication “only if” is already proved in Theorem 2.2.3; it only remains
to prove “if” part.

Fix a triangle [pxy] in U . We need to show that [pxy] is thin.
By the assumptions, the line-of-sight map (t, s) 7→ γt(s) from p to

[xy] is uniquely defined and continuous.

p = x0,0 = . . . = xN,0

x0,1 xN,1

. .
. . . .

x0,N = x x1,N . . .
y = xN,N

Fix a partition

0 = t0 < t1 < . . . < tN = 1,

and set xi,j = γti(t
j). Since the line-of-sight map is continuous and U

is locally CAT[0], we may assume that the triangles

[xi,j xi,j+1 xi+1,j+1] and [xi,j xi+1,j xi+1,j+1]

are thin for each pair i, j.
Now we show that the thin property propagates to [pxy] by re-

peated application of the inheritance lemma (2.2.9):
⋄ For fixed i, sequentially applying the lemma shows that the

triangles [xxi,1 xi+1,2], [x xi,2 xi+1,2], [x xi,2 xi+1,3], and so
on are thin.

In particular, for each i, the long triangle [x xi,N xi+1,N ] is thin.
⋄ Applying the same lemma again shows that the triangles
[xx0,N x2,N ], [xx0,N x3,N ], and so on are thin.

In particular, [pxy] = [px0,N xN,N ] is thin.

Proof of the globalization theorem; CAT[0] case. Let U be a simply
connected, locally CAT[0] proper length space. Given a path α in
U , denote by γα the local geodesic path provided by Corollary 3.2.4.
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Since the map α 7→ γα is continuous, by Corollary 3.2.3 we have
γα = γβ for any pair of paths α and β homotopic relative to the ends.

Since U is simply connected, any pair of paths with common ends
are homotopic. In particular, if α and β are local geodesics from p
to q, then α = γα = γβ = β by Corollary 3.2.4. It follows that any
two points p, q ∈ U are joined by a unique local geodesic that depends
continuously on (p, q).

Since U is geodesic, it remains to apply the patchwork globalization
theorem (3.3.2).

CAT[1] case. The proof goes along the same lines, but one needs to
use Exercise 3.2.5.

3.3.4. Corollary. Any compact locally CAT[0] space that contains
no closed local geodesics is CAT[0].

Analogously, any compact locally CAT[1] space that contains no
closed local geodesics of length smaller than 2·π is CAT[1].

Proof. By the globalization theorem (3.3.1), we need to show that
the space is simply connected. Assume the contrary. Fix a nontrivial
homotopy class of closed curves.

Denote by ℓ the exact lower bound for the lengths of curves in
the class. Note that ℓ > 0; otherwise there would be a closed non-
contractible curve in a CAT[0] spherical neighborhood of some point,
contradicting Corollary 2.2.6.

Since the space is compact, the class contains a length-minimizing
curve, which must be a closed local geodesic.

The CAT[1] case is analogous, one only has to consider a homotopy
class of closed curves shorter than 2·π.

3.3.5. Exercise. Prove that any compact locally CAT[0] space that
is not CAT[0] contains a geodesic circle, that is, a simple closed curve
γ such that for any two points p, q ∈ γ, one of the arcs of γ with
endpoints p and q is a geodesic.

Formulate and prove the analogous statement for CAT[1] spaces.

3.3.6. Exercise. Let U be a CAT[0] proper length space. Assume
Ũ → U is a metric double covering branching along a geodesic. Show
that Ũ is a CAT[0] space.

3.4 Polyhedral spaces

3.4.1. Definition. A length space P is called a (spherical) polyhedral
space if it admits a finite triangulation τ such that every simplex in τ
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is isometric to a simplex in a Euclidean space (or correspondingly a
unit sphere) of appropriate dimension.

By a triangulation of a polyhedral space we will always understand
the triangulation as above.

Note that according to the above definition, all polyhedral spaces
are compact. However, most of the statements below admit straight-
forward generalizations to locally polyhedral spaces ; that is, complete
length spaces, any point of which admits a closed neighborhood iso-
metric to a polyhedral space. The latter class of spaces includes in
particular infinite covers of polyhedral spaces.

The dimension of a polyhedral space P is defined as the maximal
dimension of the simplices in one (and therefore any) triangulation of
P .

Links. Let P be a polyhedral space and σ be a simplex in a triangu-
lation τ of P .

The simplices which contain σ form an abstract simplicial complex
called the link of σ, denoted by Linkσ. If m is the dimension of σ then
the set of vertices of Linkσ is formed by the (m + 1)-simplices which
contain σ; the set of its edges are formed by the (m + 2)-simplices
which contain σ; and so on.

The link Linkσ can be identified with the subcomplex of τ formed
by all the simplices σ′ such that σ ∩ σ′ = ∅ but both σ and σ′ are
faces of a simplex of τ.

The points in Linkσ can be identified with the normal directions to
σ at a point in its interior. The angle metric between directions makes
Linkσ into a spherical polyhedral space. We will always consider the
link with this metric.

Tangent space and space of directions. Let P be a polyhedral
space (Euclidean or spherical) and τ be its triangulation. If a point
p ∈ P lies in the interior of a k-simplex σ of τ then the tangent space
Tp = TpP is naturally isometric to

E
k × (ConeLinkσ).

Equivalently, the space of directions Σp = ΣpP can be isometrically
identified with the k-times-iterated suspension over Linkσ; that is,

Σp
iso

== Suspk(Linkσ).

If P is an m-dimensional polyhedral space, then for any p ∈ P the
space of directions Σp is a spherical polyhedral space of dimension at
most m− 1.
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In particular, for any point p in σ, the isometry class of Linkσ
together with k = dimσ determines the isometry class of Σp, and the
other way around.

A small neighborhood of p is isometric to a neighborhood of the
tip of ConeΣp. (If P is a spherical polyhedral space, then a small
neighborhood of p is isometric to a neighborhood of the north pole
in SuspΣp.) In fact, if this property holds at any point of a compact
length space P , then P is a polyhedral space, see [39] by Nina Lebedeva
and the third author.

The following theorem provides a combinatorial description of poly-
hedral spaces with curvature bounded above.

3.4.2. Theorem. Let P be a polyhedral space and τ be its triangula-
tion. Then P is locally CAT[0] if and only if the link of each simplex
in τ has no closed local geodesic shorter than 2·π.

Analogously, let P be a spherical polyhedral space and τ be its tri-
angulation. Then P is CAT[1] if and only if neither P nor the link of
any simplex in τ has a closed local geodesic shorter than 2·π.

Proof of 3.4.2. The “only if” part follows from Proposition 2.2.7 and
Exercise 2.1.2.

To prove “if” part, we apply induction on dimP . The base case
dimP = 0 is evident. Let us start with the CAT[1] case.

Step. Assume that the theorem is proved in the case dimP < m.
Suppose dimP = m.

Fix a point p ∈ P . A neighborhood of p is isometric to a neighbor-
hood of the north pole in the suspension over the space of directions
Σp.

Note that Σp is a spherical polyhedral space and its links are iso-
metric to links of P . By the induction hypothesis, Σp is CAT[1].

Thus, by the second part of Exercise 2.1.2, P is locally CAT[1].
Applying the second part of Corollary 3.3.4, we get the statement.
The CAT[0] case is done exactly the same way except we need to

use the first part of Exercise 2.1.2 and the first part of Corollary 3.3.4
on the last step.

3.4.3. Exercise. Let P be a polyhedral space such that any two points
can be connected by a unique geodesic. Show that P is a CAT[0] space.

3.4.4. Advanced exercise. Construct a Euclidean polyhedral metric
on S3 such that the total angle around each edge in its triangulation is
at least 2·π.
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3.5 Flag complexes

3.5.1. Definition. A simplicial complex S is called flag if whenever
{v0, . . . , vk} is a set of distinct vertices of S which are pairwise joined
by edges, then the vertices v0, . . . , vk span a k-simplex in S.

If the above condition is satisfied for k = 2, then we say S satisfies
the no-triangle condition.

Note that every flag complex is determined by its 1-skeleton.

3.5.2. Exercise. Show that the barycentric subdivision of any sim-
plicial complex is a flag complex.

Use the flag condition (see 3.5.5 below) to conclude that any finite
simplicial complex is homeomorphic to a CAT[1] proper length space.

3.5.3. Proposition. A simplicial complex S is flag if and only if
S as well as all the links of all its simplices satisfy the no-triangle
condition.

From the definition of flag complex we get the following.

3.5.4. Lemma. Any link of any simplex in a flag complex is flag.

Proof of 3.5.3. By Lemma 3.5.4, the no-triangle condition holds for
any flag complex and the links of all its simplices.

Now assume a complex S and all its links satisfy the no-triangle
condition. It follows that S includes a 2-simplex for each triangle.
Applying the same observation for each edge we get that S includes
a 3-simplex for any complete graph with 4 vertices. Repeating this
observation for triangles, 4-simplices, 5-simplices and so on we get
that S is flag.

All-right triangulation. A triangulation of a spherical polyhedral
space is called an all-right triangulation if each simplex of the trian-
gulation is isometric to a spherical simplex all of whose angles are
right. Similarly, we say that a simplicial complex is equipped with an
all-right spherical metric if it is a length metric and each simplex is
isometric to a spherical simplex all of whose angles are right.

Spherical polyhedral CAT[1] spaces glued from of right-angled sim-
plices admit the following characterization discovered by Mikhael Gro-
mov [32, p. 122].

3.5.5. Flag condition. Assume that a spherical polyhedral space P
admits an all-right triangulation τ. Then P is a CAT[1] space if and
only if τ is flag.
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Proof; “Only-if” part. Assume there are three vertices v1, v2 and v3 of
τ that are pairwise joined by edges but do not span a simplex. Note
that in this case

∡[v1 v2

v3 ] = ∡[v2 v3

v1 ] = ∡[v3 v1

v1 ] = π.

Equivalently,

➊ The product of the geodesics [v1v2], [v2v3] and [v3v1] forms a locally
geodesic loop in P.

Now assume that P is a CAT[1] space. Then by Theorem 3.4.2,
Linkσ P is a CAT[1] space for every simplex σ in τ.

Each of these links is an all-right spherical complex and by Theorem
3.4.2, none of these links can contain a geodesic circle of length less
than 2·π.

Therefore Proposition 3.5.3 and ➊ imply the “only-if” part.

“If” part. By Lemma 3.5.4 and Theorem 3.4.2, it is sufficient to show
that any closed local geodesic γ in a flag complex S with all-right
metric has length at least 2·π.

Recall that the closed star of a vertex v (briefly Starv) is formed by
all the simplices containing v. Similarly, Starv, the open star of v, is
the union of all simplices containing v with faces opposite v removed.

Choose a simplex σ which contains a point γ(t0). Let v be a vertex
of σ. Consider the maximal arc γv of γ which contains the point γ(t0)
and runs in Starv. Note that the distance |v−γv(t)|P behaves exactly
the same way as the distance from north pole to a geodesic in the north
hemisphere; that is, there is a geodesic γ̃v in the north hemisphere of
S
2 such that for any t we have

|v − γv(t)|P = |n− γ̃v(t)|S2 ,

where n denotes the north pole of S2. In particular,

lengthγv = π;

that is, γ spends time π on every visit to Starv.

v v′

Starv

Starv′γv

After leaving Starv, the local geo-
desic γ has to enter another simplex,
say σ′. Since τ is flag, the simplex σ′

has a vertex v′ not joined to v by an
edge; that is

Starv ∩Starv′ = ∅

The same argument as above shows that γ spends time π on every
visit to Starv′ . Therefore the total length of γ is at least 2·π.
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3.5.6. Exercise. Assume that a spherical polyhedral space P admits
a triangulation τ such that all sides of all simplices are at least π

2 .
Show that P is a CAT[1] space if τ is flag.

The space of trees. The following construction is given by Louis
Billera, Susan Holmes and Karen Vogtmann in [11].

Let Tn be the set of all metric trees with one initial vertex and n
end vertices labeled by a1, . . . , an. To describe one tree in Tn we may
fix a topological trivalent tree t with end vertices a1, . . . , an, initial
vertex of degree 2, and all other vertices of degree 3; and prescribe
the lengths of 2·n− 3 edges. If the length of an edge is 0, we assume
that this edge degenerates; such a tree can be also described using a
different topological tree t′. The subset of Tn corresponding to the
given topological tree t can be identified with the octant

{
(x1, . . . , x2·n−3) ∈ R

2·n−3

 xi > 0

}
.

Equip each such subset with the metric induced from R2·n−3 and con-
sider the length metric on Tn induced by these metrics.

3.5.7. Exercise. Show that Tn with the described metric is a CAT[0]
space.

3.6 Cubical complexes

The definition of a cubical complex mostly repeats the definition of a
simplicial complex, with simplices replaced by cubes.

Formally, a cubical complex is defined as a subcomplex of the unit
cube in the Euclidean space of large dimension; that is, a collection of
faces of the cube such that together with each face it contains all its
sub-faces. Each cube face in this collection will be called a cube of the
cubical complex.

Note that according to this definition, any cubical complex is finite,
that is, contains a finite number of cubes.

The union of all the cubes in a cubical complex Q will be called its
underlying space. A homeomorphism from the underlying space of Q
to a topological space X is called a cubulation of X .

The underlying space of a cubical complex Q will be always con-
sidered with the length metric induced from RN . In particular, with
this metric, each cube of Q is isometric to the unit cube of the same
dimension.

It is straightforward to construct a triangulation of the underlying
space of Q such that each simplex is isometric to a Euclidean simplex.
In particular the underlying space of Q is a Euclidean polyhedral space.
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The link of each cube in a cubical complex admits a natural all-
right triangulation; each simplex corresponds to an adjusted cube.

Cubical analog of a simplicial complex. Let S be a finite simpli-
cial complex and {v1, . . . , vN} be the set of its vertices.

Consider RN with the standard basis {e1, . . . , eN}. Denote by �N

the standard unit cube in RN ; that is

�N =
{
(x1, . . . , xN ) ∈ R

N

 0 6 xi 6 1 for each i

}
.

Given a k-dimensional simplex 〈vi0 , . . . , vik〉 in S, mark the (k+1)-
dimensional faces in �N (there are 2N−k of them) which are parallel
to the coordinate (k + 1)-plane spanned by ei0 , . . . , eik .

Note that the set of all marked faces of �N forms a cubical complex;
it will be called the cubical analog of S and will be denoted as �S .

3.6.1. Proposition. Let S be a finite connected simplicial complex
and Q = �S be its cubical analog. Then the underlying space of Q is
connected and the link of any vertex of Q is isometric to S equipped
with the spherical right-angled metric.

In particular, if S is a flag complex then Q is a locally CAT[0] and
therefore its universal cover Q̃ is a CAT[0] space.

Proof. The first part of the proposition follows from the construction
of �S .

If S is flag, then by the flag condition (3.5.5) the link of any cube
in Q is a CAT[1] space. Therefore, by the cone construction (Exercise
2.1.2) Q is a locally CAT[0] space. It remains to apply the globalization
theorem (3.3.1).

From Proposition 3.6.1, it follows that the cubical analog of any flag
complex is aspherical. The following exercise states that the converse
also holds, see [27, 5.4].

3.6.2. Exercise. Show that a finite simplicial complex is flag if and
only if its cubical analog is aspherical.

3.7 Exotic aspherical manifolds

By the globalization theorem (3.3.1), any CAT[0] proper length space
is contractible. Therefore all complete, locally CAT[0] proper length
spaces are aspherical ; that is, they have contractible universal cov-
ers. This observation can be used to construct examples of aspherical
spaces.

Let X be a proper topological space. Recall that X is called simply
connected at infinity if for any compact set K ⊂ X there is a bigger
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compact set K ′ ⊃ K such that X\K ′ is path connected and any loop
which lies in X\K ′ is null-homotopic in X\K.

Recall that path connected spaces are not empty by definition.
Therefore compact spaces are not simply connected at infinity.

The following example was constructed by Michael Davis in [26].

3.7.1. Proposition. For any m > 4 there is a closed aspherical
m-dimensional piecewise linear manifold whose universal cover is not
simply connected at infinity.

In particular, the universal cover of this manifold is not homeo-
morphic to the m-dimensional Euclidean space.

The proof requires the following lemma.

3.7.2. Lemma. Let S be a finite flag complex, Q = �S be its cubical
analog and Q̃ be the universal cover of Q.

Assume Q̃ is simply connected at infinity. Then S is simply con-
nected.

Proof. Assume S is not simply connected. Equip S with an all-right
spherical metric. Choose a shortest noncontractible circle γ : S1 → S
formed by the edges of S.

Note that γ forms a 1-dimensional subcomplex of S which is a
closed local geodesic. Denote by G the subcomplex of Q which corre-
sponds to γ.

Fix a vertex v ∈ G; let Gv be the connected component of G
containing v. Let G̃ be a connected component of the inverse image
of Gv in Q̃ for the universal cover Q̃ → Q. Fix a point ṽ ∈ G̃ in the
inverse image of v.

Note that

➊ G̃ is a convex set in Q̃.

ξ

ζ

e
Indeed, according to Proposition 3.6.1, Q̃ is

CAT[0]. By Exercise 2.2.12, it is sufficient to
show that G̃ is locally convex in Q̃, or equiva-
lently, G is locally convex in Q.

Note that the latter can only fail if γ passes two vertices, say ξ to
ζ in S, which are joined by an edge not in γ; denote this edge by e.

Each edge of S has length π
2 . Therefore each of two circles formed

by e and an arc of γ from ξ to ζ is shorter that γ. Moreover, at
least one of them is noncontractible since γ is not. That is, γ is not a
shortest noncontractible circle — a contradiction. △

Further, note that G̃ is homeomorphic to the plane, since G̃ is a 2-
dimensional manifold without boundary which by the above is CAT[0]
and hence is contractible.
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Denote by CR the circle of radius R in G̃ centered at ṽ. All CR

are homotopic to each other in G̃\{ṽ} and therefore in Q̃\{ṽ}.
Note that the map Q̃\{ṽ} → S which returns the direction of [ṽx]

for any x 6= ṽ, maps CR to a circle homotopic to γ. Therefore CR is
not contractible in Q̃\{ṽ}.

In particular, CR is not contactable in Q̃\K if K ⊃ ṽ. If R is large,
the circle CR lies outside of any compact set K ′ in Q̃. It follows that
Q̃ is not simply connected at infinity, a contradiction.

The proof of the following exercise is analogous. It will be used
latter in the proof of Proposition 3.8.1 — a more geometric version of
Proposition 3.7.1.

3.7.3. Exercise. Under the assumptions of Lemma 3.7.2, for any
vertex v in S the complement S\{v} is simply connected.

Proof of 3.7.1. Let Σm−1 be an (m − 1)-dimensional smooth homol-
ogy sphere which is not simply connected and bounds a contractible
smooth compact m-dimensional manifold W .

For m > 5 the existence of such (W ,Σ) follows from [38]. For
m = 4 it follows from the construction in [41].

Pick any τ of W and let S be the resulting subcomplex that trian-
gulates Σ.

We can assume that S is flag; otherwise pass to the barycentric
subdivision of τ and apply Exercise 3.5.2.

Let Q = �S be the cubical analog of S.
By Proposition 3.6.1, Q is a homology manifold. It follows that Q

is a piecewise linear manifold with a finite number of singularities at
its vertices.

Removing a small contractible neighborhood Vv of each vertex v
in Q, we can obtain a piecewise linear manifold N whose boundary is
formed by several copies of Σ.

Let us glue a copy of W along its boundary to each copy of Σ in
the boundary of N . This results in a closed piecewise linear manifold
M which is homotopically equivalent to Q.

Indeed, since both Vv and W are contractible, the identity map of
their common boundary Σ can be extended to a homotopy equivalence
relative to the boundary between Vv and W . Therefore the identity
map on N extends to homotopy equivalences f : Q → M and g : M →
→ Q.

Finally, by the Lemma 3.7.2, the universal cover Q̃ of Q is not
simply connected at infinity.

The same holds for the universal cover M̃ of M. The latter follows
since the constructed homotopy equivalences f : Q → M and g : M →
→ Q lift to proper maps f̃ : Q̃ → M̃ and g̃ : M̃ → Q̃; that is, for any
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compact sets A ⊂ Q̃ and B ⊂ M̃, the inverse images g̃−1(A) and
f̃−1(B) are compact.

3.8 Comments

In the globalization theorem (3.3.1) properness can be weakened to
completeness, see our book [4] and the references therein.

The condition on polyhedral CAT[κ] spaces given in Theorem 3.4.2
might look easy to use, but in fact, it is hard to check even in the very
simple cases. For example the description of those coverings of S3

branching at three great circles which are CAT[1] requires quite a bit
of work; see [23] — try to guess the answer before reading.

Another example is the space B4 which is the universal cover of
C

4 infinitely branching in six complex planes zi = zj with the induced
length metric. So far it is not known if B4 is CAT[0]. Understanding
this space could be helpful to study the braid group on 4 strings; read
[45] by Dmitri Panov and the third author for more on it. This circle
of questions is closely related to the generalization of the flag condition
(3.5.5) to the spherical simplices with few acute dihedral angles.

The construction used in the proof of Proposition 3.7.1 admits a
number of interesting modifications, number of which are discussed in
the survey [27] by Michael Davis.

The following Proposition was proved by Fredric Ancel, Michael
Davis and Craig Guilbault in [8]; it could be considered as a more
geometric version of Proposition 3.7.1.

3.8.1. Proposition. Given m > 5, there is a Euclidean polyhedral
space P such that:

a) P is homeomorphic to a closed m-dimensional manifold.

b) P is locally CAT[0].

c) The universal cover of P is not simply connected at infin-
ity.

There are no 3-dimensional examples of that type, see [52] by Dale
Rolfsen. In [58], Paul Thurston conjectured that the same holds in the
4-dimensional case.

Proof. Apply Exercise 3.7.3 to the barycentric subdivision of the sim-
plicial complex S provided by Exercise 3.8.2.

3.8.2. Exercise. Given an integer m > 5, construct a finite (m−1)-
dimensional simplicial complex S such that ConeS is homeomorphic
to Em and π1(S\{v}) 6= 0 for some vertex v in S.
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A similar construction was used by Michael Davis, Tadeusz Janu-
szkiewicz and Jean-François Lafont in [29] to construct a closed smooth
4-dimensional manifold M with universal cover M̃ diffeomorphic to R4

such that M admits a polyhedral metric which is locally CAT[0], but
does not admit a Riemannian metric with nonpositive sectional cur-
vature. Another example of that type was constructed by Stephan
Stadler, see [56].

It is noteworthy that any complete, simply connected Riemannian
manifold with nonpositive curvature is homeomorphic to the Euclidean
space of the same dimension. In fact, by the globalization theorem
(3.3.1) the exponential map at a point of such a manifold is a home-
omorphism. In particular, there is no Riemannian analog of Proposi-
tion 3.8.1. Moreover, according to Stone’s theorem, see [57, 28], there
is no piecewise linear analog of the proposition; that is the homeomor-
phism to a manifold in Proposition 3.8.1 can not be made piecewise
linear.

The flag condition also leads to the so-called hyperbolization pro-
cedure, a flexible tool to construct aspherical spaces; a good survey on
the subject is given by Ruth Charney and Michael Davis in [24].

All the topics discussed in this chapter link Alexandrov geometry
with the fundamental group. The theory of hyperbolic groups, a branch
of geometric group theory, introduced by Mikhael Gromov, could be
considered as a further step in this direction, see [32].
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Chapter 4

Subsets

In this chapter we give a partial answer to the question:

Which subsets of Euclidean space, equipped with their induced length-
metrics, form CAT[0] spaces?

4.1 Motivating examples

Consider three subgraphs of different quadric surfaces:

A =
{
(x, y, z) ∈ E

3

 z 6 x2 + y2

}
,

B =
{
(x, y, z) ∈ E

3

 z 6 −x2 − y2

}
,

C =
{
(x, y, z) ∈ E

3

 z 6 x2 − y2

}
.

4.1.1. Question. Which of the sets A, B and C, if equipped with
the induced length metric, forms a CAT[0] space and why?

The answers are given below, but it is instructive to think about
these questions before reading further.

A. No, A is not CAT[0].
The boundary ∂A is the paraboloid described by z = x2 + y2; in

particular it bounds an open convex set in E3 whose complement is A.
The closest point projection of A → ∂A is short (Exercise 2.2.13). It
follows that ∂A is a convex set in A equipped with its induced length
metric.

Therefore if A is CAT[0] then so is ∂A. The latter is not true: ∂A
is a smooth convex surface, and has strictly positive curvature by the
Gauss formula.

B. Yes, B is CAT[0].

55
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Evidently B is a convex closed set in E3. Therefore the length
metric on B coincides with Euclidean metric and CAT[0] comparison
holds.

C. Yes, C is CAT[0], but the proof is not as easy as before. We give
a sketch here; a complete proof of a more general statement is given
in Section 4.3.

Consider the one-parameter family of sets

Vt =
{
(x, y, z) ∈ E

3

 z 6 x2 − y2 − 2·(x− t)2

}
.

Va Vb Vc

Each set Vt is the subgraph of a
paraboloid tangent to ∂C along the curve
(t, y, t2 − y2). Thus Vt is closed and con-
vex, and

C =
⋃

t

Vt.

Further note that

➊ If a < b < c then Vb ⊃ Va ∩ Vc.

Consider a finite union

C′ = Vt1 ∪ . . . ∪ Vtn .

The inclusion ➊ makes it possible to apply Reshetnyak gluing theorem
2.3.1 recursively and show that C′ is CAT[0]. By approximation, the
CAT[0] comparison holds for any 4 points in C; hence C is CAT[0].

Remark. The set C is not convex, but it is two-convex as defined in
the next section. As you will see, two-convexity is closely related to
the inheritance of an upper curvature bound by a subset.

4.2 Two-convexity

The following definition is closely related to the one given by Mikhael
Gromov in [33, §½], see also [44].

4.2.1. Definition. We say that a subset K ⊂ Em is two-convex if
the following condition holds for any plane W ⊂ Em: If γ is a simple
closed curve in W ∩K which is null-homotopic in K, then it is null-
homotopic in W ∩K, in particular the disc in W bounded by γ lies in
K.

Note that two-convex sets do not have to be connected or simply
connected. The following two propositions follow immediately from
the definition.
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4.2.2. Proposition. Any subset in E2 is two-convex.

4.2.3. Proposition. The intersection of an arbitrary collection of
two-convex sets in E

m is two-convex.

4.2.4. Proposition. The interior of any two-convex set in Em is a
two-convex set.

Proof. Fix a two-convex set K ⊂ Em, a 2-plane W be a 2-plane and a
closed simple plane curve γ in W ∩ IntK which is contractible in the
interior of K.

Since K is two-convex, the plane disc D bounded by γ lies in K.
The same holds for the translations of D by small vectors. Therefore
D lies in the interior of K. Hence the statement follows.

4.2.5. Definition. Given a subset K ⊂ Em, define its two-convex
hull (briefly, Conv2 K) as the intersection of all two-convex subsets
containing K.

Note that by Proposition 4.2.3, the two-convex hull of any set is
two-convex. Further, by Proposition 4.2.4, the two-convex hull of an
open set is open.

The next proposition describes closed two-convex sets with smooth
boundary.

4.2.6. Proposition. Let K ⊂ Em be a closed subset.
Assume that the boundary of K is a smooth hypersurface S. Con-

sider the unit normal vector field ν on S that points outside of K.
Denote by k1 6 . . . 6 km−1 the scalar fields of principal curvatures on
S with respect to ν (by this we mean that if K is convex then k1 > 0).

Then K is two-convex if and only if k2(p) > 0 for any point p ∈ S.
Moreover, if k2(p) < 0 at some point p, then Definition 4.2.1 fails for
some curve γ forming a triangle in an arbitrary neighborhood of p.

The proof is taken from [33, §½], but we added some details.

Proof; “Only-if” part. If k2(p) < 0 for some p ∈ S, consider the plane
W containing p and spanned by the first two principal directions at p.
Choose a small triangle in W which surrounds p and move it slightly in
the direction of ν(p). We get a triangle [xyz] which is null-homotopic
in K, but the solid triangle ∆ = Conv{x, y, x} bounded by [xyz] does
not lie in K completely. Therefore K is not two-convex.

“If” part. Recall that a smooth function f : Em → R is called strongly
convex if its Hessian is positive definite at each point.
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Suppose f : Em → R is a smooth strongly convex function such that
the restriction f |S is a Morse function. Note that a generic smooth
strongly convex function f : Em → R has this property.

For a critical point p of f |S , the outer normal vector ν(p) is parallel
to the gradient ∇pf ; we say that p is a positive critical point if ν(p)
and ∇pf point in the same direction, and negative otherwise. If f is
generic, then we can assume that the sign is defined for all critical
points; that is, ∇pf 6= 0 for any critical point p of f |S .

Since k2 > 0 and the function f is strongly convex, the negative
critical points of f |S have index at most 1.

Given a real value s, set

Ks = { x ∈ K | f(x) < s } .

Assume ϕ0 : D → K is a continuous map of the disc D such that
ϕ0(∂D) ⊂ Ks.

Note that by the Morse lemma, there is a homotopy ϕt : D → K
rel ∂D such that ϕ1(D) ⊂ Ks.

Indeed, we can construct a homotopy ϕt : D → K which decreases
the maximum of f ◦ ϕ on D until the maximum occurs at a critical
point p of f |S . This point cannot be negative, otherwise its index
would be at least 2. If this critical point is positive then it is easy to
decrease the maximum a little by pushing the disc from S into K in
the direction of −∇fp.

Consider a closed curve γ : S1 → K which is null-homotopic in K.
Note that the distance function

f0(x) = |Conv γ− x|Em

is convex. Therefore f0 can be approximated by smooth strongly con-
vex functions f in general position. From above, there is a disc in
K with boundary γ which lies arbitrary close to Convγ. Since K is
closed, the statement follows.

Note that the “if” part proves a somewhat stronger statement.
Namely, any plane curve γ (not necessary simple) which is contractible
in K is also contractible in the intersection of K with the plane of γ.
The latter condition does not hold for the complement of two planes
in E4, which is two-convex by Proposition 4.2.3; see also Exercise 4.5.3
below. The following proposition shows that there are no such open
examples in E3.

4.2.7. Proposition. Let Ω ⊂ E3 be an open two-convex subset. Then
for any plane W ⊂ E3, any closed curve in W ∩ Ω which is null-
homotopic in Ω is also null-homotopic in W ∩ Ω.
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In the proof we use Papakyriakopoulos’ loop theorem. It states
that for any 3-dimensional manifold M with nonempty boundary ∂M ,
if f : (D, ∂D) → (M,∂M) is a continuous map from disc D such
that f |∂D is not null-homotopic in ∂M , then there is an embedding
h : (D, ∂D) → (M,∂M) with the same property. A proof can be found
in [35].

Proof. Fix a closed plane curve γ in W ∩ Ω which is null-homotopic
in Ω. Suppose γ is not contractible in W ∩ Ω.

Let ϕ : D → Ω be a map of the disk with boundary curve γ.
Since Ω is open we can first change ϕ slightly so that ϕ(x) /∈ W

for 1 − ε < |x| < 1 for some small ε > 0. By further changing ϕ

slightly we can assume that it is transversal to W and agrees with the
previous map near ∂D.

This means that ϕ−1(W ) ∩ IntD consists of finitely many simple
closed curves which cut D into several components. Consider one of
the “innermost” components c′; that is, c′ is a boundary curve of a
disk D′ ⊂ D, ϕ(c′) is a closed curve in W and ϕ(D′) completely lies in
one of the two half-spaces with boundary W . Denote this half-space
by H .

If ϕ(c′) is not contractible in W∩Ω, then applying the loop theorem
to M3 = H ∩ Ω we conclude that there exists a simple closed curve
γ′ ⊂ Ω ∩W which is not contractible in Ω ∩W but is contractible in
Ω ∩H . This contradicts two-convexity of Ω.

Hence ϕ(c′) is contractible in W ∩Ω. Therefore ϕ can be changed
in a small neighborhood U of D′ so that the new map ϕ̂ maps U to
one side of W . In particular, the set ϕ̂−1(W ) consists of the same
curves as ϕ−1(W ) with the exception of c′.

Repeating this process several times we reduce the problem to the
case where ϕ−1(W ) ∩ IntD = ∅. This means that ϕ(D) lies entirely
in one of the half-spaces bounded by W .

Again applying the loop theorem, we obtain a simple closed curve
in W ∩Ω which is not contractible in W ∩Ω but is contractible in Ω.
This again contradicts two-convexity of Ω. Hence γ is contractible in
W ∩ Ω as claimed.

4.3 Sets with smooth boundary

In this section we characterize the subsets with smooth boundary in
Em that form CAT[0] spaces.

4.3.1. Smooth two-convexity theorem. Let K be a closed, sim-
ply connected subset in Em equipped with the induced length metric.
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Assume K is bounded by a smooth hypersurface. Then K is CAT[0]
if and only if K is two-convex.

This theorem is a baby case of the main result in [1], which is
briefly discussed at the end of the chapter.

Proof. Denote by S and by Ω the boundary and the interior of K re-
spectively. Since K is connected and S is smooth, Ω is also connected.

Denote by k1(p) 6 . . . 6 km−1(p) the principle curvatures of S at
p ∈ S with respect to the normal vector ν(p) pointing out of K. By
Proposition 4.2.6, K is two-convex if and only if k2(p) > 0 for any
p ∈ S.

“Only-if” part. Assume K is not two-convex.
Then by Proposition 4.2.6, there is a trian-
gle [xyz] in K which is null-homotopic in K,
but the solid triangle ∆ = Conv{x, y, z} does
not lie in K completely. Evidently the trian-
gle [xyz] is not thin in K. Hence K is not
CAT[0].

“If” part. Since K is simply connected, by the globalization theorem
(3.3.1) it suffices to show that any point p ∈ K admits a CAT[0]
neighborhood.

If p ∈ IntK then it admits a neighborhood isometric to a subset
of Em. Hence the statement follows.

Fix p ∈ S. Assume that k2(p) > 0. Fix a sufficiently small ε > 0
and set K ′ = K ∩ B[p, ε]. Let us show that

➊ K ′ is a CAT[0] space.

Consider the coordinate system with the origin at p and the prin-
ciple directions and ν(p) as the coordinate directions. For small ε > 0,
the set K ′ can be described as a subgraph

K ′ =
{
(x1, . . . , xm) ∈ B[p, ε]


 xm 6 f(x1, . . . , xm−1

}
.

Fix s ∈ [−ε, ε]. Since ε is small and k2(p) > 0, the function

(x2, . . . , xm−1) 7→ f(s, x2, . . . , xm−1)

is concave for |xi| < 2·ε for each i
Fix a negative real value λ < k1(p). Given s ∈ (−ε, ε), consider

the set

Vs =
{
(x1, . . . , xm) ∈ K ′


 xm 6 f(x1, . . . , xm−1) + λ·(x1 − s)2

}
.

Note that the function

(x1, . . . , xm−1) 7→ f(x1, . . . , xm−1) + λ·(x1 − s)2
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is concave near the origin. Since ε is small, we can assume that Vs are
a convex subsets of Em.

Further note that
K ′ =

⋃

s∈[−ε,ε]

Vs

and

➋ If a < b < c then Vb ⊃ Va ∩ Vc.

Given an array of values s1 < . . . < sk in [−ε, ε], set V i = Vsi and
consider the unions

W i = V 1 ∪ . . . ∪ V i

equipped with the induced length metric.

V 1 . . . V k

Note that the array (sn) can be chosen in such a way that W k is
arbitrarily Hausdorff close to K ′.

By Proposition 2.1.1, in order to prove ➊, it is sufficient to show
the following:

➌ All W i form CAT[0] spaces.

This claim is proved by induction. Base: W 1 = V 1 is CAT[0] as a
convex subset in Em.

Step: Assume that W i is CAT[0]. According to ➋

V i+1 ∩W i = V i+1 ∩ V i.

Moreover, this is a convex set in E
m and therefore it is a convex set in

W i and in V i+1. By Reshetnyak’s gluing theorem, W i+1 is CAT[0].
Hence the claim follows. △

Note that we have proved the following:

➍ K ′ is a CAT[0] space if K is strongly two-convex, that is, k2(p) > 0
at any point p ∈ S.

It remains to show that p admits a CAT[0] neighborhood in the
case k2(p) = 0.
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Choose a coordinate system (x1, . . . , xm) as above, so that the
(x1, . . . , xm−1)-coordinate hyperplane is the tangent subspace to S at
p.

Fix ε > 0 so that a neighborhood of p in S is the graph

xm = f(x1, . . . , xm−1)

of a function f defined on the open ball B of radius ε centered at
the origin in the (x1, . . . , xm−1)-hyperplane. Fix a smooth positive
strongly convex function ϕ : B → R+ such that ϕ(x) → ∞ as x
approaches the boundary B. Note that for δ > 0, the subgraph Kδ

defined by the inequality

xm 6 f(x1, . . . , xm−1)− δ·ϕ(x1, . . . , xm−1)

is strongly two-convex. By ➍, Kδ is CAT[0].
Finally as δ → 0, the closed ε-neighborhoods of p in Kδ converge

to the closed ε-neighborhood of p in K. By Proposition 2.1.1, the
ε-neighborhood of p are CAT[0].

4.4 Open plane sets

In this section we consider inheritance of upper curvature bounds by
subsets of the Euclidean plane.

4.4.1. Theorem. Let Ω be an open simply connected subset of E2.
Equip Ω with its induced length metric and denote its completion by K.
Then K is CAT[0].

The assumption that the set Ω is open is not critical; instead one
can assume that the induced length metric takes finite values at all
points of Ω. We sketch the proof given by Richard Bishop in [12]
and leave the details be finished as an exercise. A generalization of
this result is proved by Alexander Lytchak and Stefan Wenger [40,
Proposition 12.1]; this paper also contains a far reaching application.

Sketch of proof. It is sufficient to show that any triangle in K is thin,
as defined in 2.2.1.

Note that K admits a length-preserving map to E2 which extends
the embedding Ω →֒ E2. Therefore each triangle [xyz] in K can be
mapped to the plane in a length-preserving way. Since Ω is simply
connected, any open region, say ∆, that is surrounded by the image
of [xyz] lies completely in Ω.
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Note that in each triangle [xyz] in K, the sides
[xy], [yz] and [zx] intersect each other along a geo-
desic starting at a common vertex, possibly a one-
point geodesic. In other words, every triangle in K
looks like the one in the diagram.

Indeed, assuming the contrary, there will be a
simple diangle in K, that is, two minimizing geo-
desics with common ends but no other common
points. The image of this diangle in the plane must bound an open
region of Ω and both sides of the region must be concave in the plane,
since otherwise one could shorten the sides by pushing them into Ω.
Evidently, there is no such plane diangle with concave sides, a contra-
diction.

Note that it is sufficient to consider only simple triangles [xyz],
that is, triangles whose sides [xy], [yz] and [zx] intersect each other
only at the common vertices. If this is not the case, chopping the
overlapping part of sides reduces to the injective case (this is formally
stated in Exercise 4.4.2).

Again, the open region, say ∆, bounded by the image of [xyz] has
concave sides in the plane, since otherwise one could shorten the sides
by pushing them into Ω. It remains to solve Exercise 4.4.3.

4.4.2. Exercise. Assume that [pq] is a common part of two sides [px]
and [py] of the triangle [pxy]. Consider the triangle [qxy] which sides
are formed by arcs of the sides of [pxy]. Show that if [qxy] then so is
[pxy].

4.4.3. Exercise. Assume S is a closed plane region whose boundary
is a triangle T with concave sides in the plane. Equip S with the
induced length metric. Show that the triangle T is thin in S.

Here is a spherical analog of Theorem 4.4.1, which can be proved
along the same lines. It will be used in the next section.

4.4.4. Exercise. Let Θ be an open connected subset of the unit sphere
S
2 which does not contain a closed hemisphere. Equip Θ with the

induced length metric. Let Θ̃ be a metric covering of Θ such that any
closed curve in Θ̃ of length smaller than 2·π is contractible.

Show that the completion of Θ̃ is a CAT[1] space.

4.5 Shefel’s theorem

In this section we will formulate our version of theorem of Samuel
Shefel and prove couple of its corollaries.
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It seems that Shefel was very intrigued by the survival of metric
properties under affine transformation.

To describe an instance of such phenomena, note that two-convexity
survives under affine transformations of a Euclidean space. Therefore,
as a consequence of the smooth two-convexity theorem (4.3.1), the
following holds.

4.5.1. Corollary. Let K be closed connected subset of Euclidean
space equipped with the induced length metric. Assume K is bounded
by a smooth hypersurface and is a CAT[0] space. Then any affine
transformation of K is also CAT[0].

By Corollary 4.5.4, an analogous statement holds for sets bounded
by Lipschitz surfaces in the three-dimensional Euclidean space. In
higher dimensions this is no longer true, see Exercise 4.8.2.

Here is the main theorem of this section.

4.5.2. Two-convexity theorem. Let Ω be a connected open set in
E3. Equip Ω with the induced length metric and denote by K the
completion of the universal metric cover of Ω. Then K is a CAT[0]
space if and only if Ω is two-convex.

The proof of this statement will be given in the following three
sections. First we will prove its polyhedral analog, then we prove some
properties of two-convex hull in three-dimensional Euclidean space and
only then we prove the general statement.

The following exercise shows that the analogous statement does
not hold in higher dimensions.

4.5.3. Exercise. Let Π1,Π2 be two planes in E4 intersecting at a
single point. Consider the universal cover K of the space obtained by
infinitely branching E

4 along Π1 and Π2, and equip K with the induced
length metric.

Show that K is a CAT[0] space if and only if Π1 ⊥ Π2.

Before coming to the proof of the two-convexity theorem, let us
formulate a few corollaries. The following corollary is a generalization
of the smooth two-convexity theorem (4.3.1) for three-dimensional Eu-
clidean space.

4.5.4. Corollary. Let K be a closed subset in E3 bounded by a Lips-
chitz hypersurface. Then K with the induced length metric is a CAT[0]
space if and only if the interior of K is two-convex and simply con-
nected.

Proof. Set Ω = IntK. Since K is simply connected and bounded by a
surface, Ω is also simply connected.
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Apply the two-convexity theorem to Ω. Note that the completion
of Ω equipped with the induced length metric is isometric to K with
the induced length metric. Hence the result follows.

The following corollary is the main statement in Shefel’s original
paper [55]. In order to formulate it, we need yet one more definition.

Let U be an open set in R2. A continuous function f : U → R is
called saddle if for any linear function ℓ : R2 → R, the difference f − ℓ
does not have local maxima or local minima in U . Equivalently, the
open subgraph and epigraph of f

{
(x, y, z) ∈ E

3

 z < f(x, y), (x, y) ∈ U

}
,

{
(x, y, z) ∈ E

3

 z > f(x, y), (x, y) ∈ U

}

are two-convex.

4.5.5. Corollary. Let f : D → R be a Lipschitz function which is
saddle in the interior of the closed unit disc D. Then the graph

Γ =
{
(x, y, z) ∈ E

3

 z = f(x, y)

}
,

equipped with induced length metric is a CAT[0] space.

Proof. Since the function f is Lipschitz, its graph Γ with the induced
length metric is bi-Lipschitz equivalent to D with the Euclidean metric.

Consider the sequence of sets

Kn =
{
(x, y, z) ∈ E

3

 z ≶ f(x, y)± 1

n
, (x, y) ∈ D

}
.

Note that each Kn is closed and simply connected. By the definition
K is also two-convex. Moreover the boundary of Kn is a Lipschitz
surface.

Equip Kn with the induced length metric. By Corollary 4.5.4, Kn

is a CAT[0] space. It remains to note that as n → ∞ the sequence of
space Kn converges to Γ in the sense of Gromov–Hausdorff, and apply
Proposition 2.1.1.

4.6 Polyhedral case

Now we are back to the proof of the two-convexity theorem (4.5.2).
Recall that a subset P of Em is called a polytope if it can be pre-

sented as a union of a finite number of simplices. Similarly, a spherical
polytope is a union of a finite number of simplices in Sm.
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Note that any polytope admits a finite tri-
angulation. Therefore any polytope equipped
with the induced length metric forms a Euclidean
polyhedral space as defined in 3.4.1.

Let P be a polytope and Ω its interior, both
considered with the induced length metrics. Typ-
ically, the completion K of Ω is isometric to P .
However in general we only have a locally dis-
tance preserving map K → P ; it does not have
to be onto and it may not be injective. An example can be guessed
from the picture. Nevertheless, is easy to see that K is always a poly-
hedral space.

4.6.1. Lemma. The two-convexity theorem (4.5.2) holds if the set Ω
is the interior of a polytope.

The statement might look obvious, but there is a hidden obstacle
in the proof. The proof uses the following two exercises.

4.6.2. Exercise. Show that any closed path of length < 2·π in the
units sphere S2 lies in an open hemisphere.

4.6.3. Exercise. Assume Ω is an open subset in E3 which is not
two-convex. Show that there is a plane W such that the complement
W\Ω contains an isolated point.

Proof of 4.6.1. The “only if” part can be proved in the same way as
in the smooth two-convexity theorem (4.3.1) with additional use of
Exercise 4.6.3.

“If” part. Assume that Ω is two-convex. Denote by Ω̃ the universal
metric cover of Ω. Let K̃ and K be the completions of Ω̃ and Ω
correspondingly.

The main step is to show that K̃ is CAT[0].
Note that K is a polyhedral space and the covering Ω̃ → Ω extends

to a covering map K̃ → K which might be branching at some vertices.
For example, if

K =
{
(x, y, z) ∈ E

3

 |z| 6 |x|+ |y| 6 1

}

and p is the origin then Σp, the space of directions at p, is not simply
connected and K̃ → K branches at p.

Fix a point p̃ ∈ K̃\Ω̃; denote by p the image of p̃ in K. By the
globalization theorem (3.3.1), it is sufficient to show that

➊ a small neighborhood of p̃ in K̃ is CAT[0].
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Recall that Σp̃ = Σp̃K̃ denotes the space of directions at p̃. Note
that a small neighborhood of p̃ in K̃ is isometric to an open set in the
cone over Σp̃K̃. By Exercise 2.1.2, ➊ follows once we can show

➋ Σp̃ is CAT[1].

By rescaling, we can assume that every face of K which does not
contain p lies at distance at least 2 from p. Denote by S

2 the unit
sphere centered at p, set Θ = S2 ∩ Ω. Note that ΣpK is isometric to
the completion of Θ and Σp̃K̃ is the completion of the regular metric
covering Θ̃ of Θ induced by the universal metric cover Ω̃ → Ω.

By Exercise 4.4.4, it remains to show the following:

➌ Any closed curve in Θ̃ of length less than 2·π is contractible.

Fix a closed curve γ̃ of length < 2·π in Θ̃. Its projection γ in
Θ ⊂ S2 has the same length. Therefore, by Exercise 4.6.2, γ lies in an
open hemisphere. Then for a plane Π passing close to p, the central
projection γ′ of γ to Π is defined and lies in Ω. By construction of Θ̃,
the curve γ and therefore γ′ are contractible in Ω. From two-convexity
of Ω and Proposition 4.2.7, the curve γ′ is contractible in Π ∩ Ω.

It follows that γ is contractible in Θ and therefore γ̃ is contractible
in Θ̃.

4.7 Two-convex hull

The following proposition describes a construction which produces
Conv2 Ω for an open set Ω ⊂ E3. This construction is very close
to the one given by Samuel Shefel in [55].

4.7.1. Proposition. Let Π1,Π2 . . . be an everywhere dense sequence
of planes in E3. Given an open set Ω, consider the recursively defined
sequence of open sets Ω = Ω0 ⊂ Ω1 ⊂ . . . such that Ωn is the union of
Ωn−1 and all the bounded components of E3\(Πn ∪ Ωn−1). Then

Conv2 Ω =
⋃

n

Ωn.

Proof. Set

➊ Ω′ =
⋃

n

Ωn.

Note that Ω′ is a union of open sets, in particular Ω′ is open.
Let us show that

➋ Conv2 Ω ⊃ Ω′.
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Suppose we already know that Conv2 Ω ⊃ Ωn−1. Fix a bounded com-
ponent C of E3\(Πn∪Ωn−1). It is sufficient to show that C ⊂ Conv2 Ω.

By Proposition 4.2.4, Conv2 Ω is open. Therefore, if C 6⊂ Conv2 Ω,
then there is a point p ∈ C\Conv2 Ω lying at maximal distance from
Πn. Denote by Wp the plane containing p which is parallel to Πn.

Note that p lies in a bounded component of Wp\Conv2 Ω. In par-
ticular it can be surrounded by a simple closed curve γ in Wp∩Conv2 Ω.
Since p lies at maximal distance from Πn, the curve γ is null-homotopic
in Conv2 Ω. Therefore p ∈ Conv2 Ω, a contradiction.

By induction, Conv2 Ω ⊃ Ωn for each n. Therefore ➊ implies ➋.
It remains to show that Ω′ is two-convex. Assume the contrary;

that is, there is a plane Π and a simple closed curve γ : S1 → Π ∩ Ω′

which is null-homotopic in Ω′, but not null-homotopic in Π ∩ Ω′.
By approximation we can assume that Π = Πn for a large n and

that γ lies in Ωn−1. By the same argument as in the proof of Propo-
sition 4.2.7 using the loop theorem, we can assume that there is an
embedding ϕ : D → Ω′ such that ϕ|∂D = γ and ϕ(D) lies entirely in
one of the half-spaces bounded by Π. By the n-step of the construction,
the entire bounded domain U bounded by Πn and ϕ(D) is contained
in Ω′ and hence γ is contractible in Π ∩ Ω′, a contradiction.

4.7.2. Key lemma. The two-convex hull of the interior of a polytope
in E

3 is also the interior of a polytope.

Proof. Fix a polytope P in E3. Set Ω = IntP . We may assume that
Ω is dense in P . Denote by F1, . . . , Fm the facets (2-faces) of P . By
subdividing Fi if necessary, we may assume that all Fi are convex.

Set Ω′ = Conv2 Ω and let P ′ be the closure of Ω′. Further, for
each i, set F ′

i = Fi\Ω′. In other words, F ′
i is the subset of the facet

Fi which remains on the boundary of P ′.
From the construction of the two-convex hull (4.7.1) we have:

➌ F ′
i is a convex subset of Fi.

Further, since Ω′ is two-convex we obtain the following:

➍ Each connected component of the complement Fi\F ′
i is convex.

A

F ′

ℓ

Indeed, assume a connected component A of
Fi\F ′

i fails to be convex. Then there is a support-
ing line ℓ to F ′

i touching F ′
i at a single point in the

interior of Fi. Then one could rotate the plane of
Fi slightly around ℓ and move it parallel to cut a
“cap” from the complement of Ω. The latter means
that Ω is not two-convex, a contradiction. △
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From ➌ and ➍, we conclude

➎ F ′
i is a convex polygon for each i.

Consider the complement E3\Ω equipped with the length metric.
By construction of the two-convex hull (4.7.1), the complement L =
= E3\(Ω′∪P ) is locally convex; that is, any point of L admits a convex
neighborhood.

Summarizing: (1) Ω′ is a two-convex open set, (2) the boundary
∂Ω′ contains a finite number of polygons F ′

i and the remaining part S
is locally concave. It remains to show that (1) and (2) imply that S
and therefore ∂Ω′ are piecewise linear.

4.7.3. Exercise. Prove the last statement.

4.8 Proof of Shefel’s theorem

Proof of 4.5.2. The “only if” part can be proved the same way as
in the smooth two-convexity theorem (4.3.1) with additional use of
Exercise 4.6.3.

“If”-part. Suppose Ω is two-convex. We need to show that K is
CAT[0].

Note that it is sufficient to show that CAT[0] comparison holds for
any 4 points x1, x2, x3, x4 ∈ Ω.

Fix ε > 0. Choose six broken lines connecting all pairs of points
x1, x2, x3, x4, where the length of each broken line is at most ε bigger
than the distance between its ends in the length metric on Ω. Choose
a polytope P in Ω such that the interior IntP is simply connected and
contains all six broken lines.

Denote by Ω′ the two-convex hull of the interior of P . According
to the key lemma (4.7.2), Ω′ is the interior of a polytope.

Equip Ω′ with the induced length metric. Consider the universal
metric cover Ω̃′ of Ω′. (The covering Ω̃′ → Ω′ might be nontrivial —
despite that IntP is simply connected, its two-convex hull Ω′ might
not be simply connected.) Denote by K̃ ′ the completion of Ω̃′.

By Lemma 4.6.1, K̃ ′ is CAT[0].
Since IntP is simply connected, the embedding IntP →֒ Ω′ ad-

mits a lifting ι : IntP →֒ K̃ ′. By construction, ι almost preserves the
distances between the points x1, x2, x3, x4; namely

|ι(xi)− ι(xj)|L ≷ |xi − xj |IntP ± ε.

Since ε > 0 is arbitrary and CAT[0] comparison holds in K̃ ′, we
get that CAT[0] comparison holds in Ω for x1, x2, x3, x4.
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The statement follows since the quadruple x1, x2, x3, x4 ∈ Ω is
arbitrary.

4.8.1. Exercise. Assume K ⊂ Em is a closed set bounded by a Lip-
schitz hypersurface. Equip K with the induced length metric. Show
that if K is CAT[0] then K is two-convex.

The following exercise is analogous to Exercise 4.5.3. It provides a
counterexample to the analog of Corollary 4.5.4 in higher dimensions.

4.8.2. Exercise. Let K = W ∩W ′, where

W =
{
(x, y, z, t) ∈ E

4

 z > −x2

}

and W ′ = ι(W ) for some motion ι : E4 → E4.
Show that K is always two-convex and one can choose ι so that K

with the induced length metric is not CAT[0].

4.9 Comments

In [1] the first author, David Berg and Richard Bishop gave the exact
upper bound on Alexandrov’s curvature for the Riemannian manifolds
with boundary. This theorem includes the smooth two-convexity the-
orem (4.3.1) as a partial case. Namely they show the following.

4.9.1. Theorem. Let M be a Riemannian manifold with boundary
∂M . A direction tangent to the boundary will be called concave if there
is a short geodesic in this direction which leaves the boundary and
goes into the interior of M . A sectional direction (that is, a 2-plane)
tangent to the boundary will be called concave if all the directions in
it are concave.

Denote by κ an upper bound of sectional curvatures of M and sec-
tional curvatures of ∂M in the concave sectional directions. Then M
is locally CAT[κ].

4.9.2. Corollary. Let M be a Riemannian manifold with boundary
∂M . Assume all the sectional curvatures of M and ∂M are bounded
from above by κ. Then M is locally CAT[κ].

Under the name (n − 2)-convex sets, two-convex sets in En were
introduced by Mikhael Gromov in [33]. In addition to the inheritance
of upper curvature bound by two-convex sets discussed in this chapter,
these sets appear as the maximal open sets with vanishing curvature
in Riemannian manifolds with non-negative or non-positive sectional
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curvature. This observation was made first by Sergei Buyalo for non-
positive curvature [21, Lemma 5.8], and extended by Dmitri Panov
and the third author in [44].

Two-convex sets could be defined using homology instead of ho-
motopy, as in the formulation of the Leftschetz theorem in [33, §½].
Namely, we can say that K is two-convex if the following condition
holds: if a 1-dimensional cycle z has support in the intersection of K
with a plane W and bounds in K, then it bounds in K ∩W .

The resulting definition is equivalent to the one used above. But
unlike our definition it can be generalized to define k-convex sets in
Em for k > 2. With this homological definition one can also avoid the
use of Papakyriakopoulos’ loop theorem, whose proof is quite involved.
Nevertheless, we chose the definition using homotopies since it is easier
to visualize.

Both definitions work well for the open sets, for general sets one
should be able to give a similar definition using an appropriate homo-
topy/homology theory.

Let D be an embedded closed disc in E3. We say that D is saddle
if each connected bounded component which any plane cuts from D
contains a point on the boundary ∂D. If D is locally described by a
Lipschitz embedding, then this condition is equivalent to saying that
D is two-convex.

4.9.3. Shefel’s conjecture. Any saddle surface in E3 equipped with
the length-metric is locally CAT[0].

The conjecture is open even for the surfaces described by a bi-
Lipschitz embedding of a disc. From another result of Shefel proved in
[54], it follows that a saddle surface satisfies the isoperimetric inequal-
ity a 6 C ·ℓ2 where a is the area of a disc bounded by a curve of length
ℓ and C = 1

3·π . By a recent result of Alexander Lytchak and Ste-
fan Wenger [40], Shefel’s conjecture is equivalent to the isoperimetric
inequality with the optimal constant C = 1

4·π .
From Corollary 4.5.4, it follows that if there is a counterexample to

Shefel’s conjecture, then an arbitrary neighborhood of some point on
the surface cannot be presented as a graph in any coordinate system.

Also note that a counterexample could not admit an approximation
by smooth saddle surfaces. Examples of saddle surfaces which do not
admit such approximation are not known so far.

Note that from the proof of Corollary 4.5.4, it follows that if a two-
convex set S can be presented as an intersection of a nested sequence
of simply connected open two-convex sets, then S equipped with the
length-metric is locally CAT[0].

So far there is no known example of a saddle surface which cannot
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be presented this way. If such a surface S existed, then it would have
a point p in its interior and an open set Ω such that for any ε > 0, we
have

Ω ⊂ Conv2[Ω ∪ B(p, ε)].

Let us call a subset K ⊂ Em strongly two-convex if any null-
homotopic circle γ : S1 → K is also null-homotopic in K∩Conv[γ(S1)].

4.9.4. Question. Is it true that any closed strongly two-convex set
with dense interior bounded by a Lipschitz hypersurface in Em forms
a CAT[0] space?

Bit more on the subject can be found in the papers [46, 48, 49]
written by Stephan Stadler and the third author.



Semisolutions

Introduction

Exercise 0.0.1. Let X be a 4-point metric space.
Fix a tetrahedron △ in R3. The vertices of △, say x0, x1, x2, x3,

can be identified with the points of X .
Note that there is unique quadratic form W on R3 such that

W (xi − xj) = |xi − xj |
2
X

for all i and j.
By the triangle inequality, W (v) > 0 for any vector v parallel to

one of the faces of △.
Note that X is isometric to a 4-point subset in Euclidean space if

and only if W (v) > 0 for any vector v in R3.
Therefore, if X is not of type

E4 then W (v) < 0 for some vec-
tor v. From above, the vector
v must be transversal to each of
the 4 faces of △. Therefore if
we project △ along v to a plane
transversal to v we see one of
these two pictures.

Note that the set of vectors v such that W (v) < 0 has two con-
nected components; the opposite vectors v and −v lie in the different
components. If one moves v continuously keeping W (v) < 0, then the
corresponding projection moves continuously and the projections of 4
triangles can not degenerate. It follows that the combinatorics of the
picture do not depend on the choice of v.

Indeed the set of vectors v such that W (v) < 0 Hence M4\E4 is
not connected.

It remains to show that if the combinatorics of the pictures for two
spaces are the same then one can continuously deform one space into

73
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the other. This can be easily done by deforming W and applying a
permutation of x0, x1, x2, x3 if necessary.

The solution is taken from [47].

Exercise 0.0.2. The simplest proof we know requires the construction
of tangent cones for Alexandrov spaces with nonnegative curvature.

Preliminaries

Exercise 1.1.1. This exercise is a basic introductory lemma on
Gromov–Hausdorff distance (see for example [17, 7.3.30]). The follow-
ing proof is not quite standard, it was suggested by Travis Morrison.

Given any pair of points x0, y0 ∈ K, consider two sequences (xn)
and (yn) such that xn+1 = f(xn) and yn+1 = f(yn) for each n.

Since K is compact, we can choose an increasing sequence of inte-
gers ni such that both sequences (xni

)∞i=1 and (yni
)∞i=1 converge. In

particular, both of these sequences are converging in itself; that is,

|xni
− xnj

|K , |yni
− ynj

|K → 0 as min{i, j} → ∞.

Since f is non-contracting, we get

|x0 − x|ni−nj || 6 |xni
− xnj

|.

It follows that there is a sequence mi → ∞ such that

(∗) xmi
→ x0 and ymi

→ y0 as i → ∞.

Set
ℓn = |xn − yn|K .

Since f is non-contracting, (ℓn) is a non-decreasing sequence.
By (∗), ℓmi

→ ℓ0 as mi → ∞. It follows that (ℓn) is a constant
sequence.

In particular

|x0 − y0|K = ℓ0 = ℓ1 = |f(x0)− f(y0)|K

for any pair x0 and y0. That is, f is distance preserving, in particular,
injective.

From (∗), we also get that f(K) is everywhere dense. Since K is
compact, f : K → K is surjective. Hence the result follows.

Exercise 1.2.1. A point in R × ConeU can be described by a triple
(x, r, p), where x ∈ R, r ∈ R> and p ∈ U . Correspondingly, a point
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in Cone[SuspU ] can be described by a triple (ρ,ϕ, p), where ρ ∈ R>,
ϕ ∈ [0,π] and p ∈ U .

The map Cone[SuspU ] → R× ConeU defined as

(ρ,ϕ, p) 7→ (ρ· cosϕ, ρ· sinϕ, p)

is the needed isometry.

Exercise 1.4.3. The following example is due to Fedor Nazarov, see
[43].

Consider the unit ball (B, d0) in the space c0 of all sequences con-
verging to zero equipped with the sup-norm.

Consider another metric d1 which is different from d0 by the con-
formal factor

ϕ(x) = 2 +
x1

2
+

x2

4
+

x3

8
+ . . .,

where x = (x1, x2 . . .) ∈ B. That is, if x(t), t ∈ [0, ℓ] is a curve
parametrized by d0-length then its d1-length is

length1 x =

ℓw

0

ϕ ◦ x(t)·dt.

Note that the metric d1 is bi-Lipschitz to d0.
Assume x(t) and x′(t) are two curves parametrized by d0-length

which differ only in the m-th coordinate, denoted as xm(t) and x′
m(t)

correspondingly. Note that if x′
m(t) 6 xm(t) for any t and the function

x′
m(t) is locally 1-Lipschitz at all t such that x′

m(t) < xm(t) then

length1 x
′ 6 length1 x.

Moreover this inequality is strict if x′
m(t) < xm(t) for some t.

Fix a curve x(t) parametrized by arc-length t ∈ [0, ℓ] with respect
to d0. We can choose m large, so that xm(t) is sufficiently close to
0 for any t. In particular, for some values t, we have ym(t) < xm(t),
where

ym(t) = (1− t
ℓ
)·xm(0) + t

ℓ
·xm(ℓ)− 1

100 ·min{t, ℓ− t}.

Consider the curve x′(t) as above with

x′
m(t) = min{xm(t), ym(t)}.

Note that x′(t) and x(t) have the same end points and from above

length1 x
′ < length1 x.

That is, for any curve x(t) in (B, d1), we can find a shorter curve x′(t)
with the same end points. In particular, (B, d1) has no geodesics.

Exercise 1.4.7. The following example is taken from [15].
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. . .

p

q

X

Consider the following subset of R2 equipped
with the induced length metric

X =
(
(0, 1]× {0, 1}

)
∪
(⋃

n>1

{ 1
n
} × [0, 1]

)

Note that X locally compact and geodesic.
Its completion X̄ is isometric to the closure of

X equipped with the induced length metric; X̄ is obtained from X by
adding two points p = (0, 0) and q = (0, 1).

The point p admits no compact neighborhood in X̄ and there is no
geodesic connecting p to q in X̄ .

Exercise 1.6.3. Assume the contrary; that is

∡[p x
z ] + ∡[p y

z ] < π.

By the triangle inequality for angles (1.6.2) we have

∡[p x
y ] < π.

The latter contradicts the triangle inequality for the triangle [x̄pȳ],
where the points x̄ ∈ ]px] and ȳ ∈ ]py] are sufficiently close to p.

Exercise 1.8.2. By the definition of the convergence

p ∈ A∞ ⇐⇒ distAn
(p) → 0 as n → ∞.

The latter is equivalent to existence of a sequence pn ∈ An such that
|pn − p| → 0 as n → ∞; or equivalently pn → p. Hence the first
statement follows.

To show that the contrary does not hold, consider the alternating
sequence of two distinct closed sets A,B,A,B, . . .; note that it is not a
converging sequence in the sense of Hausdorff. On the other hand, the
set of all limit points is well defined and is the intersection A∩B.

Remark. The set A∞ of all limits of sequences pn ∈ An is called the
lower closed limit and the set Ā∞ of all partial limits of such sequences
is called the upper closed limit.

Clearly A∞ ⊂ Ā∞. If A∞ = Ā∞ then it is called the closed limit
of An.

For the class of closed subsets of a proper metric space, closed
limits coincide with limits in the sense of Hausdorff as we defined it.

All these notions were introduced by Felix Hausdorff in [37].

Exercise 1.9.4. Fix a countable dense set of points S ⊂ X∞. For
each point x ∈ S, choose a sequence of points xn ∈ Xn such that
xn

ρ
−→ x.
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Applying the diagonal procedure, we can pass to a subsequence of
Xn such that each of the constructed sequences ρ′-converge; that is,

xn
ρ′

−→ x′ for some x′ ∈ X ′
∞.

This way we get a map S → X ′
∞ defined as x 7→ x′. Note that

this map preserves the distances and therefore it can be extended to a
distance preserving map X∞ → X ′

∞. Likewise we construct a distance
preserving map X ′

∞ → X∞.
It remains to apply Exercise 1.1.1.

Gluing theorem and billiards

Exercise 2.1.2. Given a point x ∈ ConeU , denote by x′ its projection
to U and by |x| the distance from x to the tip of the cone; if x is the
tip then |x| = 0 and we can take any point of U as x′.

Let p, q, x, y be a quadruple in ConeU . Assume that the spherical
model triangles [p̃′ x̃′ ỹ′] = △̃(p′x′y′)S2 and [q̃′ x̃′ ỹ′] = △̃(q′x′y′)S2 are
defined. Consider the following points in E3 = ConeS2:

p̃ = |p|·p̃′, q̃ = |q|·q̃′, x̃ = |x|·x̃′, ỹ = |y|·ỹ′.

Note that [p̃x̃ỹ]
iso

== △̃(pxy)E2 and [q̃x̃ỹ]
iso

== △̃(qxy)E2 . Further
note that if z̃ ∈ [x̃ỹ] then z̃′ = z̃/|z̃| lies on the geodesic [x̃′ỹ′] in S2.

The CAT[1] comparison for |p′ − q′| with z̃′ ∈ [x̃′ỹ′]S2 implies the
CAT[0] comparison for |p− q| with z̃ ∈ [x̃ỹ]E3 .

The converse holds as well. In the proof we need to apply the
CAT[0] comparison to a quadruple s = a·p, q, x, y with a > 0 chosen
so that the corresponding points s̃ = a·p̃, q̃, x̃, ỹ lie in one plane.

Exercise 2.1.3. Fix a quadruple

p = (p1, p2), q = (q1, q2), x = (x1, x2), y = (y1, y2)

in U × V . For the quadruple p1, q1, x1, y1 in U , construct two model
triangles [p̃1 x̃1 ỹ1] = △̃(p1x1y1)E2 and [q̃1 x̃1 ỹ1] = △̃(q1x1y1)E2 . Simi-
larly, for the quadruple p2, q2, x2, y2 in V construct two model triangles
[p̃2 x̃2 ỹ2] and [q̃2 x̃2 ỹ2].

Consider four points in E4 = E2 × E2

p̃ = (p̃1, p̃2), q̃ = (q̃1, q̃2), x̃ = (x̃1, x̃2), ỹ = (ỹ1, ỹ2).

Note that the triangles [p̃x̃ỹ] and [q̃x̃ỹ] in E4 are isometric to the model
triangles △̃(pxy)E2 and △̃(qxy)E2 .
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If z̃ = (z̃1, z̃2) ∈ [x̃ỹ] we have then z̃1 ∈ [x̃1ỹ1] and z̃2 ∈ [x̃2ỹ2] and

|z̃ − p̃|2
E4 = |z̃1 − p̃1|

2
E2 + |z̃2 − p̃2|

2
E2 ,

|z̃ − q̃|2
E4 = |z̃1 − q̃1|

2
E2 + |z̃2 − q̃2|

2
E2 ,

|p− q|2U×V = |p1 − q1|
2
U + |p2 − q2|

2
V .

Therefore CAT[0] comparison for the quadruples p1, q1, x1, y1 in U and
p2, q2, x2, y2 in V implies the CAT[0] comparison for the quadruples
p, q, x, y in U × V .

Exercise 2.1.4. According to Lemma 1.4.4, it is sufficient to prove
the existence of a midpoint for two given points x and y.

For each n choose a 1
n
-midpoint zn; that is, a point such that

|x− zn|, |y − zn| 6
1
2 ·|x− y| + 1

n
.

From the CAT[0] comparison inequality for the quadruple x, y, zn,
zm we have that |zm − zn| → 0 as n,m → ∞; that is, zn is Cauchy
and hence converges.

Since the space is complete the sequence zn has a limit, say z,
which is clearly a midpoint for the pair x and y.

Exercise 2.2.8. Without loss of generality we can assume that κ = 1.
Fix a sufficiently small 0 < ε < π.

Recall that by Proposition 2.2.7, any local geodesic shorter than π

in U is a geodesic.
Consider a sequence of directions ξn of geodesics [pqn]. We can

assume that the distances |p − qn|U are equal to ε for all n; here we
use that the geodesics are extendable as local geodesics and minimizing
up to length π.

Since U is proper, the sequence qn has a partial limit, say q. It
remains to note that the direction ξ of [pq] is the limit of directions
ξn, assuming the latter is defined.

Note that the unit disc in the plane with attached half-line to each
point is a complete CAT[0] length spaces with extendable geodesics
but the space of geodesic directions on the boundary of the disc is not
complete.

p̃

x̃ ỹz̃

z̃x z̃y

Exercise 2.2.10. By Alexandrov’s
lemma (1.5.1), there are nonoverlapping
triangles

[p̃x̃z̃x]
iso

== [ṗẋż]

and
[p̃ỹz̃y]

iso

== [ṗẏż]
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inside the triangle [p̃x̃ỹ].
Connect the points in each pair (z̃, z̃x), (z̃x, z̃y) and (z̃y, z̃) with

arcs of circles centered at ỹ, p̃, and x̃ respectively. Define F as follows.
⋄ Map Conv[p̃x̃z̃x] isometrically onto Conv[ṗẋż]; similarly

map Conv[p̃ỹz̃y] onto Conv[ṗẏż].
⋄ If x is in one of the three circular sectors, on the distance
r from its center, set F (x) to be the point on the corre-
sponding segment [pz], [xz] or [yz] whose distance from the
lefthand endpoint of the segment is r.

⋄ Finally, if x lies in the remaining curvilinear triangle z̃z̃xz̃y,
set F (x) = z.

By construction, F satisfies the conditions.

Exercise 2.2.11. For CAT[0] case, the statement follows from con-
vexity of distance functions to points in E2, and thinness of triangles.

For CAT[1] case, the statement follows from thinness of triangles
and convexity of balls of radius < π

2 in S2.

Exercise 2.2.12. Fix a closed, connected, locally convex set K. Note
that by Corollary 2.2.5, distK is convex in a neighborhood Ω ⊃ K;
that is, distK is convex along any geodesic completely contained in Ω.

Since K is locally convex, it is locally path connected. Since K is
connected and the latter implies that K is path connected.

Fix two points x, y ∈ K. Let us connect x to y by a path α : [0, 1] →
→ K. By Theorem 2.2.3, the geodesic [xα(s)] is uniquely defined and
depends continuously on s.

K

Ωx
y

α(s)
α

If [xy] = [xα(1)] does not completely lie in K then there is a
value s ∈ [0, 1] such that [xα(s)] lies in Ω, but does not completely
lie in K. Therefore f = distK is convex along [xα(s)]. Note that
f(x) = f(α(s)) = 0 and f > 0, therefore f(x) = 0 for any x ∈ [xα(s)];
that is, x ∈ K, a contradiction.

Exercise 2.2.13. Since U is proper, the set K ∩ B[p,R] is compact
for any R < ∞. Hence the existence of at least one point p∗ that
minimizes the distance from p follows.
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Assume p∗ is not uniquely defined; that is, two distinct points in
K, say x and y, minimize the distance from p. Since K is convex, the
midpoint z of [xy] lies in K.

Note that
|p− z| < |p− x| = |p− y|,

a contradiction.
It remains to show that the map p 7→ p∗ is short, that is,

➊ |p− q| > |p∗ − q∗|.

for any p, q ∈ U .
Assume p 6= p∗, q 6= q∗, p∗ 6= q∗. In this case

∡[p∗ p
q∗ ] >

π
2 , ∡[q∗ q

p∗ ] > π
2 ,

and both angles are defined.
Construct the model triangles [p̃ p̃∗ q̃∗] and [p̃q̃q̃∗] of [p p∗ q∗] and

[pqq∗] so that the points p̃∗ and q̃ lie on the opposite sides from [p̃q̃∗].
By comparison and the triangle inequality for angles 1.6.2, we get

∡[p̃∗ p̃
q̃∗ ] > ∡[p∗ p

q∗ ] >
π
2 and ∡[q̃∗ q̃

p̃∗ ] > ∡[q∗ q
p∗ ] > π

2 ,

assuming the left hand sides are defined. Hence

|p̃− q̃| > |p̃∗ − q̃∗|.

The latter is equivalent to ➊.
In the remaining cases; the ➊ holds automatically if (1) p∗ = q∗ or

(2) p = p∗ and q = q∗.
It remains to consider the case p = p∗, q 6= q∗ and p∗ 6= q∗. In this

case
∡[q∗ q

p] >
π
2 ,

and ➊ follows by comparison.

Exercise 2.4.7. By approximation, it is sufficient to consider the case
when A and B have smooth boundary.

If [xy] ∩ A ∩ B 6= ∅ then z0 ∈ [xy] and Ȧ, Ḃ can be chosen to be
arbitrary half-spaces containing A and B respectively.

In the remaining case [xy] ∩ A ∩ B = ∅. we have z0 ∈ ∂(A ∩ B).
Consider the solid ellipsoid

C = { z ∈ E
m | f(z) 6 f(z0) } .

Note that C is compact, convex and has smooth boundary.
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Suppose z0 ∈ ∂A ∩ IntB. Then A and C touch at z0 and we can
set Ȧ to be the uniquely defined supporting half-space to A at z0 and
Ḃ to be any half-space containing B. The case z0 ∈ ∂B ∩ IntA is
treated similarly.

Finally, suppose z0 ∈ ∂A ∩ ∂B. Then the set Ȧ (Ḃ) is defined as
the unique supporting half-space to A (B) at z0 containing A (B).

Suppose f(z) < f(z0) for some z ∈ Ȧ ∩ Ḃ. Since f is concave,
f(z̄) < f(z0) for any z̄ ∈ [zz0[. Since [zz0[ ∩ A ∩ B 6= ∅, the latter
contradicts that z0 is minimum point of f on A ∩B.

B1

B2

Ai

Aj

Exercise 2.5.1. Fix 0 < r1 < r2 < ∞
such that

B1 = B(0, r1) ⊂ Ai ⊂ B(0, r2) = B2

for each wall Ai.
Note that all the intersections of the

walls have ε-wide corners for

ε = 2· arcsin r1
r2
.

The proof can be guessed from the diagram.

Exercise 2.5.2. Note that there is R < ∞ such that if X is an
intersection of an arbitrary number of walls, then for any point p ∈ X
there is an isometry of X which moves p to a point in B(0, R).

The rest of the proof is the same as in Exercise 2.5.1.

Globalization and asphericity

Exercise 3.2.5. Note that the existence of a null-homotopy is equiv-
alent to the following. There are two one-parameter families of paths
ατ and βτ, τ ∈ [0, 1] such that

⋄ lengthατ, lengthβτ < π for any τ.
⋄ ατ(0) = βτ(0) and ατ(1) = βτ(1) for any τ.
⋄ α0(t) = β0(t) for any t.
⋄ α1(t) = α(t) and β1(t) = β(t) for any t.

By Corollary 3.2.3, the construction in Corollary 3.2.4 produces
the same result for ατ and βτ. Hence the result follows.

Exercise 3.3.5. The following proof works for compact locally simply
connected metric spaces; by uniqueness of geodesics (2.2.3) this class
of spaces includes compact locally CAT[κ] length spaces.

Assume there is a nontrivial homotopy class of curves.
Consider a shortest noncontractible closed curve γ in the space;

note that it exists.
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p

qα1

α2

Assume that γ is not a geodesic circle, that is,
there are two points p and q on γ such that the
distance |p − q| is shorter then the lengths of the
arcs, say α1 and α2, of γ from p to q. Consider the
products, say γ1 and γ2, of [qp] with α1 and α2.
Note that

⋄ γ1 or γ2 is noncontractible,
⋄ lengthγ1, lengthγ2 < lengthγ,

a contradiction.
The CAT[0] case is done the same way, but we need to consider

the homotopy classes of curves shorter than 2·π.

Exercise 3.3.6. Consider an ε-neighborhood A of the geodesic. Note
that Aε is convex. By Reshetnyak’s gluing theorem the doubling Wε

of U along Aε is a CAT[0] space.
Next, consider the space W ′

ε obtained by doubly covering U\Aε

and gluing back Aε.
Note that W ′

ε is locally isometric to Wε. That is, for any point
p′ ∈ W ′

ε there is a point p ∈ Wε such that the δ-neighborhood of p′ is
isometric to the δ-neighborhood of p for all small δ > 0.

Further note that W ′
ε is simply connected since it admits a defor-

mation retraction onto Aε, which is contractible. By the globalization
theorem, W ′

ε is CAT[0].
It remains to note that Ũ can be obtained as a limit of W ′

ε as
ε → 0, and apply Proposition 2.1.1.

Exercise 3.4.3. Assume P is not CAT[0]. Then by Theorem 3.4.2,
a link Σ of some simplex contains a closed geodesic α with length
4·ℓ < 2·π. Divide α into two equal arcs α1 and α2 parametrized by
[−ℓ, ℓ]

Fix a small δ > 0 and consider two curves in ConeΣ written in
polar coordinates as

γi(t) = (αi(tan
t
δ
),
√

δ2 + t2).

Note that both curves γ1 and γ2 are geodesics in ConeΣ and have
common ends.

Finally note that a small neighborhood of the tip of ConeΣ admits
an isometric embedding into P . Hence the statement follows.

Advanced exercise 3.4.4. Note that it is sufficient to construct a
polyhedral space P homeomorphic to the 3-disc such that (1) P is
locally CAT[0] in its interior and (2) the boundary of P is locally
concave; in particular, each edge on the boundary of P has angle at
least π.
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Indeed, once P is constructed, taking the double of P along its
boundary produces the needed metric on S3.

The construction of P goes along the same lines as the construction
of a Riemannian metric on the 3-disc with concave boundary and
negative sectional curvature. This construction is given by Joel Hass
in [36].

It might be worth mentioning that by the globalization theorem
(3.3.1) the obtained metric on S

3 is not locally CAT[0].
This problem originated from a discussion in Oberwolfach between

Brian Bowditch, Tadeusz Januszkiewicz, Dmitri Panov and the third
author.

Exercise 3.5.2. Checking the flag condition is straightforward once
we know the following description of the barycentric subdivision.

Each vertex v of the barycentric subdivision corresponds to a sim-
plex △v of the original triangulation. A set of vertices forms a simplex
in the subdivision if it can be ordered, say as v1, . . . , vk, so that the
corresponding simplices form a nested sequence

△v1 ⊂ . . . ⊂ △vk .

Exercise 3.5.6. Use induction to prove that if in a spherical simplex
△ every edge is at least π

2 then all dihedral angles of △ are at least π
2 .

The rest of the proof goes along the same lines as the proof of
the flag condition (3.5.5). The only difference is that a geodesic may
spends time at least π on each visit in the star.

Note that it is not sufficient to assume only that the all dihedral
angles of the simplices are at least π

2 . Indeed, the two-dimensional
sphere with removed interior of a small rhombus is a spherical poly-
hedral space glued from four triangles with all the angles at least π

2 .
On the other han the boundary of the rhomus is closed local geodesic
in this space. Therefore the space can not be CAT[1].

Exercise 3.5.7. The space Tn has a natural cone structure with the
vertex formed by the completely degenerate tree — all its edges have
zero length. Note that the space Σ, over which the cone is taken comes
naturally with a triangulation with all-right spherical simplicies.

Note that link of any simplex of this triangulation satisfies no-
triangle condition (3.5.1). Indeed, fix a simplex △ of the complex;
it can be described by combinatorics of a possibly degenerate tree. A
triangle in the link can be described by tree ways to resolve degeneracy
of one edge, such that any pair of these resolutions can be done simul-
taniousely, but all theree can not be done together. Direct inspection
shows that the latter is impossible.
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Therefore, by Proposition 3.5.3 our complex is flag. It remains to
apply the flag condition (3.5.5) and then Exercise 2.1.2.

Exercise 3.6.2. If the complex S is flag then its cubical analog �S

is locally CAT[0] and therefore aspherical.
Assume now that the complex S is not flag. Extend it to a flag

complex T by gluing a simplex in every complete subgraph of its 1-
skeleton.

Note that the cubical analog �S is a proper subcomplex in �T .
Since T is flag, �̃T , the universal cover of �T , is CAT[0].

Choose a cube Q with minimal dimension in �̃T which is not
present in �̃S . By Exercise 2.2.12, Q is a convex set in �̃T . The
closest point projection �̃T → Q is a retraction. It follows that the
boundary ∂Q is not contractible in �̃T \ IntQ. Therefore the spheroid
∂Q is not contractible in �̃S .

Exercise 3.7.3. The solution goes along the same lines as the proof
of Lemma 3.7.2.

The only difference is that G is not a subcomplex of the cubical
analog. It has to be made from the squares parallel to the squares of
the cubical complex which meet the edges of the complex orthogonally
at their midpoints.

Exercise 3.8.2. In the proof we apply the following lemma; it follows
from the disjoint discs property, see [30, 25].

Lemma. Let S be a finite simplicial complex which is homeomorphic
to an m-dimensional homology manifold for some m > 5. Assume that
all vertices of S have simply connected links. Then S is a topological
manifold.

Note that it is sufficient to construct a simplicial complex S such
that

⋄ S is a closed (m− 1)-dimensional homology manifold;
⋄ π1(S\{v}) 6= 0 for some vertex v in S;
⋄ S ∼ Sm−1; that is, S is homotopy equivalent to Sm−1.

Indeed, assume such S is constructed. Then the suspension R =
= SuspS is an m-dimensional homology manifold with a natural tri-
angulation coming from S. According to the lemma, R is a topological
manifold. According to the generalized Poincaré conjecture, R ≃ Sm;
that is R is homeomorphic to Sm. Since ConeS ≃ R\{s} where s de-
notes a south pole of the suspension and Em ≃ Sm\{p} for any point
p ∈ Sm we get

ConeS ≃ E
m.
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It remains to construct S. Fix an (m − 2)-dimensional homology
sphere Σ with a triangulation such that π1Σ 6= 0. An example of that
type exists for any m > 5; a proof is given in [38].

Remove from Σ the interior of one (m − 2)-simplex. Denote the
resulting complex by Σ′. Since m > 5, we have π1Σ = π1Σ

′.
Consider the product Σ′ × [0, 1]. Attach to it the cone over its

boundary ∂(Σ′ × [0, 1]). Denote by S the resulting simplicial complex
and by v the tip of the attached cone.

Note that S is homotopy equivalent to the spherical suspension
over Σ, which is a simply connected homology sphere and hence is
homotopy equivalent to Sm−1. Hence S ∼ Sm−1.

The complement S\{v} is homotopy equivalent to Σ′. Therefore

π1(S\{v}) = π1Σ
′ = π1Σ 6= 0.

That is, S satisfies the conditions above.

Subsets

Exercise 4.4.2. Note that triangle [pqx is degenerate, in particular
it is thin. It remains to apply the inheritance lemma (2.2.9).

Exercise 4.4.3. By approximation, it is sufficient to consider the case
when S has polygonal sides.

The latter case can be done by induction on the number of sides.
The base case of triangle is evident.

To prove the induction step, apply Alexandrov’s lemma (1.5.1)
together with the construction in Exercise 2.2.10.

Exercise 4.4.4. Unlike in the plane, the sphere contains diangular
and triangular regions whose sides are concave in the sphere. To adapt
the proof of Theorem 4.4.1 we will use Exercise 4.6.2.

From Exercise 4.6.2, it follows that if such a concave diangle or
triangle has perimeter smaller then 2·π then it contains a closed hemi-
sphere in its interior.

By the assumption, Θ does not contain a closed hemisphere. There-
fore the argument in the proof of Theorem 4.4.1 shows that any triangle
in Θ̃ with perimeter less than 2·π is spherically thin.

Exercise 4.5.3. The space K is a cone over the branched covering Σ
of S3 infinitely branching along two great circles.

If the planes are not orthogonal then the minimal distance between
the circles is less than π

2 . Assume that this distance is realized by a
geodesic [ξζ]. The broken line made by four liftings of [ξζ] forms a
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closed local geodesic in Σ. By Proposition 2.2.7, (or Corollary 3.3.4)
Σ is not CAT[1]. Therefore by Exercise 2.1.2, K is not CAT[0].

If the planes are orthogonal then the corresponding great circles
in S3 are subcomplexes of a flag triangulation of S3 with all-right
simplicies. The branching cover is also flag. It remains to apply the
flag condition 3.5.5.

Comments. In [23], Ruth Charney and Michael Davis gave a complete
answer to the analogous question for three planes. In particular they
show that if a covering space of E4 branching at three planes passing
the origin is CAT[0] then these all are complex planes for some complex
structure on E4.

Exercise 4.6.2. Let α be a closed curve in S2 of length 2·ℓ.
Assume ℓ < π. Let α̌ be a subarc of α of length ℓ, with endpoints

p and q. Since |p − q| 6 ℓ < π, there is a unique geodesic [pq] in S2.
Let z be the midpoint of [pq].

We claim that α lies in the open hemisphere centered at z.
Assume contrary, then α intersects the boundary great circle in a

point, say r. Without loss of generality we may assume that r ∈ α̌.
The arc α̌ together with its reflection in z form a closed curve

of length 2·ℓ which passes r and its antipodal point r′. Thus ℓ =
length α̌ > |r − r′| = π, a contradiction.

A solution via Crofton formula. Let α be a closed curve in S2 of length
6 2·π. We wish to prove α is contained in a hemisphere in S2. By
approximation it suffices to prove this for smooth curves α of length
< 2·π with transverse self-intersections.

Given v ∈ S2, denote by v⊥ the equator in S2 with the pole at v.
Further, #X will denote the number of points in the set X .

Obviously, if #(α ∩ v⊥) = 0 then α is contained in one of the
hemispheres determined by v⊥. Note that #(α∩v⊥) is even for almost
all v.

Therefore, if α does not lie in a hemisphere then #(α ∩ v⊥) > 2
for almost all v ∈ S2.

By Crofton’s formula we have that

length(α) =
1

4
·
w

S2

#(α ∩ v⊥)·dv area >

> 2·π.

Exercise 4.6.3. Since Ω is not two-convex, we can fix a simple closed
curve γ which lies in the intersection of a plane W0 and Ω, and is
contractible in Ω but not contractible in Ω ∩W0.
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W0Γ

p

R

W
Let ϕ : D → Ω be a disc which

shrinks γ. Applying the loop theorem
(arguing as in the proof of Proposi-
tion 4.2.7), we can assume that ϕ is an
embedding and ϕ(D) lies on one side of
W0.

Let Q be the bounded domain cut from E
3 by ϕ(D) and W0. By

assumption it contains a point which is not in Ω. Changing W0,γ and
ϕ slightly, we can assume that such a point lies in the interior of Q.

Fix a circle Γ in W0 which surrounds Q ∩ W0. Since Q lies in a
half-space with boundary W0, there is a smallest spherical dome with
boundary Γ which includes the set R = Q\Ω. The dome has to touch
R at some point p. The plane W tangent to the dome at p has the
required property — the point p is an isolated point of the complement
W\Ω.

Exercise 4.7.3. Despite that the proof is simple and visual, it is quite
hard to write it formally in a nontedious way; by that reason we give
only a sketch.

Consider the surface S̄ formed by the closure of the remaining part
S of the boundary. Note that the boundary ∂S of S̄ is a collection of
closed polygonal lines.

Assume S̄ is not piecewise linear. Show that there is a line segment
[pq] in E3 tangent to S̄ at p which has no common points with S̄
except p.

p

q

x y

z

∂S̄ ∂S̄

Since S̄ is locally concave, there is a
local inner supporting plane Π at p which
contains the segment [pq].

Note that Π ∩ S̄ contains a segment
[xy] passing p with the ends at ∂S̄. De-
note by Π+ the half-plane in Π which
contains [pq] has [xy] in its boundary.

Use that [pq] is tangent to S to show
that there is a point z such that the line
segment [xz] or [yz] lies in ∂S̄ ∩ Π+.

From the latter statement and local convexity of S̄, it follows that
the solid triangle [xyz] lies in S̄. In particular, all points on [pq]
sufficiently close to p lie in S̄, a contradiction.

Exercise 4.8.1. Show that if K is not two-convex then there is a plane
triangle △ whose sides lie completely in K, but its interior contains
some points from the complement E

m\K.
It remains to note that △ is not thin in K.
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Exercise 4.8.2. Clearly the set W is two-convex. Therefore K is
two-convex as an intersection of two-convex sets.

The set K on large scale looks like the complement of two 3-
dimensional half-spaces in E4. More precisely, the Gromov-Hausdorff
limit K ′ of 1

n
·K as n → ∞ is the completion of the complement,

equipped with length metric, of the union of half-spaces in two 3-
dimensional spaces in E4 passing 0. In particular K ′ is a cone over a
space Σ which can be obtained as the completion of the sphere S3 with
two 2-dimensional hemispheres, say H1 and H2, removed. The inter-
section of these hemispheres is typically formed by a geodesic segment,
say [ξζ].

ξ ζH1 H2

Consider hemispheres H1

and H2 for which [ξζ] is orthog-
onal to the boundary spheres
and has length less than π

2 .
Then the projection of a closed
geodesic in Σ to S3 is formed by
a product of four copies of [ξζ].
In particular there is a closed
geodesic in Σ shorter than 2·π.

Hence Σ is not CAT[1] and therefore K ′ and consequently K are not
CAT[0].
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path, 38

pole of suspension, 7

polyhedral space, 43
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locally polyhedral spaces, 44

polytope, 65

positive critical point, 58

product of paths, 40

product space, 6

proper space, 6

pseudometric space, 15
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saddle function, 65

simply connected space at infinity, 49
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spherical model triangles, 11
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