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Abstract

In this paper, we study the identification problem of strictly passive systems from frequency response data. We present a simple
construction approach based on the Mayo-Antoulas generalized realization theory that automatically yields a port-Hamiltonian
realization for every strictly passive system with simple spectral zeros. Furthermore, we discuss the construction of a frequency-
limited port-Hamiltonian realization. We illustrate the proposed method by means of several examples.
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1. Introduction

In this paper, we study the problem of identifying linear
finite-dimensional dynamical systems that are strictly passive.
We are interested in port-Hamiltonian (pH) realizations of such
systems which not only inherently encode the underlying con-
servation laws and physical principles of the process but also
have several spectral and robustness properties, see, e.g., [1, 2].
Moreover, pH realizations inherently arise from, e.g., energy-
based modeling via bond graphs [3, 4]]. Since pH realizations
have several intrinsic properties, we seek to identify an under-
lying pH realization using data. System identification allows
to build models from data, see, e.g., [S (6, [7]. However, we
are not aware of any identification method that directly builds a
pH model from either time domain or frequency domain data.
In this paper, we are interested in frequency response data for
a particular reason. That is, there are many ways how to ob-
tain frequency response data directly in an experimental set-up,
for example, using scattering-parameters, see, e.g., [8], and vi-
brational analysis, see, e.g., [9]. Moreover, there exists a rich
literature, where frequency response data is generated to infer
models using time-domain data, see, e.g., [10} [11}12].

Let us consider continuous-time systems in standard state-
space form:

() = Ax(f) + Bu(r),
¥(1) = Cx(t) + Dur),

0)=0,
*O) )

whereu : R - R”", x : R - R",and y : R — R™ are vector-
valued functions denoting the input, state, and output of the
system, respectively. The coefficient matrices satisfy A € R™",
B e R™" C e R™", and D € R™". Furthermore, for passive
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systems, the input and output dimensions are equal to m since
we aim to interpolate with (square) passive transfer functions.

The identification of compact reduced-order models for large-
scale passive systems has been an active research area, see, e. g.,
(L3 14 1154 [164 117, [18) [19]. However, this requires the avail-
ability of system matrices in an explicit or matrix-vector form,
which may not be available, especially when the necessary pa-
rameters to model a dynamical process are not known. If this
is the case, we can obtain frequency response data for a process
and infer an underlying pH realization directly from the data.
In this direction, the authors in [20] have proposed a two-step
approach — the first step is to identify a state-space model us-
ing the Loewner approach [21]], and in the second step, a non-
convex optimization problem is formulated, aiming at finding
the closest pH realization. However, the proposed non-convex
optimization problem is hard to solve in practice, and often,
we may not even get an exact pH presentation of the obtained
state-space realization, see [20] for details.

In this paper, we propose a simple construction based on
the Loewner approach [21] to infer an underlying pH realiza-
tion. Precisely, we show that if we choose the interpolation
data of the transfer function at the spectral zeros along the cor-
responding zero directions, then the direct use of the Loewner
approach [21] yields a pH realization. Moreover, we discuss an
approach for estimating the spectral zeros and zero directions
using the frequency response data since direct measurements at
spectral zeros and zero directions may not be possible to obtain
experimentally.

The structure of the paper is as follows. In Section [2] we
briefly recall some important properties of passive systems. Then,
in Section 3, we discuss state-space representations and prop-
erties of pH realizations. This is followed in the next section
by a discussion of degrees of freedom of a pH system in order
to have an understanding of how many parameters are needed
to describe a minimal pH system. In Section 5, we propose a
variant of the Loewner-based approach, realizing the system in
pH form when data are available at spectral zeros along with
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zero directions. Furthermore, we discuss the estimation of the
dominant spectral zeros and zero directions using frequency re-
sponse data in Section 6. In Section 7, we illustrate the pro-
posed identification approach by means of a couple of numeri-
cal examples, which is followed by a short summary.

In the rest of the paper, we make use of the following nota-
tion:

e The Hermitian (or conjugate) transpose of a vector or ma-
trix V is denoted by VM (VT) and the identity matrix is
denoted by I, or [ if the dimension is clear.

e We denote real and complex n-vectors (n X m matrices)
by R”, C" (R™", C™™), respectively.

e We denote the set of symmetric matrices in R™" by S,,.
Positive definiteness (semi-definiteness) of M € S, is de-
noted by M > 0 (M > 0).

2. Passive Systems

Passive systems and their relationships with positive-real
functions and stability conditions are well studied. We briefly
recall some important properties, which can be found in [22}
23]]. We consider continuous-time systems with a real rational
transfer matrix Z(s) and define the associated spectral density
function:

O(s) := ZT(=s) + Z(5), 2)

which coincides with twice the Hermitian part of Z(s) on the 1w
axis:
O(w) = [ZGw)M + Z(w).

Definition 2.1 (e.g., [23]]). The rational transfer function Z(s)
is called strictly positive-real if ®(1w) > 0 for all w € R and it
is called positive-real if ®(1w) > 0 for all w € R.

Definition 2.2 (e.g., [24]). The transfer function Z(s) is called
asymptotically stable if the poles of the transfer function are in
the open left half-plane, and it is called stable if all the poles
are in the closed left half-plane, with any pole occurring on the
imaginary axis being first-order.

Definition 2.3 (e.g., [23]]). The transfer function Z(s) is called
strictly passive if it is strictly positive-real and asymptotically
stable and it is called passive if it is positive-real and stable.

Throughout the paper, we will assume that the realizations
we deal with are minimal (i.e. controllable and observable),
and we will restrict ourselves in this paper to strictly passive
systems, which implies that the matrix A is invertible and the
transfer matrix is proper since poles cannot be on the imaginary
axis or at infinity. Moreover, ®(1w) > 0 at w = oo implies
that we must have DT + D > 0 as well. We will see that this
restriction simplifies our discussion significantly. It is also a
reasonable restriction because passive systems can be viewed
as limiting cases of strictly passive systems.

Since the transfer function is proper, we can represent it
in standard state-space form Z(s) = C(sl, — A)'B + D. For
proper transfer functions Z(s) with minimal realization M :=
{A, B, C, D}, there is a necessary and sufficient condition for

passivity, known as the Kalman-Yakubovich-Popov linear ma-
trix inequality. An elegant proof of this can be found in [23]].

Theorem 2.4 (e.g., [23]]). Let M := {A, B, C, D} be a minimal
realization of a proper rational transfer function Z(s) and let

-ATX-XA C"-XB

WXM=| c_pgx  pspT| @)

Then Z(s) is passive if and only if there exists a real symmetric
matrix X € S, such that
WX, M) =0, X>0, )

and is strictly passive if and only if there exists a real symmetric
matrix X € S, such that
WX, M) >0, X>0. 5)

The solutions X of these inequalities are known as certifi-
cates for the passivity or strict passivity of the system M.

Definition 2.5. Every solution X of the LMI
X ={XeSWX,M) =0, X>0} 6)

is called a certificate for passivity of the model M and every
solution of the LMI

X = {X e SWX, M) >0, X >0} 7

is called a certificate for strict passivity of the model M.

3. Port-Hamiltonian Models

In this section, we provide a brief introduction to special
realizations of passive systems, known as pH realizations.

Definition 3.1 (e.g., [25]). A linear time-invariant pH realiza-
tion of a proper transfer function, has the standard state-space
form

x(t) = -R)Ox(t) + (G — Pu(t), x(0)=0, o
¥(®) = (G + P)' Qx(t) + (N + S)u(), ®
where the system matrices
-J -G R P
V= [GT N:|, W = |:PT S:|, (9)

satisfy the conditions

V=-oAT, W=W'>0, 0=0">0.

It readily follows from the properties of pH models that
when Q and ‘W are invertible, we can choose X = Q as cer-
tificate for the model

M:={(J-R)Q.G-P.(G+P)Q.N+5}

to show that it satisfies the strict passivity condition (3)).



Remark 3.2. The condition that Q is non-singular is auto-
matically satisfied when the state transition matrix A is non-
singular, which is the case for strictly passive systems. We can
then also represent the system in generalized state-space form,
using X := Qx, yielding:

0'x= (U -Rx+ (G- P)u,

10
y=(G+P)'x+ (N +S)u (10)

We use such models for representing intermediate results later
on. A realization then consists of five matrices,

M:=1{A,B,C,D,E}={J-R,G-P,(G+P ,N+S,07'}.

Conversely, let M := {A, B, C, D} be a state-space model,
satisfying the strict passivity condition (3)) with a given certifi-
cate X > 0. Then, it can always be transformed into pH form, as
shown in [26]. We can use a symmetric factorization X = T'T,
which implies the invertibility of 7', and define a new realization

{Ar,Br,Cr, D} :={TAT™',TB,CT™", D}

so that
77 0|[-ATX-XA CT-XB|[T™" 0
0 I.]| C-B'X D'+D|| 0 I, an
_|-Ar -Br| [-Ar Crl.
“|C¢r D -B;, D'|” ™
We can then use the symmetric and skew-symmetric parts of
the matrix
_|-Ar -Br
s=| &

to define the coeflicients of a pH representation via

G| _8-8T
=2 PT S| 2

-J
V= [GT N 2

This construction yields ‘W > 0 and Q = I, because of the
chosen factorization X = T"'T. This is called a normalized pH
representation. This shows that pH models with strict inequali-
ties Q > 0 and ‘W > 0 are nothing but strictly passive systems
described in an appropriate coordinate system. On the other
hand, it was shown in [27] that normalized pH systems have
good robustness properties in terms of their so-called passivity
radius, which measures the minimum perturbation that leads to
a non-passive system, see [28] for a detailed definition of pas-
sivity radius.

’(W::[R P] _8+S8T

4. Degrees of Freedom of a Transfer Function

In the literature, one can find a discussion on the degrees of
freedom of a given strictly proper rational transfer function Z(s)
with a given McMillan degree n [29]. This corresponds to the
minimum number of parameters to describe such a function.
Since this literature is quite opaque, we briefly re-derive the ba-
sic results using a generic m X m strictly proper transfer matrix

of McMillan degree n without repeated poles. Such a trans-
fer function can be written in its partial fraction expansion as
follows:

n (n—n,)/2

-1
Z(s) = Z (s = )] + Z Us (slz - [:’;;k ﬁz]) V7,

k=1 k=1

which requires a total of 2(m + 1)n real parameters. This can
be seen as a state-space model in real Jordan form with 1 X
1 diagonal elements for the n, real poles and 2 X 2 diagonal
blocks for the n, := n — n, complex conjugate complex poles.
But this representation is only unique up to a block diagonal
state-space transformation with exactly m degrees of freedom:
a scalar #; for each real pole and a 2 X 2 block #; [f];k zj
for each complex conjugate pair, where the real rotation matrix
depends on one real parameter. When taking the quotient of
the manifold of block-diagonal models with respect to this state
space transformation, we are left with the exact number of real
degrees of freedom, which is 2mn for a strictly proper m X m
transfer function of degree n with real coefficients.

When considering the larger class of real mXxm proper ratio-
nal transfer functions, one has to add the real parameters to re-
alize the constant matrix D. If D is constrained to have a partic-
ular rank, then we again need to take that into account. A rank
r matrix D can be represented by a rank factorization D = UV"
where we can again quotient out the degrees of freedom of an
r x r factor T in an equivalent factorization D = (UT)(T~'VT").
Such a factor can thus be represented by r(2m — r) degrees of
freedom, which has to be added to those of the strictly proper
part of Z(s).

To summarize, a real rational m x m transfer function Z(s)
of McMillan degree n has

e 2mn real degrees of freedom when Z(s) is strictly proper,

o 2m(n+r)—r? real degrees of freedom when Z(s) is proper
and Z(o0) has rank r.

This count of the number of degrees of freedom will deter-
mine the number of parameters we can assign using tangential
interpolation conditions. For a rigorous discussion on these as-
pects, we refer to [29].

5. Loewner Approach for Identification of a Port-Hamiltonian

Realization

In this section, we discuss the identification of a pH real-
ization of a strictly passive transfer function Z(s) of degree n,
which is defined via a set of left and right interpolation con-
ditions. Precisely, we seek to infer a pH realization (§) whose
transfer function is denoted by Z(s), and satisfies the following
interpolation conditions:

V= ij(,Uj), w; = Z(/l.,-)rj, j= 1,. Lo, n, Z(OO) = D, (12)

where (), €;,v;), and (4;,r;,w;), j=1,...,n, are sets of self-
conjugate left and right interpolation conditions with {£;,v;} €



Cm i, w;} € C™!, {A;,u;} € C, and D is the feedthrough
term.

Since Z(s) is strictly passive, it is proper and has a standard
state-space realization {A, B, C, D}. Moreover, we have the ma-
trix D to be of full rank and positive-real (i.e. D+ D" > 0), oth-
erwise the system will not be strictly passive. Then, we recall
the so-called Loewner and shifted Loewner matrices defined in
[24]. These matrices have dimensions 7 X n and can be given as
follows:

[Giwi—vin OWwa=vity
A= T An—H1
L:= : : , (13a)
Law1=vary LWy =Vnly
L At T An—Hn
raliwi—pvin AnliWn—p1 Vi 1n
- T An—H1
L, := : : (13b)
Arlawi—pinvary AnlaWn—finVnTn
A1 —Hn e An—Hn

They satisfy the following Sylvester equations:
LA-ML =LW-VR, L,A-ML,=LWA-MVR, (14)
where we used the definitions

4 131
L=, V:=]1],

gn vil

M :=diag (ui,..., ), (15)

and

R = [rl,...,rn], W .= [wl,...,wn],
A :=diag(4y,...,4,).

(16)

The following interpolation result follows from the theory de-
veloped in [21]] in the special case that the Loewner matrix L is
invertible.

Theorem 5.1 ([21]). Let Z(s) be a proper transfer function
of McMillan degree n. Then the interpolation conditions (12))
uniquely define Z(s) if the Loewner matrix L is invertible. More-
over, a minimal generalized state-space realization is then given
by

Z(s) = (W — DR)(L, — LDR — sL)™(V - LD) + D

and the corresponding system matrix is given by

+{;—HI;}D[ R| L |.

Remark 5.2. As discussed in [21|], the rank of the Loewner
matrix L is related to the McMillan degree of the system, or in
other words, the minimal order of the state-space realization.
Thus, if the number of interpolation conditions is more than 2n
and the minimal order of the state-space realization is n, then
a compression step is used to determine an underlying minimal
realization, see [21|].

A-sE|B | _[Ly—sL|V
c [p|7| -w o

As can be noticed, for arbitrary choices of interpolation
points and directions, the state-space realization as shown in
Theorem @ in general, will not have pH form. Next, let us
apply this to the special case where the interpolation points and
directions are the so-called spectral zeros and zero directions of
Z(s), respectively.

Definition 5.3 (e.g., [23]]). Let Z(s) be a real and strictly pas-
sive transfer function of McMillan degree n with associated
spectral density function O(s) := ZV(=5) + Z(s). Then the spec-
tral zeros and zero directions of Z(s) are the pairs (s;,r;) such
that ®©(sj)r; = 0.

Furthermore, we note that the spectral zeros and zero di-
rections of a system can be computed by solving the following
generalized eigenvalue problem:

AT 0 CT |lgj|=s;|-ET 0O Of|lg;|. A7)
B" C D+D'||r; 0 0 0]|r

When the zeros are distinct (which is generic), there are
exactly n zeros in the open right half-plane and n zeros in the
open left half-plane because the spectral density function ®(s)
has degree 2n and has no zeros on the imaginary axis. The
definition of the spectral zeros implies

DO(sj)rj = ZT(—s_,-)rj +Z(sj)r;j =0,
and hence

. T
Wi = Z(Sj)}"j = Z (_Sj)rj =—wj.
Since the spectral zeros and zero directions (s;, 7;) form a self-
conjugate set, we can distinguish two cases for these equations,
depending on the condition that s; is a real zero or not. In the
real case, we have

S € R:

Z(sprj=w; & r}-Z(—sj) = —w;,

and in the complex case, we have

FHZ(—EJ') = —WH,

Z(sj)rj =Ww;j =
er(—sj) = —Wf.

sj€R: { ZG)F =W, e

Therefore, if we define 4;, j=1,...,n, to be the spectral zeros
of Z(s) in the open right half-plane,

R (1)) >0, Z@Apri=wj j=1,....n,

then the set of right tangential conditions (4;,r;,w;) is self-
conjugate. Moreover, for every right tangential condition
Z(Aj)r; = w; (and its complex conjugate when 4; is complex),
there is a corresponding left tangential condition

r";'Z(—le) = —w;', j=1,...,n

Therefore, we can define left tangential interpolation conditions
tiZ(uj) =vj, j=1,...,ninsuch a way that
V=-w"

M=-A=-AN, L=R",



where A, L and W are as defined in (I6). Using these defini-
tions, the Loewner and shifted Loewner matrices now become

[ rrwl-#w']"rl rﬁ"w,,-*—w']"r,,
A+ pRH
L:= : : , (18a)
r,';'wl-f—w':rl r,';'w,,-f—w':rn
A+, A+,
’/llr']"wl—ilw'l"rl ),,r'l*w,,—jlw']"rn
A1+ A+
L, := : : (18b)
/llrziwlfznwﬁrl /lnr’jwn*jnwrrn
/1]+§n e /ln"';n
and they satisfy the equations
LA + A"L = R?"W + WHR, (19a)
LA + A"L, = R"WA - APWHR. (19b)

We point out that the matrix L is Hermitian by construction,
while L, is skew-Hermitian by construction. For such sym-
metric conditions, the matrix L is also called the Pick matrix
(see [30, 31]]). It follows from Theorem [5.1| that a generalized
state-space realization {A, B, C, D, E} is given by

ot )
(20)

Notice that the complex matrices and vectors in this section
are artificial; in fact, we can transform these matrics and vectors
into real ones using a proper unitary transformation. Since the
interpolation conditions are self-conjugate, we can transform
the construction as follows. Let v := v, +1v, be a complex vector
associated with a complex interpolation point A := a + 18, then

. . -1 .
the unitary transformation IT := transforms pairs of

|l
V2|1
complex conjugate data to real data, as can be seen below
_ 4 0 a B
— H —
CR L YA L A

If the pairs of complex conjugate vectors and interpolation points
have been permuted to be adjacent, then it suffices to apply a
block diagonal unitary similarity transformation U with diag-
onal blocks II corresponding to each complex conjugate pair
(4, A), to transform (T6), (T8), and (T9) to real equations:

LO+Q'L =
L,Q+Q'L,

R™W + W'R, and
=R'WQ-Q'W'R,

(21a)
(21b)
where

L =U"LU, L, = U"L,U, Q = U"AU, W = WU, R = RU,

and Q is now block diagonal with 2 X2 blocks corresponding to
each pair of complex conjugate interpolation points. It then also
follows from (12;0]) that a real generalized state-space realization
{A B,C,D, E} is given by

[A—sE B]_[]L(T—SE—WT
c |p] | -w | o

NE

[ In |

D[R| L]

(22)

Let us now look at the passivity condition we imposed on
the transfer function Z(s). The Loewner matrix L given in (I8)
has the structure of a Pick matrix (see, e. g., [30]]) since the spec-
tral zeros used for the interpolation are assumed to be distinct.
The strict passivity of Z(s) implies that this matrix is positive
definite. It follows that Z(c0) = D, and hence that D must be
strictly positive-real as well. Since L is positive definite, so is
IL and we can factorize it as I = [T, where T is invertible, by
using, for instance, the upper triangular Cholesky factor. Defin-
ing
Lor =T "L, I,

Wl‘ = ‘//I\/]—'_l, E]‘ = k\l"",

we obtain an equivalent quadruple for the state-space realiza-

tion {Ar, Br, Cr, D} = {T"TAT-!,T-TB, CT""!, D} of Z(s) as
A | Be | | Tor | -0 ][R =
[CFD]_[_WF ol ImrD[Rr\Im].m)

We then show that this realization is in pH form.

Theorem 5.4. Construct an m X m real transfer function Z(s)
of McMillan degree n using self-conjugate interpolation condi-
tions as follows:

Z(e) =D, Z@prj=wj. rZ(=ap=-w j=1,...n,
where R (/l ) >0, D+D" > 0and L > 0 in which R (+) denotes
the real part. Then Z(s) is strictly passive and the quadruple
{Ar, Br, Cr, D} is in normalized pH form and its spectral zeros

and zero directions are given by (4;,r;), j=1,...,n.

Proof. A necessary condition for strict passivity is that the Her-
mitian part of Z(s) is positive definite on the whole imaginary
axis, including infinity, and since D = Z(oo) is a real matrix,
we must have D + DT > 0. A necessary and sufficient con-
dition for the passivity of Z(s) with given interpolation data is
that the Loewner matrix L is positive semi-definite, but since
we assume L > 0, the transfer function is passive. Let us now
decompose the real matrix D as D = N + §, where S is the
symmetric part of D and N is its skew-symmetric part. Then,
following the discussion of Section[2} we obtain

W =W = [ﬁrr

m

}S[Erlm]zo,

- wT RT —
V=-V'= or | WE || RE N[ R |1 |
-Wr | 0 In
which are the conditions for the passivity of a normalized pH
system. The standard state-space realization (23) is therefore
normalized pH. It follows from the self-conjugacy conditions
that
OT(=A))r; = O))r; = Z(=A)rj + Z(A)rj = —w; +w; = 0,
for j = 1,...,n, and since ®(s) has McMillan degree bounded
by 2n, these are the only zeros of ®(s), which implies that Z(s)

is then strictly passive. O



Algorithm 1 Construction of a pH realization in a normalized
form.
Input:
e Spectral zeros A; and zero directions r;, j = 1,...,n,
e transfer function measurements, i.e. w; = Z(4;)r;, where
Z(s) denotes the transfer function,
o the feedthrough term D.

1: Construct the Loewner and shifted Loewner matrices using
w; and r; as shown in (T8).

2: Define W := [wl,...,wn] and R = [rl,...,r,,].

3: Construct the interpolating realization, ensuring the match-
ing of the transfer function at infinity:
E=L,A=L,-R"DR,B=-W" -R"D,C =-W + DR.

4: Perform the unitary transformation to obtain a real realiza-
tion (E, A, B, C).

5: Consider the Choleskey factorization of E:=TTT.

6: Construct a pH realization in the normalized form as fol-
lows:

A=r7Tar!, B=1"B, C=Cr"
Output: A pH realization: (A, B,C, D).

Remark 5.5. The conditions that the spectral zeros should be
simple can be removed. The construction of the Loewner ma-
trix L and of the shifted Loewner matrix L, then have to be
adapted, as explained in [31| 121]], but the properties of these
matrices are preserved. The tangential interpolation conditions
then also involve tangential conditions for the derivatives of
Z(s) at the spectral zeros A;, but the conclusions remain the
same.

Remark 5.6. The conditions that we should know the zero di-
rections of the corresponding spectral zeros of Z(s) form a de-
manding constraint. But this is different in the scalar case since
we only need to impose a scalar condition Z(—-A;) + Z(4;) in

each spectral zero. We can then choose R = [1, e 1] which
implies that W = [Z(A), ..., Z(4,)]

Finally, we summarize the construction of a pH realization
in the normalized form in Algorithm I}

6. Estimation of Spectral Zeros and Zero Directions using
Frequency Response Data

So far, we have discussed how to construct a pH realiza-
tion from the transfer function measurements at spectral zeros
along with zero directions. However, this may be restrictive
as in practice, it is almost impossible to know the spectral ze-
ros and zero directions a priori. Moreover, even if the zeros
are known, taking measurements at those points and directions
is not straightforward. On the other hand, there exist methods
allowing us to obtain the frequency response data of a system
which is nothing but the measurements of the transfer function
on the imaginary axis. Using these measurements, one can ob-
tain a realization using the classical Loewner approach, pro-
posed in [21], which interpolates the data. However, it is very

Algorithm 2 Estimation of spectral zeros and directions using
frequency response data

Input:

e Samples: frequencies {0, 1}, directions {r;, [;},
o the transfer function measurements w; := H(o)r;,v; :=
LiH (1),

o the direct feedthrough term D.

1: Construct Loewner L. and shifted Loewner L, matrices as
defined in (T3).

2: Build L, V, R, and W as shown in (I5) and (T6).

3: Construct L = L, Ly = Ly — LDR, V = V — LD, and
W = -W + DR.

4: Perform the SVD of the Loewner matrices:

noolfs o[5]=1E Tl

% 0|[x] [L
ol ol[5)-[ )
5: Define Y, = Yi(.,1 : r), X, = Xo(;, 1

rank of the matrix X;.
6: Construct a realization M := (A, B,C, D, E) as follows:

: r), where r is the

E=Y'LX,, A=Y'L,X,, B=Y'V, C=WX,, D=D.

7: Determine spectral zeros and zero directions of the realiza-
tion M as defined in Definition
8: Estimate transfer function measurements at spectral zeros
and zero directions using the realization M.
Output: Spectral zeros, zero directions, and the transfer func-
tion measurement estimates at spectral zeros along zero direc-
tions.

likely that it will not yield a realization in normalized pH form.
But we are interested in a pH realization given the underlying
system is strictly passive. To do so, we first propose a strategy
sketched in Algorithm [2 to estimate the spectral zeros and di-
rections based on the data on the jw axis. Once we have such
a data set, we can obtain a passive realization directly using
Algorithm 1]

The main motivation for proposing Algorithm [ is as fol-
lows. As we know, if the transfer functions of two linear sys-
tems are the same, then there exists a state-space transforma-
tion, allowing us to go from one to the other. Furthermore,
it is also known that a minimal realization of order n can be
obtained using the Loewner approach using any 2n measure-
ments, see [21]. Moreover, if the number of measurements are
greater than 2n, then a minimal realization of order n can be
obtained by a compression step [21l]. Hence, if there exists a
passive realization of the linear system, then such a passive re-
alization can be determined using the realization obtained using
the Loewner approach and a state-space transformation. How-
ever, a state-space transformation of a linear system does not
change the spectral zeros and corresponding directions. Con-
sequently, we can indeed directly use the realization obtained



using the Loewner approach to estimate the spectral zeros and
corresponding directions and further can evaluate the transfer
function at spectral zeros and in the corresponding tangential
directions.

Remark 6.1. One can also construct a reduced-order system
as well by truncating singular values of the Loewner matrix at
a desired tolerance. This can be followed by determining the
spectral zeros and zero directions of the reduced-order system,
which can be very different from the original ones; however, the
spectral zeros and zero directions of the reduced-order system
form a good representative, allowing us to compare the impor-
tant dynamics of the original system.

Remark 6.2. Ifthe transfer function measurements are given in
a particular frequency band, then applying Algorithm 2| would
vield spectral zeros and zero directions, corresponding to the
considered frequency band. If a pH realization in the normal-
ized form is constructed using Algorithm[l} then we obtain the
frequency-limited pH realization. This is discussed and illus-
trated further in the subsequent section.

Remark 6.3. Algorithm|[I] can also be applied if one aims at
finding an underlying pH realization for a given strictly passive
system. And such a system can either be given by first princi-
ple modeling or can be determined using any system identifica-
tion method either in time-domain or frequency-domain. One
motivational example can be found in [32l], where the authors
aimed at determining an underlying pH realization of notch fil-
ters which then can be interconnected with other pH systems
for control-design purposes.

7. Ilustrative and Numerical Examples

In this section, we illustrate the proposed identification ap-
proach to construct a passive (pH) realization by means of sev-
eral examples. All numerical simulations are carried out in
MATLAB® version 7.11.0.584 (R2016b) 64-bit on an Intel®

Core™;7-6700 CPU @ 3.40GHz, 6MB cache, 8GB RAM, Ubuntu

16.04.6 LTS (x86-64).

7.1. An analytical example

We first consider an analytical example, showing the nec-
essary steps, precisely Algorithm [T} to identify an underlying
passive realization whose transfer function is as follows:

Z(s) = dl, — (sl — A" with A := [_"b Z]

where we take a = —1, b = 1, d = 2 to make the system
strictly passive since it is then pH with positive definite matrix
‘W. The poles of Z(s) are the eigenvalues of A and are equal
to —1 + 1 and hence asymptotically stable. The spectral zeros
are the zeros of ®(s) = Z'(—s) + Z(s), which can be determined
using the following steps:

(s = nz" (-t + nzesynt
=2dl, — (-sl, - TIATIIY) ™! — (s, — AT !,

where

AL =

= R a+1b 0

2 0 a—1b|’
It then turns out that both TIZ(s)IT" and II®(s)IT" are diagonal
and equal to

1 1
Z(s)IT" = diag(2 - 2 — , 24
(s) 1ag( s+1-1 S+l+l) (242)
6+ 8is—4s* 6— 815 — 45>
()T = di , . 24b
() 1ag(2+215—s2 2—21s—s2) (24b)

The spectral zeros in the right half-plane are 4 = ‘/75 + 1 and

A= g — 1 and the corresponding zero directions are

ot [(1)} =0 < ®Wr,; =0, where r, = 1" [(1)}
and
Mo (1) 11" m =0 & O)r;=0, where r;=1II" m :

Hence, we have the following interpolation conditions:
Z(D)ry = wy, and Z()ry = wy. (25)
Moreover, using (24a), we obtain:

1
Iz H =TMZ)r; = [2 - —Aé(m)} - [‘(ﬂ

2 1
HWA:[ﬂ’ and w,lz[l].

The Loewner matrix then is obtained from R = [m, r;] = I,

W= [WA,WA] = V201" and hence WHR = \/512. Using the in-
terpolation conditions (23)), we obtain the Loewner and shifted
Loewner matrices defined in (ZT)) as follows:

_2\2

L —L =20,
A+ A4

-1
‘/Em U _o|t o
0 —24H4 0 -
A+A

Hence, the generalized state-space realization (20)) becomes

s

Using the factorization L. = T'MT" with T' := V2IT", we get
Lor = %HH]LUH and

implying

L, =

A—sE‘B
cC |D

Ar | Br | [ Lor | -5 -L/\2
[CFD]‘—IZO e }[’2/\512]
! 1 |-c O
| -1 -1]0 -—c
"1 1/c O 2 0
0 1/c| O 2
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Figure 1: RLC example: The decay of the singular values of the Loewner ma-
trix.

with ¢ = V2 + 1. The smallest eigenvalue Ap,in(‘Wr) of the
above model is 0 which is a poor estimate of its passivity radius.
But we can apply to this model a similarity scaling with 7' =
cl,, which yields a model My where Ay = Ar and Dy = D are
unchanged but C; = —By = I,. This corresponds to using [27}
Lemma 3.2] with the certificate X = ¢~21, and transforming the
model to a new pH form which has a passivity radius equal to
Amin(W7) = %(3 - \/g) ~ 0.382. However, obtaining a pH
realization with maximum passivity radius is out of the scope
of the paper.

7.2. Electric RLC circuit

As second example, we discuss the electrical circuit exam-
ple considered in [31]. The system dynamics in state-space
form is given as follows:

#(1) = Ax(t) + Bu(f), x(0) =0,
y() = Cx(t) + Du(t),
where
20 =10 0 0 0 20 o1
00 0 -10 0 0 0 0
A=l0 10 0 -10 ol|.B=|o|, c=|0],
0O 0 10 0 =10 0 0
0O 0 0 10 -2 0 0

and D = 2.
To identify the dynamics using data, we assume to have 20

frequency response data between the frequency range [107!, 10°].

We first employ the Loewner approach [21] to obtain a realiza-
tion. In Figure [T} we plot the singular values of the Loewner
matrix, which allows us to determine the order of a minimal re-
alization. We observe that the singular values after the 5th are at
the level of machine precision as one would expect. Hence, we
determine a realization of order 5. Next, we show the spectral
zeros of the original and Loewner model in Figure 2] indicating
that the spectral zeros of both models are the same as expected.

The identified realization is not in the form of a passive pH
system. But we can use the spectral zeros and zero directions

’+ Orig. model O Loewner model ‘
T e 8
10 |- (&) (&) )

Imag part
o
T

-10

52
57

® &
-2 0
Real part

Figure 2: RLC example: Spectral zero of the original and Loewner model.

of the Loewner model, which in this case, are the same as for
the original system, and estimate the transfer function at the
spectral zeros along with the respective zero directions. Con-
sequently, we apply Algorithm [T|to obtain a realization in the
generalized state-space form of a pH system (I0), where up to
five digits,

10.8795  0.0263 —0.0304 -0.0511 0.0938
0.0263 08515 -0.0770 —0.1574 —0.0098
0'=-0.0304 -0.0770 02545 0.0814 0.1136 |,
—0.0511 —0.1574 0.0814 0.3560  0.0400
[ 0.0938 -0.0098 0.1136  0.0400  0.2891
0 ~15.2595 05921 17823  0.5344
15.2595 0 —0.4864 —0.8033  1.6342
J=|-05921 04864 0 0.5204 —0.5325],
~1.7823 0.8033  —0.5204 0 ~3.3854
|-0.5344 -1.6342 05325 3.3854 0
14.0000 0.0000 -2.8284 -3.9606 0.5598
0.0000 0 ~0.0000 —0.0000  0.0000
R=[-2.8284 —0.0000 2.0000 2.8006 —0.3959],
~3.9606 —0.0000 2.8006 3.9216 —0.5543
| 0.5598  0.0000 —0.3959 -0.5543 0.0784
G:[—0.6563 0.3238 0.5378 0.6924 —0.2925]T,
P=[2.8284 0.0000 —2.0000 —2.8006 0.3959]T,
N=0, §=2.

Furthermore, we compare the Bode plots of the original and
the identified pH model (@), illustrating that the identified pH
realization has the same transfer functions.

7.3. A large electrical circuit network

Next, we consider a large RLC circuit network, where 100
electrical capacitances, inductors, and resistances are intercon-
nected. For more details on the circuit topology, we refer to
[33]. The modeling of such this circuit leads to a model of or-
der n = 200. We assume to have 200 frequency response data
points on a log-scale within the frequency range [10‘1, 103].
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Figure 3: RLC example: Comparison of the Bode plots of the original and pH
models.

Towards constructing a pH reduced-order system using the
data, we first determine a realization using the classical Loewner
method. We plot the decay of the singular values of the Loewner
matrix in Figure [ indicating a sharp decay. Next, we deter-
mine two pH realizations by truncating the singular values at
5-107% and 1078 (relatively) using Algorithmand Algorithm
This leads to pH realizations of order r = 2 and r = 14. It is
expected that the higher-order model captures the original sys-
tem dynamics much better as compared to the lower-one. Next,
we compare the spectral zeros of the original and identified pH
models in Figure [5] It is interesting to see how different the
spectral zeros of all models are. To compare the quality of the
models, we plot the Bode plots of the original and identified
pH models in Figure [6] showing the pH models (even order 2)
approximate the original model very well.

7.4. Frequency-limited pH realization

Lastly, we discuss the construction of a frequency-limited
pH realization using the same example as in the previous sub-

10*

102 |- .

O

107 - 1

10—14 | | | | |

Figure 4: Large-scale RLC circuit: The decay of the singular values of the
Loewner matrix.
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Figure 5: A large RLC circuit network: the spectral zeros of the original and
identified pH systems.
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Figure 6: A large RLC circuit network: Comparison of the Bode plots of the
original and identified pH models.

section. This means that the transfer function of the pH re-
alization is required to be very accurate in a given frequency
band. Let us assume that we are given measurements in the fre-
quency band [5, 15]rad/s. As done in the previous example, we
determine two pH models by truncating the singular values at
5-1073 and 1078, which gives rise to models of order 2 and 9,
respectively. Next, we compare the spectral zeros of original
and inferred pH models in Figure[7] It can be observed that the
spectral zeros are not only different from the original ones but
also from those of the inferred models of order r = 2, 14 in the
previous example, see Figure 5]

Next, we plot the transfer functions of the original and the
identified pH realization in Figure 8] Comparing, in particular,
the error plots in Figures[6]and[8] we observe that the identified
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Figure 7: A large RLC circuit network (frequency limited): Comparison of
spectral zeros of the original and Loewner model.
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Figure 8: A large RLC circuit network (frequency limited): Comparison of the
Bode plots of the original and Loewner model.

pH realization using the data in the frequency band is much
more accurate in the considered frequency band than the model
identified in the previous subsection, and importantly, it is of a
lower dimension if it is truncated at 1078,

8. Conclusions

In this work, we have studied the identification problem for
strictly passive systems. We have proposed a variant of the clas-
sical Loewner approach [21]], which constructs a realization in
pH form. We have also discussed a two-step procedure which
allows us to construct a pH realization using data on the imag-
inary axis. Furthermore, we have investigated the construction
of frequency-limited pH realization, which aims at inferring a

10

pH realization in a given frequency band. We have illustrated
the proposed methods by means of a couple of variants of elec-
trical circuits. As a future direction, it would be interesting
to investigate an identification problem of second-order passive
systems by extending the idea proposed in [34].

Code Availability

A MATLAB implementation that generates the results re-
ported in Section 7, can be found at https://github.com/
mpimd-csc/Identify_PortHamiltonian_Realizationl
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