Towards a global understanding of
vegetation—climate dynamics at multiple time scales

Running Title: Multi-scale vegetation—climate dynamics

Nora Linscheid, Lina M. Estupinan-Suarez, Alexander Brenning, Nuno Carvalhais,
Felix Creme, Fabian Gans, Anja Rammig, Markus Reichstein, Carlos A. Sierra,
Miguel D. Mahecha



Supplementary Figures



Mask: Desert & Ocean Mask: Assessed Vegetated Area

80°N e T — s S =
53 = = =
== \J/%i Ei::%;**»—;-«h = ; E‘v . N&f‘:ﬁ;;%
i < N * s )
LR G AR N R

VvV s U U 5
40°S he {g

not masked masked not masked masked

Fraction of Non-Gapfilled NDVI Values per grid cell

UL e

Fraction of valid values per grid cell at NDVI>0.2

80°N

40°N

40°s

12 3 45 6 7 8 9 101112 13 14 1516 17 18 19 20 21 22 23

Figure S1: Masks and Classification schemes used in the analyses. a. Mask for deserts and
oceans, b. Mask for natural vegetated area based on GLC2000, c. Fraction of non—gapfilled NDVI
values per grid cell based on GIMMS NDVI, d. Fraction of valid values per grid cell after filtering for
NDVI > 0.2, e. Simplified Képpen—Geiger Classification, A: equatorial, B: arid, C: warm temperate,
D: snow, f. Classification of land cover classes after Global Land Cover 2000 (GLC2000). Numbers
from 1-23 represent: 1 — Tree Cover broadleaved evergreen, 2 — Tree Cover broadleaved deciduous
closed, 3 — Tree Cover broadleaved deciduous open, 4 — Tree Cover needle leaved evergreen, 5 — Tree
Cover needle leaved deciduous, 6 — Tree Cover mixed leaf type, 7 — Tree Cover regularly flooded
fresh water, 8 — Tree Cover regularly flooded saline water, 9 — Mosaic: Tree Cover and other natural
vegetation, 10 — Tree Cover burnt, 11 — Shrub Cover closed open evergreen, 12 — Shrub Cover closed
open deciduous, 13 — Herbaceous Cover closed open, 14 — Sparse herbaceous or sparse shrub cover, 15
— Regularly flooded shrub and or herbaceous cover, 16 — Cultivated and managed areas, 17 — Mosaic:
Cropland Tree Cover Other natural vegetation, 18 — Mosaic: Cropland Shrub and or grass cover, 19 —
Bare Areas, 20 — Water Bodies, 21 — Snow and Ice, 22 — Artificial surfaces and associated areas, 23 —
no data.
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Figure S2: Representative power spectra of 4Fourier decomposed NDVI (a), air temper-
ature (b) and precipitation (c) time series. Mean and 10th-90th percentile of power spectra
are plotted as black line (mean) and band (percentiles), overlaid by 10000 sample spectra. Shortest
signal periods (fastest frequencies) are plotted on the left side of the x—axis, longest periods on the
right side of the x—axis. The annual period is located at 10°.
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Figure S3: Dominant Oscillation of NDVI, air temperature (T,;) and precipitation
(Prec) per grid cell. Dominant scale of variability was determined from normalized, detrended
and decomposed time series as the time scale containing highest relative variance (cf. Fig. 1).
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Figure S4: Assessment of NDVI GIMMS quality flags; direct observations and effect of
retrieval values. a. Median of fraction of direct observations at 0.5° per grid cell calculated overall
time period (1982-2015). Fraction of direct observations ranges from 0 to 1, and corresponds to the
number of pixels with direct observation after data aggregation (from 0.083° to 0.5°). Quality flag
1 is obtained when all aggregated pixels are direct observations, 0 if none are direct observations,
b. Pixels that change NDVI dominant oscillation class when 0.3, 0.5, 0.7, 0.9, and 0.95 quality
threshold is applied (quality is defined as the fraction of pixels originating from direct observations
after aggregation), c. Percentage of pixels with change per dominant oscillation class. S: Short—term,
A: Seasonal, L: Longer—term, T: Trend, in order from / to. Categories with change <0.05% are
omitted. d. Median fraction originating from direct observation per pixel shown as box plot per
oscillation regime. Lowest percentage of direct observation is found in seasonal NDVTI regimes.
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Figure S5: Comparison of dominant oscillation classification between vegetation indices.
Dominant scale of variability for GIMMS NDVI from 1982 to 2015 (top), MODIS NDVT from 2001
to 2015 (center), and EVI MODIS from 2001 to 2015 (bottom). Dominant scale of variability was
determined per pixel from normalized, detrended and Fourier-decomposed time series as the time

scale containing highest relative variance. .
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Figure S6: Assessment of the effect of land cover change over time on decomposition
results of NDVTI time series Four pixels with >25% change in vegetation type according to Song
et al. (2018) are displayed (columns), representing from left to right: (i) short vegetation gain,
(ii) bare ground loss, (iii) bare ground gain, and (iv) tree loss. Rows from top to bottom: integrated
NDVI signal (black), short—term oscillation (blue), seasonal oscillation (red), longer—term oscillation
(green), and trend (yellow). Time series were normalized and detrended before Fourier decomposition.
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Figure S7: Bicolor map of undecomposed time series (top) and detrended, deseasonalized
anomalies (bottom). Pearson correlation of NDVI with precipitation (Prec, legend x axis) and air
temperature (T, legend y axis) is shown at each grid cell. NDVI was lagged one time step (15
days) behind precipitation to allow response time, T, was correlated instantaneously. Color scale
represents both correlations, binned into quantiles (e. g. purple — high positive correlation of NDVI
with both T,; and Prec, green — high negative correlation of NDVI with both T,; and Prec). Data

points where NDVI < 0.2 were excluded to avoid influence of inactive vegetation or non—vegetated
time points.
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Figure S8: Bicolor map of Spearman correlations between NDVI, air temperature (T,;.)
and precipitation (Prec). Correlation of NDVI with T, (legend y axis) and NDVI with Prec
(legend x axis) were calculated between decomposed signals at each grid cell for each time scale (rows).
NDVI was lagged one time step (15 days) behind precipitation to allow response time, T was
correlated instantaneously. Color scale represents both correlations, binned into quantiles (e. g. purple
— high positive correlation of NDVI with both T,;,. and Prec, green — high negative correlation of
NDVI with both T,;, and Prec). Data points where NDVI < 0.2 were excluded to avoid influence of

inactive vegetation or non—vegetated time points. The semi—annual cycle is included in the seasonal
band.
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Short-term Oscillations
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Figure S9: Bicolor map of Partial correlations between NDVI, air temperature (T,;.)
and precipitation (Prec). Correlation of NDVI with T, (legend y axis) and NDVI with Prec
(legend x axis) were calculated between decomposed signals at each grid cell for each time scale (rows).
NDVI was lagged one time step (15 days) behind precipitation to allow response time, T was
correlated instantaneously. Color scale represents both correlations binned into quantiles (e. g. purple
— high positive correlation of NDVI with both T,;,. and Prec, green — high negative correlation of
NDVI with both T,;, and Prec). Data points where NDVI < 0.2 were excluded to avoid influence of
inactive vegetation or non—vegetated time points. The semi—annual cycle is included in the seasonal
band.
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lutivated managed Herbaceous closed Shrub deciduous open| [Tree DBF, closed Tree EBF
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Figure S11: Land cover classes in “correlation space” across Koppen—Geiger classes for
seasonal scale. Correlations of NDVI with precipitation (x axis) and air temperature (y axis) as
determined for Fig. 3 were plotted for major land cover classes (GLC2000, columns) across Képpen—
Geiger classes (rows). Each point represents one 0.5° grid cell from the global map. Transparency
was scaled with the area represented by the grid cell, colors represent both correlations in accordance
with to Fig. 3 binned into quantiles (e. g. purple — high positive correlation of NDVI with both T,
and Prec, green — high negative correlation of NDVI with both T,;, and Prec). A — equatorial, B —
arid, C — warm temperate, D — snow)
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Figure S12: Land cover classes in “correlation space” across Koppen—Geiger classes for
longer—term scale. Correlations of NDVI with precipitation (x axis) and air temperature (y axis)
as determined for Fig. 3 were plotted for major land cover classes (GLC2000, columns) across Képpen—
Geiger classes (rows). Each point represents one 0.5° grid cell from the global map. Transparency
was scaled with the area represented by the grid cell, colors represent both correlations in accordance
with to Fig. 3 binned into quantiles (e. g. purple — high positive correlation of NDVI with both T,
and Prec, green — high negative correlation of NDVI with both T,;, and Prec). A — equatorial, B —
arid, C — warm temperate, D — snow)
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Figure S13: Temporal comparison of Fourier transformation (FFT) and Empirical Mode
Decomposition (EMD). Time series examples for a. Germany (lon. 11°, lat. 51°), and b. south-
ern Portugal (lon. —8°, lat. 38°) of decomposed time series of NDVI, air temperature (T,;,.) and
precipitation (Prec) from 2000-2014. FFT signals are colored green, EMD signals are colored blue.
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Figure S14: Spatial comparison of Fourier transformation (FFT) and Empirical Mode
Decomposition (EMD). Comparison of variance explained per pixel as determined for NDVT time
series (2000-2014) by Fourier transformation (FFT, upper row) and empirical mode decomposition
(EMD), as well as their difference (lower row) over Europe.
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Figure S15: Spatial comparison of Fourier transformation (FFT) and Empirical Mode
Decomposition (EMD). Comparison of variance explained per pixel as determined for air tem-
perature time series (2000-2014) by Fourier transformation (FFT, upper row) and empirical mode
decomposition (EMD), as well as their difference (lower row) over Europe.
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Figure S16: Spatial comparison of Fourier transformation (FFT) and Empirical Mode
Decomposition (EMD). Comparison of variance explained per pixel as determined for precipi-
tation time series (2000-2014) by Fourier transformation (FFT, upper row) and empirical mode
decomposition (EMD), as well as their difference (lower row) over Europe.
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Supplementary Tables

Table S1: Selected and excluded classes from GLC 2000.

Selected land cover classes (natural vegetation)

Herbaceous cover closed open Tree cover broadleaved deciduous open
Mosaic: Tree cover other natural vegetation Tree cover broadleaved evergreen
Regularly flooded shrub and or herbaceous cover Tree cover mixed leaf type

Shrub cover closed open deciduous Tree cover needle leaved deciduous
Shrub cover closed open evergreen Tree cover needle leaved evergreen
Sparse herbaceous or sparse shrub cover Tree cover regularly flooded fresh water
Tree cover broadleaved deciduous closed Tree cover regularly flooded saline water

Excluded land cover classes

Mosaic: Cropland / Tree cover /

Artificial surfaces 350Ci 3 .
rtificial surfaces and associated areas Other natural vegetation

Bare areas Snow and ice (natural & artificial)
Cultivated and managed areas Tree cover burnt
Mosaic: Cropland / Shrub or grass cover Water bodies (natural & artificial)
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Table S2: Global weighted mean of decomposed oscillations and three latitudinal bands (i) extratropics
northern hemisphere (above 23.5° N), (ii) tropics (23.5° N to 23.5° S) and (iii) extratropics southern
hemisphere (below 23.5° S). The mean weights are based on pixel area.

Variable Region Short- Seasonal Longer- Trend
term term

NDVI Global 0.18 0.71 0.09 0.02
NDVI Above 23.5° N 0.1 0.84 0.05 0.01
NDVI Tropics 0.27 0.59 0.11 0.02
NDVI Below 23.5° S 0.25 0.46 0.25 0.03
Tair Global 0.11 0.83 0.04 0.01
Tair Above 23.5° N 0.05 0.94 0.01 0
Tair Tropics 0.21 0.68 0.09 0.02
Tair Below 23.5° S 0.08 0.9 0.02 0
Prec Global 0.52 0.41 0.06 0
Prec Above 23.5° N 0.57 0.36 0.06 0
Prec Tropics 0.42 0.51 0.06 0
Prec Below 23.5° S 0.68 0.24 0.09 0
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Table S3: Summary statistics of total area assessed and percentage of dominant NDVT oscillations

by Koppen—Geiger, vegetated land cover classes and dominant oscillations of climatic variables.
A: Annual, L: Longer—term, S:Short—term, T: Trend. Values of T are solely presented for area

calculations.
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