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Abstract. We construct a new family of trivalent expanders tessellating hyperbolic surfaces

with large isometry groups. These graphs are obtained from a family of Cayley graphs of

nilpotent groups via .� � Y /-transformations. We study combinatorial, topological and

spectral properties of our trivalent graphs and their associated hyperbolic surfaces. We

compare this family with Platonic graphs and their associated hyperbolic surfaces and see

that they are generally very different with only one hyperbolic surface in the intersection.

Finally, we provide a number theory free proof of the Ramanujan property for Platonic

graphs and a special family of subgraphs.
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1. Introduction

In this article we introduce a new family Tk of trivalent surface tessellations

derived via � � Y transformations from Cayley graphs of groups Gk associated

to a Euclidean building and we investigate combinatorial topological properties
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of their underlying surfaces Sk . These graphs Tk form a family of trivalent

expanders and give rise to another family of associated surfaces (tubes around

them constructed via Y -pieces) with a uniform lower bound on their first positive

Laplace–Beltrami eigenvalue.

Another prominent in the literature example where such an interplay between

groups, graphs and hyperbolic surfaces has been utilized, are finite quotients of

PSL.2;Z/ and co-compact arithmetic lattices in PSL.2;R/ (see, e.g., Buser [9],

Brooks [6], and Lubotzky [19] and the references therein). While many finite

quotients of these examples are simple, all our finite groups Gk are nilpotent and

very different in nature.

A well known family of such surface tessellations associated to finite quotients

of PSL.2;Z/ are the Platonic graphs …N (see [13, 17]). We show that, while our

graph T2 in the surface S2 is dual to the Platonic graph …8, there is no direct

relation between our family of graphs Tk and these Platonic graphs …N from

k � 3 onwards. Finally, we provide an alternative number theory free proof of

Gunnell’s Theorem of the spectra of Platonic graphs …p, p prime, and a family

of induced subgraphs …0
p of them.

1.1. Statement of results. In Section 2, we present the construction of our family

of trivalent graphs Tk. They are (� � Y )-transformations of 6-valent Cayley

graphs Xk of increasing nilpotent 2-groups Gk . The details of the construction of

these groups are given in Section 2.1. The .� � Y /-transformations are standard

operations to simplify electrical circuits, and were also used in [2] in connection

with Colin de Verdiére’s graph parameter.

The graphs Tk can be naturally embedded as tessellations into both closed hy-

perbolic surfaces Sk and complete non-compact finite area hyperbolic surfaces

S
1
k

. The edges of the tessellation of Sk are geodesic arcs and the vertices are their

end points. The details of these embeddings are presented in Subsection 2.2 via

covering theory. (An alternative direct construction is given in Subsection 2.4.)

The following proposition describes the combinatorial properties of the tessella-

tions Tk � Sk.

Proposition 1.1. Let k � 2. Then the generators x0; x1; x3 of Gk have all the same

order 2nk with

nk D blog2 kc C 1: (1)

Let jGk j D 2Nk and Vk; Ek and Fk denote the sets of vertices, edges, and faces

of the tesselation Tk � Sk , respectively. Then the isometry group of Sk has order

� 2Nk , we have

jVk j D 2NkC1; jEk j D 3 � 2Nk ; jFk j D 3 � 2Nk�nk ; (2)
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and all faces of Tk � Sk are regular hyperbolic 2nkC1-gons with interior angles

2�=3. Moreover, the genus of Sk is given by

g.Sk/ D 1 C 2Nk�nk�1.2nk � 3/:

A lower bound for the order 2Nk of the groups Gk was given in [21, Corol-

lary 2.3]:

Nk � 8bk=3c C 3 � .k mod 3/ � 1; (3)

where k mod 3 2 ¹0; 1; 2º.
It is easily checked via Euler’s polyhedral formula that any triangulation X of

a compact oriented surface S satisfies

jE.X/j D 3.jV.X/j � 2/ C 6g.S/;

i.e., the number of edges jE.X/j of every triangulation X with at least two vertices

is � 6g.S/. Therefore, the ratio

6g.S/

jE.X/j � 1

measures the non-flatness of such a triangulation, i.e., how efficiently the edges of

X are chosen to generate a surface of high genus. Note that, for every k � 2, the

dual graph T �
k

can be viewed as a triangulation of Sk and that the number of edges

of Tk and T �
k

coincide. Then we have the following asymptotic result, proved in

Section 2.5.

Proposition 1.2. We have

lim
k!1

6g.Sk/

jE.T �
k

/j D 1; (4)

where E.T �
k

/ denotes the set of edges of T �
k

.

In Section 3 we investigate spectral properties. Our first result is that both

families of graphs Tk and Xk are expanders:

Theorem 1.3. Let k � 2. Then every eigenvalue � 2 Œ�3; 3� of Tk gives rise to

an eigenvalue � D �2 � 3 2 Œ�3; 6� on Xk . In particular, there exists a positive

constant C < 6 such that

(i) the graphs Xk are 6-valent expanders with spectrum in Œ�3; C � [ ¹6º,
(ii) the bipartite graphs Tk are trivalent expanders with spectrum in Œ�

p
C C 3,p

C C 3� [ ¹˙3º.
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The spectral properties of the graphs Tk carry over to the Laplace–Beltrami op-

erator of associated hyperbolic surfaces. Using the Brooks–Burger transfer prin-

ciple it can be shown that the first positive eigenvalues �1.Sk/ of the underlying

closed surfaces Sk have a uniform lower bound:

Theorem (see [14, Theorem 1.3]). There is a positive constant C1 > 0 such that

we have for the compact hyperbolic surfaces Sk (k � 2/,

�1.Sk/ � C1:

In Section 3.3 of this paper we introduce another family ySk of closed surfaces

associated to Tk by glueing together special Y -pieces whose boundary curves have

all length 2, as described in [8, Section 3]. It follows from Buser’s results [8] that

their smallest positive Laplace eigenvalue has also a uniform positive lower bound:

Proposition 1.4. The compact hyperbolic surfaces ySk (k � 2) have genus

1 C jVkj=2 and isometry groups of order � jVk j=2. They form a tower of cov-

erings

� � � �! ySkC1 �! ySk �! ySk�1 �! � � � ;

where all the covering indices are powers of 2. There is a positive constant C2 > 0

such that we have, for all k,

�1.ySk/ � C2:

Proposition 1.4 is proved in Section 3.3. There is a well-known classical result

by Randol [22] which is, in some sense, complementary to this proposition,

namely, there exist finite coverings zS of every closed hyperbolic surface S with

arbitrarily small first positive Laplace eigenvalue.

In Section 4 we compare our tessellations Tk � Sk to the well studied tessella-

tions of hyperbolic surfaces by Platonic graphs …N . It turns out that both families

agree in one tessellation (up to duality) but are, otherwise, very different. Let us

first define the graphs …N . Let N be a positive integer � 2. The vertices of …N

are equivalence classes Œ�; �� D ¹˙.�; �/º with

¹.�; �/ 2 ZN � ZN j gcd.�; �; N / D 1º:

Two vertices Œ�; �� and Œ�; !� are connected by an edge if and only if

det

�

� �

� !

�

D �! � �� D ˙1:

As mentioned earlier, …8 is isomorphic to the dual of T2 in S2. Since the

valence of the dual graph T �
k

is a power of 2, any isomorphism of T �
k

with a

Platonic graph …N would imply N D 2nkC1 with nk given in (1). However, this

leads to a contradiction for all k � 3. The next proposition summarizes these

results.
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Proposition 1.5. The Platonic graph …8 is isomorphic to the dual of T2 in the

unique compact genus 5 hyperbolic surface S2 with maximal automorphism group

of order 192. For k � 3, there is no graph isomorphism between T �
k

and …N , for

any N � 2.

In Section 5 we derive spectral properties of the graphs …p, p prime, and

special induced subgraphs …0
p. …0

p is obtained from …p by removing the set of

vertices Œ�; 0� with vanishing second coordinate and all their adjacent edges. We

will give an alternative number theory free proof of the following result for …p :

Theorem (Gunnells [13, Theorem 4.2]). Let p be an odd prime. The graph …p

has the following spectrum:

(i) p with multiplicity one,

(ii) �1 with multiplicity p, and

(iii) ˙p
p with multiplicity .p � 1/2=4 � 1, each.

In particular, the graph …p is Ramanujan.

To our knowledge, all proofs for the Ramanujan property of the graphs …p in

the literature (see, e.g., [13, 18, 12]) are based on some amount of number theory

(characters of representations). We think it is remarkable that there is also an easy

proof for the Ramanujan properties of the graphs …p and …0
p with no reference

to number theory other than the irrationality of
p

p (see Section 5.3). Moreover,

our number theory free arguments apply also to the graphs …0
p:

Theorem 1.6. Let p be an odd prime. Then the graphs …p and …0
p have diameter 3

and maximal vertex connectivity p and p�1, respectively. Moreover, the spectrum

of the graph …0
p is given by

(i) p � 1 with multiplicity one,

(ii) �1 with multiplicity p � 1,

(iii) 0 with multiplicity .p � 3/=2, and

(iv) ˙p
p with multiplicity .p � 1/.p � 3/=4, each.

In particular, the graph …0
p is Ramanujan.
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and [8]. They also acknowledge the support of the EPSRC Grant EP/K016687/1
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imhoff and Alina Vdovina are grateful for the kind hospitality of the Max-Planck-
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2. Combinatorial properties of the tessellations Tk � Sk

Let zG be the infinite group of seven generators and seven relations given by

zG D hx0; : : : ; x6 j xixiC1xiC3 for i D 0; : : : ; 6i; (5)

where the indices are taken modulo 7. As explained in [10, Theorem 3.4], this

group acts simply transitively on the vertices of a thick Euclidean building of

type QA2. Let S D ¹x˙1
0 ; x˙1

1 ; x˙1
3 º. We consider the index two subgroup

G � zG, generated by S . (Note that x3 D x�1
1 x�1

0 .) G is explicitly given by

G D hx0; x1 j r1; r2; r3i with

r1.x0; x1/ D .x1x0/3x�3
1 x�3

0 ; (6a)

r2.x0; x1/ D x1x�1
0 x�1

1 x�3
0 x2

1x�1
0 x1x0x1; (6b)

r3.x0; x1/ D x3
1x�1

0 x1x0x1x2
0x2

1x0x1x0: (6c)

For more details we refer the readers to [21].

2.1. A faithful matrix representation of G . Let us first recall the faithful

representation of G by infinite upper triangular Toeplitz matrices, given in [21]

and based on representations introduced in [10]. In fact, every x 2 G has a

representation of the form

x D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 a11 a21 : : : ak1 0 0 . . . . . .

0 1 a12 a22 : : : ak2 0
: : :

0 0 1 a13 a23 : : : ak3 0
: : :

:::
: : : 0 1 a11 a21 : : : ak1

: : :

:::
: : :

: : : 1 a12 a22 : : :
: : :

:::
: : :

: : : 1 a13 a23

: : :

:::
: : :

: : :
: : :

: : :
: : :

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; (7)

where each element aij is in the set M.3;F2/ of .3 � 3/-matrices with entries

in F2, and 0 and 1 stand for the zero and identity matrix in M.3;F2/. Note the

periodic pattern in the upper diagonals of the matrix, i.e., the j -th upper diagonal

is uniquely determined by the first three entries aj D .aj1; aj 2; aj 3/, which can be

understood as a .3 � 9/-matrix with values in F2. We use the short-hand notation

M0.a1; a2; : : : ; ak/ for the matrix in (7). If the first l upper diagonals in (7) vanish,

we also write Ml .alC1; : : : ; ak/. Let Gk be the subgroup of all elements x 2 G

with vanishing first k upper diagonals in their matrix representation. It follows
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from the structure of these matrices that Gk is normal and that the quotient group

Gk D G=Gk is a 2-group, i.e., nilpotent.
Recall that we use the same notation for the generators x0; x1; x3 of G and

their images in the quotient Gk . We will see later that the faces of the tessellation
Tk � Sk are determined by the orders of these generators in Gk . We will now
determine these orders. Let

˛0 D

0

@

0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1

0 1 1 0 1 1 0 1 1

1

A ; ˇ0 D

0

@

0 0 0 0 0 0 0 0 0

0 1 1 0 1 1 0 1 1

0 1 0 0 1 0 0 1 0

1

A ;

˛1 D

0

@

0 0 0 0 1 1 0 1 0

0 1 0 1 0 0 0 0 1

1 1 1 0 0 0 0 1 0

1

A ; ˇ1 D

0

@

0 0 0 0 1 1 0 1 0

0 1 0 1 0 0 0 0 1

1 1 1 0 0 0 0 1 0

1

A ;

˛3 D

0

@

0 0 0 0 1 1 0 1 0

0 1 1 1 0 1 0 0 0

1 0 0 0 1 1 0 0 1

1

A ; ˇ3 D

0

@

0 0 0 0 0 1 0 1 1

1 1 0 0 1 1 0 0 0

0 1 1 0 0 1 1 0 0

1

A :

Then we have xi D M0.˛i ; : : : / for i D 0; 1; 3, and we obtain the following fact

about the leading diagonal of their 2-powers.

Lemma 2.1. We have for i 2 ¹0; 1; 3º and l � 0:

x2l

i D
´

M2l �1.˛i ; : : : /; if l is even;

M2l �1.ˇi ; : : : /; if l is odd:
(8)

This implies, in particular, for k 2 N that the order of xi in Gk is 2nk with nk

given in (1).

Proof. Since Gk is a 2-group, ordGk
.xi / has to be a power of 2. The formulas (8)

follow via a straightforward calculation using Proposition 2.5 in [21]. This implies

that ordGk
.xi / D 2l if and only if 2l�1 � k < 2l , i.e., l D blog2 kc C 1 D nk . �

2.2. The surfaces Sk and S1

k
via covering theory. Let Xk be the Cayley

graph Cay.Gk ; S/. We will now explain how to construct the closed hyper-

bolic surfaces Sk: We start with an orbifold S0 by gluing together two com-

pact hyperbolic triangles T1;T2 � H2 with angles �= ordGk
.x0/; �= ordGk

.x1/

and �= ordGk
.x3/ along their corresponding sides. Both triangles are equilateral

since, by Lemma 2.1, we have ordGk
.x0/ D ordGk

.x1/ D ordGk
.x3/ D 2nk . It

is useful to think of the two triangles T1 and T2 in S0 to be coloured black and

white, respectively. Let P0; P1; P2 2 S0 be the singular points (i.e., the iden-

tified vertices of the triangles T1 and T2 in S0) and Q 2 S0 be the center of

the white triangle T1. Note that S0n¹P0; P1; P2º carries a hyperbolic metric in-

duced by the triangles T1;T2. Choose a geometric basis 0; 1; 2 of the funda-

mental group �1.S0n¹P0; P1; P2º; Q/ such that i is a simple loop (starting and
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ending at Q) around the singular point Pi 2 S0 and 012 D e. Note that

�1.S0n¹P0; P1; P2º; Q/ is a free group in the generators 0; 1. The surjective

homomorphism

‰W �1.S0n¹P0; P1; P2º; Q/ �! Gk;

given by ‰.0/ D x0, ‰.1/ D x1 and ‰.2/ D x3, induces a branched covering

� W Sk ! S0, by Riemann’s existence theorem (see [25, theorems 4.27 and 4.32]

or [4, (17)]) with all ramification indices equals 2nk and, therefore, the closed

surface Sk carries a hyperbolic metric such that the restriction

� W Skn��1.¹P0; P1; P2º/ �! S0n¹P0; P1; P2º

is a Riemannian covering. The surface Sk is a Belyi surface since it is a branched

covering over S0 ramified at the three points P0; P1; P2. Moreover, Sk is tessellated

by 2jGk j D 2NkC1 equilateral hyperbolic triangles, half of them black and the

others white. Hurwitz’s formula yields

g.Sk/ D 1 C 1 � �k

2
jGk j; (9)

where

�k D 1

ord.x0/
C 1

ord.x1/
C 1

ord.x3/
D 3

2nk
: (10)

Recall that the orders 2nk of xi (i D 0; 1; 3) were given in Lemma 2.1. In the case

k D 2 we have jG2j D 32 and ord.x0/ D ord.x1/ D ord.x3/ D 4, which leads to

g.S2/ D 1 C 1

8
� 32 D 5:

Gk acts simply transitive on the black triangles of Sk . Let

V D ��1.Q/ (11)

and Vwhite; Vblack � V be the sets of centers of white and black triangles, respec-

tively. Choose a reference point Q0 2 Vwhite, and identify the vertices of the Cay-

ley graph Xk D Cay.Gk; S/ with the points in Vwhite by Gk 3 h 7! hQ0 2 Vwhite.

Then two adjacent vertices in Xk are the centers of two white triangles which

share a black triangle as their common neighbour. The corresponding edge in Xk

can then be represented by the minimal geodesic passing through these three tri-

angles and connecting these two vertices. Moreover, Gk acts on the surface Sk

by isometries and we have S0 D Sk=Gk, i.e., the isometry group of Sk has order

� jGk j D 2Nk .

We could also start the process by gluing together two ideal hyperbolic tri-

angles T
1
1 and T

1
2 , coloured black and white, along their corresponding edges.

Each edge of T1
i (i D 1; 2) has a unique intersection point (tick mark) with the

incircle of the triangle, and these tick-marks of corresponding edges of T1
1 and
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T
1
2 are identified under the gluing. The resulting surface S

1
0 is topologically a

3-punctured sphere, carrying a complete hyperbolic metric of finite volume, and

the same arguments as above then lead to an embedding of the graphs Xk into

complete non-compact finite area hyperbolic surfaces S
1
k

, triangulated by ideal

black and white triangles, where the vertices of Xk correspond to the centers of

the white ideal triangles in S
1
k

, and we have S
1
0 D S

1
k

=Gk.

2.3. From the Cayley graphs Xk to the trivalent graphs Tk. For the transition

from Xk to Tk we use the .� � Y /-transformation. In this transformation, we add

a new vertex v for every combinatorial triangle of the original graph, remove the

three edges of this triangle and replace them by three edges connecting v with

the vertices of this triangle. We apply this rule to our graph Xk and obtain a

graph Tk , which we can view again as an embedding in Sk with the following

properties: the vertex set of Tk coincides with V given in (11), and there is an edge

(minimal geodesic segment) connecting every black/white vertex in V with the

vertices in the three neighbouring white/black triangles. The best way to illustrate

this transformation is to present it in the universal covering of the surface Sk , i.e.,

the Poincaré unit disc D2 (see Figure 1, the new vertices replacing every triangle

are green). Note that Tk has twice as many vertices as Xk , which shows that the

isometry group of the above compact surface Sk has order � jGkj D jVk j=2, where

Vk denotes the vertex set of TK . Moreover, Tk is the dual of the triangulation of

Sk by the above-mentioned compact black and white triangles.

2.4. A direct construction of Sk and S1

k
from Tk. There is another method to

obtain the hyperbolic surfaces Sk and S
1
k

using the construction in [7, Section 4]

(see also [20, Chapter 1]). The start data are our trivalent graphs Tk with a suitable

orientation.

Definition 2.2. An orientation O on a trivalent graph T is a choice, at each vertex

v of T , of a cyclic ordering of the three edges emanating from it.

Let us first introduce an orientation Ok on Tk. We start with the Cayley graph

Xk and orient its edges such that they only carry the Cayley graph labels x0; x1 and

x3, and not their inverses (see the Figure 1 on the left). Every triangle in Xk forms

then an oriented cycle with consecutive labels x0; x1; x3. This orientation induces

an orientation on the new green vertex in Tk corresponding to this triangle, as

illustrated by the oriented green circular arcs in the Figure 1 on the right. A blue

vertex v of Tk stems from a vertex of Xk , and we can give the labels 0; 1; 3 to the

three edges in Tk emanating from v, agreeing with the label of the edge in the

corresponding triangle of Xk not adjacent to v (see again Figure 1 for illustration).

The orientation of the three edges emanating from v in Tk (illustrated by an

oriented blue circular arc) is then given by the cyclic ordering 0; 3; 1.
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x0

x0

x0

x0

x0

x1

x1 x1

x1

x1

x3

x3

x3

x3

x3 v
0

1

3

Figure 1. The lifts of the Cayley graph X2 (left) and of the .��Y /-transformation T2 (right)

to the Poincaré unit disc D2

Now we follow the explanations in [20, sections 1.1–1.4] closely. Let T � D2

be an oriented compact equilateral hyperbolic triangle with interior angles �=2nk .

We refer to the mid-points of the sides of T as tick-marks. The orientation of

T � D2 induces a cyclic order on these tick-marks. Connect the center of T with

the three tick-marks by geodesic arcs and assume that these arcs are coloured red.

Then we paste a copy of T � D2 on each vertex v of Tk such that its center agrees

with v, its tick-marks agree with the mid-points of the edges of Tk emanating

from v, and that the cyclic orders of these egdes and of the tick-marks agree.

Observe that, even though the mid-points of adjacent sides of triangles meet up at

mid-points of edges of Tk, we have not yet identified the sides of these triangles.

This identification is made in such a way that the orientations of adjacent triangles

match up. The resulting hyperbolic surface Sk carries then a global orientation and

the union of the red geodesic arcs from their mid-points to their tick-marks in the

triangles provide an embedding of the graph Tk into this surface such that the faces

are regular 2nk-gons.

The complete non-compact finite area hyperbolic surfaces S1
k

are obtained in

the same way by starting instead with an oriented ideal hyperbolic triangle T � D2

with tick-marks. As explained at the end of [20, Section 1.4], the cusps of S1
k

are

then in bijection with the left-hand-turn pathes in .Tk;Ok/. This construction is

useful for the proof of Theorem 1.3 in [14].

2.5. Proofs of Propositions 1.1 and 1.2

Proof of Proposition 1.1. The orders of x0; x1; x3 2 Gk were given in Lemma 2.1.

We know from Section 2.2 that the isometry group of Sk has order � jGk j D 2Nk ,
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and from Section 2.3 that jVk j D 2jGkj D 2NkC1. Lemma 2.1 implies that the

faces of the triangulation Tk � Sk are regular 2nkC1-gons, which yields 2jEk j D
3jVk j D 2nkC1jFk j, proving (2). The genus g.Sk/ can be derived either from

Hurwitz’s formula (9) or from the Euler characteristic �.Sk/ D jVk j�jEk jCjFk j.
This finishes the proof of Proposition 1.1. �

Remark 2.3. The number of cusps of the surface S
1
k

agrees with the number

of faces of the tessellation Tk � Sk . For example, the genus five surface S2

mentioned in Section 2.2 is tessellated into 24 octagons, and the surface S
1
2 has,

therefore, 24 cusps.

Proof of Proposition 1.2. We conclude from (9), jVk j D 2jGkj, jE.T �
K/j D jEk j,

and from the trivalence of Tk that

6g.S.Tk//

jE.T �
k

/j D 6
1 C .1 � �k/jVkj=4

3jVk j=2
:

Note that jVkj D 2jGk j D 2NkC1 ! 1 because of (3), which implies that

lim
k!1

6g.Sk/

jE.T �
k

/j D 1 � lim
k!1

�k:

Recall from (10) and (1) that �k D 3=2nk ! 0 as k ! 1, finishing the proof

of (4). �

3. Spectral properties of the graphs Xk and Tk

In this section, we establish the expander properties of Xk and Tk and relations

between their eigenfunctions and eigenvalues, which proves Theorem 1.3. We also

investigate Ramanujan properties of these families of graphs.

3.1. Precise relations between eigenfunctions and eigenvalues. As before,

let zG be the group defined in (5) and G be the index two subgroup generated by S .

Then both groups zG and G have Kazhdan property (T) (see [21, Section 3]). Using

[19, Proposition 3.3.1], we conclude that the Cayley graphs Xk D Cay.Gk; S/ are

expanders.

The adjacency operator AX , acting on functions on the vertices of a graph X ,

is defined as

AXf .v/ D
X

w�v

f .w/;

where w � v means that the vertices v and w are adjacent. It is easy to see that the

eigenvalues of the adjacency operator of a finite n-regular graph lie in the interval

Œ�n; n�.
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Recall that the set V.Xk/ of vertices of our 6-valent graph Xk is a subset of the

vertex set Vk of the trivalent graph Tk . We have the following relations between

the eigenfunctions of the adjacency operators on Xk and Tk.

Theorem 3.1. (a) Every eigenfunction F on Tk to an eigenvalue � 2 Œ�3; 3� gives

rise to an eigenfunction f to the eigenvalue � D �2 � 3 2 Œ�3; 6� on Xk (with

f .v/ D F.v/ for all v 2 V.Xk/).

(b) Every eigenfunction f on Xk to an eigenvalue � 2 Œ�6; 6� � ¹�3º gives

rise to two eigenfunctions F˙ to the eigenvalues ˙p
� C 3 on Tk with

F˙.v/ D

8

ˆ
<

:̂

f .v/ if v 2 V.Xk/,

˙ 1p
� C 3

X

w�v

f .w/ if v 2 Vk � V.Xk/.

(c) An eigenfunction f on Xk to the eigenvalue �3 gives rise to an eigenfunc-

tion F to the eigenvalue 0 of Tk with

F.v/ D
´

f .v/ if v 2 V.Xk/,

0 if v 2 Vk � V.Xk/,

if and only if we have, for all triangles � � V.Xk/,
P

v2� f .v/ D 0.

In the following proof, we use � for adjacency in Tk and �Xk
for adjacency in

Xk . Moreover, dTk
denotes the combinatorial distance function on the vertex set

Vk of Tk.

Proof. (a) Let f and F be two functions on Xk and Tk , related by f .v/ D F.v/

for all v 2 V.Xk/. Then

AXk
f .v/ D

X

w�Xk
v

f .w/ D
X

dTk
.w;v/D2

F.w/ D .ATk
/2F.v/ � 3F.v/;

which can also be written as AXk
D .ATk

/2 � 3. This implies immediately the

connection between the eigenfunctions and eigenvalues.

(b) Let AXk
f D �f and F˙ be defined as in the theorem. Let � D ˙p

� C 3.

Then we have for v 2 V.Xk/:

ATk
F˙.v/ D

X

w�v

F˙.w/ D 1

�

X

w�v

X

x�w

F˙.x/

D 1

�

� X

w�Xk
v

f .w/ C 3f .v/
�

D � C 3

�
f .v/ D �F˙.v/;
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and for v 2 Vk � V.Xk/:

ATk
F˙.v/ D

X

w�v

F˙.w/ D �
� 1

�

X

w�v

f .w/
�

D �F˙.v/:

Note that 1=� is well defined since � ¤ �3 and, therefore, � D ˙p
� C 3 ¤ 0.

(c) In the case of � D �3 we have � D 0, and

ATk
F.v/ D

X

w�v

F.w/ D 0

holds trivially for v 2 V.Xk/. For all vertices v 2 Vk � V.Xk/, the conditions

0 D ATk
F.v/ D

X

w�v

f .v/

translate into the condition that the summation of f over the vertices of every

triangle in Xk must vanish. �

An immediate consequence of Theorem 3.1 is that the expander property of

the family Xk carries over to the graphs Tk (with the spectral bounds given in

Theorem 1.3). Moreover, the spectrum of Xk cannot contain eigenvalues in the

interval Œ�6; �3/, since this would lead to non-real eigenvalues of Tk . Therefore,

these arguments also complete the proof of Theorem 1.3.

Remark 3.2. It would be interesting to find an explicit value for the constant

C > 0 in Theorem 1.3. This would be possible if we were able to estimate the

Kazdhan constant of the index two subgroup G of zG (with respect to some choice

of generators). While the Kazhdan constant of zG with respect to the standard set

of seven generators was explicitly computed in [11], it seems to be a difficult and

challenging question to obtain an explicit estimate for the Kazhdan constant of the

subgroup G.

3.2. Ramanujan properties. Recall that a finite n-regular graph X is Ramanu-

jan if all non-trivial eigenvalues � ¤ ˙n lie in the interval Œ�2
p

n � 1; 2
p

n � 1�.

Since the 6-regular graphs Xk are Cayley graphs of quotients of the group G with

property (T), [19, Proposition 4.5.7]) implies that not all of these graphs are Ra-

manujan. The following results imply that, in fact, only two of them are Ramanu-

jan. We obtain via MAGMA computations:

graph number of vertices largest non-trivial eigenvalue

X2 32 2.828427. . .

X3 128 4.340172. . .

X4 1024 4.475244. . .

X5 8192 5.160252. . .
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This implies that only X2 and X3 are Ramanujan; their largest non-trivial

eigenvalue needs to be < 2
p

5 D 4:472135 : : : , which is no longer true for k D 4.

Moreover, since XkC1 is a lift of Xk , the spectrum of Xk is contained in the

spectrum of XkC1.

Next, we consider Ramanujan properties of the graphs Tk . Theorem 3.1 implies

that Tk is Ramanujan if and only if the largest non-trivial eigenvalue of Xk is � 5.

Therefore, the above numerical results imply that only T2; T3; T4 are Ramanujan.

Here are the numerical results for the largest non-trivial eigenvalues �1.Tk/ of the

first Tk’s:

graph number of vertices �1.Tk/

T2 64 2.414213. . .

T3 256 2.709275. . .

T4 2048 2.734089. . .

T5 16384 2.856615. . .

Note that the spectrum of Tk is symmetric around the origin since the graphs

Tk are bipartite.

3.3. A lower eigenvalue estimate for the surfaces ySk. It remains to prove

Proposition 1.4 from the Introduction. The explicit construction of the surfaces
ySk is explained in Buser [8, Section 3.2].

Proof of Proposition 1.4. The identity 2g � 2 D jVk j between the genus of the

surface ySk and the number of vertices of the trivalent graph Tk is easily checked.

Moreover, every automorphism of the graph Tk induces an isometry on ySk. Since

the graphs Tk form a power of coverings with powers of 2 as covering indices, the

same holds true for the associated surfaces ySk.

Next we prove the uniform lower eigenvalue bound of the family ySk . From a

classical result by Tanner [24] or Alon-Milman [1] we know that

3 � �1.Tk/

2
� h.Tk/ WD inf

E

#.E/

min¹#.A/; #.A0/º ;

where E � Ek runs through all collection of edges such that TknEk disconnects

into two components with disjoint vertex sets A � Vk and A0 � Vk . This implies

together with Theorem 1.3(ii) that the combinatorial Cheeger constants h.Tk/ have

the following uniform positive lower bound

h0 D 3 �
p

C C 3

2
� h.Tk/: (12)
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Moreover, we know from [8, (4.1)] that

�1.ySk/ � 1

144�2
h.Tk/:

Combining this with (12) leads to

�1.ySk/ � 3 �
p

C C 3

288�2

with the constant C > 0 from Theorem 1.3. This finishes the proof of Proposi-

tion 1.4. �

4. Comparison with Platonic graphs

4.1. Basics about Platonic graphs. The Platonic graphs …N were already in-

troduced combinatorially in the Introduction. These graphs can also be viewed as

triangulations of finite area surfaces S
1.…N / D H2=�.N / by ideal hyperbolic

triangles, where H2 denotes the hyperbolic upper half plane and

�.N / D
²

 D
�

a b

c d

�

2 PSL.2;Z/

ˇ
ˇ
ˇ
ˇ

 � ˙
�

1 0

0 1

�

mod N

³

(13)

is the principal congruence subgroup of the modular group � D PSL.2;Z/ which

is normal in �. The vertices of this triangulation are the cusps of S
1.…N /.

These and related graphs have been thoroughly investigated by several different

communities. For example, in the general framework of regular maps, they were

studied by D. Singerman and co-authors (see [16, 23, 15]).

Let us now recall a few useful facts about these graphs …N and the surfaces

S
1.…N /. For more details see, e.g., [15]. Let F be the Farey tessellation of the

hyperbolic upper half plane H2, and let �.F/ be the set of oriented geodesics in

F. Recall that the Farey tessellation is a triangulation of H2 with vertices on the

line at infinity R [ ¹1º, namely, the subset of extended rationals Q [ ¹1º. Two

rational vertices with reduced forms a=c and b=d are joined by an edge, a geodesic

of H2, if and only if ad � bc D ˙1 (see [15, Figure 1] for an illustration of the

Farey tessellation). The group of conformal transformations of H2 that leave F

invariant is the modular group � D PSL.2;Z/, which acts transitively on �.F/.

It is well known (see, e.g, [15]) that F=�.N / and …N are isomorphic, and

F=�.N / is a triangulation of the surface S1.…N / D H2=�.N / by ideal triangles

(the vertices are, in fact, the cusps of S1.…N /). The tessellation …N � S
1.…N /

can be interpreted as a map MN in the sense of Jones/Singerman [16]. The

group Aut.MN / of automorphisms of MN is the group of orientation preserving

isometries of S
1.…N / preserving the triangulation. As �.N / is normal in �,

we have that the map MN is regular, meaning that Aut.MN / acts transitively
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on the set of directed edges of …N (see [16, Theorem 6.3]). Moreover, by [16,

Theorem 3.8],

Aut.MN / Š �=�.N / Š PSL.2;ZN /:

(Note that in the case of a prime power N D pr , PSL.2;ZN / is the group defined

over the ring ZN D Z=.NZ/ and not over the field Fq with q D pr elements.)

Let N � 7. Noticing that all vertices of …N have degree N , we obtain a smooth

compact surface S.…N / by substituting every ideal triangle in …N � S
1.…N / by

a compact equilateral hyperbolic triangle with interior angles 2�=N , and glueing

them along their edges in the same way as the ideal triangles of S1.…N /. The

group of orientation preserving isometries of S.…N / preserving this triangulation

is, again, isomorphic to PSL.2;ZN /. Hence, the automorphism group of the

triangulation …8 � S.…8/ is PSL.2;Z8/ of order 192. This implies that S.…8/

is the unique compact hyperbolic surface of genus 5 with maximal automorphism

group (see [3]).

4.2. Duality between T2 and …8 in S2. The …8-triangulation of S.…8/ is illus-

trated in Figure 2; the black-white pattern on the triangles is a first test whether this

triangulation can be isomorphic to the T �
2 -triangulation of S2. (The …N -triangula-

tions for 3 � N � 7 can be found in Figs. 3 and 4 of [15].) PSL.2;Z8/ acts simply

transitively on the directed edges of this triangulation. Consider now a refine-

ment of this triangulation by subdividing each .�=4; �=4; �=4/-triangle into six

.�=2; �=3; �=8/-triangles. It is easily checked that the smaller .�=2; �=3; �=8/-

triangles admit also a black-white colouring such that the neighbours of all smaller

black triangles are white triangles and vice versa (see Figure 3). Each black

.�=2; �=3; �=8/-triangle is in 1-1 correspondence to a half-edge of …8 which, in

turn, can be identified with a directed edge of …8. Consequently, the orienta-

tion preserving isometries of the surface S.…8/ corresponding to the elements

in PSL.2;Z8/ act simply transitively on the black .�=2; �=3; �=8/-triangles. In

fact, PSL.2;Z8/ can be interpreted as a quotient of the triangle group �C.2; 3; 8/,

namely,

PSL.2;Z8/ Š hx2; y3; z8 j xyz; .xz2xz5/2i;
where x; y; z correspond to rotations by �; 2�=3; �=4 about the three vertices of

a given .�=2; �=3; �=8/-triangle.

MAGMA computations show that PSL.2;Z8/ has a unique normal subgroup

N of index 6, generated by the elements X D x�1z2x, Y D y�1z2y and Z D z2,

which is isomorphic to the triangle group quotient �C.4; 4; 4/=P2.�C.4; 4; 4//

via the explicit isomorphism

X 7�!
�

�1 0

2 �1

�

; Y 7�!
�

�1 2

�2 3

�

; Z 7�!
�

1 2

0 1

�

; (14)

where P2.�C.4; 4; 4// is a group in the lower exponent-2 series of �C.4; 4; 4/.



Expanders, .� � Y /-transformation and hyperbolic surfaces 1119

[4,1]

[3,0]

[1,4]

[3,3]

[2,3]

[4,3]
[3,0]

[7,3] [1,4] [5,3]
[3,2]

[1,3]

[3,0]

[4,3]

[3,4]

[2,3]

[1,2] [6,3]

[3,0]

[1,3]

[1,4]

[7,3]

[7,2]

[3,3]

[3,0]
[3,4]

[4,3]
[5,2]

[0,3][3,0]

[1,4][1,3]
[3,2]

[5,3]

[3,0]

[0,3]

[3,4]

[6,3]

[2,3]

[2,1]

[6,1]

[1,1]

[7,2]

[5,3]

[1,2]

[3,3]

[5,2]

[3,4]

[0,3]

[3,0]

[7,3]

[0,1]

[6,3]

[3,1]

[1,0]

[5,1]

[7,1]

Figure 2. The Platonic graph …8. Each triangle corresponds to a hyperbolic

.�=4; �=4; �=4/-triangle of the tessellation of S.…8/. The edges along the boundary path

are pairwise glued to obtain S.…8/.

Note that the matrices in (14), viewed as elements in PSL.2;Z/, generate a group

acting simply transitively on the black triangles of the Farey tessellation in H2,

as illustrated in Figure 4. The images of a black triangle T with vertices 0; 1; 1
under ¹X˙1; Y ˙1; Z˙1º are the six black triangles each sharing a common white

triangle with T.

MAGMA computations also show that we have the explicit isomorphism

N D hX; Y; Zi Š G2 D hx0; x1; x3i;

given by

X 7�! x0; Y 7�! x1; Z 7�! x3:
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A B

C

�=8

�=6

Figure 3. Subdivision of the .�=4; �=4 �=4/-triangle �ABC into six .�=2; �=3; �=8/-

triangles with black-white colouring.

Z�1 Z

X Y �1

X�1 Y

0 1 2 3�1�2

Figure 4. The action of the elements X˙1; Y ˙1; Z˙1 2 PSL.2;Z/ on a triangle T with

vertices 0; 1; 1 of the Farey tessellation.

The normal group N G PSL.2;Z8/ is of order 32 and the quotient S0 D S.…8/=N

is an orbifold consisting of two hyperbolic .�=4; �=4; �=4/-triangles (one of them

black and the other white). We conclude from the explicit isomorphism N Š G2

that the covering procedure discussed in Section 2.2 leads to isometric surfaces

S.…8/ Š S2, and that the tessellation …8 � S.…8/ is dual to the tessellation

T2 � S.T2/ via this isometry of surfaces. This confirms the first statement of

Proposition 1.5.
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Remark 4.1. For k D 2, the .� � Y /-transformation X2 ! T2 has a group the-

oretical interpretation. There exists a group extension zG2 of G2 by Z2, generated

by involutions A; B; C satisfying X D AB , Y D BC and Z D CA, and T2 is the

Cayley graph of zG2 with respect to the generators A; B; C . This group theoretic

interpretation of the .� � Y /-transformation fails for k � 5. In fact, the group

T D hA; B; C j A2; B2; C 2; r1.AB; BC /; r2.AB; BC /; r3.AB; BC /i
with r1; r2; r3 given in (6) is finite and of order 6144. If the introduction of the

above involutions A; B; C would lead to a group extension zGk, then zGk would

have to be of order 2jGk j and a quotient of T and, therefore, of order � 6144.

However, we have 2jG5j D 16384 in contradiction to the second condition. Thus

we do not obtain a Cayley graph representation of the graphs Tk for k � 5 via this

procedure.

4.3. Non-duality of Tk � Sk and Platonic graphs for k � 3. Let V.…N /

denote the vertex set of …N . Then we have

jV.…N /j D N 2

2

Y

pjN

�

1 � 1

p2

�

;

where the product runs over all primes p dividing N . This formula can be found

in [15, p. 441], where …N is viewed as a triangular map and denoted by M3.N /.

An isomorphism T �
k

Š …N leads to N D 2nkC1, since all vertices of T �
k

have

degree 2nkC1 (see Proposition 1.1) and all vertices of …N have degree N . In this

case, the formula for the number of vertices of …N simplifies to

jV.…2nkC1/j D 22nkC2

2

�

1 � 1

4

�

D 3 � 22nk�1:

On the other hand, if V.T �
k

/ denotes the vertex set of T �
k

, we conclude from

Proposition 1.1,

jV.T �
k /j D 3 � 2Nk�nk :

Hence, an isomorphism T �
k

Š …N leads to the identity 2nk � 1 D Nk � nk , i.e.,

3blog2 kc C 3 D 3nk D Nk C 1 � 8bk=3c C 3 � .k mod 3/;

by (1) and (3). But one easily checks that this inequality holds only for k D 1; 2.

(In the case k D 1, we have …4 D T �
1 , since T1 is combinatorially the cube and

…4 is the octahedron.) This shows that the graph family …N cannot contain any

of the dual graphs T �
k

, for indices k � 3. This finishes the proof of Proposition 1.5.

5. The Platonic graphs and their modifications

In this section we restrict our considerations to the case that N is a prime num-

ber p.
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5.1. Algebraic description of vertices, axes, and …0

p. Let us briefly recall some

algebraic facts from [15]. Both groups � D PSL.2;Z/ and PSL.2;Zp/ act on

V.…p/ via
�

a b

c d

�

Œ�; �� D Œa� C b�; c� C d��;

and there is a 1-1 correspondence between the vertex set V.…p/ and the cosets

�=�1.p/. Here, �1.p/ is the congruence subgroup given by

�1.p/ D
²�

a b

c d

�

2 �

ˇ
ˇ
ˇ
ˇ

�

a b

c d

�

� ˙
�

1 �
0 1

�

mod p

³

:

In [15], the set of vertices was partitioned into axes. Two vertices belong to the

same axis if they have the same stabilizer in PSL.2;Zp/. Since PSL.2;Zp/ acts

transitively on V.…p/, all axes have the same number of vertices. An interesting

observation is that if an element of PSL.2;Zp/ leaves a vertex Œ�; �� invariant,

then any vertex Œ�; !� with �! � �� D 0 is also invariant under the same element.

Thus the axis containing Œ1; 0� is given by

Aprinc D ¹Œ�; 0� j gcd.�; p/ D 1º; (15)

and we call this axis the principal axis of …p. There is a 1-1 correspondence

between the axes of …p and the cosets �=�0.p/, where �0.p/ is the congruence

subgroup

�0.p/ D
²�

a b

c d

�

2 �

ˇ
ˇ
ˇ
ˇ

�

a b

c d

�

�
�

� �
0 �

�

mod p

³

:

Note that the graph …0
p was defined in the Introduction as the induced subgraph

of …p with vertex sets V.…p/ � Aprinc. Alternatively, …0
p can also described as

the Cayley graph Cay.Up; S/ with

Up D
²�

� �
0 �

�

2 PSL.2;Zp/

³

Š �0.p/=�.p/ and S D
²�

� 1

0 �

�

2 Up

³

:

The vertices Œ�; �� 2 V.…0
p/ (with non-vanishing second coordinate �) are then

identified with the matrices
�

��1 �
0 �

�

2 Up.

5.2. Vertex connectivity of …p and …0

p. Let p be a fixed odd prime and

n D .p � 1/=2. The wheel structure of …p was already discussed in [17,

Theorem 2.1]. Let us present this and other geometric facts in our terminology.

The principal axis of …p is given by

Aprinc D ¹Œi; 0� 2 V.…p/ j 1 � i � nº:
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The vertices of Aprinc and their 1-ring neighbours form a partition of V.…p/ into

n components with p C 1 vertices each. We call these components the wheels of

…p , see Figure 5. The wheel with center Œi; 0� (1 � i � n) is denoted by Wi and is

a subgraph of …p with p C 1 vertices and 2p edges. We also use the notation @Wi

for the induced subgraph with vertex set V.@Wi / D V.Wi / � ¹Œi; 0�º. We call @Wi

the boundary of the i-th wheel. Note that @Wi is isomorphic to the cyclic graph

of p vertices.

Every vertex that is not in Aprinc is adjacent to exactly two vertices of the

boundary of any given wheel Wi , 1 � i � n. Indeed, because PSL.2;Zp/ acts

transitively on V.…p/, we may consider, w.l.o.g., the vertex Œ0; 1� 2 @W1. The p�1

vertices adjacent to Œ0; 1� that are not in Aprinc are Œ1; x� with x 2 ¹1; 2; : : : ; p �1º.
To find the vertices Œ1; x� in @Wi , we need to solve

det

�

1 i

x 0

�

D ˙1;

which has exactly two solution x D ˙i�1 (where we think of i 2 Zp) which

correspond to two distinct vertices of …p.

Figure 5. …p consists of n D .p � 1/=2 wheels. Each vertex at the boundary of a wheel is

connected with the center of its wheel and exactly two points on the boundary of any wheel

(including itself).

Lemma 5.1. Let i; j 2 ¹1; 2; : : : ; nº. Then we have the following facts.

(a) Let x1; x2 be two different vertices in @Wi and also y1; y2 be two different

vertices in the same set @Wi (¹x1; x2º \ ¹y1; y2º ¤ ; is allowed). Then there

exists a permutation � 2 Sym.2/ and two vertex distinct paths p1; p2 in @Wi ,

such that p1 connects x1 with y�.1/ and p2 connects x2 with y�.2/.

(b) Every x 2 @Wi has precisely two neighbours in @Wj .

(c) Assume additionally that i ¤ j . Then there exists a bijective map

ˆW V.@Wi/ �! V.@Wj /

such that v � ˆ.v/ for all vertices v 2 @Wi .
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Proof. Note that @Wi is isomorphic to the cyclic graph of p vertices. (a) is then

a straightforward inspection of all possible cases. (b) is already proved by our

previous arguments. It remains to prove (c). Think of i; j 2 Zp � ¹0º. Then the

vertices in @Wi are of the form Œ�; i�1� and the vertices in @Wj of the form Œ�; j �1�

with �; � 2 Zp. The map �WZp ! Zp , defined by �.�/ D i C ij �1�, is obviously

a bijection, and we have Œ�; i�1� � Œ�.�/; j �1�, finishing the proof. �

Note that the wheel structure is not confined to the choice of the principal axis.

Since the group PSL.2;Zp/ maps axes to axes and acts transitively on them, we

can choose any axis A as the centers of the n wheels, and Lemma 5.1 is still valid

in this setting.

Now we prove that …p is p-vertex-connected. Notice that the arguments in

this proof also give diam.…p/ � 3 as a by-product.

Proof. We will show that for any two vertices of …p, we can find p vertex disjoint

paths connecting them. Then the result will follow from Menger’s Theorem.

Since PSL.2;Zp/ acts transitively on V.…p/, we can assume that the start

vertex is Œ1; 0� 2 W1. Separating three cases, we will find p vertex distinct paths

to

(i) the vertices in @W1,

(ii) the vertices in any @Wj with 2 � j � n,

(iii) the other vertices in Aprinc.

(i) Assume that the end vertex is Œ�; 1�. Then we already have three vertex

disjoint paths given by

Œ1; 0� �! Œ�; 1�; Œ1; 0� �! Œ� ˙ 1; 1� �! Œ�; 1�:

We need to find vertex disjoint paths starting with Œ1; 0� ! Œ� ˙ i; 1� and ending

at Œ�; 1�, for 2 � i � n. By Lemma 5.1(c), we can find two different vertices

x1; x2 2 @Wi such that Œ� � i; 1� � x1 and Œ� C i; 1� � x2. By Lemma 5.1(b),

Œ�; 1� has two different neighbours ¹y1; y2º in @Wi . We now use Lemma 5.1(a) to

complete the paths.

(ii) We assume p � 5, for otherwise there is nothing to prove. Let us assume

that the end vertex is in @Wi with 2 � i � n, and let us denote this vertex by

w 2 @Wi . Let v�; vC 2 @W1 be the two neighbours of w in the first wheel. Choose

three different vertices v1; v2; v3 2 @W1 � ¹v�; vCº, and use Lemma 5.1(c) to find

three different vertices w1; w2; w3 2 @Wi � ¹wº such that vj � wj for 1 � j � 3.

W.l.o.g., we can assume that the pair ¹w1; w3º separates w2 and w within @Wi . Let

q1; q3 be the two vertex disjoint paths in @Wi � ¹w2º connecting w with w1 and

w3, respectively. Then we already have five vertex disjoint paths given by

Œ1; 0� �! v˙ �! v; Œ1; 0� �! v2 �! w2 �! Œi; 0� �! w;
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and

Œ1; 0� �! v1 �! w1

q1�! w; Œ1; 0� �! v3 �! w3

q3�! w:

Notice that for any wheel Wj with j 62 ¹1; iº, we have not yet used any edges

with one vertex in @Wj . We will see that every such wheel allows us to create two

more vertex disjoint paths from Œ1; 0� to w, finishing this case. Let y1; y2 be the

two different vertices in wheel @Wj adjacent to w. Choose two different vertices

v0; v00 2 @W1 which have not been used yet and associate to them two different

vertices x1; x2 2 @Wj such that v0 � x1 and v00 � x2, using Lemma 5.1(c). Then

we can use Lemma 5.1(a) to complete the paths within @Wj .

(iii) This is the easiest case. Assume that the end vertex is Œi; 0� 2 Wi with

2 � i � n. We use the bijection ˆW V.@W1/ ! V.@Wi / in Lemma 5.1(c) to create

the p vertex disjoint paths

Œ1; 0� �! Œ0; �� �! ˆ.Œ0; ��/ �! Œi; 0�

with 1 � � � p. �

Next, we present the proof that …0
p is .p � 1/-vertex-connected. In contrast to

the previous proof, the arguments given here do not imply that diam.…0
p/ � 3.

Proof. Let v; w 2 …0
p be two different vertices with v 2 @Wi and w 2 @Wj . We

consider the two cases i D j and i ¤ j separately.

Case i D j . Obviously, we can choose two vertex disjoint paths within @Wi to

connect v and w. Next, we show that every wheel @Wj with j ¤ i gives rise to two

additional vertex disjoint paths. Let x1; x2 2 @Wj be the two distinct neighbours

of v, and y1; y2 2 @Wj be the two distinct neighbours of w. Then we can use

Lemma 5.1(a) to complete the paths within @Wj .

Case i ¤ j . Let w1; w2 2 @Wj be the neighbours of v and v1; v2 2 @Wi be

the neighbours of w. Then, using only additional edges in @Wi [ @Wj , we can

find four vertex disjoint paths v ! � � � ! vk ! w, v ! wk ! � � � ! w (for

k D 1; 2). Again, every wheel Wl with l 62 ¹i; j º will give rise to two more vertex

disjoint paths. Let x1; x2 2 @Wl be the neighbours of v, and y1; y2 2 @Wl be the

neighbours of w. Use Lemma 5.1(c) to complete the paths within @Wl . �

Finally, we prove diam.…0
p/ D 3.

Proof. Let us first confirm that any two different vertices in the same wheel can

be connected by a path of length 2: Let 1 � i � n and Œ�; i�1�; Œ�; i�1� 2 @Wi

(thinking of i 2 Zp) be the two vertices. The required path is then given by

Œ�; i�1� �! Œ2.� � �/�1�i � i; 2.� � �/�1� �! Œ�; i�1�:
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Now choose two vertices v 2 @Wi and w 2 @Wj on different wheels. Let v0 2 @Wi

be one of the two neighbours of w in the i-th wheel. Connecting v and v0 by a

path of length 2 (as shown before) implies that d.v; w/ � d.v; v0/ C 1 � 3. �

5.3. Ramanujan properties ”without number theory.” As before, we assume

that p is a fixed odd prime and n D .p � 1/=2. The considerations of the previous

section show also that …p is a n-fold covering � W …p ! KpC1 of the complete

graph KpC1, where the preimages ��1.v/ correspond to the axes of …p. It is

useful to think of the vertices in KpC1 as the points in the finite projective line

over the field Zp, i.e., V.KpC1/ D ¹0; 1; : : : ; p � 1; 1º and the covering map is

then given, algebraically, by

�.Œ�; ��/ D ���1;

with the usual convention 1�1 D 0 and 0�1 D 1. In particular, we have

Aprinc D ��1.1/. Note that PSL.2;Zp/ acts also on the vertices of KpC1 via

�

˛ ˇ

 ı

�

z D .˛z C ˇ/.z C ı/�1:

One easily checks that �.gv/ D g�.v/ for all g 2 PSL.2;Zp/ and v 2 V.…p/.

Let us now explicitly derive the spectra of the graphs …p and …0
p. We will

use the following notation: For a linear operator T on a finite dimensional vector

space, we denote the eigenspace of T to the eigenvalue � by E.T; �/.

We start with a “number theory free” proof of Theorem 4.2 in [13], using the

covering � W …p ! KpC1.

Proof. Every eigenfunction f of KpC1 gives rise to an eigenfunction F W
V.…p/ ! C of the same eigenvalue via F.v/ D f .�.v//. The spectrum of the

adjacency operator on KpC1 is given by (see, e.g., [5, p. 17])

�.KpC1/ D ¹p; �1; : : : ; �1
„ ƒ‚ …

p times

º:

This implies that �.…p/ contains the eigenvalue p with multiplicity one and the

eigenvalue �1 with multiplicity � p.

Our next aim is to prove that the eigenspace E.A2; p/ of the square of the

adjacency operator on …p has dimension .p C 1/.p � 3/=2. Let f W V.…p/ ! C

be a function satisfying

A2f .v/ D pf .v/ for all v 2 V.…p/. (16)
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Note that (16) can be viewed as a homogeneous system of .p2 � 1/=2 linear equa-

tions. The key observation is that all linear equations corresponding to vertices

of the same axis coincide, i.e., we end up with only p C 1 linear independent ho-

mogeneous equations (since p C 1 equals the number of axes), showing that the

eigenspace has dimension at least

jV.…p/j � .p C 1/ D p2 � 1

2
� .p C 1/ D .p C 1/.p � 3/

2
:

Indeed, since PSL.2;Zp/ acts transitively on the vertices, we only need to show

that the linear equations of (16) corresponding to the vertices in the principal axis

Aprinc coincide. Recall that …p has the wheel-structure given in Figure 5. Let

v 2 Aprinc. Then we have

A2f .v/ D pf .v/ C 2

n
X

iD1

X

w2@Wi

f .w/; (17)

since there are exactly p paths of length 2 from v to itself, no paths of length 2

from the centers of all the other wheels to v, and for every w 2
S

i @Wi there are

exactly 2 paths from w to v of length 2, because of Lemma 5.1(b). Note that the

combination of (16) and (17) simplifies to

n
X

iD1

X

w2@Wi

f .w/ D 0;

independently of the choice of v 2 Aprinc. This shows that dimE.A2; p/ �
.p C 1/.p � 3/=2. Adding up the multiplicities of all eigenvalues, we see that

dimE.A2; p/ D .p C 1/.p � 3/=2.

If f1; : : : ; fK span the space E.A2; p/, then the 2K functions

p
pf1 ˙ Af1; : : : ;

p
pfK ˙ AfK

are eigenfunctions of A to the eigenvalues ˙p
p, and they also span E.A2; p/.

This shows that we have

E.A2; p/ D E.A;
p

p/ ˚ E.A; �p
p/:

Finally, the equality

dimE.A;
p

p/ D dimE.A; �p
p/ D .p C 1/.p � 3/

4

follows from Lemma 5.2 below. �
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Lemma 5.2. Let T be a square matrix with rational entries and K be a positive

integer which is not a square. Then we have

dimE.T;
p

K/ D dimE.T; �
p

K/:

Proof. The proof is based on the fact that
p

K is irrational. Let p.z/ 2 QŒz� be

the characteristic polynomial of T . We split p.z/ into its even and odd part, i.e.,

p.z/ D peven.z/ C podd.z/z;

with even polynomials peven.z/; podd.z/. Note that we have

p.
p

K/ D peven.
p

K/ C podd.
p

K/
p

K

and peven.
p

K/; podd.
p

K/ 2 Q. Therefore, if
p

K is a root of p.z/, then
p

K is

also a root of both polynomials peven.z/ and podd.z/, separately. This implies that

�
p

K is also a root of p.z/. We can then split off the factor z2 � K from p.z/,

and repeat the procedure with the remaining polynomial. �

Next we derive the spectrum of the modified graph …0
p, using the n-fold

covering map � W …0
p ! Kp and the wheel-structure, which partitions the vertex

set V.…0
p/ into n disjoint sets @Wi of p vertices, each. This will finish the proof

of Theorem 1.6.

Proof. The proof of the spectral statements in Theorem 1.6 proceeds in steps.

(i) Let W be the vector space of all functions which are constant on the wheels.

We first introduce a basis of eigenfunctions of this vector space. Let �n D e2�i=n

and, for 0 � j � n � 1, define

fj .v/ D �ij
n if v 2 @Wi .

Note that f0 is the constant function to the eigenvalue p � 1. It is easily checked

that Afj D 0 for j � 1. Since these functions are linearly independent, they form

a basis of W. Moreover, we have dimE.A; 0/ � n � 1 D .p � 3/=2.

(ii) Let V be the vector space of all functions which are constant along all axes.

Every such function is a lift F.v/ D f .�.v// of a function f on Kp. Note that

eigenfunctions of Kp are lifted to eigenfunctions to the same eigenvalue, so V

can be viewed as the span of a constant function and p � 1 linear independent

eigenfunctions to the eigenvalue �1. In particular, we have dimE.A; �1/ � p �1.

(iii) Note that W \ V D span.f0/. By the orthogonality of eigenfunctions, it

only remains to study the eigenfunctions in the orthogonal complement .WCV/?

of dimension

jV.…0
p/j � .dimW C dimV/ C 1 D .p � 1/.p � 3/

2
D K:
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Let g1; : : : ; gK be a basis of this orthogonal complement by eigenfunctions

with Agi D �igi . We now extend each gi trivially to a function Qgi on …p by

setting Qgi .v/ D 0 for all v 2 Aprinc. Note that these extensions are eigenfunctions

of the Platonic graph …p to the same eigenvalue, i.e., A Qgi D �i Qgi . Therefore,

we must have �i 2 ¹p C 1; �1; ˙p
pº. As discussed in the previous proof, the

span of the eigenfunctions of …p to the eigenvalues �1 and p C 1 is obtained via

lifting the eigenfunctions of KpC1, and the restriction of these functions to …0
p

must therefore lie in V. This shows that we must have �i D ˙p
p.

(iv) Adding up the multiplicities of all eigenvalues, we conclude that

dimE.A;
p

p/ ˚ E.A; �p
p/ D .p � 1/.p � 3/=2;

dimE.A; 0/ D .p � 3/=2;

dimE.A; �1/ D p � 1:

We finally obtain

dimE.A;
p

p/ D dimE.A; �p
p/ D .p � 1/.p � 3/

4
;

by applying, again, Lemma 5.2. �
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