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Error suppression in adiabatic quantum computing with qubit
ensembles
Naeimeh Mohseni 1,2,3, Marek Narozniak 4,5, Alexey N. Pyrkov6, Valentin Ivannikov4, Jonathan P. Dowling7,8 and Tim Byrnes1,4,5,8,9✉

Incorporating protection against quantum errors into adiabatic quantum computing (AQC) is an important task due to the
inevitable presence of decoherence. Here, we investigate an error-protected encoding of the AQC Hamiltonian, where qubit
ensembles are used in place of qubits. Our Hamiltonian only involves total spin operators of the ensembles, offering a simpler route
towards error-corrected quantum computing. Our scheme is particularly suited to neutral atomic gases where it is possible to
realize large ensemble sizes and produce ensemble-ensemble entanglement. We identify a critical ensemble size Nc where the
nature of the first excited state becomes a single particle perturbation of the ground state, and the gap energy is predictable by
mean-field theory. For ensemble sizes larger than Nc, the ground state becomes protected due to the presence of logically
equivalent states and the AQC performance improves with N, as long as the decoherence rate is sufficiently low.
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INTRODUCTION
Adiabatic quantum computing (AQC) is an alternative approach to
traditional gate-based quantum computing where quantum
adiabatic evolution is performed in order to achieve a computa-
tion1–4. In the scheme, the aim is to find the ground state of a
Hamiltonian HZ which encodes the problem to be solved and can
be considered an instance of quantum annealing5–8. In addition,
an initial Hamiltonian HX, which does not commute with the
problem Hamiltonian, is prepared such that the ground state is
known. For example, a common choice of these Hamiltonians are
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where σx;zi are Pauli matrices on site i, and Jij and Ki are coefficients
which determine the problem to be solved, and there are M
qubits. The form of Eq. (1) directly encodes a wide variety of
optimization problems, for example, MAX-2-SAT and MAXCUT
which are NP-complete problems. It then follows that any other
problem in NP can be mapped to it in polynomial time9–11. AQC
then proceeds by preparing the initial state of the quantum
computer in the ground state of HX, then applying the time-
varying Hamiltonian

H ¼ ð1� λðtÞÞHX þ λðtÞHZ ; (3)

where λ(t) is a time-varying parameter that is swept from 0 to 1.
Intense investigation into the performance of AQC has been
performed since its original introduction, demonstrating its
performance for various problems12–15 and characterizing the
effects of decoherence16–22.

In the AQC framework, the speed of the computation is given
by how fast the adiabatic sweep is performed. To maintain
adiabaticity, one must perform the sweep sufficiently slowly, such
that the system remains in the ground state throughout the
evolution. The sweep time required to maintain adiabaticity is
known to be proportional to a negative power of the minimum
energy gap of the Hamiltonian (Eq. 3), where the power depends
upon the annealing schedule λ(t) and gap structure2,13,15,23–26.
One of the attractive features of AQC is that time-sequenced gates
do not need to be applied, but it is nevertheless known to be
equivalent to the gate-based quantum computation13,27–32.
Numerous theoretical analyses and experimental demonstrations
have been performed both at small33–37 and larger scale38–46. One
of the outstanding problems for AQC is to fully understand the
performance and effectively combat decoherence in AQC such
that it can be applied to real-world combinatorial problems4,47,48.
In this paper, we investigate a variant of the AQC Hamiltonians

(Eq. 1) and (Eq. 2) where ensembles of qubits are used to encode
the optimization problem, instead of genuine qubits. Specifically,
we study the Hamiltonians
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where Sx;zi ¼PN
n¼1 σ

x;z
i;n are total spin operators for an ensemble

consisting of N qubits. In this case, M is the number of ensembles.
Here, σi,n denotes the Pauli operator for the nth qubit within the
ith ensemble. The matrices Jij and Ki are the same as that in Eq. (1)
and we take Jij= Jji and Jii= 0. AQC then proceeds in the same
way as described in Eq. (3). Each of the ensembles is initially
prepared in a fully polarized state of hSxi i ¼ N and adiabatically
evolved to the ground state of HZ. The aim will be to investigate
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whether the ensemble version of the Hamiltonian can be used in
place of the qubit Hamiltonian, such that the ground state
configuration of Eq. (1) is found using Eqs. (4) and (5). We
characterize the nature of the ground and excited states of
the ensemble Hamiltonian and assess the performance of AQC in
comparison to the original qubit problem.
The Hamiltonians (Eq. 4) and (Eq. 5) can be considered an error-

suppressing encoding of the original AQC Hamiltonians (Eq. 1) and
(Eq. 2), respectively. The use of an ensemble duplicates the
quantum information since the N qubits within an ensemble are in
the same state at the start and at the end of the adiabatic
evolution. Such error-suppression strategies have been already
investigated in the context of AQC. Jordan, Farhi, and Shor49

introduced an encoding capable of detecting the presence of
single-qubit errors, which are suppressed by an additional energy
penalty term in the total Hamiltonian. Pudenz, Lidar, and co-
workers50 introduced a scheme known as quantum annealing
correction (QAC), where a repetition code is used to encode a
logical qubit and a majority vote is used to decode the logical
operations. This, combined with the addition of energy penalty
terms to enforce alignment within each ensemble has shown that
the scheme is effective at achieving error-suppression51–55. In
particular, the two-qubit interaction term in Eq. (1) is encoded by
repeating the interactions N times in a pair-wise fashion between
the logical qubit ensembles, motivated by the chimera qubit
connectivity of the D-wave quantum computers. An alternative

scheme called nested QAC has also been studied by Vinci, Lidar,
and co-workers, where the qubit terms are mapped with an all-to-
all interaction, similar to the one we consider in Eq. (4)56. A similar
all-to-all encoding was considered by Venturelli, Smelyanskiy, and
co-workers57. A minor embedding is then performed on the
encoded Hamiltonian to match it to the chimera graph
topology58. Matsuura and co-workers showed through mean-
field analysis that the order of the phase transition is modified
through the mapping in the ferromagnetic and antiferromagnetic
Ising models59. Young, Sarovar, and Blume-Kohout47,48 showed
that such energy penalty approaches could be part of a unified
theory with dynamical decoupling.

RESULTS
Properties of the problem Hamiltonian HZ

We first examine the properties of the ensemble version of the
(classical) problem Hamiltonian (Eq. 4). The typical energy
landscape of the Hamiltonian HZ is shown in Fig. 1a. The axes
are plotted with rescaled spin variables xi ¼ hSzi i=N. For the
corners of the hypercube xi= ± 1, the energy eigenvalues of the
ensemble Hamiltonian HZ reduces to that of the qubit version
(Eq. 1) up to an overall scaling factor of N. This is a general result
which is true by virtue of the structure of the ensemble and qubit
problem Hamiltonians HZ (see Supplementary Note 1). The
primary difference between Eq. (4) and Eq. (1) is then that the
ensemble version can take a discrete set of intermediate values of
xi between the ±1 values.
In Fig. 1b, we show the variation of the energy starting from the

ground state to the remaining hypercube corners. The variation
always follows a quadratic form with an initially positive slope.
This can be shown to be generally true following from the
quadratic form of Eq. (4) (see Supplementary Note 1). This fact can
be used to show that any point along a trajectory connecting the
ground state to another hypercube corner has energies greater
than the ground state (see Supplementary Note 1). From the
above structure of the energy landscape, one can deduce that the
ground states of the Hamiltonians (Eq. 1) and (Eq. 4) have logically
equivalent spin configurations. We define the logically equivalent
states of the qubit and ensemble systems according to

sgn ½hσzi iðqubitÞ� ¼ sgn ½hSzi iðensÞ�; (6)

for all i. This is also known as a majority vote encoding of the
ensemble to give the logical state and has been considered in
other error mitigation schemes for AQC47,50,56. Thus, finding the
ground state spin configuration of Eq. (4) gives the same
information as Eq. (1).
In AQC, one of the parameters which play a central role is the

gap energy, i.e., the energy between the ground and first excited
state. The simple structure of the Hamiltonian (Eq. 4) allows us to
deduce that for a given N, there are two different regimes for the
gap energy. For the particular example shown in Fig. 1a), we see
that there are two hypercube corner states (x1,x2,x3)= (1,1,1) and
(−1,−1,−1) with relatively similar energies of ϵ0 and ϵ1,
respectively. For the qubit case (Eq. 1) the difference between
the two lowest energy hypercube corners is the gap energy. In the
ensemble case, the energy difference between these two
hypercube corners is

Δ ¼ Nðϵ1 � ϵ0Þ; (7)

since for extremal values ∣xi∣= 1 the energies are related by a
factor of N.
If N is sufficiently small, Δ remains the gap energy for the

ensemble case. However, for large enough N this becomes less
and less likely, and the first excited state is a single qubit spin-flip
of the ground state. Specifically, we have the state such that on
the kth ensemble Szk ¼ ± ðN � 2Þ, and the remaining ensembles

Fig. 1 Properties of the problem Hamiltonian HZ. a Summary of
the two regimes for the ensemble version of the problem
Hamiltonian HZ. The cube shows the energy landscape of a typical
instance of Eq. (4) with rescaled variables xi ¼ hSzi i=N. Dots indicate
allowed states for N= 1 (left) and N= 6 (right). Only states on the
visible faces are shown for clarity. b Energy variation for the problem
instance as Fig. 1a along a linear trajectory from the ground state
x1= x2= x3= 1 to other hypercube corners specified by
ðxðf Þ1 ; xðf Þ2 ; xðf Þ3 Þ. The trajectory is defined by xi ¼ 1� ð1� xðf Þi Þε, where
ε= 0 is the ground state and ε= 1 is another hypercube corner.
Parameters used are M= 3, J12=− 2, J13=− 1, J23=− 1, K1= 1,
K2= 0, K3=− 2. c Proportion of 800 randomly generated problem
instances with Δ < δ (i.e., N < Nc) as a function of the ensemble size
N. Elements of Jij and Ki are taken randomly in the interval �1; 1½ �
with a uniform distribution.
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Szi ¼ ±N; 8i≠k. The energy gap for this single qubit flip state is

δ ¼ min
k

�2σk Kk þ 2
X
j

Jkjσj

 !" #
; (8)

where σi ¼ hσzi iðqubitÞgnd ¼ sgn ðhSzi iðensÞgnd Þ, and expectation values are
taken with respect to the ground state. The minimum function
picks the smallest value from the range k∈ [1,M].
Whether Δ or δ is the gap energy depends upon N and the

particular parameter choice of Jij and Ki made. As N is increased, at
some point there will always be a crossover such that the gap is δ,
since (Eq. 7) is proportional to N while (Eq. 8) has no dependence
on N. Let us call Nc the smallest value of N such that Δ > δ. For a
given problem instance, we then define two regions of N,
according to whether it is larger or smaller than Nc. The two
regimes and their implications summarized in Fig. 1a. In Fig. 1c we
show the proportion of problems satisfying Δ < δ (i.e., N < Nc) for
randomly generated Jij and Ki. We see that the proportion
decreases as ∝1/N, which is consistent with the linear scaling of Δ.
We note that in the case of atomic ensembles N can be quite large
(e.g., 103 to 1011)60,61, which suggests that for realistic ensemble
sizes most of the problem instances will be in the regime N≥Nc.

The spectrum of the AQC Hamiltonian
So far we have only examined the classical limit of λ= 1. The
overall speed of the AQC will be dependent upon the minimum
gap energy with the off-diagonal term (Eq. 5) present. To illustrate
the effect of intermediate λ, we compare the eigenvalue spectrum
of the Hamiltonian (Eq. 3) for the standard qubit case and the
ensemble case with N= 5 for the same Jij and Ki parameters in

Fig. 2a, b. Due to symmetry under particle interchange on each
ensemble, the Hilbert space can be reduced to the symmetric
subspace, reducing the dimensionality from 2NM to (N+ 1)M. The
most noticeable difference is the larger number of states when
ensembles are used (Fig. 2b, inset). Despite the larger number of
states, plotted on the same energy scale, a non-diminishing gap
between the ground and excited-state maintained for the
ensemble case (Fig. 2b, main figure). This occurs due to the larger
energy scale of the ensemble Hamiltonian by a factor of N, which
at least partially compensates for the larger number of states.
Many of these additional states are logically equivalent states in
the sense of Eq. (6). For example, we label the states at λ= 1 in
terms of the eigenstates Szi . In the qubit version, the two lowest
states have a spin configuration of ðσz

1; σ
z
2; σ

z
3Þ ¼ ð�1;�1;�1Þ

and (+1,−1,−1), respectively. In the ensemble version with N= 5,
of the shown states, the lowest 7 states are all logically equivalent
to (−1,−1,−1) in terms of (Eq. 6). Such logically equivalent states
provide protection against error since they occur with energies in
the vicinity of the ground state, and act as a "buffer” before logical
errors are induced47,50.
Our aim in the AQC will be to keep the adiabatic evolution in

the ground state of the ensemble system. Obtaining the ground
state and first excited state for the ensemble system, in general, is
a numerically intensive task involving a diagonalization within a
Hilbert space of dimension (N+ 1)M. To see the behavior for large
ensemble sizes, it is desirable to have an approximate method of
estimating the gap energy that does not require full diagonaliza-
tion. Mean-field theory provides an accurate estimate of physical
quantities for large spin systems. The ensemble nature of the
Hamiltonian allows us to extract energies with increasing accuracy

l=0.3

l=0.4

Fig. 2 Energy spectrum and gap energies of the adiabatic quantum computing Hamiltonian. The spectrum of Eq. (3) with M= 3 with (a)
N= 1 and (b) N= 5 for parameters J12=− 0.5, J13= 0, J23=− 1, K1= 0.5, K2= 0, K3= 1. The mean-field approximation for the N= 5 is shown
as the dashed lines for the ground and first excited state. c The gap energy for the ensemble qubit numbers is shown. d Scaling of the gap
energy with N for two values of λ as shown. The mean-field (MF) approximation is shown as the dotted line in c and d. e The minimum gap vs.
N for 60 random instances of problems with Nc= 3. The average minimum gap, as well as the largest (best) and smallest (worst) instances, are
shown. f Same as e for problems with Nc > 7.
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particularly for large N. We use a mean-field ansatz wavefunction
of the form

Ψ
ð0Þ
MF

��� E
¼
YM
i¼1

0; θij ii; (9)

where we define a Fock state of N spins all aligned in the same
direction as

0; θj ii ¼
YN
n¼1

cos
θ

2
0j ini þ sin

θ

2
1j ini

� �
; (10)

which is the maximal positive eigenstate of the rotated spin
operator ~S

z ¼ sin θSx þ cos θSz . We note that a similar mean-field
ansatz was used in past works to analyze the N= 1 AQC Hamiltonian
ground state38,40,44,62. We apply the mean-field ansatz by performing
a self-consistent procedure to obtain the parameters θi. This is
equivalent to taking expectation values of the Hamiltonian (Eq. 3)
with respect to Eq. (9) and optimizing for θi (see Supplementary
Note 2). From the discussion relating to the logically equivalent
states, a suitable mean-field ansatz for the first excited state consists
of a spin-wave state where one qubit per ensemble is flipped

Ψ
ð1Þ
MF

��� E
¼
XM
k¼1

ψk 1; θkj ik
Y
i≠k

0; θij ii ; (11)

where we have defined

1; θj i ¼ ~S
x
0; θj ii: (12)

and ~S
x ¼ �Sx cos θþ Sz sin θ which creates a spin-flip in the

~S
z
-basis. To apply the mean-field ansatz (Eq. 11) we diagonalize an

effective Hamiltonian in the ψk coefficients and take the lowest
energy state (see Supplementary Note 2). We note that the mean-
field theory is only expected to work in the regime with N ≥Nc, since
the first excited state is taken to be of the form (Eq. 11), which has a
spin configuration that is one spin-flip away from the ground state.

The results are shown in Fig. 2b, where the mean-field estimates
(dashed lines) are compared to the exact results. We see that
excellent agreement in the energies of the states is obtained for all
values of the adiabatic parameter λ. In Fig. 2c we plot the exact
gap energy for various N in comparison to the mean-field
calculation. Figure 2d shows the convergence of the energies
towards the mean-field results with N at various intermediate
values of λ. The mean-field results correspond to the limit N→∞,
and the exactly calculated gaps for various N rapidly approach the
mean-field result.
The results of Fig. 2a–d were for a particular problem instance.

What is more meaningful is to study the performance of the
scheme for a variety of different problem instances so that the
overall behavior can be assessed. We find that the behavior is
rather different depending upon whether N < Nc or N ≥ Nc, due to
the different nature of the first excited state. We study the two
regimes separately by choosing problem instances where Nc

occurs relatively early (Nc= 3, Fig. 2e) or late (Nc > 7, Fig. 2f). In
Fig. 2e, we show the average, best, and worst scaling of the
minimum gap for problems with Nc= 3, such that most of the
N-dependence are in the N ≥ Nc regime. The best and worst
scalings are defined as the largest and smallest difference in the
gap comparing the qubit and N= 7, the largest ensemble size
calculated. We find that the minimum gap increases with N on
average. Combined with the logically equivalent buffer states in
the region of the ground state, we expect that the AQC
performance should improve for these cases.
For the cases with Nc > 7 (the N < Nc regime), we see more

mixed results (Fig. 2f). The average scaling tends to still improve
with N, but there are some cases where the minimum gap
becomes significantly worse with N. In such cases we expect that
the AQC performs poorly. We note that the small values of N
considered here are due to limitations in our numerical
simulations. We thus expect that realistic ensemble sizes would
satisfy N≥Nc, where the scaling is more favorable.

Fig. 3 Occupation probability of the final state after time-evolving the adiabatic quantum computation. The occupation probability is
plotted as a function of the (a) sweep time τ with N= 5 and Γ= 0; (b) Sz decoherence rate Γz with N= 5; (c) Sx decoherence rate Γx with N= 5;
(d) Sz decoherence rate Γz with N= 1. The same parameters as Fig. 2b are used M= 3J12=− 0.5, J13= 0, J23=− 1, K1= 0.5, K2= 0, K3= 1, and τ
= 100. The probability distribution is normalized such that the maximal probability takes a value of 1 for each τ or Γx,z, for the clarity of the
figure. For each plot, the spectrum of energy levels is labeled to the right of the plot. Green levels indicate logically equivalent states to the
ground state, red levels indicate logical error states.
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This may, at first glance, seem to be a counter-intuitive result,
since one might expect that with a larger N the system should
behave more classically. However, it can be seen that in both
Eqs. (4) and (5) the magnitude of the elementary excitation does
not diminish as N grows, since it is always a discrete Hamiltonian.
Thus, the gap does not diminish even for N→∞, and AQC can be
performed with macroscopically sized ensembles.

Performance with adiabatic evolution
We now directly time-evolve the AQC Hamiltonian and demon-
strate its performance. We use a linear annealing schedule λ(t)=
t/τ and examine the final occupation probability of the states at
time t= τ. First, examining the case without decoherence, we vary
the sweep time τ for the same problem instance as shown in
Fig. 2b. In Fig. 3a, we see that as expected for sufficiently long τ,
most of the population is concentrated in the ground state.
Diabatic excitations are seen for smaller τ depleting the
population in the ground state. Here we also indicate the
distribution of the energy levels that are logically equivalent to
the ground state (green levels) and error states which have a
different configuration (red levels) according to the majority vote
encoding (Eq. 6). We see that the diabatic excitations tend to
distribute the probability with a tendency to excite the lower
energy states. Since the logically equivalent states are also in the
low-energy range, this shows that an effective buffer is provided
by the encoding, protecting the computation as long as the
diabatic excitations are within the logically equivalent states.
The addition of decoherence has a qualitatively similar effect

to diabatic excitations, as can be seen from Figs. 3b–d).

We numerically evolve a master equation in the presence of
Markovian Lindblad dephasing in the Sz and Sx basis and obtain
the final probability distributions for various decoherence rates
(see “Methods” section). Both the Sz-dephasing and Sx-dephasing
is found to have a similar effect, with energy levels in the lower
region being populated for stronger decoherence rates (Figs. 3b,
c). Again, due to the fact that the logically equivalent states are
dominated towards the lower end of the energy spectrum, this
shows that the effect of the decoherence will also be to initially
excite the logically equivalent states.
It is interesting to compare the distribution to the unencoded

bare AQC Hamiltonian N= 1 (Fig. 3d) to the N= 5 encoded case
(Fig. 3b), plotted on the same energy scale. We see that for small
decoherence rates, the effect of the dephasing is similar in terms
of the width in the energy of the probability distribution. The
benefit of the encoding scheme in the low decoherence region is
evident from the fact that the first logical error state has much
higher energy in the N= 5 case rather than the N= 1 case (9 and
3 units above the ground state, respectively). Summing the
probability of all the states that are logically equivalent to the
ground state (green levels), the ensemble case has a higher
success probability. However, for larger dephasing rates, the
distribution for the ensemble case becomes broader, and the error
suppression is less effective. We, therefore, expect that as long as
the decoherence rate is below a threshold, the overall logical
errors can be effectively suppressed. We note that while we
illustrate our results with a single problem instance, we have
examined a variety of cases and seen consistently similar results
for other problem instances.
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Fig. 4 Error probabilities in the time-evolved adiabatic quantum computation. a, b Error vs. N for the ferromagnetic model with M= 3, Jij=
− 1(1− δij) and Ki= K, and τ= 100. The critical ensemble size for each parameter is: Nc(K= 0.1)= 14, Nc(K= 0.2)= 8, Nc(K= 0.3)= 5. Dephasing
in the basis (a) Sz-basis with Γz= 10−4 and (b) Sx-basis with Γx= 10−4 are calculated. c, d Averaged error vs. N for various τ and M= 3 for (c) 60
problem instances with Nc= 3; (d) 60 problem instances with Nc > 7. Averaged error vs. N for various τ and M= 3 including dephasing of rate
Γ= 10−4 for the same problem instances with (e) Nc= 3; (f) Nc > 7.
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We now examine the dependence of the logical errors at the
end of the AQC with the ensemble size N. In this case, it is
illustrative to examine another problem instance, corresponding
to the ferromagnetic Hamiltonian Jij=− 1(1− δij) with a bias field
Ki= K. For N= 1 with K > 0, the ground state is σi=− 1 and the
first excited state is σi=+ 1 for all i. The energy landscape
corresponds to one global minimum and one local minimum
separated by a potential barrier consisting of all the remaining
states. For the ensemble case and in the regime N≥Nc, the ground
state has the same logical configuration Szi ¼ �N but the first
excited state is a single spin-flip of the configuration
Szk ¼ �N þ 2; Szi ¼ �N ∀ i ≠ k (see Supplementary Note 3). The
error probability is defined as 1− (success probability), where the
success probability is defined to be the total probability of all
states that are logically equivalent to the ground state.

Figure 4a, b shows the error probabilities for Sz and Sx

dephasing, respectively, for the ferromagnetic instance with
different values of K. We observe that the error probabilities
increase initially, but start to strongly decrease as N is increased
further. While lower error probabilities are expected from a larger
gap with larger N as observed in Fig. 2e, the decrease in error is
much more than would be expected from this. The suppression of
the error with increasing N attributed to the fact that above Nc, the
first excited state becomes a logically equivalent state, which is
one of the characteristics of the N≥Nc regime (Fig. 1a). As the
effect of the dephasing is to excite low-lying energy states, the
excitation of the first excited state no longer becomes a logical
error, suppressing the total error. Such an improvement is
consistent with the analysis in ref. 58 where the encoding was
shown to give effectively give lower temperatures, and ref. 59

where phase transitions in the model were shown to be
weakened.
The phenomenology of an error increase in the region for small

N but decreasing error for large N is also observed in other
problem instances. We randomly generate problem instances and
calculate the error probability of the ensemble encoding as a
function of various ensemble sizes N and sweep times τ in the
absence and presence of decoherence. For each generated
problem instance, we calculate the critical Nc, and again group
the instances according to whether Nc occurs relatively early
(specifically Nc= 3) or late (Nc > 7). Examining each case
separately, we can study the performance of the ensemble
scheme in the N ≥ Nc or N < Nc regime, respectively. Figure 4c–f
shows the error probability of finding the state of the system at
the end of adiabatic evolution, averaged over a set of fixed 60
randomly chosen problem instances with Nc in each range.
First examining problems with Nc= 3 (the N ≥ Nc regime)

without decoherence, we observe that for sufficiently long τ the
error probability strongly decreases with N (Fig. 4c). We again
attribute this to the presence of logically equivalent excited states
in the vicinity of the ground state. Although we only simulated
relatively small system sizes due to numerical limitations, we
expect that for larger N the trend will continue towards lower
errors as the gap energy approaches the mean-field value
corresponding to N→∞. For short sweep times τ, the errors also
improve with N, although with a smaller gradient. We attribute
this behavior due to the sweep times being in a diabatic regime,
such that the system is not maintained in the vicinity of the
ground state, which involves high energy excitations. We note
that there did exist rare examples where the error probability
scaled badly with N, due to the particular structure of the energy
spectrum. However, the occurrence of these poorly scaling
examples was so rare that they did not impact the average to a
significant extent.
For problems with Nc > 7 (the N < Nc regime) and no

decoherence, the error tends to increase with N (Fig. 4d), despite
the fact that the average minimum gap increases with N, as seen
in Fig. 2f. We have examined the individual cases and confirmed

that for particular cases where the gap increases with N, the error
decreases with N as expected. The reason that the average error
increases are that the cases with poor gap scaling in Fig. 2f tend to
have nearly zero success probability, which reduces the average,
considerably. Thus, the results for problems in the N < Nc regime
are mixed and depend very much upon the particular problem
instance of whether the gap increases or decreases. We do,
however, note that these problem instances themselves are rather
rare, as seen in Fig. 1c, in comparison to the more common N > Nc

case. When averaged over all random problem instances, errors
tend to decrease with N.
Calculations adding Sz-dephasing to the AQC scheme are

shown in Fig. 4e, f. We find generally the same behavior of the
error with N when decoherence is introduced, but with a higher
error probability overall, as expected. For the Nc= 3 case shown in
Fig. 4e, we see that there is a similar improvement of the error
with N as the zero decoherence case. The new feature here is that
there is an optimum sweep time beyond which the error
probability starts increasing again. This can be simply explained
by noting that the AQC must be performed within the
decoherence time available to the computation. Beyond the
optimal time, the performance starts to degrade, therefore there is
a trade-off between maintaining adiabaticity and working within
the decoherence time63,64. For the Nc > 7 cases in Fig. 4f, we again
see the error increase with N, which is attributed again to
particular instances where the minimum gap decreases with N.
We note that in Figs. 3 and 4 we have used collective dephasing

with respect to the Sz and Sx operators, which is one of the
decoherence channels for the atomic ensemble implementa-
tion65–68. For other implementations, individual qubit dephasing
may be a more relevant decoherence model. We generally expect
similar results with individual qubit dephasing, since elementary
perturbations due to decoherence produce similar transitions in
the energy spectrum of the Hamiltonian. Our calculations based
on the ferromagnetic model confirm that qualitatively similar
results are obtained with an individual qubit dephasing model.
The primary difference, in this case, is the addition of non-
symmetric states, which can also act as buffer states to protect the
ground state (see Supplementary Note 4).
We finally comment on the presence of entanglement during

the AQC sweep. The mean-field wave function as given in Eq. (9)
takes the form of a product state of spin coherent states on each
ensemble. This may suggest that there is no entanglement
between the ensembles during the adiabatic evolution. In fact,
entanglement is typically present during the evolution, due to the
Szi S

z
j interaction in the AQC Hamiltonian. The mean-field ground

state is merely an approximation to the true ground state, which
in fact typically contains entanglement. We have explicitly
calculated entanglement for small ensemble sizes (see Supple-
mentary Note 5). The presence of entanglement is consistent with
past works studying the robustness of entanglement in the
presence of decoherence60,61,66,69–73. The factor of 1/N multiplying
the Szi S

z
j terms makes the type of entangled state of a robust type

as discussed in ref. 66. We, therefore, expect that the entanglement
should survive for macroscopic ensembles within the decoher-
ence window. This can be contrasted to other ensemble-based
approaches such as in liquid-state NMR74,75, where the entangle-
ment collapses to zero.

Experimental implementation
We briefly describe a potential experimental implementation that
realizes the Hamiltonians (Eq. 4) and (Eq. 5). Neutral atom
ensembles, consisting of either thermal atomic ensembles or cold
atoms, are a strong candidate for realizing a single spin ensemble
Sx;zi and 60,68,70,71,76. The individual qubits of spin σx;z

i;n within the
ensemble are realized by the internal hyperfine ground states of
the atoms. For example, for 87Rb the ground states F= 1,mF=− 1

N. Mohseni et al.

6

npj Quantum Information (2021)    71 Published in partnership with The University of New South Wales



and F= 2,mF= 1 are clock states such as their energy separation
is insensitive to magnetic field fluctuations68. Thermal atomic
ensembles are trapped in paraffin-coated glass cells which
prolong the coherence time of the internal states70. In this case,
each glass cell acts as one of the ensembles spins Sx;zi , such that M
glass cells are prepared. Such a multi-ensemble system was
realized in ref. 77 where 225 locally addressable atomic ensembles
were created, as well as entanglement generation between 25
ensembles78. Another approach is to have a multi-trap atom chip
system, such as that proposed in ref. 65,76. Atom chips are a flexible
platform for producing magnetic traps, where atoms can be
cooled to quantum degeneracy. One advantage of cooling is that
long coherence times can be achieved (up to 1min in ref. 79), for
atomic gases just above the critical temperature for Bose-Einstein
condensation.
To realize Hamiltonians (Eq. 4) and (Eq. 5), we require both

ensemble-ensemble effective interactions and single ensemble
control. This can be produced by using optically mediated
methods, where off-resonant lasers produce an effective Szi S

z
j

type interaction69,80,81. An alternative for cold atom systems is to
produce the interactions by taking advantage of the non-linear
interactions between the atoms using state-dependent forces82.
Optically mediated methods are flexible as they are able to
produce remote entanglement, whereas the interaction methods
require bringing the ensembles into close proximity. Adjusting the
interaction parameters allows one to realize a controllable Jij
matrix between the ensembles. The Hamiltonian (Eq. 5) can be
achieved by microwave/radio frequency transitions. In the case of
87Rb, this is realized by a two-photon transition between the clock
states67. Unlike optical frequencies which can be focused on a
single ensemble, microwave/radio frequency transitions are less
easily directed and are applied on all ensembles in the same
vicinity, which is sufficient for the Sxi Hamiltonian. Finally, the Szi
terms (Eq. 4) could be realized by a state-dependent potential83 or
an ac Stark shift to optically shift the energy levels76. We note that
other physical systems could potentially implement the Hamilto-
nians (Eq. 4) and (Eq. 5), for example, ensembles of NV-centers84–86

are another possibility.
One of the attractive features of the AQC Hamiltonian (Eq. 4)

and (Eq. 5) is that it is written completely in terms of the total spin
of the ensembles of qubits. This means that only global control of
the ensembles—involving the collective spin operators Sx;zi —
rather than the control of individual qubits σx;z

i;n is necessary.
Alleviating the need for individual qubit control in realizing an
error-protected quantum computer is a significant simplification
since most quantum error-correction schemes require rather
sophisticated degrees of quantum control87,88. The resources
required to scale up the degree N of the repetition code would be
considerably less in an approach involving only collective spin
control. For example, in atomic ensembles on atom chips, one
typically deals with atom clouds of the order N ~ 103 and 61,67, and
in paraffin coated glass cells the number of atoms is N ~ 1012 and
60, which are all manipulated in parallel within the experiment. In
systems where each of the copies must be implemented with
individual qubit control, the resources are consequently greater. In
comparison, past demonstrations on the D-wave machines have
been in the region of N ~ 1050,56,57. While related approaches have
been considered in the context of all-to-all encodings such as
nested QAC56–58, the chimera graph hardware that was used
necessitates a further minor embedding step which is not
required in our case.
An important issue when using macroscopic ensembles is

sensitivity to decoherence. One might naively expect that atomic
ensembles containing up to N ~ 1012 atoms are very sensitive to
decoherence. In fact, the sensitivity of the quantum state to
decoherence is a highly state-dependent process60. For example,
cat states are extremely sensitive to decoherence, but spin
coherent states are more robust66,89. Hence the important

consideration is the type of states that are generated, and one
should be careful that they are robust in the presence of
decoherence. It was shown in ref. 66 that the Szi S

z
j interaction

produces states which are robust in the presence of decoherence
as long as the interaction timescale is of order 1/N. In this respect,
the factor of 1/N in front of the two-ensemble interaction (Eq. 4) is
beneficial as it implies highly decoherence-sensitive states are not
generated. Another indication of this is that in the N≥Nc regime,
the mean-field state (Eq. 9) is a tensor product of spin coherent
states, which are known to be robust in the presence of
decoherence. This explains the good performance of our
proposed scheme even in the presence of dephasing, as shown
in Fig. 4.
Further details of the implementation with neutral atom

ensembles can be found in refs. 65,76,90 and Supplementary Note 6.

DISCUSSION
In this study, we investigated a formulation of AQC where qubit
ensembles are used instead of qubits, and the ensemble
Hamiltonians (Eq. 4) and (Eq. 5) are adiabatically evolved. We
have found that finding the ground state of (Eq. 4) is an equivalent
problem to the original qubit problem Hamiltonian (Eq. 1). The
main difference between the ensemble and qubit problem
Hamiltonians is that the ensemble version introduces many
logically equivalent states as defined in (Eq. 6) with similar
energies to the ground state. The introduction of these states is
beneficial for AQC since the occupation of these states does not
cause a logical error, and provides a buffer against diabatic
excitation. We found that there are two important regimes with
respect to N, depending on the character of the first excited state,
summarized in Fig. 1a. In the regime with N ≥ Nc, we find that the
minimum gap energy increases, and the ground state is logically
protected, leading to a reduced error probability in the AQC. In the
regime with N < Nc, we obtain mixed results, where despite the
average minimum gap increasing, the AQC scales on average
poorly. This was due to the particularly poor performance of the
cases where the gap decreases and can be attributed to the lack
of logical protection of the ground state. For large ensemble sizes
such as that realized with atomic ensembles, all but a minority of
problems should satisfy N ≥ Nc, where the ground state is logically
protected.
We thus find that AQC with ensembles should perform well in a

great majority of cases for large N. One may find it surprising that
it is possible to perform AQC at all with ensembles of qubits, even
in the limit of N→∞. The first key point that allows for the
ensemble version to still work is that the discrete nature of the
Hamiltonian is preserved under (Eq. 4) and (Eq. 5). Thus, although
the energy of the full space can be viewed as being quasi-
continuous as shown in Fig. 1a, this is only because space is being
viewed in rescaled variables xi ¼ Szi =N. Physically, the magnitude
of the spins is also growing with N, which preserves the energy
gap. From a resource point of view, one may argue that many
more physical qubits are being used. However, we take the point
of view that the relevant resource is the complexity of the
experiment control when dealing with an ensemble as compared
to a single qubit. For many implementations, the effort required
for controlling an ensemble is no more than that of a single qubit.
For instance, if performing a single qubit operation on an atom is
performed by a laser pulse, then the equivalent ensemble
operation is to apply the pulse to the whole ensemble. This is
typically not an operation that costs N times more since one can
illuminate the whole ensemble with the same laser, i.e., it is
parallelizable. Thus, as long as the operations for the qubit
operators σx;y;z

i can be performed with a similar experimental
overhead to ensemble operators Sx;y;zi , then implementing the
ensemble and qubit version of the AQC Hamiltonians should be of
comparable complexity.
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One may also be concerned that the use of ensembles may be
problematic since they could be extremely sensitive to decoher-
ence, owing to their macroscopic nature. The sensitivity of qubit
ensemble states has already been investigated in numerous
works, see for example refs. 66,90–92. The main point here is that the
fragility of the quantum states is state-dependent: while
Schrodinger cat states are extremely sensitive, spin coherent
states are generally quite robust. This is what has allowed the
experimental realization of macroscopic quantum states, such as
those performed by Polzik and co-workers60,70,71. The form of
the mean-field ground and excited states suggest that the
ensemble version of AQC can also be robust for the same reasons.
The ground state (Eq. 9) is nothing but a set of spin coherent states,
and (Eq. 11) is a spin-wave excitation on the ground state. Spin-
wave states are also relatively robust and have been already
demonstrated experimentally93. Therefore, as long as the ensemble
size is such that N ≥Nc, we believe that it is reasonable to expect
that the scheme works even in the presence of decoherence. If it is
the case that N < Nc, it is less clear what the decoherence properties
are since the nature of the state is not yet understood. We
nevertheless observe that in some cases the minimum gap can
increase, making the ensemble framework viable. While we have
not been able to exactly characterize the cases that are most
susceptible, we also have not seen any correlation with classically
hard instances of combinatorial problems (see Supplementary Note
4). Considering that these are a small fraction of the full problem set
for large N, we find that in most cases the ensemble framework
successfully performs error suppression via the duplication of the
quantum information. This is consistent with other approaches
using repetition codes with AQC50–59.
Another direction that could be further investigated is the use

of energy penalty terms, which have been shown to be beneficial
in several works50,56–59. This would involve the addition of terms
to the Hamiltonian of the form ðSzi Þ2 to induce a ferromagnetic
interaction within the qubits in the ensembles. This is expected to
further improve the performance, where there is an optimal
strength of the interaction. Producing such an interaction in the
case of atomic ensembles has been experimentally and theore-
tically investigated67,69, and is compatible with the general
framework of our approach since it is based on collective
operations of the ensemble. We will leave these topics for further
investigation as future work.

METHODS
Numerical simulation
To examine the performance of the ensemble version of AQC, we
performed both a pure state evolution and mixed state evolution of
Hamiltonian (Eq. 3). We use a linear annealing schedule λ(t)= t/τ and
examine the final occupation probability of the states at time t= τ. For the
case that we include decoherence, we consider Markovian Sz-dephasing
and Sx-dephasing. This is particularly relevant for implementation with
atomic ensembles, where the coupling to the ensemble spins occur in a
collective manner65–68. We use the master equation94

dρ
dt ¼ i½ρ;H� � Γz

2

PM
n¼1

½ρðSznÞ2 � 2SznρS
z
n þ ðSznÞ2ρ�

� Γx
2

PM
n¼1

½ρðSxnÞ2 � 2SxnρS
x
n þ ðSxnÞ2ρ�;

(13)

where Γz,x is dephasing rates and H is the Hamiltonian (Eq. 3). Starting from
the eigenstate of the initial Hamiltonian we solve the master equation
numerically for the combined adiabatic and dephasing evolution. The
performance of the AQC is then evaluated through the probability of
finding the state of the system in the ground state at the end of the
adiabatic evolution. Qutip was used for the simulations95.
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